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FOREWORD

The subjects of this book are biomolecules and biomolecular networks. The first
part of the book will cover surface and volume representation of the structures of
biomolecules based on the idealized ball model. The underlying geometric con-
structs as well as their computation will then be discussed. This will be followed by
the chapter on constructing effective scoring functions in different functional forms
using either the statistical approach or the optimization approach, with the goal
of identifying native-like protein structures or protein-protein interfaces, as well as
constructing a general fitness landscape for protein design. The topic of sampling
and estimation that can be used to generate biomolecular structures and to esti-
mate their evolutionary patterns are then discussed, with equal emphasis on the
Metropolis Monte Carlo (or Markov Chain Monte Carlo) approach and the chain
growth (or sequential Monte Carlo) approach. This is followed by a chapter cov-
ering the topic of stochastic networks formed by interacting biomolecules and the
framework of discrete chemical master equations, as well as computational meth-
ods for direct numerical computation and for sampling reaction trajectories of the
probabilistic landscape of these networks.

The second part of the book will cover interaction networks of biomolecules. We
will discuss stochastic models for networks with small copy numbers of molecular
species, as those arising in genetic circuits, protein synthesis, and transcription
binding, and algorithms of computing the properties of stochastic molecular net-
works. We will then cover signal transduction networks that arise, for example, in
complex interactions between the numerous constituents such as DNAs, RNAs, pro-
teins and small molecules in a complex biochemical system such as a cell. We will
also discuss the experimental protocols and algorithmic methodologies necessary to

Xix



XX FOREWORD

synthesize these networks. Of special interest will be the synthesis these networks
from double-causal experimental evidences and methods for reverse engineering of
such networks based on suitable experimental protocols.

This book is written for graduate students, upper division undergraduate stu-
dents, engineers, and scientists in academia and industries from a variety of disci-
plines, such as bioengineering, biophysics, electric engineering, chemical engineer-
ing, mathematics, biology, and computer science. It may also serve as a useful
reference for researchers in these disciplines, including professional engineers, pro-
fessional statisticians, as well as practicing scientists in pharmaceutical industry
and biotechnology industry. This book may be used as a monograph for learning
important research topics, and for finding algorithms and solutions to problems
encountered in research and in practice.
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CHAPTER 1

GEOMETRIC MODELS OF PROTEIN
STRUCTURE AND FUNCTION PREDICTION

1.1 Introduction

Three-dimensional atomic structures of protein molecules provide rich information
for understanding how these working molecules of a cell carry out their biological
functions. With the amount of solved protein structures rapidly accumulating,
computation of geometric properties of protein structure becomes an indispensable
component in studies of modern biochemistry and molecular biology. Before we
discuss methods for computing the geometry of protein molecules, we first briefly
describe how protein structures are obtained experimentally.

There are primarily three experimental techniques for obtaining protein struc-
tures: X-ray crystallography, solution nuclear magnetic resonance (NMR), and re-
cently freeze-sample electron microscopy (cryo-EM). In X-ray crystallography, the
diffraction patterns of X-ray irradiation of a high quality crystal of the protein
molecule are measured. Since the diffraction is due to the scattering of X-ray by
the electrons of the molecules in the crystal, the position, the intensity, and the
phase of each recorded diffraction spot provide information for the reconstruction
of an electron density map of atoms in the protein molecule. Based on independent
information of the amino acid sequence, a model of the protein conformation is then
derived by fitting model conformations of residues to the electron density map. An
iterative process called refinement is then applied to improve the quality of the fit
of the electron density map. The final model of the protein conformation consists
of the coordinates of each of the non-hydrogen atoms [46].

Models and Algorithms for Biomolecules and Molecular Networks, first edition. 1
By
Bhaskar DasGupta and Jie Liang Copyright (© 2015 John Wiley & Sons, Inc.



2 GEOMETRIC MODELS OF PROTEIN STRUCTURE AND FUNCTION PREDICTION

The solution NMR technique for solving protein structure is based on measuring
the tumbling and vibrating motion of the molecule in solution. By assessing the
chemical shifts of atomic nuclei with spins due to interactions with other atoms
in the vicinity, a set of estimated distances between specific pairs of atoms can be
derived from NOSEY spectra. When a large number of such distances are obtained,
one can derive a set of conformations of the protein molecule, each being consistent
with all of the distance constraints [10]. Although determining conformations from
either X-ray diffraction patterns or NMR spectra is equivalent to solving an ill-
posed inverse problem, technique such as Bayesian Markov chain Monte Carlo with
parallel tempering has been shown to be effective in obtaining protein structures
from NMR spectra [53].

1.2 Theory and model

1.2.1 Idealized ball model

The shape of a protein molecule is complex. The chemical properties of atoms in a
molecule are determined by their electron charge distribution. It is this distribution
that generates the scattering patterns of the X-ray diffraction. Chemical bonds
between atoms lead to transfer of electronic charges from one atom to another, and
the resulting isosurfaces of the electron density distribution depend not only on the
location of individual nuclei but also on interactions between atoms. This results
in an overall complicated isosurface of electron density [2].

The geometric model of macromolecule amenable to convenient computation
is an idealized model, where the shapes of atoms are approximated by three-
dimensional balls. The shape of a protein or a DNA molecule consisting of many
atoms is then the space-filling shape taken by a set of atom balls. This model
is often called the interlocking hard-sphere model, the fused ball model, the space
filling model [32,47,50,52], or the union of ball model [12]. In this model, details in
the distribution of electron density (e.g., the differences between regions of covalent
bonds and non-covalent bonds) are ignored. This idealization is quite reasonable,
as it reflects the fact that the electron density reaches maximum at a nucleus and
its magnitude decays almost spherically away from the point of the nucleus. De-
spite possible inaccuracy, this idealized model has found wide acceptance, because
it enables quantitative measurement of important geometric properties (such as
area and volume) of molecules. Insights gained from these measurements correlate
well with experimental observations [9,21,32,49-51].

In this idealization, the shape of each atom is that of a ball, and its size parameter
is the ball radius or atom radius. There are many possible choices for the parameter
set of atomic radii [48,57]. Frequently, atomic radii are assigned the values of their
van der Waals radii [7]. Among all these atoms, hydrogen atom has the smallest
mass, and has a much smaller radius than those of other atoms.

For simplification, the model of united atom is often employed to approximate
the union of a heavy atom and the hydrogen atoms connected by a covalent bond.
In this case, the radius of the heavy atom is increased to approximate the size of
the union of the two atoms. This practice significantly reduces the total number
of atom balls in the molecule. However, this approach has been questioned for
possible inadequacy [61].



THEORY AND MODEL 3

The mathematical model of this idealized model is that of the union of balls [12].
For a molecule M of n atoms, the i-th atom is modeled as a ball b;, whose center
is located at z; € R3, and the radius of this ball is 7; € R, namely, we have
b; = {z|x € R?, ||z — 2;|| < r;} parametrized by (z;,7;). The molecule M is formed
by the union of a finite number n of such balls defining the set B:

M_UB_O{bZ—}.

It creates a space-filling body corresponding to the union of the excluded volumes
vol (Uj_; {b:}) [12]. When the atoms are assigned the van der Waals radii, the
boundary surface dJ B of the union of balls is called the van der Waals surface.

1.2.2 Surface models of proteins

Protein folds into native three-dimensional shape to carry out its biological func-
tional roles. The interactions of a protein molecule with other molecules (such as
ligand, substrate, or other protein) determine its functional roles. Such interactions
occur physically on the surfaces of the protein molecule.

The importance of protein surface was recognized very early on. Lee and Richards
developed the widely used solvent accessible surface (SA) model, which is also of-
ten called the Lee-Richards surface model [32]. Intuitively, this surface is obtained
by rolling a ball of radius s everywhere along the van der Waals surface of the
molecule. The center of the solvent ball will then sweep out the solvent accessible
surface. Equivalently, the solvent accessible surface can be viewed as the boundary
surface 0| B, of the union of a set of inflated balls B,._, where each ball takes the
position of an atom, but with an inflated radius r; + r5 (Fig. 1.1 a).

R (S (O
N\ . TN, :

Figure 1.1  Geometric models of protein surfaces. a. The solvent accessible surface (SA
surface) is shown in the front. The van der Waals surface (beneath the SA surface) can be
regarded as a shrunken version of the SA surface by reducing all atomic radii uniformly by
the amount of the radius of the solvent probe rs = 1.4 Angstrom. The elementary pieces
of the solvent accessible surface are the three convex spherical surface pieces, the three arcs,
and the vertex where the three arcs meet. b. The molecular surface (MS, beneath the SA
surface) also has three types of elementary pieces: the convex spherical pieces, which are
shrunken version of the corresponding pieces in the solvent accessible surface, the concave
toroidal pieces, and concave spherical surface. The latter two are also called the re-entrant
surface. c¢. The toroidal surface pieces in the molecular surface, correspond to the arcs in
the solvent accessible surface, and the concave spherical surface to the vertex. The set of
elements in one surface can be continuously deformed to the set of elements in the other
surface.

The solvent accessible surface in general has many sharp crevices and sharp
corners. In hope of obtaining a smoother surface, one can take the surface swept
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out by the front instead of the center of the solvent ball. This surface is the
molecular surface (MS model), which is also often called the Connolly’s surface
after Michael Connolly who developed the first algorithm for computing molecular
surface [9]. Both solvent accessible surface and molecular surface are formed by
elementary pieces of simpler shape.

Elementary pieces. For the solvent accessible surface model, the boundary sur-
face of a molecule consists of three types of elements: the convex spherical surface
pieces, arcs or curved line segments (possibly a full circle) formed by two intersect-
ing spheres, and a vertex that is the intersection point of three atom spheres. The
whole boundary surface of the molecules can be thought of as a surface formed by
stitching these elements together.

Similarly, the molecular surface swept out by the front of the solvent ball can
also be thought of as being formed by elementary surface pieces. In this case, they
are the convex spherical surface pieces, the toroidal surface pieces, and the concave
or inverse spherical surface pieces (Fig. 1.1 b) . The latter two types of surface
pieces are often called the “re-entrant surfaces” [9, 50].

The surface elements of the solvent accessible surface and the molecular surface
are closely related. Imagine a process where atom balls are shrunk or expanded.
The vertices in solvent accessible surface becomes the concave spherical surface
pieces, the arcs becomes the toroidal surfaces, and the convex surface pieces become
smaller convex surface pieces (Fig. 1.1 ¢). Because of this mapping, these two type
of surfaces are combinatorially equivalent and have similar topological properties,
i.e., they are homotopy equivalent.

However, the SA surface and the MS surface differ in their metric measurement.
In concave regions of a molecule, often the front of the solvent ball can sweep out
a larger volume than the center of the solvent ball. A void of size close to zero in
solvent accessible surface model will correspond to a void of the size of a solvent ball
(47r3/3). Tt is therefore important to distinguish these two types of measurement
when interpreting the results of volume calculations of protein molecules. The
intrinsic structures of these fundamental elementary pieces are closely related to
several geometric constructs we describe below.

1.2.3 Geometric constructs

Voronoi diagram. Voronoi diagram (Fig. 1.2 a), also known as Voronoi tessella-
tion, is a geometric construct that has been used for analyzing protein packing in
the early days of protein crystallography [18,20,47]. For two dimensional Voronoi
diagram, we consider the following analogy. Imagine a vast forest containing a
number of fire observation towers. Each fire ranger is responsible for putting out
any fire closer to his/her tower than to any other tower. The set of all trees for
which a ranger is responsible constitutes the Voronoi cell associated with his/her
tower, and the map of ranger responsibilities, with towers and boundaries marked,
constitutes the Voronoi diagram.

We formalize this for three dimensional space. Consider the point set S of atom
centers in three dimensional space R3. The Voronoi region or Voronoi cell V; of an
atom b; with atom center z; € R? is the set of all points that are at least as close
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Figure 1.2  Geometry of a simplified two dimensional model molecule, to illustrate the
geometric constructs and the procedure mapping the Voronoi diagram to the Delaunay
triangulation. a. The molecule formed by the union of atom disks of uniform size. Voronoi
diagram is in dashed lines. b. The shape enclosed by the boundary polygon is the convex
hull. Tt is tessellated by the Delaunay triangulation. c. The alpha shape of the molecule is
formed by removing those Delaunay edges and triangles whose corresponding Voronoi edges
and Voronoi vertices do not intersect with the body of the molecule. A molecular void is
represented in the alpha shape by two empty triangles.

to z; than to any other atom centers in S:
Vi={z e R¥|l|lz — 2| < ||z — 2, 2 € S}

We can have an alternative view of the Voronoi cell of an atom b;. Considering the
distance relationship of atom center z; with the atom center z; of another atom
br. The plane bisecting the line segment connecting points z; and zj divides the
full R3 space into two half spaces, where points in one half space is closer to z;
than to zx, and points in the other allspice is closer to z; than to z;. If we repeat
this process and take zj in turn from the set of all atom centers other than z;, we
will have a number of halfspaces where points are closer to z; than to each of the
atom center zx. The Voronoi region V; is then the common intersections of these
half spaces, which is convex (see exercises). When we consider atoms of different
radii, we replace the Euclidean distance ||z — z;|| with the power distance defined
as: mi(x) = ||x — 24| — r?.

Delaunay tetrahedrization. Delaunay triangulation in R? or Delaunay tetra-
hedrization in R? is a geometric construct that is closely related to the Voronoi
diagram (Fig. 1.2 b). In general, it uniquely tessellates or tile up the space of the
conver hull of the atom centers in R3 with tetrahedra. Convex hull for a point
set is the smallest convex body that contains the point set !. The Delaunay tetra-

1For a two dimensional toy molecule, we can imagine that we put nails at the locations of the
atom centers, and tightly wrap a rubber band around these nails. The rubber band will trace out
a polygon. This polygon and the region enclosed within is the convex hull of the set of points
corresponding to the atom centers. Similarly, imagine if we can tightly wrap a tin-foil around
a set of points in three dimensional space, the resulting convex body formed by the tin-foil and
space enclosed within is the convex hull of this set of points in R3.
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hedrization of a molecule can be obtained from the Voronoi diagram. Consider that
the Delaunay tetrahedrization is formed by gluing four types of primitive elements
together: vertices, edges, triangles, and tetrahedra. Here vertices are just the atom
centers. We obtain a Delaunay edge by connecting atom centers z; and z; if and
only if the Voronoi regions V; and V; have a common intersection, which is a planar
piece that may be either bounded or extend to infinity. We obtain a Delaunay tri-
angle connecting atom centers z;, z;, and z;, if the common intersection of Voronoi
regions V;, V; and V}, exists, which is either a line segment, or a half-line, or a line
in the Voronoi diagram. We obtain a Delaunay tetrahedra connecting atom centers
Zi, 2,z and z; if and only if the Voronoi regions V;,V;, V), and V] intersect at a
point.

1.2.4 Topological structures

Delaunay complex. The structures in both Voronoi diagram and Delaunay tetra-
hedrization are better described with concepts from algebraic topology. We focus
on the intersection relationship in the Voronoi diagram and introduce concepts for-
malizing the primitive elements. In R3, between two to four Voronoi regions may
have common intersections. We use simplices of various dimensions to record these
intersection or overlap relationships. We have vertices g as O-simplices, edges o
as 1-simplices, triangles o9 as 2-simplices, and tetrahedra o3 as 3-simplices. Each of
the Voronoi plane, Voronoi edge, and Voronoi vertices corresponds to a 1-simplex
(Delaunay edge), 2-simplex (Delaunay triangle), and 3-simplex (Delaunay tetrahe-
dron), respectively. If we use O-simplices to represent the Voronoi cells, and add
them to the simplices induced by the intersection relationship, we can think of
the Delaunay tetrahedrization as the structure obtained by “gluing” these simplices
properly together. Formally, these simplices form a simplicial complex IC:

K ={o)1-1] ﬂVi # 0},

el

where [ is an index set for the vertices representing atoms whose Voronoi cells
overlap, and |I| — 1 is the dimension of the simplex.

Alpha shape and protein surfaces. Imagine we can turn a knob to increase or
decrease the size of all atoms simultaneously. We can then have a model of growing
balls and obtain further information from the Delaunay complex about the shape
of a protein structure. Formally, we use a parameter a € R to control the size
of the atom balls. For an atom ball b; of radius r;, we modified its radius r; at
a particular o value to r;(a) = (r? + a)/2. When —r; < a < 0, the size of an
atom is shrunk. The atom could even disappear if & < 0 and |a| > r;. With this
construction of «, the weighted Voronoi diagram is invariant with regard to « (see
exercises). We start to collect the simplices at different « value as we increase «
from —oo to +o00 (see Fig. 1.3 for a two-dimensional example). At the beginning,
we only have vertices. When « is increased such that two atoms are close enough
to intersect, we collect the corresponding Delaunay edge that connects these two
atom centers. When three atoms intersect, we collect the corresponding Delaunay
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Figure 1.3  The family of alpha shapes or dual simplicial complexes for a two-dimensional
toy molecule. a. We collect simplices from the Delaunay triangulation as atoms grow by
increasing the o value. At the beginning as « grows from —oo, atoms are in isolation and we
only have vertices in the alpha shape. b and c. When « is increased such that some atom
pairs start to intersect, we collect the corresponding Delaunay edges. d. When three atoms
intersect as a increases, we collect the corresponding Delaunay triangles. When a = 0,
the collection of vertices, edges, and triangles form the dual simplicial complex ICo, which
reflecting the topological structure of the protein molecule. e. More edges and triangles
from the Delaunay triangulation are now collected as atoms continue to grow. f. Finally, all

vertices, edges, and triangles are now collected as atoms are grown to large enough size. We
get back the full original Delaunay complex.

triangle spanning these three atom centers. When four atoms intersect, we collect
the corresponding Delaunay tetrahedron.

At any specific « value, we have a dual simplicial complex or alpha complex IC,,
formed by the collected simplices. If all atoms take the incremented radius of r; +17;
and o = 0, we have the dual simplicial complex Ky of the protein molecule. When
« is sufficiently large, we have collected all simplices and we get the full Delaunay
complex. This series of simplicial complexes at different o value form a family of
shapes (Fig. 1.3), called alpha shapes, each faithfully represents the geometric and
topological property of the protein molecule at a particular resolution parametrized
by the « value. Fig. 1.4 illustrates an example of the alpha shapes of the HIV-1
protease at different o values.

An equivalent way to obtain the alpha shape at a = 0 is to take a subset of
the simplices, with the requirement that the corresponding intersections of Voronoi
cells must overlap with the body of the union of the balls. We obtain the dual



Figure 1.4  An illustration of a family of alpha shapes of HIV-1 protease as a value
increases from left to right and top to bottom. As « increases, more edges, triangles, and
tetrahedra enter the collection of simplices. At each « value, the collected simplices form a
simplicial complex. When « is sufficiently large, we obtain the full Delaunay tetrahedrization.

complex or alpha shape Ky of the molecule at @ = 0 (Fig. 1.2 ¢):

Koz{am_l‘ ﬂVmUB;é@}.

icl

Alpha shape provides a guide map for computing geometric properties of the
structures of biomolecules. Take the molecular surface as an example, the re-entrant
surfaces are formed by the concave spherical patch and the toroidal surface. These
can be mapped from the boundary triangles and boundary edges of the alpha
shape, respectively [14]. Recall that a triangle in the Delaunay tetrahedrization
corresponds to the intersection of three Voronoi regions, i.e., a Voronoi edge. For
a triangle on the boundary of the alpha shape, the corresponding Voronoi edge
intersects with the body of the union of balls by definition. In this case, it intersects
with the solvent accessible surface at the common intersecting vertex when the
three atoms overlap. This vertex corresponds to a concave spherical surface patch
in the molecular surface. For an edge on the boundary of the alpha shape, the
corresponding Voronoi plane coincides with the intersecting plane when two atoms
meet, which intersect with the surface of the union of balls on an arc. This line
segment corresponds to a toroidal surface patch. The remaining part of the surface
are convex pieces, which correspond to the vertices, namely, the atoms on the
boundary of the alpha shape.
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The numbers of toroidal pieces and concave spherical pieces are exactly the
numbers of boundary edges and boundary triangles in the alpha shape, respectively.
Because of the restriction of bond length and the excluded volume effects, the
number of edges and triangles in molecules are roughly in the order of O(n) [38].

1.2.5 Metric measurements

We have described the relationship between the simplices and the surface elements
of the molecule. Based on this type of relationship, we can compute efficiently
size properties of the molecule. We take the problem of volume computation as an
example.

Consider a grossly incorrect way to compute the volume of a protein molecule
using the solvent accessible surface model. We could define that the volume of
the molecule is the summation of the volumes of individual atoms, whose radii
are inflated to account for solvent probe. By doing so we would have significantly
inflated the value of the true volume, because we neglected to consider volume
overlaps. We can explicitly correct this by following the inclusion-exclusion formula:
when two atoms overlap, we subtract the overlap; when three atoms overlap, we first
subtract the pair overlaps, we then add back the triple overlap, etc. This continues
when there are four, five, or more atoms intersecting. At the combinatorial level,
the principle of inclusion-exclusion is related to the Gauss-Bonnet theorem used by
Connolly [9]. The corrected volume V(B) for a set of atom balls B can then be
written as:

VB = Y (~1)imD ol (ﬂT) W)

vol(NT)>0
TCB

where vol () T') represents volume overlap of various degree, T' C B is a subset of
the balls with non-zero volume overlap: vol (7)) > 0.

However, the straightforward application of this inclusion-exclusion formula does
not work. The degree of overlap can be very high: theoretical and simulation studies
showed that the volume overlap can be up to 7-8 degrees [29,45]. It is difficult to
keep track of these high degree of volume overlaps correctly during computation,
and it is also difficult to compute the volume of these overlaps because there are
many different combinatorial situations, i.e., to quantify how large is the k-volume
overlap of which one of the (Z) or (2) overlapping atoms for all of k = 2, --- |7 [45].
It turns out that for three-dimensional molecules, overlaps of five or more atoms
at a time can always be reduced to a “4” or a “—" signed combination of overlaps
of four or fewer atom balls [12]. This requires that the 2-body, 3-body, and 4-body
terms in Equation (1.1) enter the formula if and only if the corresponding edge
oi; connecting the two balls (1-simplex), triangles o;;; spanning the three balls
(2-simplex), and tetrahedron o;;5; cornered on the four balls (3-simplex) all exist
in the dual simplicial complex Ky of the molecule [12,38]. Atoms corresponding to
these simplices will all have volume overlaps. In this case, we have the simplified
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Figure 1.5 An example of analytical area calculation. A. Area can be computed using
the direct inclusion-exclusion. B. The formula is simplified without any redundant terms
when using alpha shape.

exact expansion:

V(B)= Y vol(b;) = Y vol(b;Nb;)

o, €K G’ijEIC
+ Y vol(b; by Nbk) — > vol(bi N by Mg Nby).
oijk €L iji €K

The same idea is applicable for the calculation of surface area of molecules.

An example. An example of area computation by alpha shape is shown in Fig. 1.5.
Let b1, bo, b3, by be the four disks. To simplify the notation we write A; for the area
of b;, A;; for the area of b; Nb;, and A;j;, for the area of b; Nb; Nby. The total area
of the llIliOH7 b1 @] b2 U bg @] b4, is

Atotal = (Al + Ay + A3z + A4)
(A12 + Aoz + Asg + Asy)
+ Ao

We add the area of b; if the corresponding vertex belongs to the alpha complex
(Fig. 1.5), we subtract the area of b; N b; if the corresponding edge belongs to the
alpha complex, and we add the area of b; N b; N by, if the corresponding triangle
belongs to the alpha complex. Note without the guidance of the alpha complex,
the inclusion-exclusion formula may be written as:

Aiotal = (A1 +As+ A3+ Ay)
(Ar2 + A1z + Ara + Aoz + Aoy + Aza)
+  (Ai2z + Aroa + A13a + Aoza)

— Az

This contains 6 canceling redundant terms: Aj3 = Ajs3, A1q4 = Ajo4, and Ajzq =
Ajo34. Computing these terms would be wasteful. Such redundancy does not
occur when we use the alpha complex: the part of the Voronoi regions contained
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in the respective atom balls for the redundant terms do not intersect. Therefore,
the corresponding edges and triangles do not enter the alpha complex. In two
dimensions, we have terms of at most three disk intersections, corresponding to
triangles in the alpha complex. Similarly, in three dimensions the most complicated
terms are intersections of four spherical balls, and they correspond to tetrahedra in
the alpha complex.

Voids and pockets. Voids and pockets represent the concave regions of a protein
surface. Because shape-complementarity is the basis of many molecular recognition
processes, binding and other activities frequently occur in pocket or void regions
of protein structures. For example, the majority of enzyme reactions take place in
surface pockets or interior voids.

The topological structure of the alpha shape also offers an effective method for
computing voids and pockets in proteins. Consider the Delaunay tetrahedra that
are not included in the alpha shape. If we repeatedly merge any two such tetrahedra
on the condition that they share a 2-simplex triangle, we will end up with discrete
sets of tetrahedra. Some of them will be completely isolated from the outside, and
some of them are connected to the outside by triangle(s) on the boundary of the
alpha shape. The former corresponds to voids (or cavities) in proteins, the latter
corresponds to pockets and depressions in proteins.

A pocket differs from a depression in that it must have an opening that is at least
narrower than one interior cross-section. Formally, the discrete flow [17] explains
the distinction between a depression and a pocket. In a two dimensional Delaunay
triangulation, the empty triangles that are not part of the alpha shape can be
classified into obtuse triangles and acute triangles. The largest angle of an obtuse
triangle is more than 90 degrees, and the largest angle of an acute triangle is less
than 90 degrees. An empty obtuse triangle can be regarded as a “source” of empty
space that “flows” to its neighbor, and an empty acute triangle a “sink” that collects
flow from its obtuse empty neighboring triangle(s). In Fig. 1.6 a, obtuse triangles
1, 3, 4 and 5 flow to the acute triangle 2, which is a sink. Each of the discrete
empty spaces on the surface of protein can be organized by the flow systems of
the corresponding empty triangles: Those that flow together belong to the same
discrete empty space. For a pocket, there is at least one sink among the empty
triangles. For a depression, all triangles are obtuse, and the discrete flow goes from
one obtuse triangle to another, from the innermost region to outside the convex
hull. The discrete flow of a depression therefore goes to infinity. Fig. 1.6 b gives an
example of a depression formed by a set of obtuse triangles.

Once voids and pockets are identified, we can apply the inclusion-exclusion prin-
ciple based on the simplices to compute the exact size measurement (e.g., volume
and area) of each void and pocket [17,39]. Fig. 1.7 shows the computed binding
surface pockets on Ras21 protein and FtsZ protein.

The distinction between voids and pockets depends on the specific set of atomic
radii and the solvent radius. When a larger solvent ball is used, the radii of all atoms
will be inflated by a larger amount. This could lead to two different outcomes. A
void or pocket may become completely filled and disappear. On the other hand,
the inflated atoms may not fill the space of a pocket, but may close off the opening
of the pocket. In this case, a pocket becomes a void. A widely used practice
in the past was to adjust the solvent ball and repeatedly compute voids, in the
hope that some pockets will become voids and hence be identified by methods
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Figure 1.7  The computed surface pockets of binding sites on Ras21 protein and FtsZ
protein.

designed for cavity/void computation. The pocket algorithm [17] and tools such as
CasTP [11,40] often makes this unnecessary.

1.3 Algorithm and computation

Computing Delaunay tetrahedrization and Voronoi diagram. It is easier
to discuss the computation of tetrahedrization first. The incremental algorithm
developed in [16] can be used to compute the weighted tetrahedrization for a set
of atoms of different radii. For simplicity, we sketch the outline of the algorithm
below for two dimensional unweighted Delaunay triangulation.

The intuitive idea of the algorithm can be traced back to the original observation
of Delaunay. For the Delaunay triangulation of a point set, the circumcircle of an
edge and a third point forming a Delaunay triangle must not contain a fourth
point. Delaunay showed that if all edges in a particular triangulation satisfy this
condition, the triangulation is a Delaunay triangulation. It is easy to come up
with an arbitrary triangulation for a point set. A simple algorithm to covert this
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triangulation to the Delaunay triangulation is therefore to go through each of the
triangles, and make corrections using “flips” discussed below if a specific triangle
contains an edge violating the above condition. The basic ingredients for computing
Delaunay tetrahedrization are generalizations of these observations. We discuss the
concept of locally Delaunay edge and the edge-flip primitive operation below.
Locally Delaunay edge. We say an edge ab is locally Delaunay if either it is on
the boundary of the convex hull of the point set, or if it belongs to two triangles
abe and abd, and the circumcircle of abc does not contain d (e.g., edge c¢d in Fig. 1.8

b
. 1-to-3 flip g’i

Figure 1.8  An illustration of locally Delaunay edge and flips. a. For the quadrilateral
abced, edge ab is not locally Delaunay, as the circumcircle passing through edge ab and a third
point ¢ contains a fourth point d. Edge cd is locally Delaunay, as b is outside the circumcircle
adc. An edge-flip or 2-to-2 flip replaces edge ab by edge cd, and replace the original two
triangles abc and adb with two new triangles acd and bed. b. When a new vertex is inserted,
we replace the old triangle containing this new vertex with three new triangles. This is called
1-to-3 flip.

Edge-flip. If ab is not locally Delaunay (edge ab in Fig. 1.8 a), then the union
of the two triangles abc U abd is a convex quadrangle acbd, and edge cd is locally
Delaunay. We can replace edge ab by edge cd. We call this an edge-flip or 2-to-2
flip, as two old triangles are replaced by two new triangles.

We recursively check each boundary edge of the quadrangle abcd to see if it is
also locally Delaunay after replacing ab by cd. If not, we recursively edge-flip it.

Incremental algorithm for Delaunay triangulation. Assume that we have a finite
set of points (namely, atom centers) S = {21,292, -, 24, -+ ,2,}. We start with
a large auxiliary triangle that contains all these points. We insert the points one
by one. At all times, we maintain a Delaunay triangulation D; up to insertion of
point z;.

After inserting point z;, we search for the triangle 7;_; that contains this new
point. We then add z; to the triangulation and split the original triangle 7;_1 into
three smaller triangles. This split is called 1-to-3 flip, as it replaces one old triangle
with three new triangles. We then check if each of the three edges in 7,1 still
satisfies the locally Delaunay requirement. If not, we perform a recursive edge-flip.
This algorithm is summarized in Algorithm I.

In R3, the algorithm of tetrahedrization becomes more complex, but the same
basic ideas apply. In this case, we need to locate a tetrahedron instead of a triangle
that contains the newly inserted point. The concept of locally Delaunay is replaced
by the concept of locally convex, and there are flips different than the 2-to-2 flip
in R3 [16]. Although an incremental approach (i.e., sequentially adding points) is
not necessary for Delaunay triangulation in R?, it is necessary in R? to avoid non-
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Algorithm I Delaunay triangulation.

Obtain random ordering of points {z1,- - , zn };
for i=1ton do
find 7;_1 such z; € 7;_1;
add z;, and split 7;_1 into three triangles (1-to-3 flip);
while any edge ab not locally Delaunay do
flip ab to other diagonal cd (2-to-2 edge flip);
end while
end for

flippable cases and to guarantee that the algorithm will terminate. This incremental
algorithm has excellent expected performance [16].

The computation of Voronoi diagram is conceptually easy once the Delaunay
triangulation is available. We can take advantage of the mathematical duality and
compute all of the Voronoi vertices, edges, and planar faces from the Delaunay
tetrahedra, triangles, and edges (see exercises). Because one point z; may be an
vertex of many Delaunay tetrahedra, the Voronoi region of z; therefore may con-
tain many Voronoi vertices, edges, and planar faces. The efficient quad-edge data
structure can be used for software implementation [24].

Volume and area computation. Let V and A denote the volume and area of
the molecule, respectively, I, for the alpha complex, o for a simplex in /C, i for a
vertex, ij for an edge, ijk for a triangle, and ijkl for a tetrahedron. The algorithm
for volume and area computation can be written as Algorithm II.

Algorithm IT Volume and area measurement
V:.=A:=0.0;
for all 0 € K do
if o is a vertex i then
V=V +vol(b;); A:= A+ area(b;);
end if
if o is an edge ij then
V=V —vol(b;Nb;); A:= A — area(b; N b;);
end if
if o is a triangle 75k then
V=V 4vol(b;Nb; Nby); A:= A+ area(b; Nb; N by);
end if
if o is a tetrahedron ijkl then
V=V —vol(b;Nb; NbyNby); A:=A— area(b; Nb; Nby Nby);
end if
end for

Additional details of volume and area computation can be found in [14, 38].

Software. The CASTP webserver for pocket computation can be found at cast.
engr.uic.edu. There are other studies that compute or use Voronoi diagrams of
protein structures [8,23,25], although not all computes the weighted version which
allows atoms to have different radii.
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In this short description of algorithm, we have neglected many details important
for geometric computation. For example, the problem of how to handle geometric
degeneracy, namely, when three points are co-linear, or when four points are co-
planar. Interested readers should consult the excellent monograph by Edelsbrunner
for a detailed treatise of these and other important topics in computational geom-
etry [13].

1.4 Applications

1.4.1 Protein packing

An important application of the Voronoi diagram and volume calculation is the
measurement of protein packing. Tight packing is an important feature of pro-
tein structure [47,49], and is thought to play important roles in protein stability
and folding dynamics [33]. The packing density of a protein is measured by the
ratio of its van der Waals volume and the volume of the space it occupies. One
approach is to calculate the packing density of buried residues and atoms using
Voronoi diagram [47,49]. This approach was also used to derive radii parameters
of atoms [57].
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Figure 1.9  Voids and pockets for a set of 636 proteins representing most of the known
protein folds, and the scaling behavior of the geometric properties of proteins. (on the left)
The number of voids and pockets detected with a 1.4 Angstrom probe is linearly correlated
with the number of residues in a protein. Only proteins with less than 1,000 residues are
shown. Solid triangles and empty circles represent the pockets and the voids, respectively.
(on the right) The van der Waals (vdw) volume and van der Waals area of proteins scale
linearly with each other. Similarly, molecular surface (ms) volume also scales linearly with
molecular surface area using a probe radius of 1.4 Angstrom. (Data not shown. Figure
adapted after [37])

Based on the computation of voids and pockets in proteins, a detailed study
surveying major representatives of all known protein structural folds showed that
there is a substantial amount of voids and pockets in proteins [37]. On average,
every 15 residues introduces a void or a pocket (Fig. 1.9 (left side)). For a perfectly
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solid three-dimensional sphere of radius r, the relationship between volume V =
4773 /3 and surface area A = 4rr? is: V oc A3/2. In contrast, Fig. 1.9 (right side)
shows that the van der Waals volume scales linearly with the van der Waals surface
areas of proteins. The same linear relationship holds irrespective of whether we
relate molecular surface volume and molecular surface area, or solvent accessible
volume and solvent accessible surface area. This and other scaling behavior point
out that protein interior is not packed as tight as solid [37]. Rather, packing defects
in the form of voids and pockets are common in proteins.

If voids and pockets are prevalent in proteins, an interesting question is what
is then the origin of the existence of these voids and pockets. This question was
studied by examining the scaling behavior of packing density and coordination
number of residues through the computation of voids, pockets, and edge simplices
in the alpha shapes of random compact chain polymers [63]. For this purpose, a
32-state discrete state model was used to generate a large ensemble of compact self-
avoiding walks. This is a difficult task, as it is very challenging to generate a large
number of independent conformations of very compact chains that are self-avoiding.
The results in [63] showed that it is easy for compact random chain polymers to
have similar scaling behavior of packing density and coordination number with chain
length. This suggests that proteins are not optimized by evolution to eliminate voids
and pockets, and the existence of many pockets and voids is random in nature, and is
due to the generic requirement of compact chain polymers. The frequent occurrence
and the origin of voids and pockets in protein structures raise a challenging question:
How can we distinguish voids and pockets that perform biological functions such
as binding from those formed by random chance? This question is related to the
general problem of protein function prediction.

1.4.2 Predicting protein functions from structures

Conservation of protein structures often reveals very distant evolutionary relation-
ship, which are otherwise difficult to detect by sequence analysis [56]. Comparing
protein structures can provide insightful ideas about the biochemical functions of
proteins (e.g., active sites, catalytic residues, and substrate interactions) [26,42,44].

A fundamental challenge in inferring protein function from structure is that the
functional surface of a protein often involves only a small number of key residues.
These interacting residues are dispersed in diverse regions of the primary sequences
and are difficult to detect if the only information available is the primary sequence.
Discovery of local spatial motifs from structures that are functionally relevant has
been the focus of many studies.

Graph based methods for spatial patterns in proteins. To analyze local
spatial patterns in proteins. Artymiuk et al. developed an algorithm based on
subgraph isomorphism detection [1]. By representing residue side-chains as sim-
plified pseudo-atoms, a molecular graph is constructed to represent the patterns
of side-chain pseudo-atoms and their inter-atomic distances. A user defined query
pattern can then be searched rapidly against the Protein Data Bank for similarity
relationship. Another widely used approach is the method of geometric hashing.
By examining spatial patterns of atoms, Fischer et al. developed an algorithm that
can detect surface similarity of proteins [19,43]. This method has also been applied
by Wallace et al. for the derivation and matching of spatial templates [60]. Russell
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developed a different algorithm that detects side-chain geometric patterns common
to two protein structures [54]. With the evaluation of statistical significance of
measured root mean square distance, several new examples of convergent evolution
were discovered, where common patterns of side-chains were found to reside on
different tertiary folds.

These methods have a number of limitations. Most require a user-defined tem-
plate motif, restricting their utility for automated database-wide search. In addi-
tion, the size of the spatial pattern related to protein function is also often restricted.

Predicting protein functions by matching pocket surfaces. Protein func-
tional surfaces are frequently associated with surface regions of prominent concav-
ity [30,40]. These include pockets and voids, which can be accurately computed as
we have discussed. Computationally, one wishes to automatically identify voids and
pockets on protein structures where interactions exist with other molecules such as
substrate, ions, ligands, or other proteins.

Binkowski et al. developed a method for predicting protein function by matching
a surface pocket or void on a protein of unknown or undetermined function to the
pocket or void of a protein of known function [4,6]. Initially, the Delaunay tetra-
hedrization and alpha shapes for almost all of the structures in the PDB databank
are computed [11]. All surface pockets and interior voids for each of the protein
structure are then exhaustively computed [17,39]. For each pocket and void, the
residues forming the wall are then concatenated to form a short sequence fragment
of amino acid residues, while ignoring all intervening residues that do not partici-
pate in the formation of the wall of the pocket or void. Two sequence fragments,
one from the query protein and another from one of the proteins in the database,
both derived from pocket or void surface residues, are then compared using dynamic
programming. The similarity score for any observed match is assessed for statistical
significance using an empirical randomization model constructed for short sequence
patterns.

For promising matches of pocket/void surfaces showing significant sequence sim-
ilarity, we can further evaluate their similarity in shape and in relative orientation.
The former can be obtained by measuring the coordinate root mean square distance
(RMSD) between the two surfaces. The latter is measured by first placing a unit
sphere at the geometric center zp € R? of a pocket/void. The location of each
residue z = (x,y,2)7 is then projected onto the unit sphere along the direction of
the vector from the geometric center: uw = (z—2¢)/||z — 2z0||. The projected pocket
is represented by a collection of unit vectors located on the unit sphere, and the
original orientation of residues in the pocket is preserved. The RMSD distance of
the two sets of unit vectors derived from the two pockets are then measured, which
is called the oRMSD for orientation RMSD [4]. This allows similar pockets with only
minor conformational changes to be detected [4].

The advantage of the method of Binkowski et al. is that it does not assume prior
knowledge of functional site residues, and does not require a priori any similarity in
either the full primary sequence or the backbone fold structures. It has no limitation
in the size of the spatially derived motif and can successfully detect patterns small
and large. This method has been successfully applied to detect similar functional
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surfaces among proteins of the same fold but low sequence identities, and among
proteins of different fold [4, 5].

Function prediction through models of protein surface evolution. To
match local surfaces such as pockets and voids and to assess their sequence sim-
ilarity, an effective scoring matrix is critically important. In the original study
of Binkowski et al., BLOSUM matrix was used. However, this is problematic, as
BLOSUM matrices were derived from analysis of precomputed large quantities of
sequences, while the information of the particular protein of interest has limited
or no influence. In addition, these precomputed sequences include buried residues
in protein core, whose conservation reflects the need to maintain protein stabil-
ity rather than to maintain protein function. In references [58,59]|, a continuous
time Markov process was developed to explicitly model the substitution rates of
residues in binding pockets. Using a Bayesian Markov chain Monte Carlo method,
the residue substitution rates at functional pocket are estimated. The substitution
rates are found to be very different for residues in the binding site and residues on
the remaining surface of proteins. In addition, substitution rates are also very dif-
ferent for residues in the buried core and residues on the solvent exposed surfaces.
These rates are then used to generate a set of scoring matrices of different time in-
tervals for residues located in the functional pocket. Application of protein-specific
and region-specific scoring matrices in matching protein surfaces result in signifi-
cantly improved sensitivity and specificity in protein function prediction [58,59].

