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EXERCISES

3.1 In the Markov chain Monte Carlo method, the final stationary distribution
reached after the chain convergency is the desired target contribution:

∫
π(x)A(x,y)dx = π(y),

where x is the state variable, A(x,y) = T (x,y) · r(x,y) is the actual transition
function, the product of the proposal function T (x,y), and an acceptance-rejection
rule r(x,y). The proposal function T (x,y) suggests a possible move from x to
y. The acceptance-rejection rule decides whether the proposed move to y will
be accepted: Draw a random number u from the uniform distribution U [0, 1]. If
u ≤ r(x,y), the move is accepted and y is taken as the new position. Otherwise
stay with x.

In the original Metropolis Monte Carlo method, the proposal function is sym-
metric: T (x,y) = T (y,x), and the acceptance-rejection rule is simply:

r(x,y) = min{1, π(y)/π(x)}

. Since the target distribution is the Boltzmann distribution π(x) ∼ exp(h(x)),
where h(x) is an energy function, the acceptance rule is often written as: u ≤
r(x,y) = exp(−[h(y)−h(x)]). This strategy will work, for example, if the proposal
function gives equal probability 1/n(x) to each of the n(x) conformations that can
be reached from conformation x:

T (x,y) = 1/n(x),

and if n(x) = n(y) for x and y that are connected by a move.
However, the number of possible moves for a conformation x frequently depends

on the local geometry. For example, it is more difficult in protein simulation to
move an amino acid residue that is buried in the interior than moving a residue
located in a loop region. In other words, the number of allowed moves is different:
n(x) 6= n(y), although each can be computed exactly.