In a large scale study of predicting protein functions from structures, a subset
of 100 enzyme families are collected from a total of 286 enzyme families containing
between 10-50 member protein structures with known Enzyme Classification (E.C.)
labels. By estimating the substitution rate matrix for residues on the active site
pocket of a query protein, a series of scoring matrices of different evolutionary time is
derived. By searching for similar pocket surfaces from a database of 770,466 pockets
derived from the CASTP database (with the criterion that each must contain at least
8 residues), this method can recover active site surfaces on enzymes similar to that
on the query structure at an accuracy of 92% or higher. An example of identifying
human amylase using template surfaces from B. subtilis and from barley is shown
in Fig. 1.10.

The method of surface matching based on evolutionary model is also especially
effective in solving the challenging problems of protein function prediction of orphan
structures of unknown function (such as those obtained in structural genomics
projects), which have only sequence homologs that are themselves hypothetical
proteins with unknown functions.

1.5 Discussion and summary

A major challenge in studying protein geometry is to understand our intuitive no-
tions of various geometric aspects of molecular shapes, and to quantify these notions
with mathematical models that are amenable to fast computation. The advent of
the union of ball model of protein structures enabled rigorous definition of impor-
tant geometric concepts such as solvent accessible surface and molecular surface.
It also led to the development of algorithms for area and volume calculations of
proteins. Deep understanding of the topological structure of molecular shapes is
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Figure 1.10  Protein function prediction as illustrated by the example of alpha amylases.
Two template binding surfaces are used to search database of protein surfaces to identify
protein structures that are of similar functions. (a) The phylogenetic tree for the template
PDB structure 1bag from B. subtilis. (b) The template binding pocket of alpha amylase on
1bag. (c) A matched binding surface on a different protein structure (1b2y from human, full
sequence identity 22%) obtained by querying with 1bag. (d) The phylogenetic tree for the
template structure 1bg9 from H. vulgare. (e) The template binding pocket on 1bg9. (f) A
matched binding surface on a different protein structure (1u2y from human, full sequence
identity 23%) obtained by querying with 1bg9 (Adapted from [59]).

also based on the idealized union of ball model [12]. A success in approaching these
problems is exemplified in the development of the pocket algorithm [17]. Another
example is the recent development of a rigorous definition of protein-protein binding
or interaction interface and algorithm for its computation [3].
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Perhaps a more fundamental problem we face is to identify important structural
and chemical features that are the determinants of biological problems of interest.
For example, we would like to know what are the shape features that has significant
influences on protein solvation, protein stability, ligand specific binding, and protein
conformational changes. It is not clear whether our current geometric intuitions are
sufficient, or are the correct or the most relevant ones. There may still be important
unknown shape properties of molecules that elude us at the moment.

An important application of geometric computation of protein structures is to
detect patterns important for protein function. The shape of local surface regions
on a protein structure and their chemical texture are the basis of its binding interac-
tions with other molecules. Proteins fold into specific native structure to form these
local regions for carrying out various biochemical functions. The geometric shape
and chemical pattern of the local surface regions, and how they change dynamically
are therefore of fundamental importance in computational studies of proteins.

Another important application is the development of geometric potential func-
tions. Potential functions are important for generating conformations, for distin-
guishing native and near native conformations from other decoy conformations in
protein structure predictions [34, 36, 55, 64] and in protein-protein docking [35].
They are also important for peptide and protein design [27,35].

We have not described in detail the approach of studying protein geometry using
graph theory. In addition to side-chain pattern analysis briefly discussed earlier,
graph based protein geometric model also has lead to a number of important in-
sights, including the optimal design of model proteins formed by hydrophobic and
polar residues [28], and methods for optimal design of side-chain packing [31,62].

Further development of descriptions of geometric shape and topological struc-
ture, as well as algorithms for their computation will provide a solid foundation
for studying many important biological problems. The other important tasks are
then to show how these descriptors may be effectively used to deepen our biological
insights and to develop accurate predictive models of biological phenomena. For
example, in computing protein-protein interfaces, a challenging task is to discrim-
inate surfaces that are involved in protein binding from other non-binding surface
regions, and to understand in what fashion this depends on the properties of the
binding partner protein.

Undoubtedly, evolution plays central roles in shaping up the function and stabil-
ity of protein molecules. The method of analyzing residue substitution rates using
a continuous time Markov models [58,59], and the method of surface mapping of
conservation entropy and phylogeny [22,41] only scratches the surface of this im-
portant issue. Much remains to be done in incorporating evolutionary information
in protein shape analysis for understanding biological functions.

Remark. The original work of Lee and Richards surface can be found in [32],
where they also formulated the molecular surface model [50]. Michael Connolly
developed the first method for the computation of the molecular surface [9]. Tsai
et al. described a method for obtaining atomic radii parameter [57]. The math-
ematical theory of the union of balls and alpha shape was developed by Herbert
Edelsbrunner and colleagues [12,15]. Algorithm for computing weighted Delaunay
tetrahedrization can be found in [16], or in a concise monograph with in-depth dis-
cussion of geometric computing [13]. Details of area and volume calculations can
be found in [14,38,39]. The theory of pocket computation and applications can
be found in [17,40]. Richards and Lim offered a comprehensive review on protein



DISCUSSION AND SUMMARY 21

packing and protein folding [51]. A detailed packing analysis of proteins can be
found in [37]. The study on inferring protein function by matching surfaces is de-
scribed in [4,59]. The study of the evolutionary model of protein binding pocket
and its application in protein function prediction can be found in [59].

Summary. The accumulation of experimentally solved molecular structures of pro-
teins provides a wealth of information for studying many important biological
problems. With the development of a rigorous model of the structure of protein
molecules, various shape properties, including surfaces, voids, and pockets, and
measurements of their metric properties can be computed. Geometric algorithms
have found important applications in protein packing analysis, in developing po-
tential functions, in docking, and in protein function prediction. It is likely further
development of geometric models and algorithms will find important applications
in answering additional biological questions.
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EXERCISES

1.1 For two points x1, 2o € R<, the line through x; and x5 can be written as:
{z|r = x1 + AN(x2 — 1), X € R}. Equivalently, we can define the line as:

or

{z|lx = (1 - Nz + Axa, X ER},

{z|r = prx1 + paxa, p1,p2 €R, p1+p2=1}.
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A closed line segment joining x; and x5 is:

[1, 2] ={z|]x = (1 —Na1 + Az, 0< A< 1}
Similarly, an open line segment joining x; and x» is:

(1, x2) ={xle=(1—Nx1 + A2, 0<A<1}.

A set S C R? is convex if the closed line segment joining every two points of S is
in S. Equivalently, S is convex if for 1,22 € .S, AeR, 0<A<1:

(I=XNz1+ Axz € S.

For a non-zero vector w € R? w # 0, and b € R, the point set {z|z € R", w-x < b}
is an open halfspace in R?, and the set {z|x € R", wx < b} is a closed halfspace in
R?. Show with proof that:
a) Both an open halfspace and a closed halfspace are convex.
b) If Ay,..., A, is a family of convex sets in R then their intersection
i, Ai is a convex set. Specifically, the intersection of a set of half spaces,
e.g., a Voronoi cell, is convex.

1.2 We can follow the dual relationship to compute the Voronoi diagram from the
constructed Delaunay triangulation. In three-dimensional space, a Delaunay vertex
corresponds to an atom ball, a Delaunay edge corresponds to a Voronoi plane,
a Delaunay triangle corresponds to a Voronoi edge, and a Delaunay tetrahedron
corresponds to a Voronoi vertex. To obtain the coordinates of a Voronoi vertex
v = (v1, v2, v3) € R? from a Delaunay tetrahedron formed by four atoms b;(z;,7;),
bj(z;,7), bi(zk, 7) and by(z1, 1), which are located at z;, z;, z and z;, with radii
r;, 1j, 7, and ry, respectively, we use the fact that the power distance
mi(v) = ||v — 2l |* — 7

from v to b;(z;, r;) is the same as m;(v), m,(v), and m(v). Denote this power
distance as R2.

a) Write down the set of quadratic equations whose solution will provide
r = (r1, r2, r3) and R?.

b) Define functions A(v) = v -v — R?, \(2;) = 2 — 72, and define \(z;),
Azk), Mzg) and A(z;) similarly. Use ('v) ( ’\(gj), )‘(g’“) and (zl)
to simplify the system of quadratic equatlons 1nt0 a system of linear equa—
tions, whose solution will give r and R2.

c¢) Write down the set of linear equations that determine the Voronoi line
dual to a Delaunay triangle.

d) Write down the linear equation that determines the Voronoi plane dual to
a Delaunay edge.

1.3 By growing atom balls using a parameter «, we can generate a family of

unions of balls, in which the size of each atom is inflated from r; to r;(a) = (r? +
a)/? [12,15]. We now examine the corresponding Voronoi diagrams.

a) In the Voronoi diagram, every point & on the separator surface for the

two original atoms (z;,7;) and (z;,7;) has equal power distances m;(x)
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b)

)

and 7;(x) to the two atoms. Write down the equation for the separator
surface. Is the separator surface elliptic, parabolic, or planar?

Now we inflate both atoms by « such that we have two new balls with
different radii (z;,r;(«)) and (z;,r;(a)). Write down the equation for the
separator surface.

What is the relationship between these two separator surfaces? What is
the relationship between the two corresponding Voronoi diagrams?

1.4 The Voronoi diagrams can be generalized using different distance functions.
When considering atoms of different radii, instead of replacing the Euclidean dis-
tance ||x — z;|| with the power distance 7;(x), we can use the additive distance:

di(x) = ||z — zi|| — 7.

The resulting Voronoi diagram is called the additively-weighted Voronoi diagram.

a)

b)

Write down the equation for the separator surface formed by the set of
points with equal additive distances to the two atoms (z;, r;) and (2, ;).
Is the separator surface elliptic, parabolic, or planar?

Now we inflate both atoms by « such that we have two new balls with
different radii (z;, r; +«) and (z;,7; +«). Write down the equation for the
separator surface. Is the separator surface elliptic, parabolic, or planar?
Is there a simple relationship between these two separator surfaces or be-
tween the two corresponding Voronoi diagrams?



CHAPTER 2

SCORING FUNCTIONS FOR PREDICTING
STRUCTURE AND BINDING OF PROTEINS

2.1 Introduction

In the experimental work that led to the recognition of the 1972 Nobel prize, Chris-
tian Anfinsen showed that a completely unfolded protein ribonuclease could refold
spontaneously to its biologically active conformation. This observation indicated
that the sequence of amino acids of a protein contains all of the information needed
to specify its three-dimensional structure [5,6]. The automatic in vitro refolding
of denatured proteins was further confirmed in many other protein systems [52].
Anfinsen’s experiments led to the thermodynamic hypothesis of protein folding,
which postulates that a native protein folds into a three-dimensional structure in
equilibrium, in which the state of the whole protein-solvent system corresponds to
the global minimum of free energy under physiological conditions.

Based on this thermodynamic hypothesis, computational studies of proteins,
including structure prediction, folding simulation, and protein design, all depend on
the use of a potential function for calculating the effective energy of the molecule.
In protein structure prediction, a potential function is used either to guide the
conformational search process, or to select a structure from a set of possible sampled
candidate structures. Potential function has been developed through an inductive
approach [117], where the parameters are derived by matching the results from
quantum-mechanical calculations on small molecules to experimentally measured
thermodynamic properties of simple molecular systems. These potential functions
are then generalized to the macromolecular level based on the assumption that the
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complex phenomena of macromolecular systems result from the combination of a
large number of interactions as found in the most basic molecular systems. For
example, a version of the potential function in the CHARMM force field takes the
form of

U= kb—bo)2+ > ko0 —00)>+ > kg[l+cos(ng— o)

bonds angles dihedrals
2 2
+ g kw(w —wp)” + g ku(u — up) 51
impropers Urey —Bradley ( ’ )

+ Z €

nonbonded

(Rmin,ij )12 _ <Rmin,ij )6 + qiq;
Tij Tij € Tij '

Here the first term accounts for bond stretching, with k;, the bond force constant
and by the resting bond distance. The second term accounts for the bond angles,
with kg the angel force constant and 6y the stationary angle between three atoms.
The third term accounts for the dihedral angles, with &, the dihedral force constant,
n the multiplicity of the function, ¢ the dihedral angle, and § the phase shift. The
fourth term accounts for improper out of plane bending, with k, the bending force
constant, and w — wy the out of plane bending angle. The fifth term account for
Urey-Bradley cross-term angle bending, with £, the force constant and u — ug
the distance in the harmonic potential. The sixth term takes the form of the
Lennard-Jones potential and account for the van der Waals interactions between
the (i, j) pair of atoms, which are separated by at least three bonds. The last
term is to account for the electrostatic energy and takes the form of a Coulombic
potential [16].

Such potential functions are often referred to as “physics-based”, “semi-empirical”
effective potential function, or a force field [16,57,72,92,134]. The physics-based po-
tential functions have been extensively studied, and has found wide uses in protein
folding studies [16,30,69]. Nevertheless, it is difficult to use physics-based potential
functions for protein structure prediction, because they are based on full atomic
model and therefore require high computational costs. In addition, such potential
function may not fully capture all of the important physical interactions.

Another type of potential function is developed following a deductive approach
by extracting parameters of the potential functions from a database of known pro-
tein structures [117]. Because this approach incorporates physical interactions
(electrostatic, van der Walls, cation-7 interactions) only implicitly and the ex-
tracted potentials do not necessarily reflect true energies, it is often referred to as
“knowledge-based effective energy function”, “empirical potential function”, or “scor-
ing function”. This approach became attractive partly due to the rapidly growing
database of experimentally determined three-dimensional protein structures. Suc-
cesses in protein folding, protein-protein docking, and protein design have been
achieved using knowledge-based scoring functions [50,53,102,104,129]. An exam-
ple of the empirical potential function used in the ROSETTA software for protein
structure prediction and design is described in details in [102]. In this chapter, we
focus our discussion on this type of potential functions.

We first discuss the theoretical frameworks and methods for developing knowledge-
based potential functions. We then discuss in some details the Miyazawa-Jernigan
contact statistical potential, distance-dependent statistical potentials, as well as
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geometric statistical potentials. We also describe a geometric model for develop-
ing both linear and non-linear potential functions by optimization. Applications
of knowledge-based potential functions in protein-decoy discrimination, in protein-
protein interactions, and in protein design are then described. Several issues of
knowledge-based potential functions are further discussed.

2.2 General framework of scoring function and potential function

Different approaches have been developed to extract knowledge-based scoring func-
tions or potential functions from protein structures. They can be categorized into
two groups. Omne prominent group of knowledge-based potentials are those de-
rived from statistical analysis of database of protein structures [82,89, 106, 119].
In this class of potentials, the interacting potential between a pair of residues are
estimated from its relative frequency in database when compared with that of a
reference state or a null model [54,71,82,90,106,112,118,133]. A different class of
knowledge-based potentials are based on the principle of optimization. In this case,
the set of parameters for the potential functions are optimized by some criterion,
e.g., by maximizing the energy gap between known native conformation and a set
of alternative (or decoy) conformations [8,28,29,43,50,83,86,121,123,130,131].

There are three main ingredients for developing a knowledge-based potential
function. We first need protein descriptors to describe the sequence and the shape
of the native protein structure in a format that is suitable for computation. We
then need to decide on a functional form of the potential function. Finally, we need
a method to derive the values of the parameters for the potential function.

2.2.1 Protein representation and descriptors

To describe the geometric shape of a protein and its sequence of amino acid residues,
a protein can be represented by a d-dimensional descriptor ¢ € R%. For example,
a widely used method is to count non-bonded contacts of 210 types of amino acid
residue pairs in a protein structure. In this case, the count vector ¢ € R%,d = 210,
is used as the protein descriptor. Once the structural conformation of a protein s
and its amino acid sequence a is given, the protein descriptions f : (s,a) — R?
will fully determine the d-dimensional vector ¢. In the case of contact descriptor,
f corresponds to the mapping provided by specific contact definition, e.g., two
residues are in contact if their distance is below a cut-off threshold distance. At
the residue level, the coordinates of of C,, C3, or side-chain center can be used to
represent the location of a residue. At the atomic level, the coordinates of atoms
are directly used, and contact may be defined by the spatial proximity of atoms.
In addition, other features of protein structures can be used as protein descriptors,
including distances between residue or atom pairs, solvent accessible surface areas,
dihedral angles of backbones and side-chains, and packing densities.

2.2.2  Functional form

The form of the potential function H : R? — R determines the mapping of a d-
dimensional descriptor ¢ to a real energy value. A widely used functional form for
potential function H is the weighted linear sum of pairwise contacts [82,89, 106,
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119,123,130]:
H(f(s,a)):H(c):'w-CZZwiCi, (2.2)

where “-” denotes inner product of vectors; ¢; is the number of occurrence of the i-th
type of descriptor. Once the weight vector w is specified, the potential function
is fully defined. In subsection 2.4.3, we will discuss a nonlinear form potential
function.

2.2.3 Deriving parameters of potential functions

For statistical knowledge-based potential functions, the weight vector w for linear
potential is derived by characterization of the frequency distributions of structural
descriptors from a database of experimentally determined protein structures. For
optimized knowledge-based linear potential function, w is obtained through opti-
mization. We describe the details of these two approaches below.

2.3 Statistical method

2.3.1 Background

In statistical methods, the observed frequencies of protein structural features are
converted into effective free energies, based on the assumption that frequently ob-
served structural features correspond to low-energy states [89,116,120]. This idea
was first proposed by Tanaka and Scheraga in their work to estimate potentials
for pairwise interaction between amino acids [120]. Miyazawa and Jernigan (1985)
significantly extended this idea and derived a widely-used statistical potentials,
where solvent terms are explicitly considered and the interactions between amino
acids are modeled by contact potentials. Sippl (1990) and others [82, 106, 146]
derived distance-dependent energy functions to incorporate both short-range and
long-range pairwise interactions. The pairwise terms were further augmented by in-
corporating dihedral angles [59,97], solvent accessibility and hydrogen-bonding [97].
Singh and Tropsha (1996) derived potentials for higher-order interactions [114,115].
More recently, Ben-Naim (1997) presented three theoretical examples to demon-
strate the nonadditivity of three-body interactions [10]. Li and Liang (2005) iden-
tified three-body interactions in native proteins based on an accurate geometric
model, and quantified systematically the nonadditivities of three-body interac-
tions [77].

2.3.2 Theoretical model

At the equilibrium state, an individual molecule may adopt many different confor-
mations or microscopic states with different probabilities. It is assumed that the
distribution of protein molecules among the microscopic states follows the Boltz-
mann distribution, which connects the potential function H(c) for a microstate ¢
to its probability of occupancy w(e) . This probability 7(¢) or the Boltzmann factor
is:

m(c) = exp[-H(c)/kT]/Z(a), (2.3)
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where k and T' are the Boltzmann constant and the absolute temperature measured
in Kelvin, respectively. The partition function Z(a) is defined as:

Z(a) = Z exp|—H (e)/kT). (2.4)

It is a constant under the true energy function once the sequence a of a protein
is specified, and is independent of the representation f(s,a) and descriptor ¢ of
the protein. If we are able to measure the probability distribution 7(¢) accurately,
we can obtain the knowledge-based potential function H(¢) from the Boltzmann
distribution:

H(e) = —kTInw(c) — kTIn Z(a). (2.5)

The partition function Z(a) cannot be obtained directly from experimental mea-
surements. However, at a fixed temperature, Z(a) is a constant and has no effect
on the different probability of occupancy for different conformations.

In order to obtain an knowledge-based potential function that encodes the sequence-
structure relationship of proteins, we have to remove background interactions H'(c)
that are independent of the protein sequence and the protein structure. These
generic energetic contributions are referred collectively as that of the reference
state [116]. An effective potential energy AH(c) is then obtained as:

Z(a)

AH(¢) = H(c) — H'(c) = —kT T[] — KT 0l 20

'(¢)
where 7'(c) is the probability of a sequence adopting a conformation specified by
the vector ¢ in the reference state. Since Z(a) and Z’(a) are both constants,
—kTIn(Z(a)/Z'(a)) is also a constant that does not depend on the descriptor

vector ¢. If we assume that Z(a) ~ Z'(a) as in [116], the effective potential energy
can be calculated as:

1, (2.6)

3

AH(c) = —kT'ln [;((2} . (2.7)

To calculate 7(¢)/7’(¢), one can further assume that the probability distribution
of each descriptor is independent, and we have 7 (c)/7’(c) = [[, {W(Ci))] Further-

7/ (c;

more, by assuming each occurrence of the i-th descriptor is independent, we have
IL [”(Ci) ] =1LIL., {ﬁ}, where m; and ] are the probability of i-th type struc-

' (ci) !
tural feature in native proteins and the reference state, respectively. In a linear

potential function, the right-hand side of Equation (2.7) can be calculated as:

kT Vl(c) } = KT Y ciln [H (2.8)

7'(c)

Correspondingly, to calculate the effective potential energy AH (e) of the system,
one often assumes that AH(c) can be decomposed into various basic energetic
terms. For a linear potential function, AH(¢) can be calculated as:

AH(c) = ZAH(Q) = cw;. (2.9)

i
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If the distribution of each ¢; is assumed to be linearly independent to the others in
the native protein structures, we have:

w; = —kTn F’] . (2.10)
K3

In another word, the probability of each structural feature in native protein struc-
tures follows the Boltzmann distribution. This is the Boltzmann assumption made
in nearly all statistical potential functions. Finkelstein (1995) summarized protein
structural features which are observed to correlate with the Boltzmann distribu-
tion. These include the distribution of residues between the surface and interior of
globules, the occurrence of various ¢, v, x angles, cis and trans prolines, ion pairs,
and empty cavities in protein globules [34].

The probability m; can be estimated by counting frequency of the i-th struc-
tural feature after combining all structures in the database. The probability m; is
determined once a database of crystal structures is given. The probability «} is
calculated as the probability of the i-th structural feature in the reference state.
The choice of the reference state has important effects and is critical for developing
knowledge-based statistical potential function.

2.3.3 Miyazawa-Jernigan contact potential

Because of the importance of the Miyazawa-Jernigan model in developing statistical
knowledge-based potential and its wide use, we discuss the Miyazawa-Jernigan con-
tact potential in details. This also gives an exposure of different technical aspects
of developing statistical knowledge-based potential functions.

Residue representation and contact definition. In the Miyazawa-Jernigan
model, the [-th residue is represented as single ball located at its side-chain center
z;. If the [-th residue is a Gly residue, which lacks a side chain, the positions of
the C* atom is taken as z;. A pair of residues (I,m) are defined to be in contact
if the distance between their side-chain centers is less than a threshold § = 6.5 A.
Neighboring residues [ and m along amino acid sequences (|l —m| = 1) are excluded
from statistical counting because they are likely to be in spatial contact that does
not reflect the intrinsic preference for inter-residue interactions. Thus, a contact
between the I-th and m-th residues is defined as A ,,):
1, if |z —2zp|<Oand |l —m|>1;

lm) = .

(tm) 0, otherwise,
where |z; — z,,| is the Euclidean distance between the [-th and m-th residues.

Hence, the total number count of (i, j) contacts of residue type ¢ with residue type
7 in protein p is:

NGgyp = Y Ay, if (10),1(m)) = (i, ) or (j,1), (2.11)
l,m

1<m
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where (1) is the residue type of the [-th amino acid residue. The total number
count of (4, ) contacts in all proteins are then:

i) = an);p, i,j=1,2,---,20. (2.12)
p

Coordination and solvent assumption. The number of different types of pair-
wise residue-residue contacts n; j) can be counted directly from the structure of
proteins following Equation (2.12). We also need to count the number of residue-
solvent contacts. Since solvent molecules are not consistently present in X-ray
crystal structures, and therefore cannot be counted exactly, Miyazawa and Jerni-
gan made an assumption based on the model of an effective solvent molecule, which
has the volume of the average volume of the 20 types of residues. Physically, one ef-
fective solvent molecule may represent several real water molecules or other solvent
molecules. The number of residue-solvent contacts n; gy can be estimated as:

20

G0y = 4ing) = | D g + 2060 | (2.13)
~
Ui

where the subscript 0 represents the effective solvent molecule; the other indices
i and j represent the types of amino acids; n;) is the number of residue type i
in the set of proteins; ¢; is the mean coordination number of buried residue i,
calculated as the number of contacts formed by a buried residue of type i averaged
over a structure database. Here the assumption is that residues make the same
number of contacts on average, with either effective solvent molecules (first term in
Equation (2.13), or other residues (second term in Equation (2.13)).

For convenience, we calculate the total numbers of residues n,), of residue-
residue contacts n, ., of residue-solvent contacts n(, ), and of pairwise contacts
of any type n(. .y as follows:

20 20 20
Ny = Z NGEys M) = Nrd) = Z N@g)s Mrr) = Z N(i,r)s
i=1 j=1 i=1

20

N(r,0) = M0,r) = Z (1,03 Ny = Nrr) + N(r0) T 12(0,0)-
1=1

Chemical reaction model. Miyazawa and Jernigan (1985) developed a physical
model based on hypothetical chemical reactions. In this model, residues of type
i and j in solution need to be desolvated before they can form a contact. The
overall reaction is the formation of (i, j) contacts, depicted in Fig. 2.1. The total
free energy change to form one pair of (¢, j) contact from fully solvated residues of
i and j is (Fig. 2.1 a):

ei,j) = (Eaj) + Ewo0) — (Euo) + EGo), (2.14)
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Figure 2.1  The Miyazawa-Jernigan model of chemical reaction. Amino acid residues first
go through the desolvation process, and then mix together to form pair contact interactions.
The associated free energies of desolvation e(; ;) and mixing e'(l-, ;) can be obtained from the
equilibrium constants of these two processes.

where E; ;) is the absolute contact energy between the i-th and j-th types of
residues, and E(; jy = E(; ;); F(;0) are the absolute contact energy between the
i-th residue and effective solvent, and E; 0y = F(,); likewise for E; o); E(o,0) are
the absolute contact energies of solvent-solvent contacts (0, 0).

The overall reaction can be decomposed into two steps (Fig. 2.1 b). In the
first step, residues of type i and type j, initially fully solvated, are desolvated or
“demixed from solvent” to form self-pairs (¢,4) and (j,j). The free energy changes
e(i,iy and e(; ;) upon this desolvation step can be seen from the desolvation process
(horizontal box) in Fig. 2.1 as:

ei,iy = Eu iy + Ew,00 — 2E4,0); (2.15)
€69 = B+ Eoo — 2EG0),

where E(; ;), E(; ;) are the absolute contact energies of self pair (,i) and (j, j),

respectively. In the second step, the contacts in (i,7) and (j,j) pairs are broken

and residues of type ¢ and residues of type j are mixed together to form two (i, j)

pairs. The free energy change upon this mixing step 26/(Z- 0 is (vertical box in

Fig. 2.1):

Denote the free energy changes upon the mixing of residue of type i and solvent as

e’(i70), We have:

_2621-)0) = e(i,i) and — 26/(]’,0) = e(jJ), (217)
which can be obtained from Equation (2.15) and Equation (2.16) after substituting
“5” with “0”. Following the reaction model of Fig. 2.1 b, the total free energy change
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to form one pair of (,7) can be written as:

2ei5) = 2€(5) + i)+ €G.g) (2.18a)
= 26/(i7j) - 26/(1»70) - 26/(j70) (2.18b)

Contact energy model. The total energy of the system is due to the contacts
between residue-residue, residue-solvent, solvent-solvent:

20 20

E.=> Y Eujynaj
i=0 j=0;
>
20 20
=33 Bupnig +ZE<zo>n i,0) T £(0,07(0,0)

=1 j=1;
]>z

(2.19)

Because the absolute contact energies E; j is difficult to measure and knowledge
of this value is unnecessary for studying the dependence of energy on protein con-
formation, we can simplify Equation (2.19) further. Our goal is to separate out
terms that do not depend on contact interactions and hence do not depend on the
conformation of the molecule. Equation (2.19) can be re-written as:

20 20 20
E. = Y (2Bu0) — Boo) an@m/2+ Y D i) (2.20a)
=0 =1 ]]:>1717
20 20
- Z Ega@in/2+ 3 3 €foniia) (2:200)
=07 >O
j>i

by using Equation (2.13) and Equation (2.14). Here only the second terms in
Equation (2.20a) and (2.20b) depend on protein conformations. Therefore, one
needs only to estimate either e(; jy or e( . Since the number of residue-residue
contacts can be counted directly while the number of residue-solvent contacts is
more difficult to obtain, Equation (2.20a) is more convenient for calculating the

total contact energy of protein conformations. Both e(; ;) and e’( are termed as

i.5)
effective contact energies and their values were reported in [90].

Estimating effective contact energies: quasi-chemical approximation. The
effective contact energies e(; ;) in Equation (2.20a) can be estimated in kT" unit by
assuming that the solvent and solute molecules are in quasi-chemical equilibrium
for the reaction depicted in Fig. 2.1 a:

es) = —In [mig) /oo /men] _ ) ) ™00 (2.21)

[mi,0)/m. )] [m0)/m.] ™M (3,0)M(5,0)

where m; jy, m(;,0), and mg ) are the contact numbers of pairs between residue
type ¢ and j, residue type i and solvent, and solvent and solvent, respectively. my. .
is the total number of contacts in the system and is canceled out. Similarly, e’(i )



38 SCORING FUNCTIONS FOR PREDICTING STRUCTURE AND BINDING OF PROTEINS

and ezi)o) can be estimated from the model depicted in Fig. 2.1 b:

2

2, = SR LUl (2.222)
’ M (i) M (5.9)
2

20 = Mol (2.22b)

M(4,:)1M(0,0)

Based on these models, two different techniques have been developed to obtain
effective contact energy parameters. Following the hypothetical reaction in Fig. 2.1
(a), e(i,j) can be directly estimated from Equation (2.21), as was done by Zhang
and Kim [138]. Alternatively, one can follow the hypothetical two-step reaction in
Fig. 2.1 b and estimate each term in Equation (2.18b) for e(; j) by using Equa-
tion (2.22). Because the second approach leads to additional insight about the
desolvation effects (e’(i70)) and the mixing effects (ezi)j)) in contact interactions, we
follow this approach in subsequent discussions. The first approach will become
self-evident after our discussion.

m(

Models of reference state. In reality, the true fraction J)) of contacts of (2, j)

K

type among all pairwise contacts (-,-) is unknown. One can approximate this by
calculating its mean value from sampled structures in the database. We have:

Mig) Zp Nig)ip - 1(3,0) ~ Zp N@i,0)p  1(0,0) ~ Zp 7(0,0);p
M) N ) 2P M D2

where ¢ and j # 0. However, this yields a biased estimation of e/ i) and e(; ;-
When effective solvent molecules, residues of i-th and j-th types are randomly
mixed, e’(m) will not equal to 0 as should be because of differences in amino acid
composition among proteins in the database. Therefore, a reference state must be
used to remove this bias.

In the work of Miyazawa and Jernigan, the effective contact energies for mixing
two types of residues e'(i) M and for solvating a residue e'(i)o) are estimated based on
two different random mixture reference states [89]. In both cases, the contacting
pairs in a structure are randomly permuted, but the global conformation is retained.
Hence, the total number of residue-residue, residue-solvent, solvent-solvent contacts
remain unchanged.

The first random mixture reference state for desolvation contains the same set
of residues of the protein p and a set of effective solvent molecules. We denote the
overall number of (¢, 1), (¢,0), (0,0) contacts in this random mixture state after sum-
ming over all proteins as sz',i)’ C/(i,O)’ and 020)0), respectively. Czi,i) can be computed

as:
2

C?u) = Z & TN (2.23)
P Z qk Nk;p
k

where Miyazawa and Jernigan assumed that the average coordination number of
residue 7 in all proteins is g;. Therefore, a residue of type ¢ makes g;n;,;, number of
contacts in protein p. Similarly, the number of (i,0) contacts c'(l. 0) can be computed
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as:

_ QiNip
i0) = Z - (-.0)p- (2.24)

Z qk Nk;p

From the horizontal box in Fig. 2.1, the effective contact energy e'(l. 0) Can now be
computed as:

%/, ) = —In ") / <o) (i #0) (2.25)
(-0) 1(i,4)1(0,0) Czi,icl(O,O) ' .

The second random mixture reference state for mixing contains the exact same
set of residues as the protein p, but have all residues randomly mixed. We denote
the number of (7, j) contacts in this random mixture as c(; jy,,- The overall number
of (i, ) contacts in the full protein set c(; ;) is the sum of c(, ;),, over all proteins:

n i,); n i)-);
Clig) = Z {#} [M} RUCHEE (2.26)

» )i ()

From the vertical box in Fig. 2.1, the effective contact energy e( j) can now be
computed as:

2 2
o i) i) S
2¢(; ;) =—In / , iorj #0. (2.27)

NGED)G,G) €69 C36.5)

The compositional bias is removed by the denominator in Equation (2.27), and
e’(l ;) now equals to 0.

Although c(0 0) can be estimated from Equation (2.22b) by assuming that e(l 0 =
0 in a reference state, Zhang and DeLisi simplified the Miyazawa-Jernigan process
by further assuming that the numbers of solvent-solvent contacts in both reference

states to be the same as in the native state [143]:

C/(070) = TL(070). (228)

Therefore, Cl(o,o) and ng gy are canceled out in Equation (2.25) and not needed for
calculating e'(i)o). This treatment systematically subtracts a constant scaling energy
from all effective energies e(; j), and should produce exactly the same relative energy
values for protein conformations as Miyazawa-Jernigan’s original work, with the
difference of a constant offset value. In fact, Miyazawa and Jernigan (1996) showed
that this constant scaling energy is the effective contact energy e;; between the
average residue 7 of the 20 residue types, and suggested that e(; j) — es# being used
to measure the stability of a protein structure [90].

Hydrophobic nature of Miyazawa-.]ernigan contact potential. In the re-
lation. of Equation (2.18b), €(ij) = e(”) (e /(i,O) + ezj,O))’ the Miyazawa—Jernigan
effective contact energy e(i,j) is composed of two types of terms: the desolvation
terms e’(i 0) and e( .0) and the mixing term e( ) The desolvation term of residue

type 1, that is, (Z 0) OF €(i,i) y/2 (Fig. 2.1), is the energy change due to the desolva-
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Table 2.1  Miyazawa-Jernigan contact energies in k7' units; e(; ;) for upper half and
diagonal and e(, ;) for lower half (from [90])

Cys Met Phe 1Ile Leu Val Trp Tyr Ala Gly Thr Ser Asn Gln Asp Glu His Arg Lys Pro

Cys-5.44-4.99-5.80-5.50-5.83-4.96-4.95-4.16-3.57-3.16-3.11-2.86-2.59-2.85-2.41-2.27-3.60-2.57-1.95-3.07
Met 0.46-5.46-6.56-6.02-6.41-5.32-5.55-4.91-3.94-3.39-3.51-3.03-2.95-3.30-2.57-2.89-3.98-3.12-2.48-3.45
Phe 0.54-0.20-7.26-6.84-7.28-6.29-6.16-5.66-4.81-4.13-4.28-4.02-3.75-4.10-3.48-3.56-4.77-3.98-3.36-4.25
11e 0.49-0.01 0.06-6.54-7.04-6.05-5.78-5.25-4.58-3.78-4.03-3.52-3.24-3.67-3.17-3.27-4.14-3.63-3.01-3.76
Leu 0.57 0.01 0.03-0.08-7.37-6.48-6.14-5.67-4.91-4.16-4.34-3.92-3.74-4.04-3.40-3.59-4.54-4.03-3.37-4.20
val 0.52 0.18 0.10-0.01-0.04-5.52-5.18-4.62-4.04-3.38-3.46-3.05-2.83-3.07-2.48-2.67-3.58-3.07-2.49-3.32
Trp 0.30-0.29 0.00 0.02 0.08 0.11-5.06-4.66-3.82-3.42-3.22-2.99-3.07-3.11-2.84-2.99-3.98-3.41-2.69-3.73
Tyr 0.64-0.10 0.05 0.11 0.10 0.23-0.04-4.17-3.36-3.01-3.01-2.78-2.76-2.97-2.76-2.79-3.52-3.16-2.60-3.19
Ala 0.51 0.15 0.17 0.05 0.13 0.08 0.07 0.09-2.72-2.31-2.32-2.01-1.84-1.89-1.70-1.51-2.41-1.83-1.31-2.03
Gly 0.68 0.46 0.62 0.62 0.65 0.51 0.24 0.20 0.18-2.24-2.08-1.82-1.74-1.66-1.59-1.22-2.15-1.72-1.15-1.87
thr 0.67 0.28 0.41 0.30 0.40 0.36 0.37 0.13 0.10 0.10-2.12-1.96-1.88-1.90-1.80-1.74-2.42-1.90-1.31-1.90
ser 0.69 0.53 0.44 0.59 0.60 0.55 0.38 0.14 0.18 0.14-0.06-1.67-1.58-1.49-1.63-1.48-2.11-1.62-1.05-1.57
Asn 0.97 0.62 0.72 0.87 0.79 0.77 0.30 0.17 0.36 0.22 0.02 0.10-1.68-1.71-1.68-1.51-2.08-1.64-1.21-1.53
Gin 0.64 0.20 0.30 0.37 0.42 0.46 0.19-0.12 0.24 0.24-0.08 0.11-0.10-1.54-1.46-1.42-1.98-1.80-1.29-1.73
asp 0.91 0.77 0.75 0.71 0.89 0.89 0.30-0.07 0.26 0.13-0.14-0.19-0.24-0.09-1.21-1.02-2.32-2.29-1.68-1.33
G 0.91 0.30 0.52 0.46 0.55 0.55 0.00-0.25 0.30 0.36-0.22-0.19-0.21-0.19 0.05-0.91-2.15-2.27-1.80-1.26
His 0.65 0.28 0.39 0.66 0.67 0.70 0.08 0.09 0.47 0.50 0.16 0.26 0.29 0.31-0.19-0.16-3.05-2.16-1.35-2.25
Arg 0.93 0.38 0.42 0.41 0.43 0.47-0.11-0.30 0.30 0.18-0.07-0.01-0.02-0.26-0.91-1.04 0.14-1.55-0.59-1.70
Lys 0.83 0.31 0.33 0.32 0.37 0.33-0.10-0.46 0.11 0.03-0.19-0.15-0.30-0.46-1.01-1.28 0.23 0.24-0.12-0.97
pro 0.53 0.16 0.25 0.39 0.35 0.31-0.33-0.23 0.20 0.13 0.04 0.14 0.18-0.08 0.14 0.07 0.15-0.05-0.04-1.75

tion of residue 7, the formation of the i-i self-pair, and the solvent-solvent pair. The
value of this term e(; ;)/2 should correlate well with the hydrophobicity of residue
type i [74,89], although for charged amino acids this term also incorporates unfa-
vorable electrostatic potentials of self-pairing. The mixing term ezi)j is the energy
change accompanying the mixing of two different types of amino acicis of i and j to
form a contact pair i-j after breaking self-pairs i-i and j-j. Its value measures the
tendency of different residues to mix together. For example, the mixing between
two residues with opposite charges are more favorable than mixing between other
types of residues, because of the favorable electrostatic interactions.

Important insights into the nature of residue-residue contact interactions can
also be obtained by a quantitative analysis of the desolvation terms and the mixing
terms. Among different types of contacts, the average difference of the desolva-
tion terms is 9 times larger than that of the mixing terms (see Table 2.1 taken
from [90]). Thus, a comparison of the values of (e(;;) + €;;)/2 and e{; ;) shows
that the desolvation term plays the dominant role in determining the energy dif-
ference among different conformations. The importance of hydrophobicity in the
Miyazawa-Jernigan contact energies reveals that hydrophobic effect is the dominant
driving force for protein folding. This conclusion justifies the HP model proposed by
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Chan and Dill (1990) where only hydrophobic interactions are included in studies
of simple models of protein folding [21].

2.3.4 Distance dependent potential function

In the Miyazawa-Jernigan potential function, interactions between amino acids are
assumed to be short-ranged and a distance cutoff is used to define the occurrence
of a contact. This type of statistical potential is referred to as the “contact poten-
tial”. Another class of statistical potential allows modeling of residue interactions
that are distance-dependent. The distance of interactions are usually divided into
a number of small intervals or bins, and the potential functions are derived by
applying Equation (2.10) for individual distance intervals.

Formulation of distance-dependent potential functions. In distance-dependent
statistical potential functions, Equation (2.10) can be written in several forms. To
follow the conventional notations, we use (7, j) to represent the k-th protein descrip-
tor ¢ for pairwise interactions between residue type i and residue type j. From
Equation (2.10), we have:

N (i, j; d) i g: d)/ T
AH (i, j; d) = —In — 2t = —In — 220
(i d) = —In ey = N G S D) (2.292)
:—lnMa
igsd)

where (i,j; d) represents an interaction between a specific residue pair (i,j) at
distance d, AH (i, j; d) is the the contribution from the (i, 5) type of residue pairs
at distance d, 7(8, j; d) and 7'(i, j; d) are the observed and expected probabilities
of this distance-dependent interaction, respectively, n(; j,4) the observed number
of (,7; d) interactions, n the observed total number of all pairwise interactions in
a database, n'(i) i d) the expected number of (8, 7; d) interactions when the total
number of all pairwise interactions in reference state is set to be n.

Since the expected joint probability 7’(4,j; d) for the reference is not easy to
estimate, Sippl (1990) replaces Equation (2.10) with:

. n(i,j | d) i )/ )
AH(,ji d) = =In S22 = = In — 2o
(5 d) = =In 5o Y Td) (2.29b)
"5 d)

where 7(i,j | d) and 7'(i,j | d) are the observed and expected probability of
interaction of residue pairs (i, j) given the distance interval d, respectively; n(g) is
the observed total number of all pairwise interactions at the distance d; n'(l Gd) =
7' (i,7 | d) - n(d) is the expected number of (i, ) interactions at d when the total
number of all pairwise interactions at this distance d in the reference state is set to
n(qy- There are several variations of potential function of this form, including the
“Knowledge-Based Potential function” (KBP) by Lu and Skolnick (2001) [82].

In the work of developing the “Residue-specific All-atom Probability Discrimina-
tory Function” (RAPDF) [106], Samudrala and Moult (1998) alternatively replaced
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Equation (2.10) with:

AH(,j: d) = —In W/( 2 R ;J»d)/.n(.d)
7T(d|l7]) ﬂ-(d|7’5j) (2 290)
_ iy Magid) '

n/ ’
(4,5; d)

where 7(d | ¢,5) and 7/(d | i,7) are the observed and expected probability of
interaction at the distance d for a given pair of residues (3, j), respectively; n; ;) is
the observed total number of interactions for (7, j) pairs regardless of the distance.
N j.ay =T (d ] 4,7) - ng,j) is the expected number of (4, j) interactions at distance
d when the total number of (7, j) interactions in the reference state is set to nqg).

The knowledge-based potential functions of Equation (2.29a), 2.29b, and 2.29¢
can all be written using the unifying formula based on the number counts of inter-
actions: s

AH(i, j; d) = — In[—259), (2.30)
™i.j; d)

Clearly, the different ways of assigning nzi) i d make the potential functions differ
from each other significantly, since the method to calculate n(; ;; 4y is essentially the
same for many potential functions. In other words, the model of reference state
used to compute n'(l Jid) is critical for distance-dependent energy functions.

Different models of reference states. Sippl (1990) first proposed the “uniform
density” model of reference state, where the probability density function for a pair
of contacting residues (4, j) is uniformly distributed along the distance vector con-
necting them: #'(¢,j | d) = #'(4,4) [116]. Lu and Skolnick made use of this type of
reference state to calculate the expected number of (i, j) interactions at distance d
as [82]:
n'(m;d) = Fl(i,j | d) . n(d) = Wl(i,j) . n(d).
The expected probability 7/(4,j) is estimated using the random mixture approxi-
mation as:
T‘J(ivj) = XiXj>

where x; and x; are the mole fractions of residue type ¢ and j, respectively.

Samudrala and Moult (1998) made use of another type of reference state, where
the probability of the distance between a pair of residues (4, j) being d is independent
of the contact types (,7) [106]:

m(d]i,j) = ' (d).

The expected number of (i,5) interactions at distance d in Equation (2.29¢) be-
comes:

”Ei,j;d) =7'(d]i,§) ngu, =7'(d) - ng,

where 7/ (r) is estimated from (r):

7'(d) = n(d) = neay/n.
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Ideal gas reference state. In the uniform density model of Sippl, the same
density of a particular residue pair (4, ) along a line could result from very different
volume distribution of (4,j) pairs in specific regions of the protein. For example,
one spherical shell proximal to the molecular center could be sparsely populated
with residues, and another distant shell could be densely populated, but all may
have the same density of (i, j) pairs along the same radial vector. Zhou and Zhou
(2002) developed a new reference state (called DFIRE for “Distance-scaled, Finite
Ideal-gas REference state”) where residues follow uniform distribution everywhere
in the protein [146]. Assuming that residues can be modeled as noninteracting
points (i.e., as ideal gas molecules), the distribution of non-interacting pairs should
follow the uniform distribution not only along any vector lines, but also in the whole
volume of the protein.

When the distance between a pair of residues (4, ) is at a threshold distance
dg = 14.5 A, the interaction energy between them can be considered to be 0.
Therefore, residue type ¢ and type j form pairs at the distance dy purely by random
chance, and the observed number of (i, j) pairs at the distance dy can be considered
the same as the expected number of (7, j) pairs at the distance dp in the reference
state. Denote vy as the volume of a spherical shell of width Ad at a distance d
from the center. The expected number of interactions (i, j) at the distance d after
volume correction is:

’ - Vd - d . Ad
Migid) = Migido) " g = Mddo) "\ g | Agy”

For a protein molecule, n/ ijed will not increase as r2 because of its finite size. In
addition, it is well-known that the volume of protein molecule cannot be treated as
a solid body, as there are numerous voids and pockets in the interior. This implies
that the number density for a very large molecule will also not scale as d? [78].
Zhou and Zhou (2002) assumed that n’(m;d increase in d* rather than d?, where
the exponent a needs to be determined. To estimate the o value, each protein p in
the database is reshaped into a ball of radius c, Ry, ,, where Ry, is the radius of
gyration of the protein p, and residues are distributed uniformly in this reshaped
ball. Here ¢, takes the value so that in the reshaped molecule, the number of total

interacting pairs at dy distance is about the same as that observed in the native

protein p, namely:

D ian) = D Migsdo)

(4,4) (i,5)
for protein p. Once the value of ¢, is determined and hence the effective radius
cpRy;p for each native protein is known, the number of interacting pairs nq) at
distance d can be counted directly from the reshaped ball. Zhou and Zhou further
defined a reduced distance-dependent function f(d) = n()/d* and the relative
fluctuation ¢ of f(d):

1
1 7

6= |—> (fd)=N*D| .
d

ny
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where f =Y, f(d)/ns, and n, is the total number of distance shells, all of which
has the same thickness. « is then estimated by minimizing the relative fluctuation
0. The rationale is that since idealized residues are points and are uniformly dis-
tributed in the reshaped ball, § should be 0. In their study, @ was found to be
1.61 [146].

2.3.5 Geometric potential functions

The effectiveness of potential function also depends on the representation of protein
structures. Another class of knowledge-based statistical potentials is based on the
computation of various geometric constructs that reflect the shape of the protein
molecules more accurately. These geometric constructs include the Voronoi dia-
gram [84], the Delaunay triangulation [20,67,114,144], and the alpha shape [75-77]
of the protein molecules. Geometric potential functions has achieved significant
successes in many fields. For example, the potential function developed by Mc-
Conkey et al. is based on the Voronoi diagram of the atomic structures of proteins,
and is among one of the best performing atom-level potential functions in decoy
discrimination [84]. Because the alpha shape of the molecule contains rich topologi-
cal, combinatorial, and metric information, and has a strong theoretical foundation,
we discuss the alpha potential functions in more detail below as an example of this
class of potential function.

Geometric model. In Miyazawa-Jernigan and other contact potential functions,
pairwise contact interactions are declared if two residues or atoms are within a spe-
cific cut-off distance. Contacts by distance cut-off can potentially include many
implausible non-contacting neighbors, which have no significant physical interac-
tion [14]. Whether or not a pair of residues can make physical contact depends not
only on the distance between their center positions (such as C, or Cg, or geometric
centers of side chain), but also on the size and the orientations of side-chains [14].
Furthermore, two atoms close to each other may in fact be shielded from contact
by other atoms. By occupying the intervening space, other residues can block a
pair of residues from direct interacting with each other. Inclusion of these fictitious
contact interactions would be undesirable.

The alpha potential solves this problem by identifying interacting residue pairs
following the edges computed in the alpha shape. When the parameter « is set to
be 0, residue contact occurs if residues or atoms from non-bonded residues share
a Voronoi edge, and this edge is at least partially contained in the body of the
molecule. Fig. 2.2 illustrates the basic ideas.

Distance and packing dependent alpha potential. For two non-bonded
residue balls b; of radius r; with its center located at z; and b; of radius r; at
zj, they form an alpha contact (7, j | «) if their Voronoi regions intersect and these
residue balls also intersect after their radii are inflated to r;(a) = (r? + a)'/? and
rj(a) = (17 + «)'/2, respectively. That is, the alpha contact (i,j | a) exists when:

|zi — 2| < (2 + ) + (r;2+ )%, 01 € Ko and |i — j| > 1.

We further define the I-star for each residue ball b; as: Sti(b;) = {(b;,b;) € Ka,
namely, the set of 1-simplices with b; as a vertex. The near neighbors of b; are
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Figure 2.2  Schematic drawing of the Delaunay complex and the alpha shape of a two-
dimensional molecule. The Voronoi region of a ball is the set of points closest to it when
measured in power distance. If two Voronoi regions share a boundary, i.e., if there is a
Voronoi edge (dashed line), we draw a Delaunay edge (solid line in grey or black) between
these two Voronoi vertices. A Delaunay edge is therefore the dual of a Voronoi edge. All
Delaunay edges incident to ball residue b; form the 1-star for b;, denoted as St1(b;). When
the balls are inflated by increasing the a value, more balls overlap, and more Voronoi edges
intersect with the balls. Therefore, more dual Delaunay edges are included in the alpha shape
(shown as black solid line segments). (a) When « = 0.0, the balls are not inflated and there is
only one alpha edge o, ; between ball b2 and ball b3. (b) When o = 4.0, the balls are inflated
and their radii are v/r2 4- 4.0. There are six alpha edges: ¢, ,,0,,,0,.5,00.4,00.4,0, 5, and
04,7+ For a ball b;, the set of residue balls connected to it by alpha edges are called the near
neighbors of the ball. The number of this set of residue balls is defined as the degree of near
neighbors of the residue ball b;, denoted as p;. For example, p, = 5, and p, = 1. (¢) When
a = 00, all the Delaunay edges become alpha edges (o = 16.0 is used for drawing). Hence,
all long-range interactions not intervened by a third residue are included.

derived from St1(b;) and are defined as:
Na(bi) = {bjlgi,j S K:a}, a = 4.0.

and the degree of near neighbors p; of residue b; is defined as the size of this set of
residues:
pPi = |Na(b1)|, a = 4.0.

The degree of near neighbors p; is a parameter related to the local packing density
and hence indirectly the solvent accessibility around the residue ball b; (Fig. 2.2
b). A large p; value indicates high local packing density and less solvent acces-
sibility, and a small p; value indicates low local packing density and high solvent
accessibility. Similarly, the degree of near neighbors for a pair of residues is defined
as:

PGig) = Walbi, bj)] = [Na(bi)| + [Na(bs)l, o =4.0.

Reference state and collection of non-interacting pairs. We denote the
shortest path length between residue b; and residue b; as L(; ;), which is the fewest
number of alpha edges (o = 4) that connects b; and b;. The reference state of the
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Figure 2.3 Schematic illustration of non-interacting pairs of residues. (b1, bs) is
considered as a non-interacting pair because the shortest length L 4) is equal to three,
i.e., the interaction between b; and b4 is blocked by two residues b7 and bs. Likewise,
(bs, be) is considered as a non-interacting pair as well.

alpha potential is based on the collection of all non-interacting residue pairs (4, 5):
{03, 9)|La,5) = 3}

Any (i,7) pair in this reference state is intercepted by two residues (Fig. 2.3). We
assume that there is no attractive or repulsive interactions between them, because
of the shielding effect by the two intervening residues. Namely, residue ¢ and residue
4 form a pair only by random chance, and any properties associated with b;, such

as packing density, side-chain orientation, are independent of the same properties
associated with b;.

Statistical model: pairwise potential and desolvation potential. Accord-
ing to Equation (2.10), the packing and distance-dependent statistical potential of

residue pair (k,1) at the packing environment p(; ;) and the distance specified by a
is given by:

™ (o7

H(k, L, posy | @) = —kT'In (M) . (2.31)
s
(kL per,1y)
Here, (koL poesy | @) is the observed probability:

R pr,1y @)
Tkl pey | @) = o) (2.32)
where Tk, ps 1y ) is the number of residue pair (k,1) at the packing environment

p(k,y and the distance specified by a, and n,) is the total number of residue pairs
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at the distance specified by a. 7T’( ) is the expected probability:

kL ot
M pion)
/ _ 36y P(k,1)
Tkloon) — (2:33)
where n’(k Logen) is the number of residue pair (k,l) at the packing environment

Pk, in reference state, and n’ is the total number of non-interacting residue pairs
at the reference state.

The desolvation potential of residue type k to have p near neighbors H(p | k) is
estimated simply by following Equation (2.10):

s k [7’Lk7 /nk]
H(p|k) = (ol k) _ "(kp)/T0(E) (2.34)

Tty [Mee/n@]

where r represent all 20 residue types.

For a protein structure, the total internal energy is estimated by the summa-
tion of the desolvation energy and pairwise interaction energy in the particular
desolvated environment:

H(s,a)=) H(p|k) ngp)

- (2.35)
+ 5 Z H(k, L pgeyy | ) - (k. Lpr,ry.cx)

kL pk,1,0
2.4 Optimization method

There are several drawbacks of knowledge-based potential function derived from
statistical analysis of database. These include the neglect of chain connectivity in
the reference state, and the problematic implicit assumption of Boltzmann distri-
bution [11,121,122]. We defer a detailed discussion to Section 2.6.1.

An alternative method to develop potential functions for proteins is by optimiza-
tion. For example, in protein design, we can use the thermodynamic hypothesis of
Anfinsen to require that the native amino acid sequence ay mounted on the native
structure sy has the best (lowest) fitness score compared to a set of alternative
sequences (sequence decoys) taken from unrelated proteins known to fold into a
different fold D = {sy,ap} when mounted on the same native protein structure
SN:

H(f(sn,an)) < H(f(sn,ap)) forall (sy,ap) € D.

Equivalently, the native sequence will have the highest probability to fit into the
specified native structure. This is the same principle described in [26,73,109].
Sometimes we can further require that the difference in score must be greater than
a constant b > 0 [108]:

H(f(sny,an))+b< H(f(sn,ap)) forall (sy,ap) €D.

Similarly, for protein structure prediction and protein folding, we require that the
native amino acid sequence a mounted on the native structure sy has the lowest
energy compared to a set of alternative conformations (structural decoys) D =
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{sp,an}:
H(f(sn,an)) < H(f(sp,an)) forall sp € D.

and
H(f(sn,an))+b< H(f(sp,ag)) forall (sp,an) € D.

when we insist to maintain an energy gap between the native structure and decoy
conformations. For linear potential function, we have:

w-ecy+b<w-cp forallep = f(sp,an) (2.36)

Our goal is to find a set of parameters through optimization for the potential
function such that all these inequalities are satisfied.

There are three key steps in developing effective knowledge-based scoring func-
tion using optimization: (1) the functional form, (2) the generation of a large
set of decoys for discrimination, and (3) the optimization techniques. The initial
step of choosing an appropriate functional form is important. Knowledge-Based
pairwise potential functions are usually all in the form of weighted linear sum of
interacting residue pairs. In this form, the weight coefficients are the parameters
of the potential function to be optimized for discrimination. This is the same func-
tional form used in statistical potential, where the weight coefficients are derived
from database statistics. The objectives of optimization are often maximization
of energy gap between native protein and the average of decoys, or energy gap
between native and decoys with lowest score, or the z-score of the native pro-
tein [8,28,43,45,62,63,83,86,87,121,123,130,131].

2.4.1 Geometric nature of discrimination

There is a natural geometric view of the inequality requirement for weighted linear
sum scoring functions. A useful observation is that each of the inequalities divides
the space of R? into two halves separated by a hyperplane (Fig. 2.4a). The hy-
perplane for Equation (2.36) is defined by the normal vector (ey — ¢p) and its
distance b/||en — ep|| from the origin. The weight vector w must be located in the
half-space opposite to the direction of the normal vector (e¢y —ep). This half-space
can be written as w - (ey — ¢p) + b < 0. When there are many inequalities to be
satisfied simultaneously, the intersection of the half-spaces forms a convex polyhe-
dron [32]. If the weight vector is located in the polyhedron, all the inequalities are
satisfied. Scoring functions with such weight vector w can discriminate the native
protein sequence from the set of all decoys. This is illustrated in Fig. 2.4a for
a two-dimensional toy example, where each straight line represents an inequality
w - (ey —ep) + b < 0 that the scoring function must satisfy.

For each native protein i, there is one convex polyhedron P; formed by the
set of inequalities associated with its decoys. If a scoring function can discriminate
simultaneously n native proteins from a union of sets of sequence decoys, the weight
vector w must be located in a smaller convex polyhedron P that is the intersection
of the n convex polyhedra:

UJE'PZﬁ'Pi.

i=1
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Figure 2.4  Geometric views of the inequality requirement for protein scoring function.
Here we use a two-dimensional toy example for illustration. a. In the first geometric view,
the space R? of w = (w1, w2) is divided into two half-spaces by an inequality requirement,
represented as a hyperplane w - (exy — ¢p) + b < 0. The hyperplane, which is a line in R?,
is defined by the normal vector (exy — ep), and its distance b/||en — ep|| from the origin.
Here this distance is set to 1.0. The normal vector is represented by a short line segment
whose direction points away from the straight line. A feasible weight vector w is located in
the half-space opposite to the direction of the normal vector (exy — ep). With the given set
of inequalities represented by the lines, any weight vector w located in the shaped polygon
can satisfy all inequality requirement and provides a linear scoring function that has perfect
discrimination. b. A second geometric view of the inequality requirement for linear protein
scoring function. The space R%2of x = (z1,z2), where « = (en — ep), is divided into two
half-spaces by the hyperplane w - (ex — ¢p) + b < 0. Here the hyperplane is defined by
the normal vector w and its distance b/||w|| from the origin. The origin corresponds to the
native protein. All points {eny — ep} are located on one side of the hyperplane away from
the origin, therefore satisfying the inequality requirement. A linear scoring function w such
as the one represented by the straight line here can have perfect discrimination. c. In the
second toy problem, a set of inequalities are represented by a set of straight lines according to
the first geometric view. A subset of the inequalities require that the weight vector w to be
located in the shaded convex polygon on the left, but another subset of inequalities require
that w to be located in the dashed convex polygon on the top. Since these two polygons do
not intersect, there is no weight vector w that can satisfy all inequality requirements. That
is, no linear scoring function can classify these decoys from native protein. d. According to
the second geometric view, no hyperplane can separate all points {exy —ep} from the origin.
But a nonlinear curve formed by a mixture of Gaussian kernels can have perfect separation
of all vectors {en — ep} from the origin: It has perfect discrimination.
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There is yet another geometric view of the same inequality requirements. If we
now regard (cy — cp) as a point in RY, the relationship w - (ey —ep) +b < 0
for all sequence decoys and native proteins requires that all points {ey — ep} are
located on one side of a different hyperplane, which is defined by its normal vector
w and its distance b/||w|| to the origin (Fig. 2.4b). We can show that such a
hyperplane exists if the origin is not contained within the convex hull of the set of
points {ey — ep} [50].

The second geometric view looks very different from the first view. However,
the second view is dual and mathematically equivalent to the first geometric view.
In the first view, a point ¢y — ¢p determined by the structure-decoy pair cy =
(sn,an) and ¢p = (Sy,ap) corresponds to a hyperplane representing an inequal-
ity, a solution weight vector w corresponds to a point located in the final convex
polyhedron. In the second view, each structure-decoy pair is represented as a point
cy — cp in R?, and the solution weight vector w is represented by a hyperplane
separating all the points C = {ey — ep} from the origin.

2.4.2 Optimal linear potential function

Several optimization methods have been applied to find the weight vector w of
linear scoring function. The Rosenblatt perceptron method works by iteratively
updating an initial weight vector wg [86,130]. Starting with a random vector,
e.g., wy = 0, one tests each native protein and its decoy structure. Whenever the
relationship w - (ey — ep) + b < 0 is violated, one updates w by adding to it a
scaled violating vector n - (ey — ¢p). The final weight vector is therefore a linear
combination of protein and decoy count vectors:

w:Zn(CN—cD)z Z ONCN — Z apcep. (2.37)

NeN DeD

Here N is the set of native proteins, and D is the set of decoys. The set of coefficients
{an}U{ap} gives a dual form representation of the weight vector w, which is an
expansion of the training examples including both native and decoy structures.

According to the first geometric view, if the final convex polyhedron P is non-
empty, there can be an infinite number of choices of w, all with perfect discrimi-
nation. But how do we find a weight vector w that is optimal? This depends on
the criterion for optimality. For example, one can choose the weight vector w that
minimizes the variance of score gaps between decoys and natives:

L1 1 ’
argyy mlnﬁ Z (w- (cx —cp))® — D ; (w- (ey —ep))

as used in reference [123], or minimizing the Z-score of a large set of native proteins,
or minimizing the Z-score of the native protein and an ensemble of decoys [22,87],
or maximizing the ratio R between the width of the distribution of the score and
the average score difference between the native state and the unfolded ones [43,47].
Effective linear sum scoring functions can be obtained by using perceptron learning
and other optimization techniques [28,35,43,123,130]

There is another optimality criterion according to the second geometric view [50].
We can choose the hyperplane (w, b) that separates the set of points {ey —ep} with
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the largest distance to the origin. Intuitively, we want to characterize proteins with
a region defined by the training set points {ey — ¢p}. It is desirable to define this
region such that a new unseen point drawn from the same protein distribution as
{en —ep} will have a high probability to fall within the defined region. Non-protein
points following a different distribution, which is assumed to be centered around
the origin when no a priori information is available, will have a high probability
to fall outside the defined region. In this case, we are more interested in modeling
the region or support of the distribution of protein data, rather than estimating its
density distribution function. For linear scoring function, regions are half-spaces
defined by hyperplanes, and the optimal hyperplane (w,b) is then the one with
maximal distance to the origin. This is related to the novelty detection problem and
single-class support vector machine studied in statistical learning theory [107,127,
128]. In our case, any non-protein points will need to be detected as outliers from
the protein distribution characterized by {ex — ¢p}. Among all linear functions
derived from the same set of native proteins and decoys, an optimal weight vector
w is likely to have the least amount of mis-labellings. The optimal weight vector w
therefore can be found by solving the following quadratic programming problem:

1

Minimize |w]||? (2.38)

subject to w - (ey —ep)+b<0forall Ne N and D e D. (2.39)

The solution maximizes the distance b/||w|| of the plane (w,b) to the origin. We
obtained the solution by solving the following support vector machine problem:

Minimize 3| w2
subject to w-ey +d < -1 (2.40)
w-cp+d>1,

where d > 0. Note that a solution of Problem (2.40) satisfies the constraints
in Inequalities (2.39), since subtracting the second inequality here from the first
inequality in the constraint conditions of (2.40) will give us w - (ey —ep) +2 < 0.

2.4.3 Optimal nonlinear potential function

It is possible that the linear weight vector w does not exist, i.e., the final convex
polyhedron P = (_; P; may be an empty set. This occurs if a large number of
native protein structures are to be simultaneously stabilized against a large number
of decoy conformations, no such potential functions in the linear functional form
can be found [123,131].

According to our geometric pictures, there are two possible scenarios. First, for
a specific native protein ¢, there may be severe restriction from some inequality
constraints, which makes P; an empty set. Some decoys are very difficult to dis-
criminate due to perhaps deficiency in protein representation. In these cases, it is
impossible to adjust the weight vector so the native protein has a lower score than
the sequence decoy. Fig. 2.4 ¢ shows a set of inequalities represented by straight
lines according to the first geometric view. In this case, there is no weight vector
that can satisfy all these inequality requirements. That is, no linear scoring func-
tion can classify all decoys from native protein. According to the second geometric
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view (Fig. 2.4d), no hyperplane can separate all points (black and green) {ey —cp}
from the origin, which corresponds to the native structures.

Second, even if a weight vector w can be found for each native protein, i.e., w
is contained in a nonempty polyhedron, it is still possible that the intersection of n
polyhedra is an empty set, i.e., no weight vector can be found that can discriminate
all native proteins against the decoys simultaneously. Computationally, the ques-
tion whether a solution weight vector w exists can be answered unambiguously in
polynomial time [56]. If a large number (e.g., hundreds) of native protein structures
are to be simultaneously stabilized against a large number of decoy conformations
(e.g., tens of millions), no such potential functions can be found computation-
ally [123,131]. Similar conclusion is drawn in a study for protein design, where it
was found that no linear potential function can simultaneously discriminate a large
number of native proteins from sequence decoys [50].

A fundamental reason for such failure is that the functional form of linear sum
is too simplistic. It has been suggested that additional descriptors of protein struc-
tures such as higher order interactions (e.g., three-body or four-body contacts)
should be incorporated in protein description [13,94,145]. Functions with poly-
nomial terms using up to 6 degree of Chebyshev expansion has also been used to
represent pairwise interactions in protein folding [33].

We now discuss an alternative approach. Let us still limit ourselves to pairwise
contact interactions, although it can be naturally extended to include three or four
body interactions [77]. We can introduce a nonlinear potential function or scoring
function analogous to the dual form of the linear function in Equation (2.37), which
takes the following form:

H(f(s,a))=H(c) = Z apK(e,ep) — Z anK(e,en), (2.41)

DeD NeN

where ap > 0 and o > 0 are parameters of the scoring function to be determined,
and ¢p = f(sn,ap) from the set of decoys D = {(spr, ap)} is the contact vector of
a sequence decoy D mounted on a native protein structure sy, and ey = f(sn,an)
from the set of native training proteins N' = {(sy,an)} is the contact vector of
a native sequence an mounted on its native structure sy. In the study of [50],
all decoy sequence {ap} were taken from real proteins possessing different fold
structures. The difference of this functional form from linear function in Equa-
tion (2.37) is that a kernel function K (x,y) replaces the linear term. A convenient
kernel function K is:

K(z,y) = e IIT-yIF/20" g5 any vectors © and y € N'JD,

where o2

is a constant. Intuitively, the surface of the scoring function has smooth
Gaussian hills of height a.p centered on the location ¢p of decoy protein D, and has
smooth Gaussian cones of depth «ay centered on the location ¢y of native structures
N. Ideally, the value of the scoring function will be —1 for contact vectors ¢y of

native proteins, and will be +1 for contact vectors c¢p of decoys.

2.4.4 Deriving optimal nonlinear scoring function

To obtain the nonlinear scoring function, our goal is to find a set of parameters
{ap,an} such that H(f(sny,an)) has value close to —1 for native proteins, and
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the decoys have values close to +1. There are many different choices of {ap,an}.
We use an optimality criterion originally developed in statistical learning the-
ory [19,107,126]. First, we note that we have implicitly mapped each structure
and decoy from R?19 through the kernel function of K(x,y) = e lX=YII?/20% ¢
another space with dimension as high as tens of millions. Second, we then find the
hyperplane of the largest margin distance separating proteins and decoys in the
space transformed by the nonlinear kernel. That is, we search for a hyperplane
with equal and maximal distance to the closest native proteins and the closest de-
coys in the transformed high dimensional space. Such a hyperplane can be found
by obtaining the parameters {ap} and {ay} from solving the following Lagrange
dual form of quadratic programming problem:

. . 12 2
Maximize > ;o nup, i — %ZijENUD yiyjaiaje—llcl C;|*/20
subject to 0<a; <C,

where C' is a regularizing constant that limits the influence of each misclassified
protein or decoy [19,107,126-128], and y; = —1 if 7 is a native protein, and y; = +1
if ¢ is a decoy. These parameters lead to optimal discrimination of an unseen test
set [19,107,126-128]. When projected back to the space of R?!?, this hyperplane
becomes a nonlinear surface. For the toy problem of Fig. 2.4, Fig. 2.4d shows that
such a hyperplane becomes a nonlinear curve in R? formed by a mixture of Gaussian
kernels. It separates perfectly all vectors {ey — ep} (black and green) from the
origin. That is, a nonlinear scoring function can have perfect discrimination.

2.4.5 Optimization techniques

The techniques that have been used for optimizing potential function include per-
ceptron learning, linear programming, gradient descent, statistical analysis, and
support vector machine [8,9,50,123,131,135]. These are standard techniques that
can be found in optimization and machine learning literature. For example, there
are excellent linear programming solvers based on simplex method, as implemented
in CLP, GLPK, and LP_ SOLVE [12], and based on interior point method as imple-
mented in the BPMD [85], the HOPDM and the PCX packages [24]. We neglect the
details of these techniques and point readers to the excellent treatises of [98,125].

2.5 Applications

Knowledge-Based potential function has been widely used in the study of protein
structure prediction, protein folding, and protein-protein interaction. In this sec-
tion, we discuss briefly some of these applications.

2.5.1 Protein structure prediction

Protein structure prediction is a complex task that involves two major components:
sampling the conformational space and recognizing the near native structures from
the ensemble of sampled conformations.
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In protein structure prediction, methods for conformational sampling generates
a large number of candidate protein structures. These are often called decoys.
Among these decoys, only a few are near native structures that are very similar
to the native structure. Many decoy sets have been developed which are used as
objective benchmarks to test if an knowledge-based potential function can success-
fully identify the native and near native structures. For example, Park and Levitt
(1996) constructed a 4-state-reduced decoy set. This decoy test set contains native
and near-native conformations of seven sequences, along with about 650 misfolded
structures for each sequence. In a successful study of structure predictions, an
knowledge-based potential function then can be used to discriminate the near na-
tive structures from all other decoys [7]. Furthermore, knowledge-based potential
function can be applied not only at the end of the conformation sampling to rec-
ognize near native structures, but can also be used during conformation generation
to guide the efficient sampling of protein structures [46, 54].

2.5.2 Protein-protein docking prediction

Knowledge-based potential function can also be used to study protein-protein inter-
actions. Here we give an example of predicting the binding surface of antibody or
antibody related proteins (e.g., Fab fragment, T-cell receptor) [76]. When docking
two proteins together, we say a cargo protein is docked to a fixed seat protein. To
determine the binding surfaces on the cargo protein, we can examine all possible
surface patches on the unbound structure of cargo protein as candidate binding
interfaces. The alpha knowledge-based potential function is then used to identify
native or near native binding surfaces. To evaluate the performance of the potential
function, we assume the knowledge of the binding interface on the seat protein. We
further assume that the degree of near neighbors for interface residues is known.

We first partition the surface of the unbound cargo protein into candidate surface
patches, each has the same size as the native binding surface of m residues. A
candidate surface patch is generated by starting from a surface residue on the cargo
protein, and following alpha edges on the boundary of the alpha shape by breadth-
first search, until m residues are found (Fig. 2.5). We construct n candidate surface
patches by starting in turn from each of the n surface residue on the cargo protein.
Because each surface residue is the center of one of the n candidate surface patch,
the set of candidate surface patches cover exhaustively the whole protein binding
interface.

Second, we assume that a candidate surface patch on the cargo protein has the
same set of contacts as that of the native binding surface. The degree of near
neighbors for each hypothetical contacting residue pair is also assumed to be the
same. We replace the m residues of the native surface with the m residues from
the candidate surface patch. There are % different ways to permute the m

residues of the candidate surface patch, where m; is the number of residue type
1 on the candidate surface patch. A typical candidate surface patch has about
20 residues, therefore the number of possible permutation is very large. For each
candidate surface patch, we take a sample of 5,000 random permutations. For a
candidate surface patch SP;, we assume that the residues can be organized so that
they can interact with the binding partner at the lowest energy. Therefore, the
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Native antibody interface Best scored patch

(a) (b)

Figure 2.5 Recognition of binding surface patch of protein targets using geometric
potential function. (a) Boundary of alpha shape for a cargo protein. Each node represents
a surface residue, and each edge represents the alpha edge between two surface residues. A
candidate surface patch is generated by starting from a surface residue on the cargo protein,
and following alpha edges on the boundary of the alpha shape by breadth-first search, until
m residues are included. (b) Native interface and the surface patch with the best score on
the antibody of the protein complex. Only heavy chain (in red) and light chain (in blue) of
the antibody are drawn. The antigen is omitted from this illustration for clarity. The best
scored surface patch (in green) resembles the native interface (in yellow): 71% residues from
this surface patch are indeed on the native binding interface. The residue in white is the
starting residue used to generate this surface patch with the best score.

binding energy E(SPF;) is estimated as:

E(SP) = min E(SP,),, k=1, ,5,000.

Here E(SP;), is calculated based on the residue-level packing and distance-dependent
potential for the k-th permutation. The value of E(SF;) is used to rank the candi-
date surface patches.

We can assess the statistical potential by taking antibody/antigen protein in
turn as the seat protein, and the antigen/antibody as cargo protein. The native
interface on the seat protein is fixed. We then test if our statistical potential can
discriminate native surface patch on the cargo protein from the set of candidate
surface patches. We can also test if the best scored patch resembles the native
patch. An example of the predicted antigen-binding interface of T02 is shown in
Fig. 2.5 (b). For five out of the seven protein complexes, the native patches on
both the antibody and the antigen are successfully predicted (Table 2.2). Over
50% of the residues from the best scored patch overlaps with corresponding native
patch. The statistical potential does not work as well for T04 and T05, because
the antibodies of these two complexes do not use their CDR domains to recognize
the antigens as an antibody usually does, and such examples are not present in the
dataset of the 34 antibody-antigen complexes, based on which the alpha potential
function was obtained.
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Table 2.2  Recognition of native binding surface of CAPRI targets by alpha potential
function. .

Antibody*® Antigen
Target Complex Rank® ;e Overlap® Rankyqtive Overlap
T02 Rotavirus VP6-Fab 1/283¢ 0.71 1/639  0.68
T03 Flu hemagglutinin-Fab 1/297 0.56 1/834  0.71
T04 a-amylase-camelid Ab VH 1 56/89 0.60 102/261 0.03
TO05 a-amylase-camelid Ab VH 2 23/90 0.57 57/263  0.25
T06 a-amylase-camelid Ab VH 3 1/88 0.70 1/263  0.62
TO7 SpeA superantigen TCRf 1/172 0.57 1/143 0.61
T13 SAG1-antibody complex 1/286 0.64 1/249 0.69

@ “Antibody”: Different surface patches on the antibody molecule are evaluated by the
scoring function, while the native binding surface on the antigen remains unchanged.
“Antigen”: similarly defined as “Antibody”.

b Ranking of the native binding surface among all candidate surface patches.

¢ Fraction of residues from the best candidate surface patch that overlap with residues
from the native binding surface patch.

d The first number is the rank of native binding surface and the second number is the

number of total candidate surface patches.

2.5.3 Protein design

Protein design aims to identify sequences compatible with a given protein fold but
incompatible to any alternative folds [60,61]. The goal is to design a novel protein
that may not exist in nature but has enhanced or novel biological function. Several
novel proteins have been successfully designed [25,48,68,81]. The problem of protein
design is complex, because even a small protein of just 50 residues can have an
astronomical number of sequences (10%%). This clearly precludes exhaustive search
of the sequence space with any computational or experimental method. Instead,
protein design methods rely on potential functions for biasing the search towards
the feasible regions that encode protein sequences. To select the correct sequences
and to guide the search process, a design potential function is critically important.
Such a scoring function should be able to characterize the global fitness landscape
of many proteins simultaneously.

Here we briefly describe the application of the optimal nonlinear design poten-
tial function discussed in Section 2.4.3 [50] in protein design. The aim is to solve a
simplified protein sequence design problem, namely, to distinguish each native se-
quence for a major portion of representative protein structures from a large number
of alternative decoy sequences, each a fragment from proteins of different fold.

To train the nonlinear potential function, a list of 440 proteins was compiled from
the WHATIF98 database [131]. Using gapless threading [83], a set of 14,080,766
sequence decoys was obtained. The entries in WHATIF99 database that are not
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present in WHATIF98 are used as a test set. After cleaning-up, the test set consists
of 194 proteins and 3,096,019 sequence decoys.

To test the design scoring functions for discriminating native proteins from se-
quence decoys, we take the sequence a from the conformation-sequence pair (sy, a)
for a protein with the lowest score as the predicted sequence. If it is not the native
sequence ay, the discrimination failed and the design scoring function does not
work for this protein.

The nonlinear design scoring function is capable of discriminating all of the
440 native sequences. In contrasts, no linear scoring function can succeed in this
task. The nonlinear potential function also works well for the test set, where it
succeeded in correctly identifying 93.3% (181 out of 194) of native sequences in
the independent test set of 194 proteins. This compares favorably with results
obtained using optimal linear folding scoring function taken as reported in [123],
which succeeded in identifying 80.9% (157 out of 194) of this test set. It also has
better performance than optimal linear scoring function based on calculations using
parameters reported in reference [8], which succeeded in identifying 73.7% (143 out
of 194) of proteins in the test set. The Miyazawa-Jernigan statistical potential
succeeded in identifying 113 native proteins out of 194) (success rate 58.2%).

2.5.4 Protein stability and binding affinity

Because the stability of protein in the native conformation is determined by the
distribution of the full ensemble of conformations, namely, the partition function
Z(a) of the protein sequence a, care must be taken when using statistical potentials
to compare the stabilities of different protein sequences adopting the same given
conformation as in protein design [90,116]. This issue is discussed in some detail
in Subsection 2.6.1.

Nevertheless, it is expected that statistical potential should work well in estimat-
ing protein stability changes upon mutations, as the change in partition functions of
the protein sequence is small. In most such studies and those using physics-based
empirical potential [15]), good correlation coefficient (0.6-0.8) between predicted
and measured stability change can be achieved [15,39,40,44,49, 146].

Several studies have shown that statistical potentials can also be used to pre-
dict quantitative binding free energy of protein-protein or protein-ligand interac-
tions [27,80,88,93,142]. In fact, Xu et al. showed that a simple number count of
hydrophilic bridges across the binding interface is strongly correlated with binding
free energies of protein-protein interaction [136]. This study suggests that bind-
ing free energy may be predicted successfully by number counts of different types
of interfacial contacts defined using some distance threshold. Such number count
studies provide a useful benchmark to quantify the improvement in predicting bind-
ing free energy when using statistical potentials for different protein-protein and
protein-ligand complexes. Similar to prediction of protein stability change upon
mutation, knowledge based potential function also played an important role in a
successful study of predicting binding free energy changes upon mutation [64,65].
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2.6 Discussion and summary

2.6.1 Knowledge-based statistical potential functions

The statistical potential functions are often derived based on several assumptions:
(a) protein energetics can be decomposed into pairwise interactions; (b) interactions
are independent from each other; (c¢) the partition function in native proteins Z and
in reference states Z' are approximately equal; (d) the probability of occupancy of
a state follows the Boltzmann distribution. These assumptions may be unrealistic,
which raises questions about the validity of the statistical potential functions: Can
statistical potential functions provide energy-like quantities such as the folding free
energy of a protein, or the binding free energy of a protein-protein complex [122]7
Can statistical potential functions correctly recognize the native structures from
alternative conformations?

The assumptions of statistical knowledge-based potential functions. From
Equation (2.5), we can obtain the potential function H(¢) by estimating the prob-
ability m(c). However, we need a number of assumptions for this approach to work.
We need the independency assumption to have:

7(c) ZHW(Ci) ZHHMy

where ¢; is the number of occurrence of i-th structural feature, e.g., number of a
specific residue pair contact; m; is the probability of i-th structural feature in the
database. That is, we have to assume that the distribution of a specific structural
feature is independent and not influenced by any other features, and is of no conse-
quence for the distribution of other features as well. We also need to assume that
c provides an adequate characterization of protein interactions, and the functional
form of w - ¢ provides the correct measurement of the energy of the interactions. We
further need to assume that the energy for a protein-solvent system is decompos-
able, i.e., the overall energy can be partitioned into many basic energy terms, such
as pairwise interactions and desolvation energies. Moreover, the partition functions
Z' in a chosen reference state are approximately equal to the partition functions
Z in native proteins. These assumptions go along with the assumption that their
structural features contained in the protein database are correctly sampled under
the Boltzmann distribution. For any protein descriptor, we have:

;i o exp(—w;).

To calculate 7; in practice, we have to rely on another assumption that all protein
structures are crystallized at the same temperature. Therefore, the distribution 7; is
reasonably similar for all proteins in the database, and hence the frequency counts
of protein descriptors in different protein structures can be combined by simple
summation with equal weight.

Clearly, none of these assumptions are strictly true. However, the success of
many applications of using the statistical knowledge-based potentials indicate that
they do capture many important properties of proteins. The question for improv-
ing statistical potential function is, how seriously each of these assumptions is
violated and to what extent it affects the validity of the potential function. A few
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assumptions specific to a particular potential function (such as the coordination
and solvation assumptions for the Miyazawa-Jernigan’s reaction model) have been
described earlier. Here we discuss several assumptions in details below.

Interactions are not independent. Using a HP (hydrophobic-Polar) model on
two-dimensional lattice, Thomas and Dill (1996) tested the accuracy of Miyazawa-
Jernigan contact potentials and Sippl’s distance-dependent potentials. In HP model,
a peptide chain contains only two types of monomer: H and P. The true energies
are set as Hg gy = —1, Hg,py = 0 and H(p py = 0. Monomers are in contact if
they are non-bonded nearest neighbors on the lattice. The conformational space
was exhaustively searched for all sequences with the chain length from 11 to 18. A
sequence is considered to have a native structure if it has a unique ground energy
state. All native structures were collected to build a structure database, from which
the statistical potentials are extracted by following the Miyazawa-Jernigan or the
Sippl method. The extracted energies are denoted as e (g, 1), €(m,p), and e(p p).

It was found that neither of these two methods can extract the correct energies.
All extracted energies by these two methods depend on chain length, while the true
energies do not. Using Miyazawa-Jernigan’s method, the (H, H) contact is correctly
determined as dominant and attractive. However, the estimated values for ey p)
and e(p p) are not equal to zero, whereas the true energies Hp, py and Hp p) are
equal to zero. Using Sippl’s method, the extracted potentials erroneously show a
distance-dependence, i.e., (H, H) interactions are favorable in short-distance but
unfavorable in long-distance, and conversely for (P, P) interactions, whereas the
true energies in the HP model only exist between a first-neighbor (H, H) contact,
and become zero for all the interactions separated by two or more lattice units.

These systematic errors result from the assumption that the pairwise interactions
are independent, and thus the volume exclusion in proteins can be neglected [122].
However, (H, H) interactions indirectly affects the observed frequencies of (H, P)
and (P, P) interactions. First, in both contact and distance-dependent potentials,
because only a limited number of inter-residue contacts can be made within the
restricted volume at a given distance, the high density of (H, H) pairs at short
distances is necessarily coupled with the low density (relative to reference state)
of (H, P) and (P, P) pairs at the same distances, especially at the distance of one
lattice unit. As a result, the extracted (H, P) and (P, P) energies are erroneously
unfavorable at short distance. Second, for distance-dependent potentials, the energy
of a specific type of pair interaction at a given distance is influenced by the same
type of pair at different distances. For example, the high density of (H, H) pairs
at short distances causes a compensating depletion (relative to the uniform density
reference state) at certain longer distances, and conversely for (H, P) and (P, P)
interactions. Admittedly this study was carried out using models of short chain
lengths and a simple alphabet of residues where the foldable sequences may be
very homologous, hence the observed artifacts are profound, the deficiencies of the
statistical potentials revealed in this study such as the excluded volume effect is
likely to be significant in potential functions derived from real proteins.

Pairwise interactions are not additive. Interactions stabilizing proteins are
often modeled by pairwise contacts at atom or residue level. An assumption as-
sociated with this approach is the additivity of pairwise interactions, namely, the
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total energy or fitness score of a protein is the linear sum of all of its pairwise
interactions.

However, the non-additivity effects have been clearly demonstrated in cluster
formation of hydrophobic methane molecules both in experiment [10] and in sim-
ulation [23,100,110,111]. Protein structure refinement will likely require higher
order interactions [13]. Some three-body contacts have been introduced in several
studies [31,41,42,103], where physical models explicitly incorporating three-body
interactions are developed. In addition, several studies of Delaunay four-body in-
teractions clearly showed the importance of including higher order interactions in
explaining the observed frequency distribution of residue contacts [20,36,67,94,114,
144].

Li and Liang (2005) introduced a geometric model based on the Delaunay tri-
angulation and alpha shape to collect three-body interactions in native proteins.
A nonadditivity coeflicient v(; ;1) is introduced to compare the three-body poten-
tial energy e(; j x) with the summation of three pairwise interactions e; j, e(; i), and
€G.k):

V(irgk) = eXPl—€(iz 0]/ expl—(eqig) +eqr) +eim)l-

There are three possibilities: (1) v = 1: interaction of a triplet type is additive
in nature and can be well approximated by the sum of three pairwise interactions;
(2) v > 1: three-body interactions are cooperative and their association is more
favorable than three independent pairwise interactions; (3) v < 1: three-body
interactions are anti-cooperative.

After systematically quantifying the nonadditive effects of all 1,540 three-body
contacts, it was found that hydrophobic interactions and hydrogen bonding inter-
actions make nonadditive contributions to protein stability, but the nonadditive
nature depends on whether such interactions are located in protein interior or on
protein surface. When located in interior, many hydrophobic interactions such as
those involving alkyl residues are anti-cooperative, namely v < 1. Salt-bridge and
regular hydrogen-bonding interactions such as those involving ionizable residues
and polar residues are cooperative in interior. When located on protein surface,
these salt-bridge and regular hydrogen bonding interactions are anti-cooperative
with v < 1, and hydrophobic interactions involving alkyl residues become cooper-
ative [77].

Sequence dependency of the partition function Z(a). We can obtain the
total effective energy AFE(s, a) given a structure conformation s and its amino acid
sequence a from Equation (2.6):

AH(f(s,a)) = AH(e) = > AH(ci)

— —kTZm ( ) T ( Z(a) > (2.42)

Z'(a)
where ¢; is the total number count of the occurrence of the i-th descriptor, e.g., the
total number of i-th type of pairwise contact. The summation involving Z(a) and
Z'(a) is ignored during the evaluation of AH (¢;) by assuming Z(a) ~ Z'(a).

Ci

7(ci)
' (c;)
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It is clear that both Z(a) and Z’'(a) do not depend on the particular structural
conformation s. Therefore, the omission of the term of the partition functions
—kT1n (%) will not affect the rank ordering of energy values of different con-
formations (i.e., decoys) for the same protein sequence. On the other hand, it is
also clear that both Z(a) and Z’(a) depend on the specific sequence a of a protein.
Therefore, there is no sound theoretical basis to compare the stabilities between
different proteins using the same knowledge-based potential function, unless the
ratio of Z(a)/Z'(a) for each individual sequence is known and is included during
the evaluation [89,106,116]. Notably, DFIRE and other statistical energy func-
tions have been successful used to predict binding affinities across different protein-
protein/peptide complexes. Nevertheless, the theoretical basis is not certain either,
because the values of partition function Z(a)s for different protein complexes can
be very different. It remains to be seen whether a similarly successful prediction
of binding affinities can be achieved just by using the number of native interface
contacts at some specific distance interval, i.e., the packing density along the native
interface. This omission is probably not seriously detrimental for the problem of
predicting free energy change of a protein monomer or binding free energy change
of a protein-protein complex upon point mutations, because the distribution of the
ensemble of protein conformations may not change significantly after one or several
point mutations.

Evaluating potential function. The measure used for performance evaluation
of potential functions is important. For example, z-score of native protein among
decoys is widely-used as an important performance statistic. However, z-score
strongly depends on the properties of the decoy set. Imagine we have access to the
true energy function. If a decoy set has a diverse distribution in true energy values,
the z-score of the native structure will not be very large. However, this should
not suggests that a knowledge-based energy function that gives a larger z-score for
native protein is better than the true energy function. Alternative measures may
provide more accurate or useful performance evaluation. For example, the correla-
tion 7 of energy value and CRMSD may be helpful in protein structure prediction.
Since a researcher has no access to the native structure, (s)he has to rely on the
guidance of an energy function to search for better structures with lower CRMSD to
the unknown native structure. For this purpose, a potential function with a large
r will be very useful. Perhaps the performance of a potential function should be
judged not by a single statistic but comprehensively by a number of measures.

2.6.2 Relationship of knowledge-based energy functions and further develop-
ment

The Miyazawa-Jernigan contact potential is the first widely used knowledge-based
potential function. Because it is limited by the simple spatial description of a cut-off
distance, it cannot capture the finer spatial details. Several distance-dependent po-
tentials have been developed to overcome this limitation, and in general have better
performance [82,106,146]. A major focus of works in this area is the development
of models for the reference state. For example, the use of the ideal gas as refer-
ence state in the potential function DFIRE significantly improves the performance
in folding and docking decoy discrimination [139].
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Because protein surface, interior, and protein-protein interface are packed differ-
ently, the propensity of the same pairwise interaction can be different depending
on whether the residues are solvent-exposed or are buried. The contact potential
of Simons et al. considers two types of environment, i.e., buried and non-buried
environments separately [113]. The geometric potential function [76] described in
Subsection 2.3.5 incorporates both dependencies on distance and fine-graded local
packing, resulting in significant improvement in performance. Knowledge based
potential has also been developed to account for the loss of backbone, side-chain,
and translational entropies in folding and binding [4, 70].

Another emphasis of recent development of potential function is the orientational
dependency of pairwise interaction [17,18,66,91]. Kortemme et al. developed
an orientation-dependent hydrogen bonding potential, which improved prediction
of protein structure and specific protein-protein interactions [66]. Miyazawa and
Jernigan developed a fully anisotropic distance-dependent potential, with drastic
improvements in decoy discrimination over the original Miyazawa-Jernigan contact
potential [91].

Computational Efficiency. Given current computing power, all potential func-
tions discussed above can be applied to large-scale discrimination of native or near-
native structures from decoys. For example, the geometric potential requires com-
plex computation of the Delaunay tetrahedrization and alpha shape of the molecule.
Nevertheless, the time complexity is only O(N log N), where N is the number of
residues for residual-level potentials or atoms for atom-level potentials. For com-
parison, a naive implementation of contact computing without the use of proper
data structure such as a quad-tree or k-d tree is O(N?).

In general, atom-level potentials have better accuracy in recognizing native struc-
tures than residue-level potentials, and is often preferred for the final refinement
of predicted structures, but it is computationally too expensive to be applicable in
every step of a folding or sampling computation.

Potential function for membrane protein. The potential functions we have
discussed so far are based on the structures of soluble proteins. Membrane pro-
teins are located in a very different physico-chemical environment. They also have
different amino acid composition, and they fold differently. Potential functions de-
veloped for soluble proteins are therefore not applicable to membrane proteins. For
example, Cys-Cys has the strongest pairing propensity because of the formation of
disulfide bond. However, Cys-Cys pairs rarely occur in membrane proteins. This
and other difference in pairwise contact propensity between membrane and soluble
proteins are discussed in [2].

Nevertheless, the physical models underlying most potential functions developed
for soluble proteins can be modified for membrane proteins [1-3,51,99]. For exam-
ple, Sale et al. used the MHIP potential developed in [2] to predict optimal bundling
of TM helices. With the help of 27 additional sparse distance constraints from ex-
periments reported in literature, these authors succeeded in predicting the structure
of dark-adapted rhodopsin to within 3.2 Angstrom of the crystal structure [105].

The development of empirical potential function for S-barrel membrane proteins
based on the reference state using the internal random model or the permutation
model enabled successes in high-resolution structure predictions of the transmem-
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brane regions of -barrel membrane proteins, including those of novel architecture
and those from eukaryotic cells [51,55,79,96]. The empirical potential function has
also been successfully applied to predict the oligomerization states [95], in iden-
tification of the protein-protein interaction interfaces [95], as well as in discovery
of mechanisms of stabilization of S-barrel membrane proteins [95]. The stability
calculation based on such empirical potential function has also been successfully
applied to design the oligomerization state of the OmpF protein [37], as well as in
identifying the biochemical mechanism of the VDAC proteins [38].

2.6.3 Optimized potential function

Knowledge based potential function derived by optimization has a number of char-
acteristics that are distinct from statistical potential. We discuss in detail below.

Training set for optimized potential function. Unlike statistical potential
functions where each native protein in the database contribute to the knowledge-
based scoring function, only a subset of native proteins contribute. In an optimized
potential function, in addition, a small fraction of decoys also contribute to the
scoring function. In the study of [50], about 50% of native proteins and < 0.1% of
decoys from the original training data of 440 native proteins and 14 million sequence
decoys contribute to the potential function.

As illustrated in the second geometric views, the discrimination of native proteins
occurs at the boundary surface between the vector points and the origin. It does not
help if the majority of the training data are vector points away from the boundary
surface. This implies the need for optimized potential to have appropriate training
data. If no a priori information is known, it is likely many decoys (>millions)
will be needed to accurately define the discrimination boundary surface, because of
the usually large dimension of the descriptors for proteins. However, this imposes
significant computational burden.

Various strategies have been developed to select only the most relevant vector
points. One may only need to include the most difficult decoys during training, such
as decoys with lower energy than native structures, decoys with lowest absolute
energies, and decoys already contributing to the potential function in previous
iteration [50,86,124]. In addition, an iterative training process is often necessary [50,
86,124].

Reduced nonlinear potential function. The use of nonlinear terms for poten-
tial function involves large datasets, because they are necessary a priori to define
accurately the discrimination surface. This demands the solution of a huge opti-
mization problem. Moreover, the representation of the boundary surface using a
large basis set requires expensive computing time for the evaluation of a new unseen
contact vector ¢. To overcome these difficulties, non-linear potential function needs
to be further simplified.

One simple approach is to use alternative optimal criterion, for example, by min-
imizing the distance expressed in 1-norm instead of the standard 2-norm Euclidean
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distance. The resulting potential function will automatically have reduced terms.
Another promising approach is to use rectangle kernels [137].

Potential function by optimal regression. Optimized potential functions are
often derived based on decoy discrimination, which is a form of binary classification.
Here we suggest a conceptual improvement that can significantly improve the de-
velopment of optimized potential functions. If we can measure the thermodynamic
stabilities of all major representative proteins under identical experimental condi-
tions (e.g., temperature, pH, salt concentration, and osmolarity), we can attempt
to develop potential functions with the objective of minimizing the regression errors
of fitted energy values and measured energy values. The resulting energy surface
will then provide quantitative information about protein stabilities. However, the
success of this strategy will depend on coordinated experimental efforts in protein
thermodynamic measurements. The scale of such efforts may need to be similar to
that of genome sequencing projects and structural genomics projects.

2.6.4 Data dependency of knowledge-based potentials

There are many directions to improve knowledge-based potential functions. Often
it is desirable to include additional descriptors in the energy functions to more
accurately account for solvation, hydrogen bonding, backbone conformation (e.g.,
¢ and ¥ angles), and side chain entropies. Furthermore, potential functions with
different descriptors and details may be needed for different tasks (e.g., backbone
prediction vs structure refinement [101]).

An important issue in both statistical potential and optimized potential is their
dependency on the amount of available training data and possible bias in such data.
For example, whether a knowledge-based potential derived from a bias data set is
applicable to a different class of proteins is the topic of several studies [58,141].
Zhang et al. further studies the effect of database choice on statistical poten-
tial [140]. In addition, when the amount of data is limited, over-fitting is a serious
problem if too many descriptors are introduced in either of the two types of po-
tential functions. For statistical potential, hierarchical hypothesis testing should
help to decide whether additional terms is warranted. For optimized potential,
cross-validation will help to uncover possible overfitting [50].

Summary. In this chapter, we discussed the general framework of developing knowledge-
based potential functions in terms of molecular descriptors, functional form, and pa-
rameter calculations. We also discussed the underlying thermodynamic hypothesis
of protein folding. With the assumption that frequently observed protein features
in a database of structures correspond to low energy state, frequency of observed
interactions can be converted to energy terms. We then described in details the
models behind the Miyazawa-Jernigan contact potential, distance dependent poten-
tials, and geometric potentials. We also discussed how to weight sample structures
of varying degree of sequence similarity in the structural database. In the section
of optimization method, we describe general geometric models for the problem of
obtaining optimized knowledge-based potential functions, as well as methods for
developing optimal linear and nonlinear potential functions. This is followed by
a brief discussion of several applications of the knowledge-based potential func-
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tions. Finally, we point out general limitations and possible improvements for the
statistical and optimized potential functions.

Remark. Anfinsen’s thermodynamic hypothesis can be found in [5,6]. More
technical details of the Miyazawa-Jernigan contact potential are described in [89,90].
Distance dependent potential function was first proposed by Sippl in [116], with
further development described in [82,106]. The development of geometric potentials
can be found in [20,67,75,84,144]. The gas-phase approximation of the reference
state is discussed in [146]. Thomas and Dill offered insightful comments about the
deficiency of knowledge-based statistical potential functions [122]. The development
of optimized linear potential functions can be found in [86,123,132]. The geometric
view for designing optimized potential function and the nonlinear potential function
are based on the results in [50].
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EXERCISES

2.1 To capture higher order interactions in proteins, one can construct the three-
body propensity function. The propensity P(i,j, k) for residues of type i, j, k to
interact can be modeled as the odds ratio of the observed probability ¢(i, 7, k) of a
three-body (triple) atomic contacts involving residue 4, j, and &, and the expected

probability p(i,j,k) P(i,j, k) = % To compute the observed probability
q(i, j, k), we can use: q(i, j, k) = a(i, . k)/ >y ;o o a(i’, ', k'), where a(i, j, k) is the
number count of atomic contacts among residue types ¢, j and k, and Zi,d,)k, a(i’, 5", k")
is the total number of all atomic three-body contacts. For the random probability
p(i,7, k), let us assume it is the probability that three atoms are picked from a
residue of type ¢, a residue of type j, and a residue of type k, when chosen ran-
domly and independently from the pooled database of protein structures. Denote
the number of interacting residues of type i as IV;, the number of atoms residue of
type @ has as n;, and the total number of interacting atoms as n.

a) Assume all three interacting residues are of different types, e.g., i # j # k,
what is the probability that we first pick up an atom from a residue of
type i, then an atom from a residue of type j, and with the third atom
picked up to be from a residue of type k7

b) Now consider all other possible sequences of picking up an atom each from
an 4, j, and k residue type. Write down the formula for p(i, j, k).

¢) When two of the three interacting residues are of the same type, i.e.,

1 =j # k, what is the formula for p(i, j, k)?

d) When all three residues are of the same type, i.e., i = j = k, what is the

formula for p(i, 7, k)?.

2.2 [(-barrrel membrane proteins are found in a large number of pathogeneic
gram-negative bacteria. Their transmembrane (TM) segments are S-strands. We
can obtain the empirical propensity P(X,Y) for interacting pairs of residue types
X and Y on neighboring S-strands as P(X,Y) = fobs(X,Y)/E[f(X,Y)], where
fobs(X,Y) is the observed count of X-Y contacts in the strand pair, and E[f(X,Y)]
is the expected count of X-Y contacts in a null model.



76 REFERENCES

As the TM strands are short, there are strong coupling between presence and
absence of residues residing on the same strand. Commonly used techniques such as
the x2-distribution, in which normality is assumed, or the Bernoulli model, in which
residues are drawn with replacement, are not valid. One can use the permutation
model or the internally random model, in which residues within each of the two
interacting strands are permuted exhaustively and independently, and hence are
drawn without replacement. Each permutation is assumed to occur with equal
probability. In this model, an X-Y contact forms if in a permuted strand pair two
interacting residues happen to be of type X and type Y. E[f(X,Y)] is then the
expected number of X-Y contacts in the strand pairs.

a) We first examine the simpler cases when X is the same as Y, i.e., X-X
pairs. Let z; be the number of residues of type X in the first strand, xs
the number of residues of type X in the second strand, and [ the common
length of the strand pair. We randomly select residues from one strand
to pair up with residues from the other strand. We wish to know the
probability of exactly i = f(X, X) number of X — X contacts. How many
ways are there to place the x5 residues of type X in the second strand?

b) How many ways are there to have each of the ¢ residues to be paired with
one of the x; residues of type X on the first strand?

¢) How many ways are there to have each of the o — i residues be paired
with one of the [ — 1 non-X residues?

d) What is the probability Pxx (i) of i = f(X, X) number of X-X contacts
in a strand pair? What type of distribution is this?

e) What is the expected number of (X, X) contacts?

f) If the two contacting residues are not of the same type, i.e., X # Y, what
is the probability Pxy (i) of ¢ = f(X,Y) number of X-Y contacts in a
strand pair? (Hint: Consider f(X,Y|X € s1,Y € s3) for the case where
the type X residues are in the first strand s; and type Y in the second
strand s9, and f(X,Y|X € s2,Y € s1) for the other case where the type
Y residues are in s; and type X in so. )

g) What is the probability Pxy (m) that there are a total of i + j = m X-Y
contacts? Note the complication that the variables f(X,Y|X € s1,Y € s9)
and f(X,Y|X € s2,Y € s1) are dependent, i.e., the placement of an X-Y
pair may affect the probability of a Y-X pair in the same strand pair.

2.3 For a potential function in the form of weighted linear sum of interactions,
show proof that a decoy always has energy values higher than the native structure
by at least an amount of b > 0, i.e.,

w-(cp—en)>b forall {(cp—cn)|D€Dand N €N} (2.43)

if and only if the origin 0 is not contained within the convex hull of the set of points
{(ep —¢cn)|D € D and N € N}, namely, the smallest convex body that contain all
{(ep — en)}. Note that by the definition of convexity, any point « inside or on the
convex hull A can be expressed as a convex combination of points on the convex
hull, namely

T = Z Aep—cy - (€D —en), and Z/\CD_CN =1, Ap—cy >0.
(cp—cNn)EA



CHAPTER 3

SAMPLING TECHNIQUES: ESTIMATING
EVOLUTIONARY RATES AND GENERATING
MOLECULAR STRUCTURES

3.1 Introduction

Many problem encountered in computational studies of biological system can be
formulated as characterization of its ensemble properties, such as those of a pop-
ulation of molecules or cells. For example, we may need to evaluate the expected
energy value of protein molecules in a population of conformations; or we may be
interested in estimating the concentration of a key regulator that controls whether
a cell switches to a different lifestyle. What lies at the heart of solving these prob-
lems is to arrive at an accurate estimation of the ensemble properties of the system.
This often requires the application of Monte Carlo sampling techniques.

Denote the state of the biological system as @, and assume it follows some distri-
bution 7(x). If the property associated with the system at state & can be expressed
using a scalar function f(x), our task is than to estimate:

E[f(z)] = /m _f@pn()is (3.1)

where R is the region of the state space of interests. A key problem is to properly
generate samples that follow the probability distribution «(x). Below we discuss a
few specific examples arising from studies in bioinformatics and systems biology.

Example 1. Evolution of biomolecules. Sequence alignment is a widely
used method to infer biological information about a biomolecule. A key ingredient
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for alignment is the scoring matrices used to evaluate similarity between sequences,
which are derived based on an evolutionary model of the biomolecules [3,12,29].

Assuming the evolutionary process of a protein molecule can be described by a
continuous time Markov process, we can derive scoring matrices from the underlying
amino acid substitution rates of the evolutionary process [13,28,30,31]. Denote the
20 x 20 substitution rates in the matrix form as Q € R?° x R?°, and assume that
we have a set of multiple-aligned sequences S and a phylogenetic tree T'. Our task
is then to estimate the distribution 7(Q|S,T) that Q follow.

Following the Bayesian framework, the distribution 7(Q|S,T) can be calculated
as:

H(QIS.T) x / P(SIT.Q) - (Q)dQ.

where the probability P(S|T'Q) of obtaining a set of aligned sequences for a given
set of substitution rates @ and a phylogenetic tree T' can be evaluated through
the underlying Markovian model. Additional information of prior knowledge of the
likely values of @ can be incorporated in the prior distribution 7(Q).

Example 2. Loop entropy. Conformational entropy is an important fac-
tor that contributes to the stability of biomolecules. For example, loops located
on the surface of a protein often are flexible, and their conformational entropy
may influence the stability of the protein. Similarly, loops in different types of
RNA secondary structures may influence the final structure and stability of RNA
molecules [34].

The problem of estimating loop entropy can be formulated as follows. Let the
conformation of a loop of length I to be @ = (g, -+ ,a;), where z; € R3 is the
coordinates of the i-th residue or nucleotide. The positions of the first residue x
and the last residue x; are fixed. The probability w(2) that a chain of length [ with
only one end fixed closes up so its [-th residue is at the correct position of x; gives
the conformational entropy s of the loop:

5= / (z) In7(z)de,

The task is then to accurately estimate w(x).

Example 3. Biological systems such as gene circuits and protein-protein inter-
action networks have often been fine tuned through evolution to be robust against
fluctuations in environmental conditions, such as nutrient concentration and dam-
aging factors such as UV irradiation. Despite the intrinsic stochastic nature of
many biological processes, they often behave consistently and reliably. However,
when the system behavior deviates significantly from the norm, a cell often en-
ters into an abnormal or emergent state, which may manifest as a disease state at
organismic level.

We can formulate a simplified model of this problem. The state of a biological
network system can be represented by the amount of relevant molecular species.
Assume there are m molecular species, and the vector x of their concentrations or
copy numbers is @ = (x1,- - , Ty, ). Let the region R,, for  represent the region of
normal states, and Ry represent the region of a disease state. The probability that



PRINCIPLES OF MONTE CARLO SAMPLING 79

the system will be in the normal state at time ¢ can be calculated as:

T@(t) € Rula(0)] = / ()| (0)dz(t).

T(t)ERL

Similarly, the probability that the system will be in the disease state is:

rle(t) € Ral2(0)] = / wle(t)]2(0))dz (t).

T(t)ER4

We may also be interested in assessing the probability of rare event that the system
moves from the normal state to a disease state. This can be calculated as:

@(t) € Ralz(0) € Ry = /m s, T EORO)(0)

The primitive for studying these problems is to assess the probability 7[x(t)|z(0)]
that the system will be in state x(¢) at time ¢, given an initial condition x(0).

3.2 Principles of Monte Carlo sampling

3.2.1 Estimation through sampling from target distribution

To estimate properties of a biological system, our task is to generate samples follow-
ing the distribution 7(x) we are interested in, which is called the target distribution.
For example, calculating

E[f(z)] = /w _f@n()de

depends on the ability to generate proper samples from the distribution w(x). If
we are able to generate m such samples, we can have our estimation as:

Elf(@)] ~ ~[f(@®) + -+ f™)] (32)
This can be a very challenging task, as we may have difficulty in sampling suf-
ficiently in high dimensional space, a frequently encountered problem. As an ex-
ample, a 2-dimensional Ising model with 30x30 lattice sites has a magnetic spin
in each site (Fig. 3.1). A spin o can take either an up (4+1) or down(—1) position,
which is denoted as z, € {+1, —1}. The overall energy H (x)of the system is deter-
mined by the magnetic field h, each spin ¢ experiences, and the interactions each
spin has with its four neighbors:

H(x)=-J Z ToTol + Zhgxg.

on~aol o

Here J is the strength of interactions between neighboring spins, k. is the magni-
tude of the external magnetic field, and the state © = (1, - , xg00) can take any of
2900 configurations. The task of estimating physical properties is to compute inter-
nal energy < u >= E[H ()], the free energy F' = —kT log[>_,, exp(H (x)/kT)], and
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30

30

Figure 3.1 The Ising model of 30x30 size, with a total of 30 x 30 = 900 sites.
The spin at each site can adopt either an “up” or a “down” state, with a total of 2°°°
possible configurations. Integration in this high dimensional space of this simple example is
challenging.

the specific heat C' = ag;‘?, all require summation in the 900 dimensional space,
which is a challenging task.

There may be other difficulties in integrating Equation (3.1). We may have good
models of the underlying physical processes, but we may have no knowledge of the
explicit form of the distribution function 7(x). Even if we know the functional form
of 7(x), sampling from this distribution can be quite difficult. For example, the
region R of interests where we need to sample from may be of very constrained in

high dimensional space, and it would be difficult to generate samples from it.

3.2.2 Rejection sampling

Computing the probability w(x) of a state « is challenging, but often we can evalu-
ate the relative probability of a state &, namely, w(2) up to a constant, cw(x), where
the value of the constant c is unknown. If we can generate samples from a trial dis-
tribution g(x) (also called a sampling or a proposal distribution), such that it covers
em(x) after multiplication by a constant M. That is, we have Mg(x) > cn(x) for
all . We can use the rejection sampling method to obtain samples from the target
distribution 7(x). This is summarized in Algorithm 3.2.2. The accepted samples
following this procedure will correctly follow 7 ().

The principle behind rejection sampling is illustrated in Fig. 3.2. Note that
Mg(x) covers cm(x) everywhere. After we draw a sample « from g(x), we will only
accept it with a probability. The acceptance ratio r, which is %, will remove
excessive samples beyond the target distribution e¢m(a). The final accepted samples
@ will therefore follow the correct target distribution m(x), up to a constant c.
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Algorithm 3.2.2 Rejection Sampling.

repeat
Sample a candidate new state x from a proposal distribution function g(z)
. _ em(@)
Compute the ratio r = (@)

Draw u from U]0, 1]
if (u <r) then
Accept sample x
else
Reject x
end if
until convergency

Figure 3.2  Illustration of rejection sampling. The target distribution up to a constant
em () is covered everywhere by the sampling distribution Mg(x). As samples are generated
at © from Mg(x), it is different from e (x). By accepting only a fraction of Jffg((?) of the
generated samples at @, namely, by taking samples to the proportion of those under the

shaded area, the correct distribution 7(2) can be sampled up to a constant.

3.3 Markov chains and Metropolis Monte Carlo sampling

3.3.1 Properties of Markov chains

A more general framework to obtain samples from a specific target distribution is
that of the Markov chain Monte Carlo (MCMC) method. Monte Carlo integration
of Equation (3.2) can be achieved by running a cleverly constructed Markov chain.
This technique can be used to study many complex problems.

Conditions on Markov Model We first discuss Markov chains informally. Give a set
of states, a Markov process or Markov chain moves successively from one state x;
to another state x;, with a transition probability 7(z;|x;). It is assumed that the
Markov property holds, namely, m(x;|z;) does not depend on any state the process
visited before x;.
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To apply the MCMC method, the Markov process need to satisfy certain condi-
tions. We assume that the Markov process obeys the irreducibility condition, the
recurrent state condition, and the aperiodicity condition. The irreducibility condi-
tion dictates that it is possible to travel from any state to any other state, albeit
through perhaps many time steps. With the recurrent state condition, all states
have the property that the expected number of visits to this state is infinite. With
the aperiodicity condition, there is always a non-zero probability to be at any state
after a certain number of steps of Markov chain.

Steady state of Markov chain If a Markov chain satisfies the above three conditions,
it will converges to a steady state probability distribution as time increases. Denote
the probability distribution at the i-th step of a Markov chain as m;(x), we have:

. . n
nli}rr;o () = nler;O mo(x)P" = oo (),

where P is the Markov transition probability matrix, with the transition probability

pi,; as its (4, j)-th element, and 7 (x;) > 0 as every state is recurrent. Hence, this

Markov chain will converge to a steady state distribution 7. (x), which is unique

and will not depend on the initial distribution mo(x). 7o () is the unique solution

of ()P = w(x), and for each state x;, we have:

lim p; ; = n(x;), for any i.

n—00
This suggests that once we are able to generate a random sample x at time ¢
from the stationary distribution 7 (), all subsequent (correlated) samples are
also generated from 7o (). Solution to m(x)P = w(x) further implies that after a
long duration, the probability of finding the process in state x; is 7, regardless of
the starting state. That is, T (;) is the long run mean fraction of time that the
process is in state ;.

Time reversibility Time reversibility plays a central role in constructing a Markov
chain for Monte Carlo simulation. When a movie is played backward, we immedi-
ately take notice. However, there are processes which are impossible to distinguish
by observing their trajectories if it is played forward or backward in time. These
are time reversible processes.

Specifically, if the joint probability a Markov process takes the sequence of states

(zo, 21, -+ ,@p) at time (0,1,--- ,n) is the same as it takes the sequence of states
(Tpn, -1, - ,x1) at time (0,1,--- ,n) for arbitrary n, namely:
7T($07 L1, 7$n) = W(wnu Tn—1,""",T1, J:O)a

this Markov process is time reversible.

For time reversible process, if €1 = xo, we will have m () = mo(x). Since
mi(x) = mo(x)P, we have mo(x) = mo(x)P, namely, the initial distribution is
stationary. In addition, since the joint probability 7(xg = i,x1 = j) = 7(x1 =
i,xg = j) for time reversible Markov chain, we have:

w()pi; = 7(§)p;; for all 4, 5.

This is called the detailed balance condition.
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Overall, one can show that the Markov chain is time-reversible if and only if the
detailed balance condition is satisfied and the initial state is already in the steady
state.

3.3.2 Markov chain Monte Carlo sampling

The basis of Markov chain Monte Carlo simulation, also called Metropolis Monte
Carlo, is that if a Markov chain satisfies the conditions discussed above, it will
converge to the stationary distribution 7(x). Therefore, we can obtain dependent
samples following 7(x). Assuming it takes m steps for the Markov chain to reach
the stationary state, we can discard the first m samples, and obtain our estimates
of Equation (3.2) as:

Bf(@)] = Y fla).
m—+1
The key issue is then, how can we construct a Markov chain such that its stationary
distribution is the same as the distribution 7(x) of our interest, namely, the target
distribution.

The basic idea was laid out by Metropolis and colleagues in the 1950’s, which was
further developed by Hastings in the 1970’s. Briefly, we sample a candidate state
y from a proposal distribution ¢(-|x;). y is accepted as @;41, with the probability
a(z, y):

7T(z,/)q(ffcly)] _ (33)
m(x)q(y|x)
We can summarize the Markov chain Mote Carlo method as Algorithm 3.3.2:

alx,y) = min [1,

Algorithm 3.3.2 Markov chain Monte Carlo
Set t = 0 and initialize state x;
repeat

Sample a candidate new state y from a proposal distribution function ¢(-|x;);

a(x,y) + min |1, %%}

Draw u from U[0, 1]

if (u < a(x,y)) then
Tyl <Y

else
Ti41 < Ty

end if

Increment ¢

until convergency

Here the proposal distribution ¢(y|x) can have any form, but the stationary dis-
tribution will always be 7(x). It is remarkable that this seemingly simple approach
works.

We now discuss the rationale behind MCMC. The transition probability for the
Markov chain to travel from x; to a different state x;y; can be decomposed into two
events. First, we generated x¢11 with the proposal probability ¢(y|z:). Second,
y is then accepted as @1 with the probability a(x,y). When x;11 # «, the
transition probability p(w:i1|®:) is the product ¢(y|x:) - a(x,y). When x4 =
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x, the transition probability p(@;y1|®t) is I(zi41 = @) [1 - fy#c q(y|xz)a(z,v)|.
From Equation (3.3), we know:

(@) q(xei1|Te) (@, Ter1) = min[m(ze)q(@iga1|ze),  m(Te1)g(@el@es)].

Similarly, we know:

T(@141)q(®e|@e 1) (@i g1, @) = min[m(@ep1)g(@e|Terr),  m(@)g(@ele:)]).

That is, we have:

W(wt)Q(wt-i-lwt)a(wta th+1) = 7T(~’Et+1)Q($t|$t+1)04(wt+la th)a

which is the same as the detailed balance condition:

(@) p(@ip1|®e) = T(Te1)p(@e|Tig1)- (3.4)

With the detailed balance condition satisfied, if we integrate both sides of Equa-
tion (3.4) with regard to ¢, we have:

/ r(@)p(@ e 20 da, = 7(w0).

That is, if a; is drawn from the stationary distribution 7(x), then a;y; is also
drawn from the stationary distribution. We have now shown that once a sample
is generated from the stationary distribution 7(x), all subsequent samples will be
from that distribution.

Remark. Although Markov chain Monte Carlo sampling has found wide applica-
tions, there are a number of issues: sometimes it is difficult to assess whether the
Markov chain has reached the stationary distribution, or whether adequate sam-
pling is achieved. It is also often difficult to ensure that samples drawn from the
steady state distribution have small variance. A critical component of an effective
sampling strategy is the design of the trial function or proposal function g(-|bx:),
often also called the move set, which generates candidate x;y1. A well designed
move set will increase the convergence rate significantly. However, this often re-
quires expertise and specific consideration of the problem and is a challenging task.

3.4 Sequential Monte Carlo sampling

The sequential Monte Carlo (SMC) method offers another general framework to
obtain samples from a target distribution. It has its origin in early studies of
chain polymers, where a growth strategy was used to generate self-avoiding poly-
mer chains, with chains grown one monomer at a time until the desired length is
reached [26]. By generating many independently grown chains, estimation such as
Equation (3.1) can be made. This approach was subsequently extensively studied
and extended with wide applications [1,4,8,14-16,19,20, 22, 23, 33, 34]
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3.4.1 Importance sampling

Because of the high dimensionality, sampling is more effective if we focus on impor-
tant regions instead of uniformly sampling everywhere. If our goal is to generate
samples from the target distribution 7 (), it would be more productive to sample
more frequently in regions where w(x) has larger values.

It is often easier to sample from a trial distribution g(x) than from the desired
target distribution 7(2). The distribution g(x) should be designed such that it has
the same support as 7(x) and is as close in shape to f(x)w(x) as possible. In fact,
it is possible a well-designed g(x) is a better distribution than 7(x) to sample from
for estimating E[f(x)].

As g(x) is usually different from w(x), correcting its bias is necessary. In the
rejection sampling method discussed earlier, this was achieved by accepting only
a fraction of generated samples. A more general approach is to assign weights to
generated samples. When drawing samples (", 2@ ... (™ from a trial distri-
bution g(x), we calculate the importance weight associated with each sample:

w(:c(j>)
g(@D)’

The estimation of Equation (3.1) can then be calculated as:

W) —

w - feW) 4+ 4w f(2(™)
w(l) + -4 u}(m)

E[f(z)] ~ (3-5)

3.4.2 sequential importance sampling

Designing an effective trial distribution or sampling distribution g(x) can be very
challenging. A problem is the high dimension of . For example, to sample confor-
mations of a chain polymer such as a model protein molecule, we need to consider
the configurations of many monomers (residues). One approach is to decompose the
chain into individual monomers or residues, and adopt the chain growth strategy.
By growing the chain one monomer at a time, we can adaptively build up a trial
function, one monomer at a time.

Specifically, we can decompose a high-dimensional random variable x as: © =
(z1,- -+ ,xq). In the case of chain polymer, x is the configuration of the full length
chain, and z; € R3 is the coordinates of the i-th monomer. We can build up a trial
distribution as:

g9(x) = g1(x1)g2(x2|z1) - - - ga(zalxl, -, za—1),

where g1(x1) is the trial distribution to generate x1, and g;(z;|z1,- - ,2;-1) is the
trial distribution to generate x; condition on already generated (z1,--- ,2;—1). The
target distribution can also be written analogously as:

m(x) = 1 (z1)me(z2|21) - - - Ta(zg|2l, -+ 24-1), (3.6)
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The weight for a sample can be written as:

W@ — m(@W)) _ mi(z)ma(@e]e) - - wa(zalel, - - @),

g(@D)  gi(z1)ga(@2l@r) - - galmalal, -+ xg_1).

It is more convenient to calculate the weight by incrementally updating the weight
as more components are added. At an intermediate step ¢, we can have the weight
as:
. m(xe|(z, - 2e—1)

g(@l(w1, -+ 2-1)

As we sequentially add x;, the ideal decomposition of the target distribution
shown in Equation (3.6) is difficult to compute, as the target distribution at any
intermediate step ¢, namely, w(xy) = mi(x1)ma(z2|2r) - me(me|Xl, -+ J24-1) =
fw(acl, o+, xq)dxsyq - - dxg, can only be computed through integrating out all
other components, an often no less challenging task than the problem we set out
to solve itself.

Wy = Wi—1

We can introduce instead an intermediate distribution m¢(z1, - - - , 2¢) when adding
the ¢-th component/monomer, which can be viewed as an approximation to the
marginal distribution of the partial sample z; = (21, -+ ,2¢):

(X1, 0, X)) A /w(m)del coodzy.

When all components are added or the chain grown to its full length, the interme-
diate distribution coincides with our target distribution:

ﬂ-d(xl7" : 7xd) = 7T(./L'1," : ,./L'd).

It is natural to use m(x1, -+, ;) to design the trial sampling distribution. For
example, we can have our trial distribution as:

glag|z, - @) = me(@e|Ta, -+ em1).

To correct the bias in sampling using these intermediate distributions, we can
calculate the weight incrementally as we add z;:

Trt(xla"'vxt) 1
Wt = W1 . .
Ft—l(ivl,"' ,iﬂt) gt($t|$17"' ,ZCt—l)
Using the intermediate distributions m;(x1,-- - ,z;) has a number of advantages.
As m(x1,- -+, x¢) more or less tracks the target distribution 7(z1,--- ,z4), we can

judge the quality of samples before they are completed. For example, we can
improve computing efficiency by eliminating further simulation if a sample has
very small w; before finishing adding all components to xg4.

Overall, the sampling process is carried out sequentially: We first draw 7 from
g1(x1), than draw x5 condition on the existing x; from go. This is repeated until
x4 is drawn. In the example of generating chain polymer, we first draw z; for the
placement of the first monomer, then add the second monomer to the location xs,
which is drawn from gs, until the chain reaches the full length d. To sample = from
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m(x), the individual g;()s are to be designed so the joint trial distribution g(x)
resembles 7(x) or f(x)m(x) as much as possible.
The sequential Monte Carlo algorithm can be summarized as Algorithm 3.4.2.

Algorithm 3.4.2 Sequential Monte Carlo
Draw xgj), j=1,...,m from g1(x1)
fort=1ton—1do

for j =1 tom do

Sampling the (¢ + 1)-th monomer for the j-th sample

Draw position xgi)l from giy1 (241 |x§j) . .x§j>)
Compute the incremental weight
W) meaa (@ w))
t+ ; ; ; ; ;
_ wt(x(J) x§”) -gt+1(x§i)1|xgj) . .;c§”>)

) iy

end for

(Resampling)

end for

Self-avoiding walk in two-dimensional lattice As an illustration, we examine the
problem of estimating the average end-to-end distance of a chain polymer of length
N, which is modeled as a self-avoiding walk on a planar lattice. The configuration
of the molecule is denoted as « = (x1,--- ,2y), where the i-th monomer is located
at x; = (a,b), where a,b are the coordinates of the monomer. As a chain poly-
mer, distances between neighboring monomers x; and ;1 are exactly 1. As this
molecule have excluded volume, none of the lattice sites can be occupied by more
than one monomers.

Our goal is to estimate the average end-to-end distance E(||xx — x1]|?) of the
self-avoiding walks under the uniform distribution 7(x) = /2y, where Zy is the
total number of SAWs. If we use the approach of Metropolis Monte Carlo, we would
start with a particular configuration, for example, an extended chain, and apply
various moves, and run the simulation for a long period to ensure the stationary
distribution is reached, and then calculate E(||zy — x1||?) from collected correlated
samples.

Here we discuss how to apply the chain growth based sequential Monte Carlo
technique to solve this problem. This is a widely used approach to study chain poly-
mers [8,14-16,26,33,34]. Naively, we can start at (0,0), and repeatedly choose with
equal probability one of the three neighboring sites for placing the next monomer.
If a site is already occupied, we go back to the origin and start with a new chain,
until the surviving chain reaches the full length. However, the success rate of this
approach is very small, as most attempts will end up with running into an occupied
site prematurely.

This approach, due to Rosenbluth et al., is to look one-step ahead when placing
a monomer. At step ¢, we examine all neighboring sites of z; = (4,5) at (i £
1,7) and (i,7 £ 1). If all neighbors have been visited, this chain is terminated,
with an assigned weight of 0. Otherwise, we select one of the available site with
equal probability to place the next monomer. Specifically, we draw the position of
Z¢4+1 condition on current configuration of the chain (z1,---, ;) according to the
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Figure 3.3  Generating self-avoiding chain by sequential importance sampling. Following
Rosenbluth [26], samples of self-avoiding walks are grown from 2-mer to 5-mer by adding
a monomer at each of the unoccupied neighboring site with equal probability. To draw
samples from the uniform distribution of 5-mers, all of the 25 conformations should have equal
probability of 1/25 to be generated. However, the conformations are generated with unequal
probability. For example, some are generated with the probability of 1/3-1/3-1/2 = 1/18, and
others are generated with the probability of 1/3-1/3-1/3 = 1/27. Such bias can be corrected
by assigning a proper weight to each of the conformations.
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probability distribution:

Tr(xtJrl) = p[(k, Z)|I17 T vIt] -
nt
where (k,[) is one of the unoccupied neighbor, and n; is the total number of such
unoccupied neighbors. Fig. 3.3 illustrates this approach, where the process of gen-
erating all 5-mers starting from a 2-mer is shown.
However, samples generated are not uniformly distributed. When growing a 2-
mer to all possible 5-mers (Fig. 3.3), as there are a total of 25 5-mers that can
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be generated from the initial dimer, each chain should be generated with an equal
probability of 1/25 as the uniform distribution is our target distribution. However,
these 5-mers will be generated with unequal probability. For the uniform target
distribution, we should have m(x) o 1, but the chains are sampled differently, with
@ o (N Xng X -+ Xny_1)" 1, with n; being the number of empty sites neighboring
the last added monomer at step i. Such bias can be corrected by assigning a weight
to each chain generated, which is

w(E) =n1 Xng X -+ X NN_1.

Within the sequential importance sampling framework, our sampling distribution
is:
1

gi(zi|Ti—1) = { -1

0 , when n;_1 = 0.

, whenn;_1 >0 (3.7)

That is, if there are empty sites neighboring x;_1, z; then occupies one of the n;_1
available sites. The sequence of intermediate distribution functions are m(x:), t =

1,---, N—1, which is a sequence of uniform distribution of SAWs with ¢{-monomers:
1
T t(mt) = Z,

where Z; is the total number of SAWs with ¢ monomers.

3.4.3 Resampling

As more components or monomers are added, these unfinished partial samples may
have very diverse weights. Many samples may have very small weights, while a few
may have very large weights. Samples with small weights will contribute little to
our estimation of Equation (3.1). Samples with very small values of f(x) will also
have little contributions if our task is to estimate E.[f(z)]. In the case of growing
polymer chain, we may find that the chain has reached a dead-end and can no
longer be grown further. It may be more profitable to replace these samples with
other more promising samples.

The technique of resampling can be used to reduce sample variance. We can
first assign a resampling probability to each of the current sample. The assigned
values reflect our preference to either encourage or discourage this sample to be

taken again. Let the set of m samples be {:cgj)},j =1,---,m, and the associated

resampling probabilities be {a(j)},j =1,---,m. We draw n samples wijl) from the
existing set of m samples according to probabilities (a(l), sy a(m)). A new weight
ngl) = Zg)) is then assigned to the resampled .’ ). The resulting samples will
be properly weighted according to the target distribution m(x). The resampling
algorithm can be summarized as shown in Algorithm 3.4.3.

As our goal is to prune away poor samples, it is important to design effective
resampling probabilities {a(j )}. One generic approach is to set ?) as a monotonic
function of w). For targeted resampling, we will choose a?) based on the objective
of interest. Physical considerations and future information often can help to design
o). We will also need to balance the desire to have diverse samples and to have
many samples with large weights.
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Algorithm 3.4.3 Resampling

m: number of original samples.
{(argj), . ,:cgj)), w(j)}}”:l: original properly weighter samples
for xj =1 to m do

Draw xjth sample from original samples {(xgj), ce x?)) i
o {a(j)};n:l
Each sample in the newly formed sample is assigned a new weight
xj-th chain in new sample is a copy of k-th chain in original sample
w9 w® /o k)

end for

with probabilities

3.5 Applicatoins

3.5.1 Markov Chain Monte Carlo for evolutionary rate estimation

We now discuss how Markov chain Monte Carlo can be applied using the example of
estimating substitution rates of amino acid residues, an important task in analysis
of the pattern of protein evolution.

Protein function prediction. When a protein is found to be evolutionarily related
to another protein, for example, through sequence alignment, one can often make
inference on its biochemical functions. The success in detecting such evolutionary
relationship between two proteins depends on the use of a scoring matrix to quantify
the similarity between two aligned sequences.

Scoring matrices can be derived from analysis of substitution rates of amino
acid residues. The widely used PAM and BLOSUM scoring matrices are based on
empirical models of amino acid residue substitutions [2,12]. A more recent approach
is to employ an explicit continuous time Markov process to model the history of
evolution of the specific protein of interests [29, 30, 32]. We discuss below how
Markov chain Monte Carlo can be used to estimate substitution rates of amino
acid residues.

Continuous time Markov process for residue substitution. Assuming that a phyloge-
netic tree is given, which captures the evolutionary relationship between protein
sequences, we can use a reversible continuous time Markov process to model sub-
stitutions of amino acid residues [6,31]. The model parameters are the 20 x 20 rate
matrix @, in which the entries ¢;;s are instantaneous substitution rates of amino
acid residues for the set A of 20 amino acid residues, with the diagonal element
taken as ¢;; = — >, ;,; ¢ij- This matrix of instantaneous rates can be used to
calculate the transition probabilities after time ¢ [17]:

P(t) = {pi;(t)} = P(0) exp(Q - 1),

where P(0) = I. Here p;;(t) represents the probability that a residue of type ¢ will
mutate into a residue of type j after time t¢.

Likelihood function of a fixed phylogeny. For sequence k and sequence [ separated
by divergence time t;, the time reversible probability of observing residue zj at a
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Figure 3.4  An example of a phylogenetic tree. The branching topology of the tree
represents the ancestor and descendent relationship. The length of the edge represents the
evolutionary time in relative units.

position A in k£ and residue z; at the same position in [ is:

(k) Py (tht) = T(T1) Py, (Bt )

For a set S of s multiple-aligned sequences (x1, 2, ,@s) of length n amino
acid residues, we assume that a reasonably accurate phylogenetic tree is known.
We denote the tree as T' = (V, E). Here V is the set of sequences, namely, the union
of the set of observed s sequences £ (leaf nodes), and the set of s — 1 ancestral
sequences Z (internal nodes). & is the set of edges of the tree, where each edge
represents a ancestor-descendent relationship, with edge length representing the
evolutionary time. Let the vector ), = (x1,- - ,:CS)T be the observed residues at
position h, with h € {1,--- ,n} for the s sequences. The probability of observing s
number of residues x;, at position h according to our model is:

p(wth, Q) = Ty, Z H Pzix; (tij)

€L (i,7)€E
IJ'LEA( 7

after summing over the set A of all possible residue types for the internal nodes Z.
The probability P(S|T, Q) of observing all residues in the aligned region is:

P(SIT,Q) = P(x1,-- ,a,|T,Q) = [[ p(z4|T, Q).

h=1
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Bayesian estimation of instantaneous rates. We adopt a Bayesian approach to esti-
mated Q. We describe the instantaneous substitution rate @ = {¢;;} by a poste-
rior distribution 7(Q|S,T). We use a prior distribution 7(Q) to encode our past
knowledge of amino acid substitution rates for proteins. w(Q|S,T) summarizes
prior information available on the rates Q = {¢;;} and the information contained
in the observations S and T'. It can be estimated up to a constant as:

(QIS,T) x / P(SIT,Q) - 7(Q)dQ.

Markov chain Monte Carlo. We can run a Markov chain to generate samples drawn
from the target distribution 7(Q|S,T'). Starting from a rate matrix Q, at time t,
we generate a new rate matrix @, ; using the proposal function 7(Q,,Q,, ). The
proposed new matrix ,,; will be either accepted or rejected by the acceptance
ratio r(Q;, Q;, ). Specifically, we have:

Q.1 = AQ,, Qt+1) =T(Q,, Qt+1) 7(Qy, Qt+1)-

To ensure that the Markov chain will reach stationary state, we need to satisfy the
requirement of detailed balance, i.e.,

W(Qt|37T) ’ A(Qtv Qt+1) = W(Qt+l|87T) ) A(Qt-i-lv Qt)'

This is achieved by using the Metropolis-Hastings acceptance ratio 7(Qy, Q;, )
discussed earlier to either accept or reject @, |, depending on whether the following
inequality holds:

7T(Qt+1|57 T)- T(QtJrlv Q,)
W(Qt|37T) 'T(Qtv Qt-‘,—l) ,

where u is a random number drawn from the uniform distribution ¢[0,1]. With
the assumption that the underlying Markov process satisfy the conditions outlined
earlier, a Markov chain generated following these rules will reach the stationary
state [9,25].

Once the stationary state is reached, we can collect m correlated samples of the
Q matrix. The posterior means of the rate matrix can then estimated as:

u < 7(Qy, Qt+1) = min{l,

m

E-(Q)~ ) Q; m(Q,S,T).

=1

Rate matrix and scoring matrix. With the estimated @ matrix, we can derive scoring
matrices of different evolutionary time intervals [13]. The (i,j)-th entry b;;(¢) of
a scoring matrix between residues i and j at different evolutionary time ¢ can be
calculated as: ) t)
pij(t
bij(t) = —log ———,
7‘.7( ) )\ g 7TJ

where A is a scaling factor.
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3.56.2 Sequential chain growth Monte Carlo for estimating conformational en-
tropy of RNA loops

Conformational entropy makes important contribution to the stability and folding
of biomolecule, but it is challenging to compute conformational entropy. Here we
study the problem of computing RNA loop entropy. Using a discrete k-state model
for each nucleotide of the RNA molecule, we can model loops as self-avoiding walks
in three-dimensional space, and calculate the loop entropy using sequential Monte
Carlo.

For a loop of length n, where n is the number of unpaired nucleotides, its entropy
change can be defined as [34]:

—AS(n)/kg =In <%> , (3.8)

loop

where Qi) is the number of all possible conformations of a random coil of length
n, and Qloop is the number of loop conformations that are compatible with the
stem that closes the loop.

We use the sequential Monte Carlo algorithm to calculate the RNA loop entropy.
During the process of chain growth, we generates a set of properly weighted con-
formations with respect to the target distribution of uniformly distributed RNA
molecules, along with correct weights of the conformations. We use the following
scheme:

1. Initialization. We set the initial sampling size to m; = 1, with weight wgl) =
1. At step t — 1, we have m;_1 partial conformations with corresponding

weights, denoted as {(St(i)l, wt@l), ji=1, ..., m_1}.

2. Chain growth. For each partially grown conformation St(i )1, we exhaustively

test all possible attachments of the next nucleotide, with a total of kt(j ) different
possibilities. This will generate no greater than k different partial conforma-

tions of length ¢, S‘ @ - (Stml, s¢), with temporary weights w(”) = wgnl
We denote all such samples generated as {( _(l)) l = 1,..,L}, where
L = Emt 1 k 7)

3. Resampling. If L < m, which is the upper bound of Monte Carlo sample size,
we keep all of the samples and their corresponding weights and set m; = L.
If L > m, we choose m; = m distinct samples with marginal probabilities
proportional to a set of priority scores ﬂy). Intuitively, the priority score
B:(S;) reflects the chain’s “growth perspective”, and is used to encourage the
growth of chain S; to specific directions.

4. Estimation. When the target loop length n is reached, ;) is estimated as

coi '
ZJ | (J)]I(S( ), where m,, is the number of samples at length n, w is the

importance weight of samples Sy ), and I() is the identity function of 1.

Details of the resampling strategy, including the design of the priority scores can
be found in [34].
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The calculated loop entropy for hairpin loops of length 3—50 has excellent agree-
ment with values extrapolated from the Jackson-Stockmayer model. However, cal-
culations reveal that loop entropies of more complex RNA secondary structures are
significantly different from the extrapolated values for long internal loops. Overall,
conformational entropy of different RNA secondary structures with loops can be
calculated with accuracy beyond extrapolation of simplified theoretical models.

3.6 Discussion and summary

In this chapter, we discussed the general problem of characterizing ensemble proper-
ties of biological systems through integration by sampling, along with the difficulties
of sampling in high dimensional space. We briefly examined the approach of re-
jection sampling, and discussed in more details two general frameworks in Monte
Carlo sampling, namely, the Markov chain Monte Carlo (MCMC) or Metropolis
Monte Carlo method, and the sequential Monte Carlo method. We discussed basic
concepts such as sampling from a desired target distribution, properties of Markov
chains, time reversibility, detailed balance, and the stationary state. This was fol-
lowed by the example of estimating evolutionary substitution rates of amino acids.
For sequential Monte Carlo, we discussed the general principle of importance sam-
pling, the approach of sequentially building up the target distribution, and the
technique of resampling for variance reduction. The applications in generating self-
avoiding walks for studying chain polymers and calculating RNA loop entropy were
then presented.

Remark. Generating samples from a target distribution for tasks such as Equa-
tion (3.1) is a fundamental problem in science and engineering. Among the two
general frameworks of Monte Carlo sampling, the Metropolis Monte Carlo or the
Markov chain Monte Carlo (MCMC) method can generated correlated samples from
a target distribution, and the sequential Monte Carlo or the sequential importance
sampling method can generated samples from a trial distribution different from the
target distribution. Samples are then adjusted according their importance weights
so they follow the target distribution.

The MCMC method has its origin in the 1950s [24], where the idea of an evolv-
ing Markov chain was first introduced for sampling from a target distribution.
The extension to allow non-symmetric transition rules was made by Hastings [11].
Multilevel sampling methods were subsequently developed, including the umbrella
sampling method [27] and parallel tempering or replica exchange sampling meth-
ods [5,7]. The application of MCMC for studying molecular evolution can be found
in [29].

The sequential importance sampling method was first described in the work of
Rosenbluth et al. in generating chain polymers using a chain growth strategy [26].
Further development of the look-ahead strategy was subsequently developed in [23].
The theory of sequential importance sampling with resampling was developed by
Liu and Chen in [18] and in simulating chain polymers by Grassberger [8]. The
topic of proper rejection control can be found in [22]. The general theoretical
framework of sequential Monte Carlo can be found in [19,21]. Further studies of
chain polymers, including those under severe constraints, including void formation,
protein packing, generating conformations from contact maps, generating transi-
tion state ensemble of protein folding can be found in [14-16,33]. Loop entropy
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calculation for various RNA secondary structures using sequential Monte Carlo can
be found in [34]. A study on the effects of spatial confinement of cell nucleus in de-
termining the folding landscape, including scaling behavior of long range chromatin
interactions is described in [10].
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EXERCISES

3.1 In the Markov chain Monte Carlo method, the final stationary distribution
reached after the chain convergency is the desired target contribution:

/ (@) Az, y)dz = 7(y),

where x is the state variable, A(z,y) = T'(x,y) - r(x,y) is the actual transition
function, the product of the proposal function T'(x, y), and an acceptance-rejection
rule r(x,y). The proposal function T'(x,y) suggests a possible move from x to
y. The acceptance-rejection rule decides whether the proposed move to y will
be accepted: Draw a random number u from the uniform distribution U[0,1]. If
u < r(x,y), the move is accepted and y is taken as the new position. Otherwise
stay with x.

In the original Metropolis Monte Carlo method, the proposal function is sym-
metric: T(x,y) = T(y, x), and the acceptance-rejection rule is simply:

r(z,y) = min{1, 7(y)/m(z)}

Since the target distribution is the Boltzmann distribution m(x) ~ exp(h(x)),
where h(x) is an energy function, the acceptance rule is often written as: u <
r(x,y) = exp(—[h(y) — h(x)]). This strategy will work, for example, if the proposal
function gives equal probability 1/n(x) to each of the n(x) conformations that can
be reached from conformation x:

T(z,y) =1/n(z),

and if n(x) = n(y) for  and y that are connected by a move.

However, the number of possible moves for a conformation « frequently depends
on the local geometry. For example, it is more difficult in protein simulation to
move an amino acid residue that is buried in the interior than moving a residue
located in a loop region. In other words, the number of allowed moves is different:
n(x) # n(y), although each can be computed exactly.
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When n(x) # n(y), what rules can you devise to generate a Markov chain such
that its stationary distribution is the same Boltzman distribution. First, write your
answer in pseudocode, second, show that indeed your strategy works.

3.2 Hastings first realized that the proposal distribution does not need to be
symmetric, but can be arbitrarily chosen so long as the condition of detailed balance
is satisfied. His generalization leads to the modified acceptance rule:

m(y)T (y, z) }
()T (x,y) )’

so more flexible and efficient sampling strategy can be developed, which still gener-
ates samples following the desired target distribution. Answer the following ques-
tions and show your proofs:
a) Show that Hasting’s rule satisfies the detailed balance condition 7(x)A(x, y) =
m(y)A(y, ®).
b) Why does Hasting’s rule work? That is, why is the equilibrium distribution
the same as the desired target distribution?
¢) According to the same principle, will the following trial acceptance rule
work?

u<r(ry) = min{l,

u < r(x,y) = min {1,

m(z)T(y, x) }
m(Y)T(y,z) + (y)T(z,y)

d) How about the next rule below?

u<r(x,y) = min{l,

7(y)T(y, ) }
(YT (y, z) + n(x)T'(x,y)

3.3 Here we use Monte Carlo method to fold a sequence of a simplified protein
model on a two-dimensional lattice. The conformation of a protein of length n is
denoted as x = (x1,...,%n) = ((z1,91), .-, (Tn,yn)), where (z;,y;) is the coordi-
nates of the i-th residue in the 2-d lattice. The energy function of this HP model
st H(x) = =31, Axi,x;), where A(x;,x;) = 1 if x; and x; are non-bonded
spatial neighbors, and if both are H residues. Otherwise, A(x;,z;) = 0. We can
use the move sets of end move, corner move, crank-shift move, and pivot move.
For the end move, the ends of the chain move to an empty adjacent site. For the
corner move, a single monomer is flipped. For the crankshaft move, two monomers
are simultaneously moved. For pivot move, we choose a node along the chain as
a pivot, and apply a symmetry operation to the rest of the chain subsequent to
the pivot. On a two dimensional lattice, symmetry operation include rotation and
reflection.

Our goal is to search for this sequence the conformation of the lowest energy,
namely, we want to fold this model protein. The conformations follow the Boltz-
mann distribution 7 o exp{—U(x)/T}, where T is temperature. Starting from an
extended conformation and write a program implementing the Metropolis-Hastings
algorithm (or the Markov chain Monte Carlo method) with simulated annealing for
this problem. Use different temperatures as needed, for example, a temperature
ladder of Ty = 2,77 = 0.9 Ty, . ... Be careful to allow enough burn-in period.
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» Specify the actual move sets you used.

» Write down your transition rules.

» Write down your acceptance criterion for a move.
= Justification for the choice of burning-period.

You should run the simulation as many times as you can afford, and keep the
conformation and energy value of your best result for some of the chains you run.
Your output for a chain should include:

* A drawing of the folded conformation with the lowest energy found, and printed
energy value.

» Select 4 temperature values that are most interesting to you, and plot the
trajectory of the energy values of the protein starting at the end of the burning
period.

3.4 In importance sampling, it is essential to keep samples properly weighted, as
this enables one to calculate many macroscopic properties of the target population.
In model studies of protein folding, one approach to estimate thermodynamic prop-
erties of HP model proteins is to sample from the uniform distribution u(z) of all
SAWs on a lattice, using a sampling distribution function g(x).

1. What would be the proper weight w; of each sampled conformation x;?

2. If the goal is to estimate properties of the Boltzman distribution m(2) which
HP molecules follow, write down how you would re-adjust the weight of samples
properly weighted for the uniform distribution {(@1,w1), -, (Tm, wm)}?

3. Now you decides to sample conformations of HP sequence directly from the
Boltzmann distribution m(x). Write down the incremental weight one has
to keep at each step of the growth where dimension increases by one. Here
sampling is based on the trial function g;(x;) using the sequence of auxiliary
functions m;(x;).






CHAPTER 4

STOCHASTIC MOLECULAR NETWORKS

4.1 Introduction

Biomolecular networks formed by interacting biomolecules form the basis of regu-
latory machineries of many cellular processes. Stochasticity plays important roles
in many networks. These include networks responsible for gene regulation, pro-
tein synthesis, and signal transduction [3,21, 32,38, 44].The intrinsic stochasticity
in these cellular processes originates from reactions involving small copy numbers
of molecules. It frequently occurs in a cell when molecular concentrations are in the
range of uM to nM [3,40]. For example, the regulation of transcriptions depends
on the binding of often a few proteins to a promoter site. The synthesis of protein
peptides on a ribosome involves a small numbers of molecules. Patterns of cell
differentiation also depend on events with initially a small number of molecules.
In these biological processes, fluctuations intrinsic in low copy number events play
important roles.

With the importance of stochasticity in cellular functions well recognized [39,44,
46,61,62], it is important to understand the stochastic nature and its consequences
in cellular processes. In this chapter, we first discuss the basic theoretical framework
of the probability landscape of a stochastic network and the underlying discrete
chemical master equation (dACME). We then discuss a computational method that
optimally enumerate the state space essential for solving the dCME, as well as
methods for calculating the steady state and the dynamically evolving probability
landscape. We will then describe approaches to simplify the state space. We further
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discuss the formulation of the continuous chemical master equation (cCME), which
approximates the dCME, as well as its further simplifications in the form of Fokker-
Planck and Langevin models. This is followed by a discussion of the approach of
Monte Carlo simulations to study stochastic network, with the Gillespie algorithm
discussed in some details.

4.2 Reaction system and discrete chemical master equation

Molecular species and reactions. We assume a well-stirred system with a con-
stant volume at a constant temperature. It contains n molecular species X' =
{Xy, -+, Xn}, with X; denoting the label of the i-th molecular species. There

are m chemical reactions R = {Ry,---, R;,} in the network. We denote the copy
number of the i-th molecular species as ;. The combination of the copy numbers
at time ¢ is a vector of integers x(t) = (x1(t), -+ ,xn(t)) € N*. We call x(t) the

microstate of the system at time t.

The probability for the system to be in state x(t) is denoted as p(x,t). The
set ) of all possible combinations of copy numbers, Q = {x(t)|t € (0, c0)}, is the
state space of the system. The collection of probabilities associated with each of
the microstate in € at time ¢ is the probability landscape p(t). The time-evolving
probability landscape p(t) provides a full description of the properties of a stochastic
molecular network [2,9,11, 28,52].

Stoichiometry. A chemical reaction k can be written as:

It brings the system from a microstate x; to another microstate «;. The difference
between x; and «x; is the stoichiometry vector s; of reaction k:

s =z —xj = (c1(k) — i (k), - en(k) — ¢, (K)). (4.1)

Here s; has the same dimension as the microstate, and s; can admit 0 entries if a
molecular species does not participate in the reaction.
As an example, the reaction

A+2B-=C

reduces the number of A and B by 1 and 2, respectively, and increase the number
of C' by 1. Its stoichiometry vector has c4 = +1,cg = +2,¢cc = —1, and s =
(41,42, —2). If there are other molecular species, their coefficients are all 0 for this
reaction. By treating microscopic states of reactants explicitly, linear and nonlinear
reactions, such as synthesis, degradation, dimeric binding, and multimerization, can
all be modeled as transitions between microstates.

Reaction rate. The reaction rate Ag(x;,x;), namely, the transition probability
per unit time from x; to x; due to the k-th reaction that connects state x; to state
x; is determined by the intrinsic reaction rate constant ry, and the copy numbers
of relevant reactants at the beginning of the reaction, which is given by the state
;.

= T =71 i o )
Ap(xi, zj) = Ag(z;) kll:[1<cl(k)), (4.2)
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assuming the convention (8) = 1. The intrinsic transition rate rj is determined

by the physical properties of the molecules and the cell environment [18], and the
reaction rate A(x;, x;) only depends on the starting state x;.

If the k-th reaction can lead the system from state x; to state x;, we have
Ag(xi, ;) > 0, otherwise A (x;, z;) = 0. Although often only one reaction occurs
to connect two microstates, in principle it is possible to have more than one reaction
connecting x; to x;. Therefore, we have the overall reaction rate that brings the
system from x; to x; as:

A(cci,ccj) = Z Ak(ccz,ac])

RreER

Overall, we have the transition rate matrix:

where the diagonal elements are defined as:

A(ilti,ilti) = —ZA(:BZ',iBj). (44)

i#]

Discrete chemical master equation. The chemical master equation that governs
the change of the probability landscape can be written as:

M = Z [A(:E/, :c)p(ic/, t) - A(.’I}, :B/)p(w, t):| . (45)

dt
m/

Here the probability p(x,t) is continuous in time, but the states are discrete. We
call this the discrete chemical master equation (ACME). In matrix form, it can be
written as:

dp(t)

dt

The dCME describes the gain and loss in probability associated with each mi-
crostate due to chemical reactions. These chemical reactions can be regarded as
jump processes upon firings of reactions, which bring the system from one combina-
tion of copy number of molecular species to a different combination of copy number
of molecular species. The dCME fully accounts for the stochastic jumps between
states, regardless whether the copy numbers x; and x; are small or large. The over-
all stochasticity due to small copy number events is therefore fully described. It
provides a fundamental framework to study stochastic molecular networks [18,58].

However, it is challenging to study a realistic system using the dCME. Analytical
solutions exists only for very simple cases, such as self-regulating genes [23,60], or
for small problems with strong assumptions of separation of reaction rates [28,52].
Exact numerical solution of the dCME is also difficult, as a nontrivial number of
species of small copy numbers may be involved. A major hurdle is the expected
exponential increase in the size of the state space when the number of molecular
species and their copy numbers increase, and when the network becomes complex.

= Ap(t). (4.6)



106 STOCHASTIC MOLECULAR NETWORKS

4.3 Direct solution of chemical master equation

4.3.1 State enumeration with finite buffer

The technique of optimally enumerating microstates for a given initial condition now
allows certain realistic systems to be studied using dCME, under the condition of
finite buffer [11]. Below we describe how microstates can be enumerated optimally.

For a network with n molecular species and m reactions, we calculate all mi-
crostates that the network can reach starting from a given initial condition, under
the finite buffer constraint. We use a buffer of finite capacity to represent a reser-
voir of molecules, from which synthesis reactions generate new molecules, and to
which degradation reactions deposit molecules removed from the network. Synthe-
sis reaction is allowed to occur only if the buffer capacity is not exhausted. This
is necessary due to the limitation of computing resources. As the microstate of a
specific combination of copy numbers is * = (z1,...,zy) , we add x,11 to denote
the current buffer capacity, namely, the number of net new molecules that can still
be synthesized at this microstate. A synthesis reaction occurs only if z,11 > 0
when using the state enumeration algorithm.

Under these conditions, the set of all possible microstates that can be reached
from an initial condition constitute the state space 2 of the system. The set of
allowed transitions is T' = {¢;,}, in which ¢;,; maps the microstate x; before the
reaction to the microstate x; after the reaction. The initial condition of the reaction
system is now given as: x(0) = (21(0),22(0),...,2,(0), zy+1(0)), where x;(0) is the
initial copy number of the i-th molecular species at time ¢ = 0, and x,,+1(0) = B is
the predefined buffer capacity.

The algorithm for enumerating the state space is summarized as Algorithm 4.3.1.
After initialization, it starts with the given initial microstate x(0). Each reaction
is than examined in turn to determine if this reaction can occur for the current
microstate. If so, and if the buffer is not used up, the state that this reaction leads
to is generated. If the newly generated state was never encountered before, we
declare it as a new state and add it to our collection of states for the state space.
We repeat this process for all new states, with the aid of a stack data structure.
This process terminates when all new states are exhausted [11].

Under the finite buffer constraint, the time complexity of this algorithm is opti-
mal. Since only unseen state will be pushed onto the stack, every state is pushed
and popped at most once, and each state will be generated/visited at most twice
before it is popped from the stack. As access to each state and to push/pop opera-
tions take O(1) time, the total time required for the stack operations is O(|€?]). As
the algorithm examines each of the reactions for each reached state, the complex-
ity of total time required is O(m|?|), where m is usually a modest constant (e.g.,
< 50). Based on the same argument, it is also easy to see that the algorithm is
optimal in storage, as only valid states and valid transitions are recorded. Using
this algorithm, all states reachable from an initial condition within the finite buffer
constraint will be accounted for, and no irrelevant states will be included. Further-
more, all possible transitions will be recorded, and no infeasible transitions will be
attempted [11].

With this optimal method for enumerating the microstates of a finite system,
numerical methods for solving large linear systems can be applied to solve the
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Algorithm 4.3.1 Finite Buffer State Enumerator(X, R, B)

Network model: N + {X, R}
Initial condition: x(0) < {x1(0),z2(0),...,2,(0)};
Set the value of buffer capacity: z(,41)(0) < B;
Initialize the state space and the set of transitions: Q « 0; T «+ 0;
Stack ST + 0; Push(ST, (0)); StateGenerated +FALSE
while ST # () do
x; < Pop (ST);
for k=1 tom do
if reaction Ry occurs under condition x; then
if reaction Ry is a synthetic reaction and generates u; new molecules
then
Tn+l & Tptl — Uk
if z,41 > 0 then
Generate state x; that is reached by following reaction Ry from x;;
StateGenerated < TRUE
end if
else
if reaction Ry is a degradation reaction and breaks down uj molecules
then
Tp+1 & Tn41 + ug
end if
Generate state x; that is reached by following reaction Ry from x;;
StateGenerated < TRUE
end if
if (StateGenerated = TRUE) and (z; ¢ (1) then
Q= QU {x;};
Push(ST, x;);
T+ TU {ti,j};
a;, j < Transition Coefficient(z;, Ry)
end if
end if
end for
end while
Assign all diagonal elements of A using Eqn (4.2).
Output Q, T and A = {a; ;}.

dCME equation. Very realistic systems can now be directly studied, such as the
decision network of phage lambda [9, 11].

4.3.2 Generalization and Multi-Buffer dCME method.

Reaction rates in a network can vary greatly: many steps of fast reactions can occur
within a given time period, while only a few steps of slow reactions can occur in
the same time period. The efficiency of state enumeration can be greatly improved
when memory allocation is optimized based on different behavior of these reactions.
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The finite buffer method can be further extended for accurate solution of the
chemical master equation [10]. A reaction network can be decomposed into com-
ponents of birth and death processes, which are the only reactions that can add or
remove molecules from the system. If we regard reactions as a set of vertices V,
and a pair of reactions R; and R; are connected by an edge e;; if they share either
reactant(s) or product(s), we can then construct an undirected reaction graph Gr.
It can be decomposed into u number of disjoint independent reaction components
{H;}: Ggr =;_, H;, with E(H;) N E(H;) = 0 for i # j. We focus on those
independent reaction components H js, called independent Birth-Death (iBD) com-
ponents {H ;-B P, which contain at least one synthesis reaction. The multi-buffer
algorithm for state enumeration is a generalization of the finite-buffer algorithm,
in which each iBD is equipped with its own buffer queue. This leads to improved
efficiency and increases size reduction in enumerated state space. Details can be
found in reference discussing the ACME method [10].

4.3.3 Calculation of steady state probability landscape

We can obtain a Markovian state transition matrix M from the reaction rate matrix
A: M = I+ A-At [26], where I is the identity matrix, and At is the time increment
that satisfies At < min{1/Ag(x;)}. The steady state probability landscape over
the microstates, namely, the probability distribution function p(t = oo) of the
microstates at time t = co can be obtained by solving the system of equations:

p(00) = Mp(c0).

These linear equations can be solved using iterative solvers such as the simple Jacobi
algorithm or more advanced algorithms. A GPU-based algorithm solving such large
linear systems can lead to speed up of =~ 30 times [37].

4.3.4 Calculation of dynamically evolving probability landscape

The solution to the dCME dpt)
p

— = Ap(t

= p(t)

can be written in the form of matrix exponential:

p(t) = eA'p(0), (4.7)
where eA? is defined as an infinite series [22]: At = Soo¢ AF /K. We discuss the
computation of the dynamically evolving probability landscape p(t) below.

4.3.5 Methods for state space truncation for simplification

For large systems, the dCME can be solved numerically if the dimension of the state
space can be reduced. This can be achieved by projecting the high dimensional state
space to a lower dimensional finite space.

Krylov subspace method. The rate matrix A has a very large dimension but is
sparse. This is because a microstate will have < m reactions leading to < m
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different microstates. One can convert the costly problem of exponentiating a large
sparse matrix to that of exponentiating a small dense matrix. This can be achieved
by projecting the original matrix A to the Krylov subspace Ky, which is easy to
compute [36]:

Kum(At, 7(0)) = Span{r(0),--- , (At)4~17(0)}. (4.8)

The Krylov subspace used is of a very small dimension of d = 30 — 60, although the
resulting matrix is dense. Denoting || - ||2 as the 2-norm of a vector or matrix, the
approximation then becomes p(t) ~ |[p(0)||2V at1 exp (Hg41t) €1, where ey is the
first unit basis vector, V441 is a (n+1) X (d+ 1) matrix formed by the orthonormal
basis of the Krylov subspace, and H 4,1 the upper Heisenberg matrix, both can be
computed from an Arnoldi algorithm [15]. The error is bounded by

Ot =14 (1] Ao /d)).

One only needs to compute explicitly exp (ﬁd+1t). This is a much simpler problem
as d is much smaller. A special form of the Padé rational of polynomials instead
of Taylor expansion can be used to avoid numerical instability, which arises when
summing terms with alternating signs [19, 54]:

e Hist o N ((H 411) [Ny (—H 411).

Here Npp(tﬁdJrl) = Zf:o Cl(tHkJrl)l and Ccl = Ci—1 * (inillzll)l The EXPOKIT
software by Sidje provides an excellent implementation of the Krylov subspace
method for computing matrix exponential [54]. This approach has been shown
to be very effective in studying large dynamic system (n = 8.0 x 10°) such as
protein folding [26], signaling transmission in macromolecular assembly of GroEL-
GroES [35], and in the stochastic network of phage lambda [9].

The Krylov subspace method concurrently evaluate the matrix exponential. The

overall scheme can be expressed as:
p(t) = exp(rr A) ... exp(10.A)p(0),

with ¢ = Zfio Ti, in which the evaluation is from right to left. Here {7;} are the
sizes of time steps, and T is the total number of time steps [36].

MacNamara et al. further extended the Krylov subspace method by splitting
the rate matrix A. In some case, one can divide the states into the “fast partition”
and the “slow partition” [6]. Here the condition is that two states belong to the
same subset of the fast partition if and only if one can be reached from the other
via a sequence of finite fast reactions [6]. Correspondingly, the matrix can be split
into two:

A=Ay + A,
where Ay corresponds to the fast CME, and A, corresponds to the slow CME. We
have: dp (1)
D (L
= Ay (t)

dt



110 STOCHASTIC MOLECULAR NETWORKS

and dp. (1)
D
St = Asp; (t)

With this deliberate separation, both Ay and A, should maintain the important
property of being infinitesimal generators of continuous time Markov processes by
themselves [6]. With more elaborated splitting scheme for aggregation of Markov
processes, the Krylov subspace projection method have been shown to be compu-
tationally very efficient [36].

Finite State Projection. When the state space is too large and enumeration is no
longer feasible, another approach is simply including only a subset of the original
microstates [43]. Munsky and Khammash made two insightful observations. Denote
two sets of indices of the microstates being chosen as J; and Js, and assume J; C Js.
The reduced rate matrix obtained by selecting states in J; and J are A;, and A j,,
respectively. The first observation is:

[eArz], >eAn >o0. (4.9)

This assures that A A
[8 ‘I2t]J1p(mJlaO) > (8 Jlt)p(mJNO)

This inequality implies that by increasing the size of the selected subset of states,
the approximation improves monotonically. The second observation is, if one ob-
tains a reduced state space by selecting states contained in the index set J, and if

lTetAJp(:BJ, 0) > 1— € for e > 0, then:
etA"p(wJ, 0) < p(xy,t) < etA"p(wJ, 0) +el (4.10)

That is, starting with the initial probability of the reduced vector p(x;,0), we can
compute the probability vector in the reduced space e*4/p(x;,0) at time ¢ using
the reduced rate matrix Ajy. If the inner-product of this vector with 1 is no less
than 1 — e, the difference of this vector from the projected true vector p(x;,t) of
the true probability p(x,t) is also no more than el. This inequality guarantees that
the approximation obtained with reduced state space will never exceed the actual
solution, and its error is bounded by € [43].

These key observations led to the Finite State Project algorithm, which itera-
tively adds new states to an initial reduced state space, until the approximation
error is within a prescribed bound [43]. The original Finite State Projection method
was further extended [42], and it was recommended that the initial non-sparse prob-
ability vector p(x,0) should be determined by running a few steps of stochastic
simulation discussed in a later section.

However, there are no known general strategy as to what states to add to a finite
projection to most effectively improve the approximation accuracy. Furthermore, as
an absorption state is introduced to account for all microstates not included in the
reduced state space in calculation, the finite state projection method is not appro-
priate for computing the steady state probabilistic landscape, as the approximation
of the absorption state will lead to errors that increases rapidly with time.
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4.4 Quantifying and controlling errors from state space truncation

Analysis based on the multi-buffer algorithm for state enumeration enables the
establishment of upper bounds of errors resulting from state space truncation, which
is inevitable when solving the discrete CME of a complex network. For ease of
discussion, we examine networks with only one iBD component and therefore one
buffer queue. We can factor the enumerated states 2 into N + 1 groups of subsets
by the net number of tokens of the buffer queue in use: Q = {Go,G1, - ,Gn}. We
can further construct a permuted transition rate matrix A from the original ACME
matrix A in Equation (4.3):

Ago Aox1 - AonN

N A A N |

A 1,0 1,1 | (411)
Ano Ani -+ ANN

where each block sub-matrix A; ; includes all transitions from states in factored
group G; to states in factored group G;.

Furthermore, we can construct an aggregated continuous-time Markov process
with a rate matrix B(nyy1)x(n+1) on the partition {Go, Gi, ---, Gn}. The steady
state probability of the aggregated Markov process gives the same steady state
probability distribution as that given by the original matrix A on the partitioned
groups {Gs}. The (N + 1) x (N + 1) transition rate matrix B can be constructed
as:

NGy o™ 0 ...
N N N N
B g

0 BN —aM g™ oM g

K2 K2

0 A
(4.12)
where the aggregated synthesis rate ozl(-N) for the group G; and the aggregated

degradation rate ﬁz(ivl) for the group G;4+1 at the steady state are two constants:

a(N)E]lTAZinT(gi) and ) 17 A}, i 7(Gita)
¢ ]lTﬁ'(gi)

o 177(Giy1)

(4.13)

in which vector 7(G;) and 7(G;+1) are the steady state probability vector over the
permuted microstates in the group G; and G;11, respectively [1~0].
This is equivalent to transforming the transition rate matrix A in Equation (4.11)

to B by substituting each block sub-matrix A; ;y; of synthesis reactions with the
(N)
i

reactions with the aggregated degradation rate Bl(ivl) , respectively. The steady state

corresponding aggregated synthesis rate ;" ’, and each block A;1,; of degradation




112 STOCHASTIC MOLECULAR NETWORKS

probability %Z(N) of the aggregated state G; then can be written as
N
NH1 O[](C )
k=0
ﬁgVN) = # (4.14)

N j— 1a(N)’

1+ > [ =%

Jj=1k= oﬁk

based on well-known analytical solution to the steady state probability distribution
of simple birth-death processes [56]. The error due to state truncation asymptoti-
cally obey the following inequality when the buffer capacity N increases to infinity:

(00)

o\
Err™) < NJF(IOO) w0, (4.15)
_ 9N
BNt

We can construct bounds to the right-hand side of Equation (4.15). The maxi-
mum aggregated synthesis rates from the block sub-matrix A; ;11 can be computed
as
al™ = max{17A7,, ;) (4.16)

2

and the minimum aggregated degradation rates from the block sub-matrix A;y; ;
can be computed as
N 1T AT
B = min{1" AL}, (4.17)
Both az(.N) and ﬁz(f 1) can be calculated once the permuted transition rate matrix A

=(N) - (N)

is defined. An upper-bound 7y * to 7y~ can then be computed as:

N—1 &™)
oy
(N)
vy k=0 B
Ty = ~ o _(N) , (4.18)

J=lk= Oﬂk-‘rl

With Inequality (4.15) and Equations (4.16) and (4.17), an asymptotic error bound
to the truncation error is:

), ol
B i=o Y
Err®™) < . k+1 , 4.19
R U=y 19
_E\]zv) =1k= Oﬁk-i-l

This can be estimated a priori, without costly trial solutions to the dCME. Gener-
alization to truncating state space to all buffer queues can be found in [10].



APPROXIMATING DISCRETE CHEMICAL MASTER EQUATION 113

Remark. Studying the behavior of a stochastic network is challenging. Even with
a correctly constructed stochastic network, it is generally not known if an accurate
solution to the dCME has been found. For example, it is difficult to know if all
major probabilistic peaks have been identified or important ones with significant
probability mass in the usually high dimensional space are undetected. It is also dif-
ficult to know if the locations of identified probabilistic peak are correctly mapped.
One also does not know if a computed probabilistic landscapes is overall erroneous
and how such errors can be quantified. Furthermore, the best possible accuracy
one can achieve with finite computing resources is generally unknown. We also do
not know what computing resource is required so solutions with errors within a
predefined tolerance can be obtained. The development of theory and methods for
error estimations such as those described here can help to resolve these important
issues.

4.5 Approximating discrete chemical master equation

There exists a large body of work in formulating stochastic differential equations to
study reaction networks. Below we discuss several well known approaches, which
can be viewed as approximations of varying degrees to the dCME.

4.5.1 Continuous chemical master equation

If we treat the state space as continuous, that is, if we assume the amount of a
molecular species z; is measured by a real value (such as concentration) instead of
an integer (copy numbers), the vector x(t) becomes a real-valued vector x(t) € R™.
We then have the continuous chemical master equation, which is equivalent to the
dCME of Equation (4.5):

apg’t) = /m/ [A(z',z)p(x', t) — Az, 2" )p(x, t)|dx’, (4.20)

where the kernel A(x’,x) represents the transition probability function per unit
time from ' to . We call this the continuous Chemical Master Equation (cCME).
The ¢cCME in this form is equivalent to the Chapman-Kolmogorov equation fre-
quently used to describe continuous Markov processes [27].

The continuous state space version of the CME requires strong assumptions. It is
only appropriate if one can assume that the difference in the amount of molecules in
neighboring states is infinitesimally small, which is valid only if the copy number of
the molecular species in the system is much larger than 1, and also much larger than
the changes in the numbers of molecules when a reaction occurs. cCME therefore
cannot be used when the total amount of molecules involved is very small, for
example, in systems of a single or a handful of particles. In these cases, dCME
should be used instead.

4.5.2 Stochastic differential equation: Fokker-Planck approach

When ¢cCME is appropriate, one can further approximate the cCME with various
formulations of Stochastic Differential Equations (SDEs). One such formulation
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is the Fokker-Planck equation. Similar to the cCME, it describes the evolution of
probability landscape of the system, but with the transition kernel in the CME
replaced by a differential operator of second order.

We follow the disposition of van Kampen [59] and briefly describe how the
Fokker-Planck equation is related to the cCME, with discussion on additional as-
sumptions and approximations involved beyond those necessary for the cCME.

4.5.2.1 Assumptions of Fokker-Planck equation. To approximate the cCME, the
first assumption we make is that the jumps between states described in Equa-
tion (4.5) must be small, namely, the “before” and the “after” states are in close
neighborhood:

25 — ]| < e,

where € € R is infinitesimally small. Second, the transition probability vary slowly:
Alz,y) =~ Az’ ,y'), ifllz—2'||<eand|ly—y| <e
Third, the probability p(x,t) must also vary slowly:
p(x,t) ~p(x' t), if|lr—x|<e

As a consequence of these assumptions, the transition kernel A(x, y) is differentiable
to a high order. It is clear that the cCME cannot be used to study discrete jump
processes.

With these assumptions, the first term in Equation (4.20), where the full detail of
the transition kernel A(2’, x) is needed, can be approximated. The goal is to replace
A(x’, ) with its Taylor expansion centered around x. For ease of illustration, we
express transitions as a function of the starting point and the jump. We first
reparameterize A(x’, x) as A(x'; s), where s = x —a'. Similarly, for A(x,2’) in the
second term, we have A(x,x’) = A(x; —s). Equation (4.20) then can be rewritten
as:

6pg’ ) = /SA(w —8;8)p(x — s,t)ds — p(x,t) /s A(z; —s)ds. (4.21)

4.5.2.2 Approximation through Taylor expansion. The first term of Equation (4.21)
is then expanded around x using Taylor expansion as:

/A(:I: —s8;8)p(x — s,t)ds
= /A(w; s)p(x,t)ds — Z 8(331- [/3 - A(z; 8)ds - p(zx, t)]

i

1 0? 9
+3 ; 2.0, [/ 5% A(z; s)ds - p(z, t)]

(4.22)

1 o3 5
—;Zm[/ A:a)ds - po, )]+
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Putting it back to Equation (4.21), and approximating by dropping terms higher
than second order, we obtain the Fokker-Planck equation:

% Z (9:131 /s A(x; s)ds - p(x,t)]

(4.23)
a 2 . . .
+ 2 ; (9:318.’1}J [/S A(:I:, S)ds p(il), t)]
Using a simpler notation, we have:
8p (x,t)
Z oz Z amzam, g()p(z,1)] (4.24)

where F(x) = [ s- A(x; s)ds and G(x) = [ s* - A(x; s)ds

4.5.3 Stochastic differential equation: Langevin approach

Another formulation is that of the Langevin equation. When the macroscopic
behavior of a reaction system can be determined, a general approach to study
its stochastic behavior is to combine a diffusion term describing the macroscopic
behavior with a separate noise term describing the stochastic fluctuations of the
system.

Random fluctuations in the copy numbers of molecules occur because of the
random jumps due to spontaneous firings of reactions. Such reactions will introduce
changes in the copy numbers of molecular species, e.g., by the amount of —sy
for each firing of the k-th reaction. Assuming that the jump is small, namely,
x(t + At) = x(t) — s ~ x(t), and reaction Ry, occurs during a small time interval
dt at t + At. These assumptions would result in unchanged reaction rate:

Ap(x(t + At)) = Ap(x(t) = e H (qk) (4.25)

With these assumptions, the vector of the amount of molecular species @ (t + At)
at time ¢t + At can be written as:

T(t+ At =a(t) — Y np(z,At) - sy,

RreR

assuming several reactions may occur. Here ng(x, At) is the number of reaction
R}, occurs during the period At. Under the assumption x(t + At) ~ x(t), the copy
numbers of molecular species for calculating reaction rate using Equation (4.25)
do not change during At, therefore, the reaction rates also do not change during
At. With this assumption, all reactions occurring during At can be considered
independent of each other.

This assumption is valid only if the copy numbers in x(t) are large, so the sto-
ichiometry coefficients ¢; forming the jump vector s; are all comparatively small.
Such an assumption breaks down when the copy number of molecular species is not
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significantly larger than the stoichiometry coefficients, and therefore this approxi-
mation cannot be employed to describe systems of a handful of particles.

We now introduce further approximations. A reasonable model for the random
variable ny(x, At) is that of a Poisson process: ng ~ P(\;), where A\ = Ap(x(t)) -
At. With the additional assumption that At is sufficiently long such that a large
number (>> 1) of reactions occur during At¢, the Poisson distribution for the number
of spontaneous reactions can be approximated by a Gaussian distribution [17]. Note
this assumption is contradictory to the earlier assumption of small jumps (changes
in x is small). Approximating the Poisson distribution by a Gaussian distribution
will be accurate when Ay is large, e.g., Ax > 1,000. With this, we now have
ng ~ N(u,0?), with g = 02 = )\, or alternatively, ni ~ A\, + )\,1@/2/\/(0,1) =
Ap(z(t)) - At + [Ar(z(t) - At]Y2N(0,1).

Under these assumptions, the fluctuations of the amount of molecules follow m
independent Gaussian processes, one for each reaction:

T(t+ At =ax(t) — Y Ax(@(t) - At-sp— Y [Ar(@(t) - At s - N(0,1).

RLeR RLER
(4.26)
This leads to the following equation:
Ox(t) s 1
= S A(z(t) sk — Y [Ar(m(t))] st 5573 - N(0,1)]

RreR RreR

Denote G(t) = 577z - N'(0,1) = N'(0,1/9t), we have the Langevin equation:

82—? = > Au(@®) - se+ Y [Au(@®)]V? s G)  (427)

RreR RreR

This is the chemical Langevin equation described in reference [17].

4.5.4 Other approximations

There are alternatives to the Fokker-Planck and Langevin approaches to account
for the stochasticity differently. One can replace the diffusion term with a term for
the variance-covariance between pairs of the molecular reactions [20], or between
concentrations of different molecular species [57], without the explicit inclusion of
a random process. Here the magnitude of the covariance is determined by the Hes-
sian matrix of the second-order partial derivative of the propensity functions of the
reactions [20,57]. This inclusion of the second moments to account for the stochas-
ticity is the basis of the stochastic kinetic model [20] and the mass fluctuation
kinetic model (MFK) [57]. These approaches can model reactions involving one or
two molecules well [20,57]. They are similar in spirit to the Fokker-Planck equa-
tion model by including a second moment term for better approximation, but are
fundamentally different as they are macroscopic in nature and do not involve any
random processes. Yet another approach is to directly model explicitly the stochas-
tic coupling of the macroscopic concentrations of molecular species, in addition to
the Gaussian noise of the original Langevin model [12].



STOCHASTIC SIMULATION 117

4.6 Stochastic simulation

A widely used method to study stochastic networks is to carry out Monte Carlo
simulations. By following the trajectories of reactions, one can gather statistics of
reaction events at different time to gain understanding of the network behavior [18,
41]. We discuss the underlying algorithm, called the stochastic simulation algorithm
(SSA), which is also known as the Gillespie algorithm.

4.6.1 Reaction probability

We denote the probability that after the last reaction at ¢, the first reaction, which
happens to be the k-th reaction, occurs during dt at an infinitesimally small time
intervaldt after ¢ + At to be:

ple(t + At), At, k|x(t)|dt

If we divide the time interval At into H subintervals, and assume that the
occurrence of reactions following a Poisson process, the probability that none of
the m reactions have occurred during the time prior to the end of a small time
interval e = At/H is:

Hl—Ak ~ Y [1— Ag((t))e].
k=1 k=1

As the probability of no reactions for each of the H intervals is the same, no
reactions have occurred during At is:

lim S [1— Ap(@(t))e]? = emA@MAL
H—o0
k=1
As the instantaneous state transition probability for reaction k at ¢+ At is Ag[z(t+
At)]dt, we have:

pl(t + At), At kla(t)] = Aglm(t + At)] e A EF OBy,

4.6.2 Reaction trajectory

Let the state the system is in at time ¢ to be x(t). After a time interval At,
reaction k occurs at an infinitesimally small time interval dt at t + At, and the
system is brought to the state x(t + At). We can observe the trajectory of a
sequence of such reactions. Starting from state x(to) at time g, after a series of time

intervals (Atg, Aty, - -+, Atr_1), the system reaches the state x(t7), after traversing
the sequence of states (x(to),x(t1), - ,x(tr—1)), with reactions ko, k1, -, kr—1
occurring along the way. Let (¢1,ta,--- ,t7) be the sequence of time points when a

reaction occurs. The trajectory of reactions can be denoted as:

[x(to); x(t1), ko; -+ 5 (tr—1), kr—2; x(tr), kr_1]

Alternatively, we can denote the time intervals by its increments (Atg, -+ , Atp_1).
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4.6.3 Probability of reaction trajectory

Assuming a Markovian process, namely, future reactions depends only on the cur-
rent state but not on any past state, the probability associated with a time trajec-
tory is:

mlx(to); x(ti), kis - 5 ®(tr—1), kr—1; (tr), kr] =
w[w(tl), Ato, ko|$(t0)].7‘([.’1)(t2), Atl, k1|$(t1)] s W[:B(tT), AtTfl, kT71|.’1}(tT,1)]
(4.28)

In principle, the probability of starting from state x(tp) and reaching state x(tr)
can then be obtained by integrating over all possible paths:

W[w(tT”iB(to)] = Z W[w(to); ilt(tl),kl; R ilt(tT_l),kT_l; w(tT),kT].
(t1,str—1),(k1,- kT)

4.6.4 Stochastic simulation algorithm

If we can generate many independent samples of reaction trajectories that follow
a proper probabilistic model starting from the same initial condition (e.g., Equa-
tion (4.28)), we can collect the reaction trajectories at the same sampling time
intervals. These properly sampled trajectories can then be used to study the be-
havior of the stochastic network.

The Stochastic Simulation Algorithm (SSA) or the Gillespie algorithm was de-
signed to perform such simulations [18]. It is summarized in Algorithm 4.6.4.

Algorithm 4.6.4 Stochastic Simulation Algorithm
Set initial condition: x(0) < {x1(0), 22(0),...,2,(0)}

Initialize » = (r1,--- ,7%), and set t = 0.
Generate a series of sampling time (¢1,ta,- - ,t7)
t<0

while ¢ <ty or A(x(t)) #0 do
Generate a pair of random variables (At, k) following
(AL E) ~ Agp(x(t))e” AT D)AL
Update x(t + At) for x(t) with the occurred reaction k
Update A(x(t + At))
if t <t; and t + At > t; then
Record x(t) as x(t;)
Update t; to t;41
end if
t+t+ At
end while

4.6.4.1 Generating random variables (At,k) A key component of the Gillespie
algorithm is to generate a pair of random variables (At, k), the time interval At
until the next reaction occurs, and the specific k-th reaction as the reaction that
actually occurred next. We have

m(At, k) = w1 (At) - ma (k| At),
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where 71 (At) is the probability that the next reaction, regardless which specific
one, will occur at ¢t + At +dt, and m(k|At) is the probability that the next reaction

will be the k-th reaction. As my(At) =Y, m(i, At), where 7(i, At) is the probability

that reaction ¢ occurs at time ¢ + At + dt, we have: mo(k|At) = %. As we

assume a model of Poisson process, we have:

T(AL) = A(m(t))e AEMAL - anq 7r2(k|At)_%

That is, if we can generate a random variable At following 71 (At), and another
random integer k according to ma(k|At), the resulting pair (At, k) will follow the
desired distribution 7(At, k).

Assume we can generate a random number r following the uniform distribution
r ~ Ujp,1- A general approach to obtain a random variable = that follows a distri-
bution F is to calculate the transformation of r through the inverse function F~:
x = F(r). Since 71 (At) = e ATMIAL e can have:

1 1
At=———In—, where r ~Ujg1.
Az(®) Lo
To sample the next reaction k, we can generate again first a uniformly distributed
random variable 2 ~ U]o,1;. We can take the k-th reaction such that

k—1 k
ZAi(m(ti)) <r2Az(t)) < ZAi(m(ti))-

Another approach to generate a pair of random variable (At, k) is to first calcu-
late the probability at time ¢+ At for a reaction ¢ to occur during an infinitesimally
small time interval at ¢+ At +d¢, assuming that there were no changes between x(t)
and z(t + At), namely, there is no occurrence of other reactions. We can generate
a tentative reaction time At; for reaction [ as:

1 1

Atj= ———1In—,  where r; ~ U 1.

l Q@) 1 [0,1]
From this set of pairs of random variables (I, At;), we select the pair of random
variables of the shortest time At, at which the next reaction k would occur:

At = min{At;}

and
k = arg; min{A¢; }.

as the next reaction k.

Remark. There are a number of issues in carrying out studies using stochastic sim-
ulation, as adequate sampling is challenging when the network becomes complex.
There is no general guarantee that simulation can provide a full account of the net-
work stochasticity, as it is difficult to determine whether simulations are extensive
enough for accurate statistics. It is also difficult to determine whether adequate



120 STOCHASTIC MOLECULAR NETWORKS

sampling has been achieved for individual trajectory. In addition, it is often diffi-
cult to characterize rare events that may be biologically important, as simulations
follow high probability paths. Much recent work has been focused on improving
SSA, for example, by introducing data structure so the generation of the two ran-
dom variables of 7 and reaction k is more efficient [16]. In addition, an approach
to speed up SSA is to find the best time step 7 such that the copy numbers of the
molecular species, hence the reaction rates, do not change much, so the simulation
can leap forward with large time step [7]. Recent interests in introducing bias in
selection of the next reaction, and in altering the reaction rate showed promise in
improved sampling of rare events [14,31,51]|. Adaptively adjusted bias of reactions
based on look-ahead strategy showed that barrier-crossing can be engineered for
efficient and accurate sampling of rare events [8].

4.7 Applications

We now discuss how stochastic networks can be modeled by directly solving the
underlying chemical master equation using two biological examples.

protein B d

protein A

b GeneA 5 Protein4
GeneB ProteinB

Proteind® @

ProteinBS 8

2 X ProteinA+ GeneB LA BoundGeneB

2 X ProteinB + GeneA E» BoundGeneA

BoundGened52 X ProteinB+GeneA

Figure 4.2 The steady state

BoundGeneB 52 X ProteinA+GeneB probability landscape of a toggle switch.

A toggle switch has four different states,

Figure 4.1  The stochastic network of corresponding to different binding state
a toggle switch. a. The topology of the of genes A and B. At the condition of
network and the reaction rates. b. The small value of u/b, the off/off state is
corresponding chemical reactions of the 8 strongly suppressed for any value of u/d,

stochastic processes. and the system exhibits bi-stability.
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4.7.1 Probability landscape of a stochastic toggle switch

Toggle switch is one of the smallest genetic networks that can present bistabil-
ity [52]. It is a small network consisting of two genes, say, A and B. Single copies
of gene A and gene B in the chromosome each encode a protein product. The pro-
tein product of each gene represses the other gene: When two protein monomers
associate, they bind to the appropriate operator site and repress the transcription
of the other gene.

The molecular species and the network topology of a toggle switch model are
shown in Fig. 4.1a. The stochastic processes include: the synthesis and degradation
of proteins A and B, with reaction constants denoted as s and d, respectively; the
binding and unbinding of the operator site of one gene by the protein products
of the other gene at rate b and wu, respectively (Fig. 4.1 b). The binding states
of the two operator sites are “on-on/unbound-unbound”, “on-off /unbound-bound”,
“off-on/bound-unbound”, and “off-off /bound-bound”. The synthesis rates of both
proteins A and B depend on the binding state of the operator sites [11,52]. Even
for this simple network, no general exact solutions are known.

The exact probably landscape of the toggle switch model at steady state can be
computed numerically. We can choose the parameter values as s = 100d, v = d/10,
and b = d/100,000 in units of degradation rate d, and set the initial condition
to: 1 copy of unbound gene A, 1 copy of unbound gene B, 0 copies of bound
gene A and bound gene B, 0 copies of their protein products, and the buffer size
for the total protein A and protein B combined that can be synthesized of 300.
We then enumerate the state space of the toggle switch using the finite buffer
algorithm. The steady state probability landscape of the network can then be
computed (Fig. 4.2). It is clear that a toggle switch has four different states,
corresponding to the “on/on”, “on/oft”, “off/on” and “off/off” states. With these
chosen parameters, the toggle/switch exhibits clear bi-stability, namely, it has high
probabilities for the “on/off” and “off /on” states, but has a low probability for the
“on/on” state. The “off/off” state is severely suppressed [11].

4.7.2 Epigenetic decision network of cellular fate in phage lambda

Bacteriophage lambda is a virus that infects E. coli cells (Fig. 4.3). Of central
importance is the molecular circuitry that controls phage lambda to choose between
two productive modes of development, namely, the lysogenic phase and the lytic
phase (Fig. 4.3 A). In the lysogenic phase, phage lambda represses its developmental
function, integrates its DNA into the chromosome of the host E. coli bacterium,
and is replicated in cell cycles for potentially many generations. When threatening
DNA damage occurs, for example, when UV irradiation increases, phage lambda
switches from the epigenetic state of lysogeny to the lytic phase and undergoes
massive replications in a single cell cycle, releases 50—-100 progeny phages upon
lysis of the E. coli cell. This switching process is called prophage induction [49].
The molecular network that controls the choice between these two different phys-
iological states has been studied extensively [1,4,5,24,25,34,48,49,49,53]. All of the
major molecular components of the network have been identified, binding constants
and reaction rates characterized, and there is a good experimental understanding
of the general mechanism of the molecular switch [49]. Theoretical studies have
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Figure 4.3  Different selection of cell fate of E. coli infected by phage lambda and a
model of the epigenetic circuit for lysogeny maintenance. A. The lysogenic and lytic phases
of phage lambda. B. A simplified model of the epigenetic switch for lysogeny maintenance.

also contributed to the illumination of the central role of stochasticity [4] and the
stability of lysogen against spontaneous switching [5,63].

To study how lysogeny is maintained and how it transitions to the lytic state,
we can use a simplified stochastic model for the molecular regulatory network that
controls the epigenetic switch in phage lambda (Fig. 4.3 b) [9]. Using a total of 54
biochemical reactions involving 13 molecular species, this model explicitly includes
key components, essential reactions, and cooperativities of the phage lambda deci-
sion circuitry. The effects of UV irradiation can be modeled by increasing the CI
degradation rates kg due to the response of the SOS system. This epigenetic net-
work model can reach around 1.7 million microstates. The steady state probability
associated with each of these microstates can be computed from dCME after the
microstates are enumerated by the finite buffer algorithm [9].

Fig. 4.4 (row 1) shows the probability landscape of the phage lamed at five
different UV irradiation conditions, each modeled with a different CI degradation
rate ky. Although there are 13 molecular species, we can project the landscape to
the 2-dimensional subspace and record the total copy numbers of Cl; dimer and
Cros dimer molecules. With a high copy number of Cls repressor, the lysogenic
phase of the phage lambda is maintained, whereas a high copy number of Croq
protein signifies the lytic phase [25]. A clear picture of the landscape in lysogeny,
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Figure 4.4  The probability landscape of the epigenetic circuits of lysogeny maintenance
in phage lambda. (Row 1) For wild type phage lambda, at the CI degradation rate of
ka = 7.0 x 1074/87 probability landscape centers at locations with high copy numbers of
CI> and close to 0 copy of Croz. This corresponds to the lysogenic phase of phage lambda.
When kg4 increases from kg = 1.8 X 1073/5 to 2.2 x 1073/87 the peak located at lysogenic
phase gradually diminishes, whereas the peak located at lytic phase gradually increases. At
about kq = 2.0 x 1073 /s, phage lambda has about equal probability to be in either lysogenic
or lytic phase. When CT is degraded at a faster rate of kg = 3.6 x 1073 /s, the probability
landscape centers at locations where there are higher copy numbers of Cro dimer and close
to 0 copy of CI. This corresponds to the lytic phase of phage lambda. (Row 2) When all
cooperativities are removed from the model, lysogeny cannot be achieved. (Row 3) When
only the cooperativity of AG12 is restored, wild-type behavior is largely restored. (Row 4)
When all other cooperativities except AG12 are restored, lysogeny still cannot be achieved.

Probablllty

at the start of transition, during mid-transition, at the end of transition, and in
lysis can be seen.

The stochastic network models can also be used to aid in understanding of the
mechanism of how the decision network works. It is well known that cooperativity
among proteins play important roles. After removing all cooperativities between
neighboring proteins in the model, phage lambda cannot enter lysogeny regardless
the dosage of the UV irradiation (Fig. 4.4, row 2). However, when the cooperativity
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Figure 4.5 Instability, shallow threshold, and switching inefficiency of the network against
fluctuation in UV irradiation in mutant phage lambda, in which the wild type operators are
mutated (3-2-3”), or their locations permuted (1-2-1, 3-2-3, and 1-2-3) [34]. Wild type
phage with operator site OR3-OR2-ORI1 (3-2-1) maintains a stable level of Clz, but respond
to further UV irradiation after a set point and switches to lytic phage efficiently. In contrast,
mutant 1-2-1, where an OR3 is replaced by an OR1, and mutant 3’-2-3’ (slighted mutated
OR3 replacing original OR1 and OR3) do not maintain a stable level of CI2. They are leaky
and responds gradually to graded changes in kq. Their thresholds and that of mutant 3-2-3
for lytic transition are much shallower. Mutant 1-2-3 does not maintain a sufficient amount
of Clz, and therefore cannot maintain lysogeny.

AG12 between two CI dimer proteins when binding to operator sites are restored,
the lysogeny is largely restored (Fig. 4.4, row 3). In contrast, if all other coopera-
tivities are restored except AG12, phage lambda still lacks the ability to enter the
lysogeny phase (Fig. 4.4, row 4). These calculations suggest that the cooperativity
AG12 plays key roles in maintaining the properties of the network.

An important property of biological stochastic network is its robustness against
changes in the molecular components of the epigenetic network. Experimental stud-
ies showed that when the ordering of operator sites are changed, mutants of phage
lambda all have functional epigenetic circuits, but have markedly different toler-
ance to UV irradiation. Calculations from solving the dCME model showed that
the wild-type lysogen has a high threshold towards lysis, and is overall insensitive
to fluctuation of UV dosage, if it is below certain threshold (Fig. 4.5). That is,
the switching network of phage lambda is very stable and is strongly buffered with
a high threshold against fluctuations in CI degradation rate due to environmental
changes in UV irradiation. This high threshold against environmental fluctuations
is important for the self-perpetuating nature of the epigenetic state of F. coli cells,
allowing lysogeny to be passed on to its offspring. Once the degradation rate of CI
reaches a threshold, phage lambda switches very efficiently to the lytic phase, and
this efficiency is not built at the expense of stability against random fluctuation.
Wild type phage lambda therefore can integrate signaling in the form of different
CI degradation rates and can distinguish a true signal above the high threshold
from random noise fluctuating below this threshold.

In contrast, all mutant variants exhibit the behavior of a hair trigger, and require
much less UV irradiation for the onset of lysis induction (Fig. 4.5). In addition,
they are “leaky”, and respond in a graded fashion towards increase UV irradiation,
instead of the well-behaved threshold behavior observed in wild type phage lambda.
In the case of mutant 1-2-3, the mutant phage lambda cannot enter lysogenic state.
These results are in full agreement with experimental findings [9, 34].
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4.8 Discussions and summary

In this chapter, we have discussed the significance of the chemical master equation
(CME) as a theoretical framework for modeling nonlinear, biochemical reaction
networks. This formulation provides a foundation to study stochastic phenomena
in biological networks. Its role is analogous to that of the Schrédinger equation
in quantum mechanics [50]. Developing computational solutions to the CME has
important implications, just as the development of computational techniques for
solving the Schrodinger equation for systems with many atoms is [29, 30]. By
computing the time-evolving probability landscape of cellular stochastic networks,
we may gain understanding of the possible mechanisms of cellular states, as well as
the inheritable phenotypes with a distributive epigenetic code, in which the network
architecture and its landscape dictate the physiological metastases of the cell under
different conditions [47,63].

Overall, studying the behavior of a stochastic network is challenging. and solving
a given CME is a computationally challenging task. We have outlined several
key difficulties, as well as some of the progresses that have been made so far.
The finite buffer algorithm allows direct numerical solution to the discrete CME,
and can be applied to study stochasticity of systems with a handful of particles,
as well as larger networks arising from very realistic biological problem, such as
that of the lysogeny-lysis control circuit of the phage lambda [9]. As an exact
method, it can also be used to study model systems of finite size to gain insight
into stochastic behavior of networks. The ability to compute error due to state
truncation a priori enables ability to ensure the correctness of the computational
solution to the dCME, as well as knowledge of its level of accuracy. Furthermore, it
provide means to develop optimized strategies to minimize truncation error when
finite computing resources is given. The stochastic simulation algorithm offers the
approach of studying the stochastic network through simulations. The formulation
of stochastic differential equation such as the Langevin equation allows exploration
of more complex stochastic systems, at the expense of less rigorous assumptions
and perhaps more errors.

An important task is to integrate different stochastic methods for efficient com-
putational solution of complex stochastic networks at large scale, with controlled
accuracy. For example, one may apply the finite buffer algorithm to solve dCME
directly for certain critical parts of the network, where rare events need to be as-
sessed very accurately. One may use Langevin stochastic equation to study other
parts of the network where general stochastic behavior needs to be determined. In
addition, one may also wish to apply the stochastic simulation algorithm to certain
parts of the network to probe their behavior. Further more, one may wish to apply
ordinary differential equation (ODE) models to study parts of the system where
copy numbers of molecules are large and there are little stochastic effects.

A great challenge is to develop a general strategy so the best methods can be
applied to specific parts of the network and the results integrated to provide an
overall picture of the stochastic dynamic behavior of the network. It would be
desirable that the resulting errors due to approximations of varying degree are
bounded within a tolerance level, while maintaining necessary computing speed
and resource requirement. A further challenge is to develop such hybrid methods
to compute the overall spatio-temporal stochastic dynamic properties of different
cellular compartments, multi-cellular tissue, with consideration of different spatial
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distribution or gradient of molecules such as oxygen, nutrient, morphogenes, and
other signaling factors, all with stochasticity appropriately considered.

The complex nature of the stochastic dynamics arising from biochemical net-
works bears some resemblance to another complex system, namely, that of protein
folding. Both have very large space of micro-states, and both can be modeled by
transitions between micro-states using master equations [13,26,45]. However, these
two systems differ in several important aspects. First, while protein folding can
be modeled as a relaxation process towards the equilibrium state, biochemical net-
works are intrinsically open, with synthesis and degradation of molecules an integral
part of the system, hence there are no equilibrium states. Instead, one frequently
seeks to study the non-equilibrium steady state. Second, once the energy of a pro-
tein conformation is known, the relative probability of its sequence adopting this
conformation in the equilibrium state can be calculated from the Boltzmann dis-
tribution, without the need of knowing all other possible conformations and their
associated probabilities. In contrast, it is not possible to calculated the relative
probability of a specific microstate of copy numbers a priori without solving the
entire CME, as the probability distribution of network states do not generally fol-
low any specific analytical forms, and there are no detailed balance and there exists
cyclic probability fluxes [33].
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EXERCISES

4.1

If the microstates of a stochastic network can be enumerated, one can solve

the underlying dCME directly. For a network with m molecular species with r
reactions, assume each molecular species can have at most n copies of molecules.

a) Without knowing the details of the reactions if one ignores all dependency
between molecules and allow the possibility that all molecular species may
simultaneously have the maximum of n copies of molecules. Provide an
upper bound on the size of the state space.

b) As different molecular species are coupled through chemical reactions, they
are not independent. Because of these couplings, the effective number of
independent species is less than m. Let the stoichiometry matrix of the
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network be C, which is an m X r matrix, with its k-th column repre-
senting the k-th stoichiometry vector sj as defined in Equation (4.1). C
describes the coupling between different molecular species of the network.
The degree of reduction in independent molecular species due to coupled
reactions is specified by the rank of C, denoted as rank C [55]. How can
you make a better estimation of the size of the state space?

4.2 We examine a model of stochastic reactions in some details.
a) Suppose the k-th reaction can be written as:

caA+cgB+ccC — cepD+cpE.

It has an intrinsic rate of ry. Please write down the rate of the reaction
Ag(x) that depends on the state of the system, for example, the copy
numbers (x4, xp, xc) of the system.

b) Assuming a Poisson process. Show that the probability of no reaction
occurring during At is e"A@) AL where A(z) = Y, Ar(z). We first
divide At into H intervals of small durations e = A/H.

1. What is the approximate probability that none of the m reactions have oc-
curred during the time prior to the end of the first time interval ¢? You can
ignore the higher order terms.

2. What is the approximate probability that none of the reactions have occurred
during At?

3. Show that when taking the limit with H — oo, this probability is e~ A®)At,

4.3 In the stochastic simulation algorithm, one needs to update the rates of all
reactions after each time step. Namely, one needs to recalculate A(z(t+ At), as the
vector of copy numbers of molecules is altered after each sampled reaction. This is
computationally expensive. To speed up the calculation, one can choose to update
the reaction rates only after a time interval A7, when the accumulated error would
otherwise exceed some tolerance. That is, we can leap the system forward by At
without updating the copy numbers of the molecular species [7].

Suppose a tolerance threshold 6; is specified to indicate the acceptable level of
error 6;x; in the copy number x; of the i-th molecular species, such that during the
interval of A7, we have Az, < max{f;x;,1}. What is overall the best A7 one can
use so errors in all species are within tolerance?

4.4 The Langevin equation of Equation (4.26) assumes that the number ny(x, At)
of spontaneously fired reactions Ry occurring during At follows a Gaussian distri-
bution. This is valid only when many reactions occur during At. A more realistic
model is to assume ny(x, At) follows a Poisson distribution, if the copy numbers
of molecules do not change significantly, and hence the reaction rates also do not
change significantly during At¢, as discussed above.

a) Describe in pseudocode a method for generating a random variable ny (x, At)
that follows the appropriate Poisson distribution. You can use the inverse
function method or any other method.

b) During At, all of the r reactions can occur. They are fired randomly fol-
lowing r independent Poisson processes. Modify the standard Langevin
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formula in Equation (4.26) so the random fluctuation follows Poisson pro-
cesses.

4.5 In the stochastic simulation algorithm, one needs to generate two random
variables: the time interval At until the next reaction occurs, and the specific reac-
tion k that would occur. Although the stochastic simulation algorithm by Gillespie
is accurate, it samples reaction trajectories according to their overall probabilities,
and therefore can be very inefficient in sampling rare events.

)

One can bias towards a reaction by artificially accelerate its reaction rate.
Instead of sampling Aty for reaction k following Ay (z(t))e~ A(TEAL one
can bias to accelerate the reaction by introducing an inflation constant oy,
so the time interval At will be selected following the modified probability

o - Ap(x(t))e” A@O)AL

However, this bias needs to be corrected. Modify Algorithm 2 in pseudo-
code so appropriate bias «y (as input) is introduced, and the final results
are appropriately corrected.

One can also improve the sampling efficiency by introducing desirable bias
towards specific reactions that would otherwise occur rarely. Instead of
selecting the k-th reaction as the next reaction according to the probabil-

ity %, one can bias towards/away from this reaction by introducing

an inflation/deflation factor Sk, so the k-th reaction will be selected fol-
lowing the modified probability Sy - %. Again, this bias needs to be
corrected. Modify Algorithm 2 in pseudo-code so appropriate bias Sj (as
input) is introduced, and the final results are appropriately corrected.

Write down in pseudocode a modified stochastic simulation algorithm in-
corporating both bias factors ay and i, and describe how to ensure proper

corrections are included.



CHAPTER 5

CELLULAR INTERACTION NETWORKS

Cells are the fundamental and smallest units of life that are capable of independent
functioning. A living organism may uni- or multi-cellular, and is made up of one of
two basic types of cells, the prokaryotic cells and the eukaryotic cells, that evolved
from a common ancestor cell but still share many common features. The biological
functioning and life of a cell is controlled by signaling and energy transfer interac-
tions among its numerous constituents such as proteins, RNAs, DNAs, and other
small molecules, allowing them to adapt to changing environments [1,25]. Such
interactions may involve a cascade of biochemical reactions. Systematic approaches
to understanding cellular interaction networks involve several steps such as data
collection and integration of available information, adopting an appropriate model
for the system, experimenting on a global level, and generation of new hypotheses
about the interaction patterns. With the advancement in digital and computing
technologies in the last few decades, it is now possible to perform genome-wide ex-
perimental studies to identify interactions among thousands of proteins and genes
via DNA micro-arrays, florescent proteins and Western blots. This in turn has
already generated massive amounts of interaction data.

As stated above, after data collection and integration, an investigation of a molec-
ular interaction network is continued by selecting, implicitly or explicitly, a model
to characterize the interactions between components of the cellular environment.
Naturally, the selection of the model depends on several factors such as the level
of details desired, the characteristics of the particular interaction data studied, and
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the overall goal of the investigation. In very broad terms, there are two types of
models for interaction, which we will discuss in the next two sections.

5.1 Basic Definitions and Graph-theoretic Notions

We briefly review some basic graph-theoretic concepts before proceeding any fur-
ther; see standard textbooks such as [17] for a more comprehensive discussion of
these and related concepts. A directed or undirected graph G = (V, E) consists
of a set V of nodes, and a set F of directed edges (also called arcs) or undirected
edges (which we will simply refer to as edges). An edge e = {u,v} € E or an arc
e = (u,v) € E denotes an edge between the nodes u and v or an arc directed from
node u to node v, respectively. We will also denote an edge {u, v} or an arc (u,v) by
u—v or u — v, respectively. A path of length k is an ordered sequence of edges (for
undirected graphs) (ul—ug, U—USZ, -+, Ufp—1—Uk, uk—uk+1), or an ordered sequence
of arcs (for directed graphs) (ul — U, U2 —> Uy ..., Uk—1 — Uk, Uk — uk+1); a
cycle is a path for which ug41 = wi. A directed graph G = (V, E) is strongly
connected provided, for any pairs of nodes v and v, there exists a path from u to v
and also a path from v to w.

5.1.1 Topological representation

In this type of representation, the physical, chemical, or statistical dependencies
among various components in the molecular network is represented by ignoring the
kinetic (i.e., time-varying) components of the interactions. Typically, such a model
is represented by a directed or undirected graph G = (V, F) in which the cellular
components are the set of nodes V', and the arcs or edges in E encode the causal
or statistical interaction between the components.

The simplest case is when G is an undirected graph. This happens when infor-
mation about the directionality of the interaction is unknown or irrelevant. For
example, protein-protein interaction (PPI) graphs, encoding physical interactions
among proteins, are often undirected in part due to the limitations of the current
experimental technologies [29]. On the other hand, other types of molecular biolog-
ical graphs such as transcriptional regulatory networks, metabolic networks, and
signaling networks are represented by directed graphs in which each arc represents
positive (also called excitory) or negative (also called inhibitory) regulation of one
node by another node. This nature of regulation is formally incorporated in the
graph-theoretic framework by allowing each arc e € E to have a label ¢, which is
either 1 and —1, where a label of 1 (respectively, —1) represents a positive (respec-
tively, negative) influence. In such a topological representation, a path P from node
u to node v is often referred to as a pathway, and the excitory or inhibitory nature
of P is specified by the product of labels Ilocp £, of edges in the path. Fig. 5.1
shows an illustration of such a labeled directed graph. The graph-theoretic nature
of such a representation allows for efficient computational complezity analysis and
algorithmic design by using techniques from theoretical computer science. A ma-
jor disadvantage of such a representation is that it considers the interactions to
be static and time-invariant, i.e., all arcs in the graph are assumed to be present
stmultaneously at any time.
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Another relevant static model is the Boolean circuits model. Now, the state of
each node is binary (0 or 1), and each node computes a Boolean function of the
states of the nodes to which it is connected. Fig. 5.2 illustrates a Boolean model of
three nodes involving three proteins and two genes. The Boolean model is restricted
in the sense that the state of any node is restricted to be binary and each node
can compute only a Boolean function. Boolean models are discussed further in
Section 5.2.

Protein A Protein B Protein C

- NOT

A AND
Figure 5.1 Illustration of the \ OR
labeled directed graph representation
for a molecular interaction network.
The arc B - A indicates a negative Gene X Gene Y
influence of B on A, i.e., an increase
in the amount of protein B causes Figure 5.2 A Boolean circuit composed of

a decrease in the amount of protein logical AND, OR and NOT gates that encodes
A. The pathway B — C — A 4 D relationships between three proteins and two

induces a positive influence of B on genes. For example, either Protein B must be
D since the product of labels of its absent or Protein C must be present (or both)
arcs is 1 x (=1) x (—=1) = 1. to activate Gene Y.

5.1.2 Dynamical representation

This type of representation, unlike the ones in the previous section, incorporates the
(discrete or continuous) time-varying behavior of different molecular components
in the network, and thus provides a more accurate representation of the underlying
biological mechanism. Dynamical representations are very suitable for simulating
the biological system under study via different choices of values for parameters
corresponding to unknown system characteristics or environmental conditions, and
then comparing the simulated dynamics with experimental measurements to refine
the parameters of the model further.

A widely used continuous-time representation of this type is obtained via systems
of ordinary differential equations (ODE) of the following nature in the formalism of
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control theory [76,77]:

. dxq(t
T = c}t( ) =f (Il(t), x2(t), ..., xn(t),ur(t), ua(t),. .. ,um(t))
dxo(t
To = th( ) = fg(arl(t), xo(t), ..., xn(t),ur(t), ua(t),. .. ,um(t))
: (5.1)
. dz,, (t
Ty = dt( ) = fa(@1(t), m2(t), ..., 2n(t), ur(t), ua(t), ..., um(t) )
states inputs
or, in more concise vector form
x =f(x,u)
In this formalism, x(t) = (#1(t), z2(t),...,®,(t)) indicates the concentration of n
molecular components at time ¢, each of fi, fa, ..., f, are functions of n variables,
and u(t) = (u1(t), uz(t), ..., um(t)) are m inputs corresponding to external stimuli

to the cellular system. In the concise vector form of representation, f is the vector
of functions and the dot over the vector of variables x indicates the vector of time
derivatives of each component of the vector x(¢). Many applications of this for-
malism require a few mild technical assumptions, such as (z1(t), z2(t),...,zn(t))
must evolve in an open subset of R™, the f;’s must be differentiable, and/or so-
lutions of the above system of ODE must be defined for all ¢ > 0. In addition,
for the purpose of measurement, one usually designates a subset of the variables
x1(t),x2(t),...,zn(t) as outputs whose values can be recorded by reporting de-
vices such as florescent proteins. Variations or specific cases of the above general
formalisms, based on different natures of the system dynamics, are also possible.
Some examples are:

= The time variable could be continuous (e.g., given via ODE as above, or via
delay equations) or discrete (e.g., given via difference equations or discretiza-
tion of continuous variables). For discrete time systems, the left-hand side of
Equation (5.1), namely the dzd;t(t) term, is replaced by x;(t + 1) where ¢ + 1 is
the next time step after ¢. Also, for discrete systems, two choices are possible
for updating the values of the z;(t + 1)’s from the corresponding set of val-
ues of z;(t)’s at every discrete time instance: a synchronous update (in which
all x;(t + 1)s update simultaneously), or an asynchronous update (in which a

selected x;(t + 1) updates and the rest remains the same).

» The state variables could be continuous, discrete, or hybrid (i.e., some discrete
and some continuous).

* The model could be deterministic or probabilistic (e.g., the functions f; in the
formulation are probabilistic functions).

In addition, one can also devise hybrid models, e.g., by combining continuous and
discrete time-scales, or by combining continuous and discrete time variables.
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5.1.3 Topological representation of dynamical models

Often in the study of dynamical representation of a biological system, it is possible
to relate its dynamical properties under investigation by associating the dynamics
with a corresponding topological representation. For example, one such version
that will be very useful later in Section 6.5 in studying the “monotonicity” of the
dynamics of a biological system is obtained by a signed graph representation in the
following manner [9,22,75]. Consider the time-varying system defined by Equa-
tion (5.1) without the external inputs w1, us,...,u,. For notational convenience,
let x(t) = (21(t), x2(t),...,2n(t)). Suppose that, for each i and j, either g—ﬁ >0

for all x(t) or % < 0 for all x(¢). Then, the system modeled by (5.1) can be as-
sociated with a directed interaction graph G (referred to as the “associated signed

graph”) in the following manner:

* The set of nodes is {z1,...,2,}.

= if g'_;i > 0 for all x(¢) and g'_ii > 0 for some x(¢), then there is an arc e; ; in G
directed from x; to x; with £, ; = 1.

= if % < 0 for all x(¢) and % < 0 for some x(¢), then there is an arc e; ; in G
directed from z; to x; with £., . = —1.

Cij

5.2 Boolean interaction networks

The well-studied Boolean interaction network model is generally used in analyz-
ing the dynamics of gene regulatory networks in which the gene expression levels
are binarized, i.e., the expression levels are either 0 indicating not expressed or 1
indicating expressed. Such a model was first proposed by Kauffman in 1969 as
random models of genetic regulatory networks [46], and can be formally defined
as follows. A Boolean variable is a variable that is either 0 or 1, and a function
f:{0,1}" — {0,1} over n Boolean variables is called a Boolean function.

Definition 1 A boolean network (8, f) consists of the following components.

(a) A Boolean state vector §= (s1,s2,...,5,) € {0,1}™.

(b) A global activation function vector f= (f1, f2,---, [n), where each fi: {0,1}" €
{0,1} is a Boolean function.

(c) An update rule that specifies the dynamics of the network. Let s;(t) and 5(t)
denote the values of s; and § at time t, respectively. An update rule specifies how
the value of each s;(t + 1) is computed from §(t). Two popular update rules are as
follows.

Synchronous update: §(t+1) = ( f1(5()), f2(3(t)),..., fa(5(t))), i-e., all
nodes update their states simultaneously at time t + 1 based on their states at
time t.

Asynchronous update: A specific variable, say s;, is selected such that s;(t) #
f;(8(t)), and then the new value of this variable is updated as s;(t + 1) =
f(8(t)) (if no such node exists, the update procedure terminates). In other
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words, §(t+1) = (s1(t),...,55-1(t), f;(51)), 5j41(t), ..., sa(t)). The vari-
able s; may be selected randomly among all possible candidate variables, or it
may be selected based on some pre-defined rules such as the lexicographically
first variable among all candidate variables.

In the same spirit as in Section 5.1.3, one may also associate a directed graph
Gep= (V. 7 Es f) with a Boolean network (S, f ) in the following manner:

V. 5= {v1,v2,...,v,}, where v; is associated with the state variable s;.

* [ 7 contains an arc (v;,v;) for each pair of indices i and j such that the
function f; depends on the state variable s;, i.e.,

fj(sla---75i71;075i+1;5i+27---7577,) }é fj(sla---75i7171;5i+175i+2;---;Sn)
for some S1yev+98i—15Si415Si4+2,--+,8n € {O, 1}

A Boolean network (3, f ) in which G, 7 has no cycles is known as a feed-forward
Boolean network; see Fig. 5.2 for an example.

In the next definition, the notation 5(t + 1) = f(é’(t)) is used to indicate that
the state vector §(t + 1) is obtained from §(t) by following an appropriate update
rule.

Definition 2 (limit cycle) A limit cycle of length k is an ordered sequence of
state wvectors (§1,§2, cee §k) such that §;(t + 1) = f(s?i,l(t)) fori=23,... k,
5§ = f(s?k), and §; # 8 for all i # j. A fized-point or equilibrium point is a limit
cycle of length 1.

Limit cycles are also called “attractors” of a Boolean network. Fig. 5.3 shows a
Boolean network with its associated directed graph and an attractor.

fi=s1A33 @
fo =52V (53N s1) '@

fs=151Ns2

(v2)
®) ()

Figure 5.3  (a) A Boolean network with three binary states s1, s2, s3. (b) The associated
directed graph. A fixed point of the network is given by §= (51, S2, 33) =(0,1,0).

Attractors are of considerable interest in Boolean genetic regulatory network
models by associating them with different types of cells identified with specific
patterns of gene activities. For example, reference [10] describes how to associate
limit cycles with cellular cycles and reference [37] associates fixed points with cell
proliferation and apoptosis.

Boolean networks are not the main focus of this chapter, so we refer the reader
to a textbook such as [19] for further discussions on this model.
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5.3 Signal transduction networks

Cells acquire many biological characteristics via complex interactions between its
numerous constituents [1], and use signalling pathways and regulatory mechanisms
to coordinate multiple functions, allowing them to respond to and acclimate to an
ever-changing environment. Genes and gene products in cells interact on several
levels. For example, at a genomic level, transcription factors can activate or in-
hibit the transcription of genes to give mRNA. Since these transcription factors
are themselves products of genes, the ultimate effect is that genes regulate each
others expressions as part of a complex network. Similarly, proteins can participate
in diverse post-translational interactions that lead to modified protein functions
or to formation of protein complexes that have new roles. In many cases differ-
ent levels of interactions are integrated, e.g., the presence of an external signal
may trigger a cascade of interactions of different types. Recent advances in exper-
imental methodologies in bioinformatics have led to development of genome-wide
experimental methods resulting in identification of interactions among thousands
of proteins, genes and other components. Signal transduction network models dis-
cussed in this chapter are topological models that provide a concise summary of
these interactions via labeled directed graphs. A major advantage of this model is
that one can use powerful graph-theoretic techniques to analyze these networks.
On the other hand, signal transduction networks only represent a network of pos-
sibilities, and not all edges are present and active in vivo in a given condition or
in a given cellular location; therefore, an integration of time-dependent interaction
may be necessary to more accurately predict the dynamical properties of these
interactions.

Formally, a signal transduction network is defined by a edge-labeled directed
graph G = (V, E, L) where each node v € V represents an individual component
of the cellular interaction, and each arc (directed edge) (u,v) € E indicates that
node u has an influence on node v. The edge-labeling function £: E — {-1,1}
indicates the “nature” of the causal relationship for each arc, with £(u,v) = 1 indi-
cating that u has an excitory (positive) influence on v, e.g., increasing or decreasing
the concentration of w increases or decreases the concentration of v, respectively,
whereas L(u,v) = —1 indicating that u has an inhibitory (negative) influence on v,
e.g., increasing or decreasing the concentration of u decreases or increases the con-
centration of v, respectively. We will use the following notations and terminologies
in the sequel.

* An excitory arc (u,v) will also be denoted by uv or simply by © — v when
the excitory nature is clear from the context. An inhibitory arc (u,v) will also

be denoted by u=v or u - v.

» A pathway P refers to a directed path u; Bowe B ugy et ur in G of
length £ —1 > 1 (y1,¥2,.-.,yk—1 € {—1,1}). The parity of P is L(P) =
Hi-:ll y; € {—1,1}. A path of parity 1 (resp., —1) is called a path of even
(resp, odd) parity.

» The notation u = v denotes a path from u to v of parity y € {-1,1}. If we
do not care about the parity, we simply denote the path as u = v. Similarly,

an arc will be denoted by u Hvoru— .
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» For a subset of arcs E' C F, reachable(E’) is the set of all ordered triples
(u,v,y) such that v = v is a path of the arc-induced subgraph (V, E’). We

will sometimes simply say u 4 v is contained in E’ to mean u = v is a path
of the subgraph (V, E’).

5.3.1 Synthesizing signal transduction networks

Large-scale repositories such as Many Microbe Microarrays, NASCArrays, or Gene
Expression Omnibus contain expression information for thousands of genes under
tens to hundreds of experimental conditions. Following the approach in [4,5,43],
interaction information between components in these type of databases can be
partitioned into three main categories.

() Biochemical evidence that provides information on enzymatic activity or protein-
protein interactions, e.g., binding of two proteins or a transcription factor acti-
vating the transcription of a gene or a chemical reaction with a single reactant
and single product. These interactions are direct interactions.

(P;) Pharmacological evidence, in which a chemical is used either to mimic the elim-
ination of a particular component, or to exogenously provide a certain compo-
nent, e.g., binding of a chemical to a receptor protein or observing gene tran-
scription after exogenous application of a chemical. This type of experimental
observation leads to observed relationships that are not direct interactions but
indirect causal effects most probably resulting from a chain of interactions and
reactions.

(c) Genetic evidence of differential responses to a stimulus in wild-type organisms
versus a mutant organism. In a minority of cases this type of experimental
observation may correspond to a single reaction (namely, when the stimulus is
the reactant of the reaction, the mutated gene encodes the enzyme catalysing
the reaction and the studied output is the product of the reaction), but more
often it is a chain of reactions.

As mentioned above, the last two types of experimental evidences may not give di-
rect interactions but indirect double-causal relationships that correspond to reach-
ability relationships in an (yet) unknown interaction network. Direct and indi-
rect (pathway-level) information can synthesized into a consistent network that
maintains all the reachability relationships by the algorithm shown in Fig. 5.4.
In Step (1), we incorporate biochemical interactions or single causal evidences as
labeled arcs, noting the “mandatory arcs” corresponding to confirmed direct inter-
actions. In Step (2), we incorporate double-causal relationships of the generic form
A5 (B ) by (i) adding a new arc A = B if B % C is a mandatory arc, (ii)
doing nothing if existing paths in the network already explain the relationship, or
(iii) adding a new “pseudo-node” and three new arcs. To correctly incorporate the
parity of the A =% C relationship, excitory B 2 C paths with y = 1 will be broken
into two excitory edges, while inhibitory B % C' paths with y = —1 will be broken
into an excitory edge (¢ = 1) and an inhibitory edge (b = —1), summarized in a
concise way by the equation b =ab =y.
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synthesize . synthesize .
. optimize optimize
single causal double causal
. . (Tr) . . (TR, PNC)
relationships relationships ’
(1) (2)
[interaction with biologists]
~N

s

.

AIB , respectively.

(1) [encoding single causal inferences (direct interactions)]

Biochemical and pharmacological evidences that define component-to-
component relationships, namely relationships of the form “A promotes B”

or “A inhibits B”, are incorporated (in arbitrary order) as arcs ALB or

If the interaction is known to be a direct interaction with concrete evidence,
then the arc is marked as a “mandatory arc”. Let Egyeq denote the set of all
mandatory arcs.

o

of the form

A
Jz
B D2

add to the network the subgraph

“pseudo-node”, and b = a b = y.

é (2) [encoding double-causal evidences (indirect interactions)]

Consider each double-causal relationship A —» (B N C), where z,y €
{—1,1}, in any arbitrary order. Add new nodes and/or arcs in the network
based on the following cases:

e IfBL Cec Efixed, then add the arc A % B.

e Otherwise, if there is no subgraph (in the network constructed so far)

for some node D where b = ab = y, then

where P is a new

~

y

Figure 5.4  An algorithmic framework for synthesizing signal transduction networks [5].

The optimization steps involving TR and PNC are explained in Section 5.3.3.
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A computer implementation of the framework in Fig. 5.4 needs an efficient algo-
rithm for the following problem:

given two nodes u; and u; and y € {—1,1}, does there exist a path from wu; to

uj of parity y ?
A straightforward solution is to adopt the so-called Floyd-Warshall transitive clo-
sure algorithm for directed graphs [20]. Let the nodes of G be ui,us, ..., u,, and
let i be called as the “index” of node u;. Define the following quantities:

1, if there is a path of parity x from u; to u;
N(i,j, k,x) = using intermediate nodes of indices no higher than k

0, otherwise

a path of parity = from u; to u;, if such a path exists

P(i,j, k,x) = {

0, otherwise

Then, the dynamic programming algorithm in Fig. 5.5 can be used to compute
N(i,j,k,x) and P(i,7,k,x) for all i, j,k and x; the intuition behind the iterative
calculations are shown pictorially in Fig. 5.6. The final answer is obtained by check-
ing N(i,i,n,2) and P(i,i,n,z) for each ¢ € {1,2,...,n} and each z € {—1,1}. Tt is
obvious that the algorithm takes O (n3) time and O (n3) space, both of which may
be prohibitive for large networks. Exercise 5.11 explores some practical methods
to reduce the running time and space requirements; further heuristic improvements
are possible and were incorporated in the software reported in [43].

A software named NET-SYNTHESIS for synthesis of networks based on the frame-
work in Fig. 5.4 was reported in [43]; detailed discussion about usage of this software
can be found in [6]. The network synthesis framework in Fig. 5.4 was used suc-
cessfully in [5,43] to synthesized a network of about hundred nodes for Abscisic
Acid(ABA)-induced stomatal closure of the model plant Arabidopsis Thaliana. The
NET-SYNTHESIS software was further used in [87] to build a network model to
study the signalling components that effect the survival of cytoxic T lymphocytes
in LGL-leukemia.

5.3.2 Collecting data for network synthesis

A starting point of gathering relevant data for synthesizing a signal transduction
network is to read thoroughly relevant literatures concerning the signal transduc-
tion pathways of interest, and then to assess if sufficient information is available
such that network synthesis is indeed necessary. For example, if all that is known
about a system is that component X activates component Y which in turn inhibits
component Z, drawing a simple linear network and deducing that knockout of Y
will eliminate signaling suffices, and a more formal analysis is hardly required. In
assessing the literature, the focus should be specifically on experiments that pro-
vide information of the type relevant to network construction. Experiments that
identify nodes belonging to a signaling pathway and their relationships include the
following types of data.

(1) In vivo or in vitro experiments which show that the properties (e.g., activity
or sub-cellular localization) of a protein change upon application of the input
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/(* comment: initialization *) )
for each z € {—1,1} and for each i,5 € {1,2,...,n} do
if u; > u; € E then N(i,5,0,2) =1, P(i,j, k, x) = u; 5 Uj
else N(i,7,0,z) =0, P(i,j,k,z) =0
endif
endfor

(* comment: iterative calculation *)
for k=1,2,...,n do
for each i,j € {1,2,...,n} and each x € {—1,1} do
if N(i,j,k — 1,2) = 1 then N(i,j,k,2) = 1 and P(i,j, k,z) =
Pi,jk—1,2)
elseif 3y, z: N(i,k,k—1,y) = N(k,j,k—1,z)=land yz ==z
then N(i,j,k,z) =1
P(i,j, k,x)is P(i, k,k—1,y) followed by P(k,j,k—1, z)
else N(i,j,k,z) = 0 and P(i,j, k,x) =0
endif
endif
endfor

\ endfor J

Figure 5.5 Dynamic programming algorithm to find all reachabilities.

P(i, 5,k —1,2)
r i) T3 Try4
T =T XT3 T4 7 <k <k <k J
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Figure 5.6  Pictorial illustration of the iterative calculations of the dynamic programming
algorithm in Fig. 5.5.

signal, or upon modulation of components already definitively known to be
associated with the input signal.

(2) Experiments that directly assay a small molecule or metabolite (e.g., imaging
of cytosolic Ca2+ concentrations) and show that the concentration of that
metabolite changes upon application of the input signal or modulation of its
associated elements.
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(3) Experiments that demonstrate physical interaction between two nodes, such as
protein-protein interaction observed from yeast two-hybrid assays or in vitro
or in vivo co-immunoprecipitation.

(4) Pharmacological experiments which demonstrate that the output of the path-
way of interest is altered in the presence of an inhibitory agent that blocks
signaling from the candidate intermediary node (e.g., a pharmacological in-
hibitor of an enzyme or strong buffering of an ionic species).

(5) Experiments which show that artificial addition of the candidate intermedi-
ary node (e.g., exogenous provision of a metabolite) alters the output of the
signaling pathway.

(6) Experiments in which genetic knockout or over-expression of a candidate node
is shown to affect the output of the signaling pathway.

Usually, (1)—(3) correspond to single causal (direct) inferences; (3) may also cor-
respond to mandatory arcs. On the other hand, (4)—(6) usually correspond to
double-causal (indirect) inferences.

Some choices may have to be made in distilling the relationships, especially in the
case where there are conflicting reports in the literature. For example, suppose that
in one report it is stated that proteins X and Y do not physically interact based on
yeast two-hybrid analysis, while in another report it is stated that proteins X and Y
do interact based on co-immunoprecipitation from the native tissue. One will then
need to decide which information is more reliable, and proceed accordingly. Such
aspects dictate that human intervention will inevitably be an important component
of the literature curation process, as indicated by the “interactions with biologists”
in Fig. 5.4, even as automated text search engines such as GENIES [31,40,59] grow
in sophistication.

5.3.3 Transitive reduction and pseudo-node collapse

The network obtained by steps (1) and (2) of the algorithm in Fig. 5.4 is “not
reduced”, i.e., it may contains arcs and pseudo-nodes which can be systematically
removed without changing the reachability relations between nodes (note, however,
that no mandatory arc can be removed). In this section we describe two methods to
find a minimal network, in terms of the number of pseudo-nodes and the number of
non-mandatory arcs, that is consistent with all reachability relationships between
non-pseudo-nodes. The algorithmic methodologies described are of two kinds:

* transitive reduction to reduce the number of non-mandatory arcs, and
» pseudo-node-collapse to reduce the number of pseudo-nodes.

Applications of these methods do not necessarily imply that real signal transduction
networks are the sparsest possible, but instead the goal is to minimize false positive
(spurious) inferences even if risking false negatives, i.e., the goal of these methods
is to produce a network topology that is as close as possible to a tree topology while
supporting all experimental observations. The implicit assumption of “chain-like” or
“tree-like” topologies permeates the traditional molecular biology literature: signal
transduction and metabolic pathways are assumed to be close to linear chains, and
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genes are assumed to be regulated by one or two transcription factors [1]. According
to current observations the reality is not far: the average in/out degree of the
transcriptional requlatory networks [56,74] and the mammalian signal transduction
network [58] is close to 1. Philosophically, the approach of obtaining a sparse
network is similar to the parsimony approach used in the construction of phylogenies
and elsewhere, and can be linked to the “Occam’s razor” principle.

5.3.3.1 Transitive reduction (TR) The definition of the transitive reduction (TR)
problem in the context of our signal transduction networks is shown in Fig. 5.7,
and an illustration of a solution of this problem for an example network is shown
in Fig. 5.8. Note that an exact or an approximate solution of the TR problem may
not be unique; alternate solutions represent alternate interpretations of the same
data. Transitive reduction are usually applied to the network synthesis procedure
outlined in Fig. 5.4 after Step (1) and after Step (2).

Instance: A directed graph G = (V, E) with an arc labeling function
L: Ew— {—1,1}, and a set of mandatory arcs En, C E.

Valid Solutions: A subgraph G’ = (V, E’) where E, C E' C F, and
reachable(E’) =reachable(FE).

Objective: minimize |F’|.

Figure 5.7  The transitive reduction (TR) problem.

—3» edge selected for removal
—Pp Py + » « === pathway that allowed the edge removal

Figure 5.8 An example of obtaining a reduced network via transitive reduction. The
obtained network is not minimal (see Exercise 5.4).

The idea of a transitive reduction, in a more simplistic setting or integrated in
an approach different from what has been described, also appeared in other papers
than the ones already mentioned. For example, Wagner [85] proposed to find a net-
work from the reachability information by constructing uniformly random graphs
and scale-free networks in a range of connectivities and matching their reachability
information to the range of gene reachability information found from yeast per-
turbation studies. In contrast, in the TR problem we consider the reachability
information but with the additional information about the nature of interaction
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(excitory or inhibitory) for each path along with a subset of pre-specified manda-
tory edges, and wish to actually reconstruct the network and not only find a range
of networks that have a given mean reachability. Another important difference be-
tween the two approaches is in the number of isolated nodes and weak subgraphs.
Wagner’s networks have a huge number of sub-networks many of which are isolated.
The network synthesis method in Fig. 5.4 does aim for sparseness, but does not al-
low isolated nodes if their reachabilities are non-zero. As another example, Chen et
al. in [18] used time-dependent gene expression information to determine candidate
activators and inhibitors of each gene, and then removed edges by assuming that
no single gene functions both as activator and inhibitor.

Li et al. in [57] used the greedy procedure in Fig. 5.9 for TR within the network
synthesis procedure to manually create a network for ABA-induced stomatal closure:

Definition an arc u—»v is redundant if there is an alternate path u=v
Algorithm
while there exists a redundant arc
delete the redundant arc

Figure 5.9 A greedy algorithm to solve TR.

This greedy procedure for TR is in fact optimal if the graph is a directed acyclic
graph (DAG), i.e., if G has no cycles [4]. But even very special cases of TR, namely
when all edges are excitory, Ey,, = () and G does not have a cycle of length more than
4, are known to be NP-hard [51], effectively ending the possibility of an efficient
ezxact solution of TR for general graphs under the assumption of P # NP. Thus,
the best one could hope is that the greedy algorithm in Fig. 5.9 delivers a good
approzimate solution for TR on arbitrary graphs.

An approximation algorithm for a minimization problem has an approximation
ratio of @ > 1 (or is an a-approximation) if it is a polynomial-time algorithm
that always provides a solution with a value of the objective function that is at
most a times the optimal value of the objective function (thus, for example, 1-
approximation is an exact solution). The following result was shown in [5].

Theorem 5.1 [5] The greedy algorithm in Fig. 5.9 is a 3-approximation.

There are input instances of TR for which the greedy algorithm has an approxi-
mation ratio of at least 2; Fig. 5.10 shows such an example. The idea behind a proof
of Theorem 5.1 is to first prove that the greedy procedure is a 3-approximation if
the input graph G is strongly connected, and then to extend the result for the case
when G may not be strongly connected. The idea behind a proof of 3-approximation
of the greedy algorithm when G is strongly connected is as follows. Let opt(G) de-
notes the number of edges in an optimal solution of TR for G = (V, E). It is not
difficult to observe that opt(G) > |V| (see Exercise 5.12). For a graph H, let H*!
be the graph obtained from H by setting all arc labels to 1, and an arc e in H+!
is called superfluous if it would be removed by the greedy algorithm in H+! but
not in H. Let Ggreedy be the graph obtained from G by the greedy algorithm. The
proof uses the following sequence of steps.

= Show a 2-approximation for the case when E,, = () in the following way:
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(i) first show that G;}mdy contains at most 1 superfluous arc, and then

ii) show that using (i) it follows that the number of arcs in Ggreedy iS at most
g greedy
2|V +1.

= Show that the constraint Ey, # () adds at most 1 to the approximation ratio.

input graph output of greedy optimal
2n arcs n+ 1 arcs

Figure 5.10  An example of a family of graphs for which the greedy algorithm has an
approximation ratio of 2. The greedy algorithm may remove the arcs v; — v;41 for i =
1,2,...,n — 1 providing a solution with 2n arcs, but an optimal solution with n 4 1 arcs is
possible by selecting the arcs vo — v1, v;i = viq1 fori =1,2,...,n — 1, and v, — vo.

Approximation algorithms with approximation ratios better than the greedy ap-
proach are possible and described in references [4,13,43|; currently the best pos-
sible approximation ratio achievable is 3/2 as described in reference [13], but the
algorithm is too complicated for efficient implementation. Exercise 5.13 explores
a possible improvement over the greedy approach. A software for solving the TR
problem was reported in [6,43]; extensive empirical evaluations in [43] showed that
in practice the redundancy value calculated is almost always close to optimal.

5.3.3.2 Pseudo-node collapse (PNC) The definition of the pseudo-node collapse
(PNC) problem in the context of our signal transduction network synthesis pro-
cedure is shown in Fig. 5.11. Intuitively, the PNC problem reduces the set of
pseudo-nodes to a minimal set while maintaining that the graph is consistent with
all experimental observations. As in the case of the TR problem, our goal is to
minimize false positive inferences of additional components in the network.

Unlike the TR problem, the PNC problem can be easily solved in polynomial
time in the following manner as outlined in [5]. It is not difficult to see that the
“permissibility of collapse” relation is in fact an equivalence relation on the set of
nodes. Thus, we can partition the nodes into equivalence classes such that two
nodes v and v are in the same partition provided in(u) =in(v) and out(u) = out(v).
It can be easily seen if two such nodes u and v in the same partition are collapsed
into a new node w then the resulting equivalence partition is same as before except
that the two nodes u and v are replaced by a new node w in the same equivalence
partition. Thus, an optimal solution would consist of collapsing all pseudo-nodes
with one arbitrary real-node (if it exists) in each equivalence partition.
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Instance: A directed graph G = (V| E) with an arc labeling function
L:E — {—1,1}, and a subset Vpseudo C V of nodes called pseudo-
nodes. For convenience, the nodes in V' \ Vpseudo are called “real”
nodes.

Definitions:
e For any node v € V, let in(v) = {(u,z)|uv,z € {-1,1}}\
{(v,0)}, and out(v) = {(u,z) [v>u,z € {~1,1}} \ {(v,0)}.
e Collapsing two nodes uw and v is permissible provided both are
not real nodes, in(u) =in(v), and out(u) =out(v).

e If permissible, the collapse of two nodes u and v creates a new
node w, makes every incoming (respectively, outgoing) arc to (re-
spectively, from) either v or v an incoming (respectively, outgo-
ing) arc from w, removes all parallel arcs that may result from
the collapse operation and also removes both the nodes u and v.

Valid Solutions: A graph G’ = (V’, E’) obtained from G by a sequence
of permissible pseudo-node collapse operations.

Objective: minimize |V’|.

Figure 5.11  The pseudo-node collapse (PNC) problem [5].

5.3.3.3 Other network reduction rules In addition to TR and PNC, depending on
the particular application in mind, it is possible to have additional rules to minimize
the synthesized network. For example, [5] formalized the following additional rule
in relation to enzyme-catalyzed reactions specific to the context of synthesizing a
consistent guard cell signal transduction network for ABA-induced stomatal closure
of Li et al. [57]. Li et al. [57] represent each of these reactions by two mandatory
arcs, one from the reaction substrate to the product and one from the enzyme to
the product. As the reactants (substrates) of the reactions in [57] are abundant, the
only way to regulate the product is by regulating the enzyme. The enzyme, being
a catalyst, is always promoting the product’s synthesis, thus positive double-causal
regulation of a product was interpreted as positive regulation of the enzyme, and
negative indirect regulation of the product was interpreted as negative regulation
of the enzyme. In our graph-theoretic terms, this leads to the following rule. We
have a subset Een, C E of arcs that are all labeled 1. Suppose that we have a

path A % X by B, and an arc C L Be Een,. Then, one can identify the node C'
with node X by collapsing them together to a node X, and set the labels of the
arcs A — X¢ and X — B based on the following cases:

* if ab =1 then L(A, X¢) = L(X¢,B) =1, and
* if ab= —1 then L(A, X¢) =1 and L(X¢, B) = —1.

5.3.3.4 Other applications of TR and PNC In addition to the network synthesis
procedure in Fig. 5.4, the TR problem can be very useful in many other types of
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analysis of biological networks. For example, Wagner [85] applied a very special
case of TR that included calculations of reachabilities only (without the activa-
tion/inhibition information) to determine network structure from gene perturba-
tion data, and Chen et al. [18] used a so-called “excess edge deletion” problem to
identify structure of gene regulatory networks. In Section 5.3.4, we will explain how
TR can be used to provide a measure of redundancy for biological networks.

Although the original motivation in Section 5.3.1 for introducing pseudo-nodes
was to represent the intersection of the two paths corresponding to 3-node infer-
ences, PNC can also be used in a broader context of network simplification. In many
large-scale regulatory networks only a subset of the nodes are of inherent interest
(e.g., because they are differentially expressed in different exogenous conditions),
and the rest serve as backgrounds or mediators. One can therefore designate nodes
of less interest or confidence as pseudo-nodes and then collapse them, thereby mak-
ing the network among high-interest/confidence nodes easier to interpret. Using
this idea, PNC with TR can be used to focus on specific pathways in disease net-
works to better understand the molecular mechanism of the onset of the disease
and therefore help in drug target designs. This approach was used by Kachalo et
al. [43] to focus on pathways that involve the 33 known T-LGL deregulated proteins
in a cell-survival/cell-death regulation-related signaling network synthesized from
the TRANSPATH 6.0 database. LGLs are medium to large size cells with eccentric
nuclei and abundant cytoplasm. LGL leukemia is a disordered clonal expansion of
LGL, and their invasions in the marrow, spleen and liver. Currently, there is no
standard therapy for LGL leukemia, and thus understanding the mechanism of this
disease is crucial for drug and therapy development. Ras is a small GTPase which is
essential for controlling multiple essential signaling pathways, and its deregulation
is frequently seen in human cancers. Activation of H-Ras requires its farnesylation,
which can be blocked by Farnesyltransferase inhibitiors (FTls). This envisions FTls
as future drug target for anti-cancer therapies, and several FTls have entered early
phase clinical trials. One of these FTI is tipifarnib, which shows apoptosis induction
effect to leukemic LGL in vitro. This observation, together with the finding that Ras
is constitutively activated in leukemic LGL cells, leads to the hypothesis that Ras
plays an important role in LGL leukemia, and may functions through influencing
Fas/FasL pathway. The approach used by Kachalo et al. [43] was to focus special
interest on the effect of Ras on apoptosis response through Fas/FasL pathway by
designating nodes that correspond to “proteins with no evidence of being changed
during this effect” as pseudo-nodes, and simplifying the network via iterations of
PNC and TR. Although performing comprehensive PNC in this manner may lead
to a drastic reduction of the network, a drawback of such a dramatic simplification
is that pairs of incoherent arcs (i.e., two parallel arcs with opposite labels) can ap-
pear among pairs of nodes. While incoherent paths between pairs of nodes are often
seen in biological regulatory networks, interpretation of incoherent arcs is difficult
without knowledge of the mediators of the two opposite regulatory mechanisms.
Thus, optimal simplification in this manner may require more careful selection of
pseudo-nodes in PNC algorithms.

5.3.4 Redundancy and degeneracy of networks

The concepts of degeneracy and redundancy are well known in information theory.
Loosely speaking, degeneracy refers to structurally different elements performing the
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same function, whereas redundancy refers to identical elements performing the same
function. In electronic systems, such a measure is useful in analyzing properties such
as fault-tolerance. It is an accepted fact that biological networks do not necessarily
have the lowest possible degeneracy or redundancy; for example, the connectivities
of neurons in brains suggest a high degree of redundancy [49]. However, as has been
observed by researchers such as Tononi, Sporns and Edelman [82], specific notions
of degeneracy and redundancy have yet to be firmly incorporated into biological
thinking, largely because of the lack of a formal theoretical framework. A further
reason for the lack of incorporation of these notions in biological thinking is the
lack of efficient algorithmic procedures for computing these measures for large-
scale networks even when formal definitions are available. Therefore, studies of
degeneracy and redundancy for biological networks are often done in a somewhat ad-
hoc fashion [69]. There do exist notions of “redundancy” for undirected graphs based
on clustering coefficients [12] or betweenness centrality measures [24]. However,
such notions may not be appropriate for the analysis of biological networks where
one must distinguish positive from negative regulatory interactions, and where the
study of dynamics of the network is of interest.

veocemeoecooe

Figure 5.12 A system of seven elements.

5.3.4.1 Information-theoretic degeneracy and redundancy measures Formal inform-
ation-theoretic definitions of degeneracy and redundancy for biological systems were
proposed in [80-82| based on the so-called mutual-information (MI) content. These
definitions assume access to suitable perturbation experiments and corresponding
accurate measurements of the relevant parameters. Consider a system consisting
of n elements that produces a set of outputs O via a fixed connectivity matrix
from a subset of these elements (see Fig. 5.12 for an illustration). The elements
are described by a jointly distributed random vector X that represents steady-state
activities of the components of the system. The degeneracy D(X ; O) of the system
is then expressed as the average mutual information (MI) shared between O and
the “perturbed” bi-partitions of X summed over all bipartition sizes, i.e., by the
following equation:

n
D(X; 0) o Y. 3 (MIP(X); 0) + MIP(X\ X}5 0) = MIP (X ; 0))

k=1 j

In the above equation, Xf is a j*™ subset of X composed of k elements, and
MIP(A; O) is the mutual information between a subset of elements A and an
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output set O when A is injected with a small fixed amount of uncorrelated noise.
MIZ (A ) is given by the equation

MIP(A; O) = H(A) + H(O) — H(A, O)

where H(A) and H(O) are the entropies of A and O considered independently, and
H(A, O) is the joint entropy of the subset of elements A and the output set O. The
above definition of the degeneracy measure is mathematically precise, but a signif-
icant computational difficulty in applying such a definition is that the number of
possible bi-partitions could be astronomically large even for a modest size network.
For example, for a network with 50 nodes, the number of bi-partitions is roughly
2°0 > 10'°. Measures avoiding averaging over all bi-partitions were also proposed
in [82], but the computational complexities and accuracies of these measures still
remain to be thoroughly investigated and evaluated on larger networks.

Similarly, the redundancy B(X; O) of a system X can be defined as the difference
between summed mutual information upon perturbation between all subsets of size
up to 1 and O, and the mutual information between the entire system and O, i.e.,

R(X; O) x zn:wp(x;; 0) -MI" (X ; 0)

A shortcoming of this redundancy measure is that it only provides a number, but
does not indicate which subset of elements are redundant. Identifying redundant
elements is important for the interpretation of results, and may also serve as an
important step of the network construction and refinement process.

5.3.4.2 Topological redundancy measure based on transitive reduction Any good
topological redundancy measure of degeneracy or redundancy should have a few
desirable properties:

(@D’l) The measure must not just reflect simple connectivity properties such as
degree-sequence or average degree, but also should incorporate higher-order
connectivity properties.

(@32) The measure should not just provide a number, but also should indicate
candidate subsets of components that are redundant or degenerate.

(@33) The measure must be efficiently computable so that it can be computed for
large-scale networks.

Based on the TR problem, Albert et al. in [3] proposed a new topological measure
of redundancy that is amenable to eflicient algorithmic analysis. Note that any
solution of TR does not change pathway level information of the network since it
removes only those arcs from one node to another when similar alternate pathways
exist, thus truly removing redundant connections. Thus, |Z'l/|E| provides a measure
of global compressibility of the network and a topological redundancy measure R,
can be defined as

|E'|

|E|

RTIL =1-

where the |E| term in the denominator of the definition is just a “min-max nor-
malization” of the measure [36] to ensure that 0 < By, < 1. Note that the higher
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the value of Ry, is, the more redundant the network is. The TR problem used in
computing Ry, actually finds a subset of redundant arcs and, in the case of multiple
minimal networks of similar quality, can also find multiple distinct subsets of redun-
dant arcs by randomization of the greedy selection step in the algorithm in Fig. 5.9.
R+, also satisfies Property (@i) since paths of arbitrary length are considered for
removal of an arc and thus, for example, R, is not necessarily correlated to either
the degree sequence (cf. Exercise 5.6.a) or the average degree (cf. Exercise 5.6.b)
of the network.

Based on the evaluations of the above redundancy measure on seven biological
networks of various types, Albert et al. [3] provided a few interesting biological and
computational conclusions such as:

* Ry, can be computed quickly for large networks and is statistically significant.
» Transcriptional networks are less redundant than signalling networks.

» Topological redundancy of the C. elegans metabolic network is largely due to
its inclusion of currency metabolites such as ATP and ADP.

» Calculations of Ry, and corresponding minimal networks provide insight into
a predicted orientation of protein-protein-interaction networks by determining
whether the predicted oriented network has a level of redundancy similar to
those in known related biological networks.

Correlation between Ber, and network dynamics 1t is of interest to determine if a
topologically minimal network has similar dynamical or functional properties as
the original network such as stability and response to external inputs, when such
properties are available for the original network. When the network has designated
outputs or read-outs, such as gene expression rates in transcriptional networks, it
may be of interest to characterize the behavior of these outputs as a function of
the inputs. A topologically minimal network such as the one used in this section
does have the same input-output connectivity as the original network, and thus the
excitory or inhibitory influence between each input-output pair is preserved. Such
a reduced network is minimal in an information-theoretic sense: any network with
the same input-output behavior must be of at least this size.

(1)
Figure 5.13 Equivalence of dynamical properties may depend on node functions.

However, one may ask if a topologically minimal network also has a “similar”
output behavior as the original one for the same input? For some dynamical prop-
erties, the question can be answered; for example, a correlation of Ry, with the
monotonicity of dynamics is explored in Section 6.5. In general, however, such a
question does not have a well-defined answer since the dynamics depend on what
type of functions are used to combine incoming connections to nodes and the “time
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delay” in the signal propagation, both of which are omitted in the graph-theoretic
representation of signal transduction networks. Therefore, deleting redundant arcs
may result in functionalities that may or may not be the same. For example, con-
sider the two networks shown in Fig. 5.13 in which network (ii) has a redundant
connection a — ¢. The functions of these two circuits could be different, however,
depending on the function used to combine the inputs a — ¢ and b — ¢ in net-
work (ii) (cf. Exercise 5.7). However, despite the fact that a minimal network may
not preserve all dynamic properties of the original one, a significant application
of finding minimal networks lies precisely in allowing one to identify redundant
connections (arcs). In this application, one may focus on investigating the func-
tionalities of these redundant arcs, e.g., identifying the manner in which their effect
is cumulated with those of the other regulators of their target nodes could be a key
step toward understanding the behavior of the entire network. Thus, the measure
developed here is of general interest as it not only provide a quantified measure
of overall redundancy of the network, but also allow identification of redundancies
and hence help direct future research toward the understanding of the functional
significance of the redundant arcs.

5.3.5 Random interaction networks and statistical evaluations

A comprehensive statistical evaluation of any network measure such as the redun-
dancy value Ry, discussed in the previous section require the following ingredients:

(a) generation of an ensemble of random networks (the “null hypothesis model”)
on which the measure can be computed,

(b) if necessary, appropriate normalization of values of the measure on random
networks to correct statistical bias, and

(¢) checking appropriate statistical correlation (“null hypothesis testing”) between
these random network measures with the measure on the given network.

5.3.5.1 Null hypothesis models Ideally, if possible, it is preferable to use an accu-
rate generative null model for highest accuracy, since such a model may be amenable
to more rigorous mathematical analysis [68]. For signaling and transcriptional bi-
ological networks Albert et al. [5], based on extensive literature review of similar
kind of biological networks in prior literature, arrived at the characteristics of a
generative null model that is described below. One of the most frequently reported
topological characteristics of biological networks is the distribution of in-degrees
and out-degrees of nodes, which may be close to a power-law or a mixture of a
power law and an exponential distribution [2,33,55]. Specifically, in biological ap-
plications, metabolic and protein interaction networks are heterogeneous in terms
of node degrees, and exhibit a degree distribution that is a mixture of a power law
and an exponential distribution [2,33,41,55,58|, whereas transcriptional regulatory
networks exhibit a power-law out-degree distribution and an exponential in-degree
distribution [56,74]. Thus, usually a researcher is expected to use his or her judge-
ment to select an appropriate degree distribution and other necessary parameters
that is consistent with the findings in prior literature for an accurate generative
null model. Based on the known topological characterizations, Albert et al. [5]
arrived at the following degree distributions for generating random transcriptional
and signaling networks:
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» The distribution of in-degree is truncated exzponential, namely, Pr[in-degree=
z]=c1e” % with /2 < ¢; < 1/3and 1 <z < 12.

* The distribution of out-degree is governed by a truncatedpower-law, namely,
for some constant 2 < ¢y < 3:

— Prfout-degree= 0] > ¢3, and

— for 1 <z < 200, Prlout-degree=x] = ¢ x~°2.

» Parameters in the distribution are adjusted to make the sum of in-degrees of all
nodes equal to the sum of out-degrees of all nodes, and the expected number
of arcs in the random network is the same as that in G.

» The percentages for activation, inhibition and mandatory edges in the random
network are the same as in G, and distributed over the arcs randomly.

Several methods are known in the literature to generate random directed graphs
with specific degree distributions. For example, Newman, Strogatz and Watts [68]
suggest the following method. Suppose that the parameters of the degree distribu-
tions are appropriately adjusted such that the averages of the in-degree distribution
and the out-degree distribution is almost the same. Let vi,vs,...,v, be the set
of n nodes with in-degrees di®, di", ... d!* and out-degrees dt, dgut, ... do", re-
spectively. Then, randomly pick two nodes v; # v; such that d®, d;’“t > 0, add the
arc (vj,v;) and decrease both d/" and d;’“t by 1. Repeat the procedure until the
in-degree and out-degree of every node is zero. See [66] for some other methods.

For the case when generative null models are not possible, alternate methods
are available to generate random networks that preserve the first-order topological
characteristics (such as the degree sequence) but randomizes higher-order statistics
(such as distribution of paths). We review two such alternate methods below.

The Markov-chain algorithm for generating random networks [44] starts with the
given network G = (V, E), and repeatedly swaps randomly chosen similar pairs of
connections as illustrated in Fig. 5.14. This kind of algorithm was used in papers
such as [3,74]. The percentage of arcs swapped depends on the application, e.g.,
Shen-Orr et al. [74] considered swapping about 25% of the arcs.

Newman and others in several publications [34, 54,64, 65, 67] have suggested
using the following null model G generated from the degree-distribution of the given
graph G = (V, E). G is a random graph with the same set of nodes as the given
graph G. Every possible directed edge (u,v) in G is selected with a probability

out Jin
du v

\El
degree of node v, respectively, in G. The original definition also allows selection of
self-loops, i.e., edges (u,v) with w = v; in that case this null model preserves in
expectation the distribution of the degrees of each node in the given graph G, i.e.,

of py» = where d°" and d!* are the out-degree of node u and the in-

__ Jout
Z’UEV p“vv - du

__ Jin
Z’UGV Pou = du

This null model is very popular in many biological applications [34,35, 71].

(5.2)
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repeat .—| .
choose two arcs a — b, ¢ 2 d € E randomly

(x,ye {_171}) .—|.

if r=yanda#candb#d
anda >d¢gFEandcbbg E
then
add the arcs a > d and ¢ 5 b
remove the arcs a = b and ¢ % d .
endif
until a specified percentage of arcs of G .
has been swapped

(a) (b)

Figure 5.14 (a) The Markov-chain algorithm for generating random networks by arc
swapping. (b) A pictorial illustration of arc swapping.

5.3.5.2  Correction of bias of empirical null model attributes This is a very standard
task in statistical data mining, and the reader is referred to suitable textbooks such
as [53]. We illustrate one such method for the correction of bias in computation
of By, for random networks. Suppose that we generated p random networks with

redundancy values RL , RZ , ..., RE, and let u and o be the mean and standard

RS —
deviation of these p values. We can first compute the standardized value e I a0
o

the observed value R%R. Then, we can calculate the standardized range (difference
between maximum and minimum) of these standardized values, and normalize the
standardized values by dividing them by this standardized range.

5.3.5.3 Null hypothesis testing Given the p random measures, say r1,72,...,7p,
and the value of measure for the given network, say r, this step essentially involves
determining the probability that r can be generated by a distribution that fits the
data points r,72,...,7,. There are a variety of standard statistical tests (e.g.,
one-sample student’s t-test) that can be used for this purpose.

5.4 Reverse engineering of biological networks

In previous sections we discussed how signal transduction networks can be syn-
thesized based on available interaction data. However, in many situations, such
interaction data are unavailable. Instead, for many biological systems, data are
available about some characteristics of the system. Informally, the “reverse engi-
neering” problem for biological networks is to unravel the interactions among the
components of the network based on such observable data about the characteristics
of the system, and may be difficult to approach by means of standard statistical and
machine learning approaches such as clustering into co-expression patterns. Infor-
mation on direct functional interactions throws light upon the possible mechanisms
and architecture underlying the observed behavior of complex molecular networks,
but an intrinsic difficulty in capturing such interactions in cells by traditional ge-
netic experiments, RNA interference, hormones, growth factors, or pharmacological
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interventions is that any perturbation to a particular gene or signaling component
may rapidly propagate throughout the network, thus causing global changes which
cannot be easily distinguished from direct (local) effects. Thus, a central goal in
reverse engineering problems in biology is to use the observed global responses
(such as steady-state changes in concentrations of activated activities of proteins,
mRNA levels, or transcription rates) in order to infer the local interactions between
individual nodes. This section focuses on several computational issues in reverse-
engineering of a biological system and, quoting [23], can be very broadly described
as the problem of analyzing a given system in order to identify, from biological data,
the components of the system and their relationships.

In general, application of a specific reverse engineering method depends upon
several factors such as:

(Q/l) The type of interactions to be reconstructed, e.g., statistical correlations,
causal relationships etc.

(QQ) The type of data or experiments that the modeller has access to, e.g., input-
output behaviour on perturbations, gene expression measurements etc.

(Q3) The quality of the expected output of the method, e.g., the nature (excitory
or inhibitory) of the interaction versus the actual strengths of the interactions.

For example, in [11,26,32,63,70,72,86,88], interactions represent statistical corre-
lation between variables whereas in 23,30, 38,39, 52| interactions represent causal
relationships among nodes. Depending upon the type of network analyzed, quality
and availability of data, network size, and so forth, different reverse engineering
methods offer different advantages and disadvantages relative to each other.

In the next two sections we discuss two reverse engineering approaches. The first
one is the so-called modular response analysis approach that relies on availability
of perturbation experiments. The second approach is a collection of parsimonious
combinatorial approaches that rely on the availability of time-varying measurements
of relevant parameters of the system.

5.4.1 Modular response analysis approach

known linear algebraic combinatorial
prior information formulation formulation

.-n"° refine .....'o.

° QA
constructec; selection of combinatorial
network perturbation algorithms

experiments &

Figure 5.15 A schematic diagram for the overview of the MRA approach.
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The modular response analysis (MRA) approach for reverse engineering of net-
works was originally introduced in [47,48] and further elaborated upon in [8, 21,
78,79]. In this approach, the architecture of the network is inferred on the basis
of observed global responses (namely, the steady-state concentrations in changes
in the phosphorylation states or activities of proteins, mRNA levels, or transcrip-
tion rates) in response to experimental perturbations (representing the effect of
hormones, growth factors, neurotransmitters, or of pharmacological interventions).
The MRA technique was employed in [73] in order to discover positive and negative
feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromocy-
toma (PC-12) cells to uncover connectivity differences depending on whether the
cells are stimulated by epidermal growth factor (EGF) or by neuronal growth factor
(NGF), with perturbations consisting of downregulating protein levels by means of
RNAi. A schematic diagram for the MRA approach is shown in Fig. 5.15. Before
describing the methodology, we first describe the ingredients of the method.

The model (Q{l) The model of the biological system considered in the MRA ap-
proach is the differential equation model described in Section 5.1.2 via Equa-
tion (5.1). The n state variables x1(t), z2(t),. .., 2, (t) of this dynamical sys-
tem, collected into a time-dependent vector x(t) = (x1(t), ..., zn(t)), represent
quantities that can be measured, such as the levels of activity of selected pro-
teins or transcription rates of certain genes. The parameters (inputs) u;’s,
collected into a vector u = (ul, e ,um), represent quantities that can be per-
turbed, perhaps indirectly, such as total levels of proteins whose half-lives are
long compared to the rate at which the variables evolve, but, once changed,
they remain constant for the duration of the biological experiment. A basic
assumption in this approach is that states converge to steady state values,
and these are the values used for network reconstruction (but see 78] for a
time-dependent analysis). There is also a reference value @ of u, which repre-
sents “wild type” (i.e., normal) conditions, and a corresponding steady state Z;
mathematically, f ()T:, 1_1) = 0. A mild technical assumption that is necessary is
that, for each vector of parameters u in a neighborhood of i, there is a unique
steady state £(u) of the system where ¢ is a differentiable function.

Required biological experiments (QQ) The required experimental protocol al-
lows one to perturb any one of the parameters, say u;, while leaving the re-
maining ones constant. For the perturbed vector u ~ @i, measurements are
done of the perturbed steady state vector x = £(u), which is an unique func-
tion of u. This read-out might be done through methods such as Western blots
or DNA microarrays. When the parameter u; is perturbed, we compute the n

“sensitivities”
i i(at+uje;) —&(a .
bi,j: 5 (ﬁ)z(g(u z'L]e]) 5(11)), fori=1,2,....n
Ou; Uj = uj

where e; € R™ is the 4t canonical basis vector. We arrange these numbers
into a n X m matrix B = (bw-). This approach makes a general position as-
sumption that all subsets of n columns of B are linearly independent; this
entails no theoretical loss of generality since the entries of B correspond to
experimental data; however in actual implementations this may lead to nu-
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merical instabilities (see [78] for an analysis of numerical aspects as well as the
effect of errors and noise).

Quality of output of the approach (Q;?)) This approach is expected to obtain
information regarding the signs and relative magnitudes of the partial deriva-

tive gg (X, 1), which quantifies the direct effect of a variable z; upon another
J
variable z;, e.g., gf £ > 0 means that x; has a catalytic (excitory) effect upon
J

the rate of formation of x;, while gf_ < 0 indicates inhibition.
J

Known prior information The critical assumption is that, while one may not
know the algebraic form of the vector field f in system (5.1), often it is known
which parameters p; directly affect which variables x;. For example, x; may be
the level of activity of a particular protein and p; might be the total amount
(active plus inactive) of that protein in a cell. This prior information is sum-
marized by a binary matrix C° = (c;) € {0,1}"*™, where “c?; = 0” means

dz; (t)

that p; does not appear in the equation for ==, i.e., % =0.

Let A = g—i be the Jacobian matrix with respect to state variables, and let C
be the negative of g_lfu the Jacobian matrix with respect to the parameters. Since
f(&(u),u) is identically zero, we may take derivatives with respect to u, and use
the chain rule of derivatives to obtain that C' = AB.

The experimental design question we need to address is as follows. We wish
to obtain as much information as possible about the matrix A. However, each
parameter perturbation experiment involves a cost (resources, experimental diffi-
culties, etc.), which we would like to minimize. We can think of these experiments
as “queries” that return a column B; of B if the i'" parameter u; is perturbed.
Observe that the matrix C° tells us which rows of A have zero inner product with
which B;. This leads us to the linear algebraic question shown in Fig. 5.16.

@ Instance: two matrices A € R™*™ and B € R™*™ such that
e A is unknown;

e B is initially unknown but each of its m columns, denoted
as By, B, ..., By, can be retrieved with a unit-cost query,

e the columns of B are in general position, and

e the zero structure of the matrix C = AB = (¢;;) is
known, i.e., a binary matrix C° = (c;) € {0,1}"*™
is given such that ¢; ; = 0 for each 4, j for which ¢f ; = 0.

Goal: obtain as much information as possible about A while perform-
ing as few queries as possible.

(&

Figure 5.16  Linear algebraic formulation of the experimental design question for the
MRA approach.
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The question is: exactly how much information about A we can obtain in the
above formulation? Notice that there are always intrinsic limits to what can be
accomplished: if we multiply each row of A by some non-zero number, then the
zero structure of C' is unchanged. To help the reader appreciate this question, we
discuss the following concrete example from [14]. Consider the following instance
of the linear algebraic formulation:

01011 -1 1 3 4 3 37 1 10
c®=]1 11 00|, A=|l2 -1 4|, B=|4 5 52 2 16
00 1 01 0 0 -1 00 -5 0 -1

and suppose that we perform four queries corresponding to the columns 1, 3, 4 and
5 of B to obtain the following data:

4 37 1 10
4 52 2 16 (5.3)
0 =5 0 -1

Let us first attempt to identify the first row A; of A. The first row of the matrix
Cy tells us that the vector A; is orthogonal to the first and second columns of (5.3)
(which are the same as the first and third columns of B, respectively). This is the
only information about A that we have available, and it is not enough information
to uniquely determine A;, because there is an entire line that is orthogonal to the
plane spanned by these two columns. However, we can still find some non-zero
vector in this line, and conclude that A; is an unknown multiple of this vector.
This non-zero vector may be obtained by simple linear algebra manipulations (cf.
Exercise 5.14). Similarly, we may use the last two columns of (5.3) to estimate the
second row of A, again only up to a multiplication by a constant, and the first and
third columns of (5.3) to estimate the third row of A. Thus, as in the example, the
best that we can hope for is to identify the rows of A up to scalings, or in other
words the signs of the entries of A, which is precisely what the MRA approach
promises.
At this point, two important questions remain to be answered:

(o) How much prior information via the matrix C° (i.e., how many zero entries in
C") is needed to determine A, exactly or almost exactly, up to scalings?

(P;) Assuming we have sufficient prior information as suggested by an answer to (a.),
how do we find a minimal or near-minimal set of perturbation experiments to
determine A?

To assist us in answering these questions, we reformulate the linear algebraic version
of the problem in Fig. 5.16 in the following manner. Let A; denote the i'" row of A.
Then the specification of C° amounts to the specification of orthogonality relations
A; - Bj =0 for each pair i and j for which ¢? ; = 0. Thus, if we query the columns

of B indexed by J = {j1,...,j¢} C {1,2,7...,m}, then letting J; = {j | j €
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J and c?yj = O}, we get

Ai EHé,’L
Hagi= span{Bj: j € Ji}

where “_1” indicates the orthogonal complement operation. Now if the set of indices
J has the property
Vi=1,2,....,n: |J| =n—k (5.4)

for some given integer k then, via the general position assumption, the space H 7 ;
has dimension of at least n — k, and hence the space Hji has a dimension of at

most k. We now discuss the answers to questions (o) and (P») for various values of
k.

The case of k = 1 This is the most desirable special case since the dimension of
Hji being at most 1 implies that each A; is uniquely determined up to a scalar
multiple, providing the best possible answer to question (a). Assuming that the
degenerate case ’H,L’i = {0} does not hold (which would determine A; = 0), once
an arbitrary non-zero element v in the line sz has been picked, there are only
two sign patterns possible for A; (the pattern of v and that of —v). If, in addition,
one knows at least one nonzero sign in A;, then the sign structure of the whole
row has been uniquely determined. For the MRA setup, typically one such sign is
indeed known; for example, the i*" element of each A; is known to be negative as
it represents a degradation rate. Thus, to settle question (Q?), we need to solve the
following combinatorial problem:

find J C {1,2,...,m} such that
|7| is minimum (5.5)
Vi=1,2,...,n: |J| >n—1

If queries have wvariable costs (i.e., different experiments have a different associ-
ated cost), this problem must be modified to that of minimizing a suitable linear
combination of costs, instead of the number of queries.

The more general case of k > 1 More generally, suppose that the queries that
we performed satisfy the constraint ‘JZ‘ > n —k with £ > 1 but still small k.
It is no longer true that there are only two possible sign patterns for any given
A;. However, Berman et al. [14-16] show that the number of possibilities is still
small. We refer the reader to [14-16] for precise bounds that answers question (a.).
To answer question (Qs), we need to solve a more general version of Problem (5.5),
namely the following;:

find J C {1,2,...,m} such that
|7| is minimum (5.6)
Vi=1,2,...,n: ‘jl’ >n—k

5.4.1.1 Algorithmic aspects of the MRA approach 1t is possible to show by a simple
transformation that (5.6) can be written down in the form of the combinatorial
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Problem name: SC,

Instance <n,m,y>: universe U = {ul,uz, .. .,un}

sets S1,52,...,9m C U with UjL,S; =U
positive integer (“coverage factor”) v
Valid Solution: a subset of indices I C {1, 2,..., m} such that
Vuj; € U: |i€[ : quSi|2fy

Objective: minimize |I|

Figure 5.17 A combinatorially equivalent reformulation of (5.6).

(* comment: randomized approach *)

(* comment: greedy approach *)

I = (), uncovered = U

while uncovered # () do

solve the following linear program (LP)
minimize 77 | z;
subject to Vu; € U: Zj‘ weg, Ti > 1
€S
vVje{1,2,...,m}:x; >0
let the solution vector be (x1,3,...,z)
=0

repeat 2Inn times

select an index j € {1727 . 7m} \ I
that maximizes {uncovered N Sj{

uncovered = uncovered \ S; fori—1.9 d
ori=1,2,...,n do

I=1U{j
. (s} if 1 ¢ I then
endwhile
put ¢ in I with probability x;
endfor
endrepeat

(a) (b)

Figure 5.18 Two well-known algorithms to solve SC; [84].

problem in Fig. 5.17 (cf. Exercise 5.15). Problem SC, is in fact the (unweighted)
set multicover problem well-known in the combinatorial algorithms community [84];

SC; is simply called the set cover problem. Let a = max;cyi 2,

m} {’Sl‘} denote

the maximum number of elements in any set. Two well-known algorithms for solving
SC; are as follows:

» The greedy approach shown in Fig. 5.18(a) that repeatedly selects a new set
that covers a maximum number of “not yet covered” elements. This algorithm
is known to have an approximation ratio of (1 + In «) [42,84].

* The randomized algorithm shown in Fig. 5.18(b) is a A-approximation with
high probability where E[A] = O(logn). The first step in the algorithm is to
solve a linear program (LP) that is a relaxation of an integer linear program
(ILP) for SC;. The best way to understand the LP formulation is to imagine
as if each variable x; is binary (i.e., takes a value of 0 or 1) and interpret
the 1 and the 0 value as the set S; being selected or not. There are efficient
solutions for any LP problem [45,60]. However, a solution of the LP may provide
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non-binary real fractional values for some variables, and the remaining steps
are “randomized rounding” steps that transform these real fractional values to
binary values (0 or 1).

It is also known that the above approximation bounds for SC; are in fact the best
possible theoretical guarantees for SC; (28, 83].

select a positive constant ¢ > 1 as follows:

Ina, ify=1
n(52%), if 52 >e®andy > 1
Cc =
2 if <% <e’andy>1

1+ /%/v, otherwise

solve the following LP
minimize 377" | z;
subject to Vu; € U: 37, wies; T 2
Vjie{l,2,...,m}:xz; >0

let the solution vector be (z7,x3,...,;)
form the indices of a family of sets In = {j: cz] > 1}

form the indices of a family of sets I C {1, 2,... ,m} \ Io by selecting a set S;
for j € {1, 2,0, m} \ Io with probability cz}

form the indices of a family of sets I> by greedy choices:
if an u; € U belongs § sets in Ujer,ur, S5 and § < v
then choose any v — § sets containing u; from the remaining sets
whose index is not in Iy U I
endif

I=I1aUlL Ul

Figure 5.19  Improved randomized approximation algorithm for SC, [14].

The greedy approach shown in Fig. 5.18(a) can be easily generalized for v > 1
by selecting at each iteration a new set that covers the maximum number of those
elements that has not been covered at least v times yet; the resulting algorithm still
has an approximation ratio of (1 + In«). An improved randomized approximation
algorithm for SC,, when v > 1 was provided by Berman et al. [14] and is shown in
Fig. 5.19. This algorithm has an approximation ratio of A where

1+ Ine, ify=1
_azt o e o
(1+e 5)ln(ﬁ), 1fﬁ262and”y>1
y—1
min{2+2e_ 5),2+(e_2+e_9/8)%}, if%<%<62and7>l

1+ 2+/o/x, if%§1/4and’y>1

E[A] <
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Note that, if K =1 then v =n — 1 > « and consequently A ~ 1; thus, in this case
the algorithm in Fig. 5.19 returns an almost optimal solution in expectation.

5.4.2 Parsimonious combinatorial approaches

In this section, we discuss a few parsimonious combinatorial approaches for reverse
engineering causal relationships between components of a biological system. These
methods make use of time-varying measurements of relevant variables (e.g., gene
expression levels) of the system. The causal relationships reconstructed can be
synthesized to a Boolean circuit, if needed.

Before going into the details of the method and its ingredients, we explain a
key idea behind the method using an example. Suppose that we are measuring

the expression levels of 5 genes %1, %2, %3, %4 and %5 to determine their causal

relationships. Consider two adjacent times of measurements, say t = 7 and t = 7+1,
and suppose that the measurements are as in Fig. 5.20(a).

measurements

t=7 t=71+1 @ @

To 1 1
variables x3 1 0
Xq 0 2 @ @
x5 0 1 T5 =21 VI3V Iy T5 =121 Vx4

(a) (b) (c)

Figure 5.20 (a) Measurements of expression levels of 5 genes %17 %27 %37 %4 and ‘g5

at two successive time steps; variable x; correspond to gene gl (b) A causal relationship
and Boolean formula that explains the causal relationship of other variables to x5 based only
on the data shown in (a). (c) Another causal relationship and Boolean formula for (%5 that

is consistent with the data in (a).

Suppose that we wish to reconstruct a causal relationship of every other gene to
gene %5 that is consistent with this given data. Note that the variable x5 changes its

value between the two successive time intervals and this change must be caused by
other variables. The variable x5 retains the same value 1 during the two successive
time intervals, so the change of value of x5 must be caused by at least one of the
three other variables x1,z3 and x4. Intuitively, this explanation of observed data
makes the assumption that the regulatory network for x4, ..., x, can be viewed as
a dynamical system that is described by a function f: X" — X" that transforms
an “input” state x = (:Cl,xg, .. .,:Cn) € X™ C N" of the network at a time step
to an “output” state x’ = (:C'l, ... ,x;l) of the network at the mext time step, and
a directed edge x; — x; in the graph for the network topology of this dynamical
system indicates that the value of x; under the application of f depends on the
value of z;. Thus, our reconstructed causal relationships can be summarized by the
arcs shown in Fig. 5.20(b), where the presence of an arc, say x; — x5, indicates
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that 1 may have an influence on z5. A Boolean formula that explains this also be
obtained.

Notice that a reconstructed causal relationship may not be unique. For example,
Fig. 5.20(c) shows that omitting the dependency of x5 on x3 still explains the ob-
served data in Fig. 5.20(a) correctly. In fact, the most that such a reconstruction
method can claim is that x5 should depend on at least one of the three variables
x1,x3 or x4. The combinatorial approaches discussed in this section are of parsimo-
nious nature in the sense they attempt to choose a network with a minimal number
of causal relationships that explains the given data; for the example in Fig. 5.20(a)
such a method will select only one of the three possible causal relationships. A min-
imal network can be recovered by using the so-called hitting set problem. However,
as we have already observed in Section 5.3.4, biological networks do not necessarily
have the lowest possible redundancy, and thus we will need suitable modifications
to the approach to introduce redundancy.

We now discuss more details of the two combinatorial approaches based on the
above ideas which have been used by other researchers.

5.4.2.1 Approach by Ideker et al. [38] In this approach, a set of sparse networks,
each from a different perturbation to the genetic network under investigation, is
generated, the binarized steady-states of gene expression profiles of these networks
are observed, and then, using the idea explained in the previous section, a set
of Boolean networks consistent with an observed steady-states of the expression
profiles is estimated. Next, an “optimization step” involving the use of an entropy-
based approach is used to select an additional perturbation experiment in order to
perform a selection from the set of predicted Boolean networks. Computation of
the sparse networks rely upon the hitting set problem. To account for non-minimal
nature of real biological networks, one can modify the hitting set algorithm to add
redundancies systematically by allowing additional parameters to control the extra
connections.

measurements over time ¢

01 2 3
01 2 0
00 3 1 @:{%17§27@37@47%5}
X = 1 0 0 O ) ) )
01 21 T :(D,T2:{%1,%4,(%5},%:{@1,%4}
0 1 1 1

(a) (b)

Figure 5.21 (a) Data matrix X = (1:”) (quantized to four values) for measurement
of expression levels of m = 5 genes at n + 1 = 4 time points. (b) The universe and sets

corresponding to gene gz in the hitting set formulation of Fig. 5.22(a).

5.4.2.2 Approach by Jarrah et al. [39] This approach uses one or more time
courses of observed data on gene expression levels. Such data can be represented
by a m x (n 4+ 1) matrix X = (x”) where m is number of variables (molecular



REVERSE ENGINEERING OF BIOLOGICAL NETWORKS 165

species) and n + 1 is the number of points of times at which observations were
made. For example, a m = 5 species data (quantized to four values) at n+1 =4

time instances is shown in Fig. 5.21(a). Suppose that we wish to construct a causal

th

relation for gene %1 corresponding to the *" row of X. Consider two successive

times t =7 — 1 and t = 7, and let

4

Tg -1 7 ey and £ F# 2} o w1 # @i

T} =

0, otherwise

Then, at least one gene in sz must have a causal effect on ;. Repeating the

argument for j = 1,3,...,n, we arrive at the so-called hitting set problem shown
in Fig. 5.22(a).

Problem name: Hitting set (HS) F =0, un-hit = {1,2,...,n}
while un-hit # () do

Instance <m,n>: universe %:{gl,...,gm} select(% c %\]—"that
¢

sets 11", Ty, .. © T, maximizes Z ‘ {% } Nt
with Ui, T} C e

g€unhit
Valid Solution: F gg such that F=FU {%e
Vi<j<n: |FNT/|>1 un-hit:un-hit\U{q}
Objective: minimize | F | {G.n7a}|>0
endwhile
(a) (b)

Figure 5.22  (a) A hitting set formulation of the combinatorial approach for gene ‘gl

(b) A greedy algorithm for HS that iteratively selects a new element of the universe that
hits a maximum number of sets not hit yet.

HS is the combinatorial dual of the SC; problem introduced in Fig. 5.17. The
duality transformation between HS and SC; is given by (5.7) (cf. Exercise 5.10):

SC, HS Condition for
U= oy §={G,6) cquivalence | (5.7)
S1,52,...,8m CU Tf,T;,...,T;g@ Ve, j:ue €8 EQJ_ET/

Thus, to solve HS, we can simply transform it to an equivalent instance of SC;
and use the methods described before. A more direct greedy approach to solve
HS is shown in Fig. 5.22(b): we repeatedly pick a new element that is contained
in a maximum number of sets none of whose elements have been selected yet.
This greedy algorithm can be shown to have an approximation ratio of u, where
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is the maximum number of sets in which an element

: i
n= e |i1G,eT,
belongs [84].

Finally, to allow for non-minimal nature of real biological networks, redundancy
can be easily introduced by allowing additional edges in the network in a “con-
trolled” manner that is consistent with the given data. For this purpose, we need
to generalize the HS problem to “multi-hitting” version when more than one ele-
ment from each may need to be picked. Formally, let 7 = (Y1,72,--+,7n) € N" be
a vector whose components are positive integers; the positive integer ~; indicates
that at least y; elements need to be selected from the set Tji. Then, HS can be
generalized to the problem HS= by replacing the each constrain ‘}' ﬂTji | >1
in Fig. 5.22(a) by |]~"ﬂTji ‘ > ~;. It is easy to modify the greedy algorithm for
HS in Fig. 5.22(b) to find a valid solution of HS=.

5.4.2.3 Comparative analysis of the two approaches DasGupta et al. in [23] com-
pared the two combinatorial reverse engineering approaches discussed in Section 5.4.2.1
and Section 5.4.2.2 on the following two biological networks:

(1) An artificial gene regulatory network with external perturbations generated
using the software package in [61]. The interactions between genes in this
regulatory network are phenomenological, and represent the net effect of tran-
scription, translation, and post-translation modifications on the regulation of
the genes in the network.

(2) Time courses from a Boolean network of segment polarity genes responsible for
pattern formation in the embryo of Drosophila melanogaster (fruit fly). This
Boolean model, based on the binary ON/OFF representation of mRNA and
protein levels of five segment polarity genes, was validated and analyzed by
Albert and Othmer in [7].

For the approach by Ideker et al., the redundancy vector 7 used was of the form
(ryr,...,r) for r = 1,2, 3. For network (1), Jarrah et al.’s method obtained better
results than Ideker et al.’s method, although both fare very poorly. In contrast, for
network (2), Jarrah et al.’s method could not obtain any results after running their
method for over 12 hours, but Ideker et al.’s method was able to compute results
for such network in less than 1 minute, and the results of Ideker et al.’s method
improved slightly for larger values of r. The reader is referred to [23] for further
details about the comparison.

5.4.3 Evaluation of quality of the reconstructed network

By the very nature, the reverse-engineering problems are highly “ill-posed” in the
sense that solutions are far from unique. This lack of uniqueness stems from the
many sources of uncertainty such as:

* measurement error,
» stochasticity of molecular processes,

* hidden variables, i.e., lack of knowledge of all the molecular species that are
involved in the behavior being analyzed.
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Thus, reverse-engineering methods can at best provide approximate solutions for
the network that is to be reconstructed, making it difficult to evaluate their perfor-
mance through a theoretical study. Instead, their performance is usually assessed
empirically in the following two ways.

5.4.3.1 Experimental testing of predictions After a network has been reconstructed,
the newly found interactions or predictions can be tested experimentally for network
topology and network dynamics inference, respectively.

5.4.3.2 Benchmark testing 'This type of performance evaluation consists on mea-
suring how close the reverse engineering method under investigation is from re-
covering a known network, usually referred to as the “gold standard” network. In
the case of dynamical models, one evaluates the ability of the method of interest
to reproduce observations that were not taken into account in the training phase
involved in the construction of the model. For methods that only reconstruct the
network topology, a variety of standard metrics, such as the ones described below,
may be applied.

Metrics for network topology benchmarking Let G is the graph representing the
network topology of a chosen gold standard network, and Let G be the graph
representing the network topology inferred by the reverse engineering method. Each
interaction 7 in G can be classified into one of the following four classes when
comparing to the gold standard:

True positive (TP): 7 exists both in G and in gN
False positive (FP): 7 exists in QN but not in G.
True negative (TN): 7 does not exist both in G and in QN

False negative (FN): 71 does not exist in G but exists in G.

Let nrp, Nep, Nrn, Ney and N, be the number of true positives, false positives,
true negatives, false negatives and total number of possible interactions in the
network, respectively. Four standard metrics for benchmarking are as follows:

nTPp

recall rate or true positive rate TPR

nTp+nNEN
false positive rate FPR = —2FP__
npp+nTN
accuracy rate ACC =  ZIRInIN
Mtotal
precision or positive predictive value PPV = —2TB
nTp+npp

Since reverse-engineering problems are under-constrained, usually the network
reconstruction algorithm will have one or more free parameters that helps to select
a best possible prediction. For example, components of redundancy vector 7 in the
hitting set approach could be a set of such type of parameters. In this case, a more
objective evaluation of performance needs to involve a range of parameter values.
A standard approach to evaluate performance across the range of parameters is the
recetver operating characteristic (Roc) method based on the plot of FPR versus
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TPR values. The resulting ROC plot depicts relative trade-offs between true posi-
tive predictions and false positive prediction across different parameter values; see
Fig. 5.23 for an illustration. An alternative plot is the recall precision plot obtained
by plotting TPR versus PPV values.

@ best possible performance
better than random performance
QO same performance as random guess

& worse than random performance

oL > FPR
0 0.1 0.2 0.30.40.5060.70809 1

Figure 5.23 Two dimensional Roc space obtained by plotting FPR versus TPR values.

Examples of gold standard networks We give two examples of gold standard net-
works that can be used for benchmark testing of reverse engineering methods.
Further discussion on generation of gold standard networks can be found later in
Section 6.3.3.1.

(L) Gene regulatory networks with external perturbations can be generated from
the differential equation models using the software package in [61].

(JL) Time courses can be generated from the Boolean model of network of segment
polarity genes involved in pattern formation in the Drosophila melanogaster embryo.
This model was proposed by Albert and Othmer [7]; the network for each cell has
15 nodes.
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EXERCISES

5.1 Suppose that your data suggests that Protein A inhibits the transcription of
the RNA that codes Protein B, whereas Protein B in turn enhances the production
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of Protein A. Give a two node regulatory network that is consistent with this
information.

5.2  Cousider the following biological model of testosterone dynamics [27,62]:

dz A
d_tl(t) T K+as(t) b ()

dx
d—t2(t) = c121(t) — baza(t)

dd%(t) = coma(t) — bazs(t)

where A, K, by, ba, b3, ¢c1 and ¢y are positive constants. Draw the associated signed
graph of this model.

5.3 Consider five genes %1, %2, %3, %4 and %5, and suppose that each gene

switches its state if the remaining four genes are not in identical states.
a) Write down the Boolean network and its associated directed network for
the interaction of the five genes described above.
b) Does the Boolean network in 5.3.a has a fixed point? If so, show one fixed
point.

5.4 Show that the reduced network in Fig. 5.8 is not minimal by giving a minimal
network in which more than two arcs are removed.

5.5 Consider the following subset of the evidence gathered for the signal trans-
duction network responsible of abscicic acid induced closure of plant stomata [57]:

ABA 41 NO

ABA — PLD

ABA — GPAl

ABA — PLC

GPA1 — PLD

PLD — PA

NO 4 KOUT

KOUT — Closure

PA — Closure

PLC — (ABA — KOUT)
PLD — (ABA — Closure)

and suppose that Ey, = {GPAl — PLD, KOUT — Closure}. Follow the network
synthesis approach in Fig. 5.4 to synthesize a minimal network.

5.6  [3] Consider the three signal transduction networks shown in Fig. 5.24.
a) Verify that the two networks shown in (i) and (ii) has the same in-degree
and out-degree sequence, but Ry, = 0 for the network in (i) and Ry, = 3/11
for the network in (ii). Can you give an exact expression of the value of
By, for the network in (ii) when generalized to have n nodes?
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Figure 5.24  Three n-node graphs (shown for n = 8) discussed in Exercise 5.6.

b) Verify that higher average degree does not necessarily imply higher values
of B, by showing that the network in (ii), generalized on n nodes, has
an average degree below 2, but the graph in (iii), generalized on n nodes,
has an average degree of 7/2 but a redundancy value of 0.

5.7 Argue that the dynamics of the two networks in Fig. 5.13 compute different
functions if an OR gate is used to combine the inputs to node c, and all arcs have
the same time delay.

5.8 Prove Equation (5.2).

5.9 Convince yourself that Problem (5.6) is indeed a correct formulation for the
case of arbitrary k.

5.10 Show the validity of the equivalence shown in (5.7) between SCy and HS. In
other words, show that, assuming the equivalence conditions hold, S;,,Si,,- - ., S,

is a valid solution of SC; if and only z’f@_ % o @ is a valid solution of HS.
11 12 1t

5.11 This problems explores some possibilities to improve the time and space
requirements of the dynamic programming algorithm in Fig. 5.5
a) Suppose that we remove the third index (corresponding to the variable k in
the loop) from the variable N and P, i.e., instead of N (4, j, k, ) we simply
use N(i,7,x) etc. Note that the space requirement is now O (nz) instead
of O (n3) Will the algorithm still compute all reachabilities correctly?
b) In practice, the variable &k in the for loop may not need to go until it
reaches the value of n. Suggest how we can abort the loop for £k = ¢
based on the calculations performed during the executing of the loop with
k=¢-1.

5.12 In Section 5.3.3.1 we claimed that opt(G) > |V|. Prove this.

5.13 Consider the special case of the TR problem when every arc is excitory (i.e.,
when L(u,v) = 1 for every arc (u,v) € E). The goal of this problem is to design
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an algorithm for this special case that improves upon the approximation ratio of 3
of the greedy approach as stated in Theorem 5.1.
a) [5] Show that the problem can be solved in polynomial time if the given
graph G has no cycles of with more than 3 arcs.

Figure 5.25 Contraction of a cycle of length 4.

b) By contraction of an arc (u,v) € E we mean merging nodes v and v to
a single node, and deleting any resulting self-loops or parallel arcs. By
contraction a cycle we mean contraction of every arc of the cycle; see
Fig. 5.25 for an illustration. Consider the following algorithm:

select an integer constant k > 3
fori=kk—1,...,4
while G contains a cycle C of at least i edges
contract C and select the edges of C in our solution
endwhile
endfor
(* comment: now G contains no cycle of more than 3 edges *)
use the algorithm in part a) to solve the TR problem on G exactly
and select the edges in this exact solution

output all selected edges as the solution

(i) Show that the above algorithm returns a valid solution of TR.

(ii) [51] Show that if Fy, = ) and G is strongly connected then the
above algorithm has an approximation ratio of § = % — % + m =
1617 + oy

c¢) Use part b) (ii) to provide an algorithm with an approximation ratio of
1+ Bif Eq #0.

5.14  [14] In the example explaining the linear algebraic formulation of MRA on
page 159, we claimed that we can find a non-zero vector by simple linear algebra
manipulations such that A; is an unknown multiple of this vector. Show how to
find such a non-zero vector.

5.15 [14] Show that Problem (5.6) can be written down as a problem of the form
shown in Fig. 5.17.



CHAPTER 6

DYNAMICAL SYSTEMS AND INTERACTION
NETWORKS

In this chapter, we view biological models in the framework of dynamical systems.
In this framework, the biological system has a vector x(t) = (z1(t), z2(t), ..., zn(t))
of n time-dependent state variables (e.g., indicating the concentration of the n
proteins in the model at time t), a vector u(t) = (u1(t), u2(t), ..., un(t)) of m time-
dependent input variables for the external stimuli to the system, and n functions
f1, f2,. .., fn where f; governs the evolution of the state variable x;. Different types
of system dynamics can be obtained by varying the nature of these variables and
functions.

Discrete versus continuous state variables z1,xo,...,x, The state variables
could be continuous (i.e., real-valued) or discrete (e.g., binary). When state vari-
ables are continuous, the evolution of cellular components are assumed to be contin-
uous functions of time. In contrast, when the state variables are discrete, each com-
ponent is assumed to have a small number of qualitative states, and the regulatory
interactions are typically described by logical functions such as Boolean circuits;
examples of such models are discussed in references [2,19,21,34,42,60,72,84,102].

Discrete versus continuous time variable ¢ The time variable ¢ can be con-
tinuous or discrete. Continuous-time models can describe dynamics such as mass-
action kinetics (e.g., see [50,81,100]) via differential equations (such as via sys-
tem (5.1) discussed in Chapter 5) or by delay equations if delays are important.
Discrete-time models involve difference equations, or they may arise as quantized
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descriptions of continuous-variable systems (e.g., see [37]). For example, the dis-
crete time version of system (5.1) of Chapter 5 using a simple “Jacobi-type” iteration
with synchronous updates can be written down as:

z1(t+1) = fi(za(t), m2(t), ..., zn(t), ur(t), uz(t), ..., um(t))

2ot +1) = fo(z1(t), m2(t), ..., xn(t), ur(t), uz(t), ..., um(t))

: (6.1)
xa(t+1)= fn(acl(t), x2(t)y ..., xn(t), ur(t), ua(t),. .. ,um(t))
or, in more concise vector form

x(t+1) = f(x(t),u(t)) or x* =f(x,u)

Communication delays Delays may result in cellular systems due to differences in
times for transcription, translation, degradation and other biochemical processes.
Delays can be implemented, for example, by appropriate modifications of Equa-
tions (5.1) or (6.1). For example, in the context of Equation (6.1) suppose that
the output of variable z; is delayed by ¢ time units to reach variable z;. Then, the
modified equation for change of x; can be written as:

Ij(t‘f‘l): j( ...... ,CCZ(t—Fl—(S), ...... )

It is not difficult to see that delays may affect the dynamic behavior in a non-trivial
manner (cf. Exercise 6.1).

Deterministic versus stochastic dynamics In a deterministic model, the rules
of the evolution of the system is deterministic in nature. In contrast, stochastic
models may address the deviations from population homogeneity by transforming
reaction rates into probabilities and concentrations into numbers of molecules (e.g.,

see [79]).

It is also possible to consider “hybrid” models that may combine continuous and
discrete time-scales or continuous and discrete variables (e.g., see [4,13,20,22,40]).
The choice of a model for a specific application depends on several factors such
as simplicity of the model, accuracy of prediction and computational aspects for
simulating the model. Sometimes more than one model may be used to model the
same biological process at different levels. For example, the segment polarity gene
network has been investigated using a continuous-state model with 13 equations
and 48 unknown kinetic parameters in [100] and also using a synchronous Boolean
model in [2].
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6.1 Some basic control-theoretic concepts

We illustrate some basic control-theoretic concepts and definitions used in the study
of dynamical systems. Consider the discrete-time model, a special case of the
system (6.1) with the explicit variable vector z € R? for the p output measurements
included, as shown below:

T (t + 1) T (t) U1 (t)
To(t + 1) 4 To (t) B Uo (t)
Ty (t + 1) xn(t) U, (t)

Zl(t) 1 (t) (6.2)

0] e

or, in simple vector notation
x(t+1)=Ax(t)+ Bu(t), z(t)=Cx(t)

where A € R™*" B € R"™ and C € RP*".

Recall that a directed graph of n nodes is strongly connected if and only if, for
any pair of nodes u and v, there exists a path from u to v using at most n— 1 edges.
An analog of similar kind of behavior is captured by the definition of controllability
of a dynamical system.

Definition 3 (Controllability) The system (6.2) is said to be controllable if, for
every nitial condition x(0) and every vector y € R™, there exist a finite time tg
and input (control) vectors u(0),u(1),...,u(to) € R™ such that y = x(to) when
the system is started at x(0).

Intuitively, controllability means the ability to reach any final state y from any
initial state x(0) by time to without posing any conditions of the trajectory of the
dynamics or any constraints on the input vectors u(t). For system (6.2), a necessary
and sufficient condition for controllability can be easily deduced in the following
manner. We first unwind the evolution of the system by using the recurrence
equations:

x(1) = Ax(0)+ Bu(0)

x(2) = Ax(1)+ Bu(l) = A2x(0) + ABu(0) + Bu(1)

x(3) = Ax(2)+ Bu(2) = A*>x(0) + A2 Bu(0) + ABu(1) + Bu(2)
y= x(n) = A"x(0)+ A"t Bu(0) + A" 2Bu(l) + A" 3Bu(2) +...

--++ ABu(n—2)+ Bu(n—1)
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Thus, for the system to be controllable, there must be a solution to the following

set of linear equations where we treat u(0),u(1),...,u(n — 1) as unknowns:
u(n—1)
u(n —2
(B AB A’B...... A"‘lB) : —y — A" x(0)
u(1)
u(0)

This is clearly possible only when the n x nm controllability matrix (also called the
Kalman matrix) Z = (B AB A%B...... A"_lB) has a full rank of n.

Another useful control-theoretic aspect of dynamical systems is the observability
property. Intuitively, observability is a quantification of how well the internal states
of a system can be distinguished or identified by observing its external outputs.
There are several possibilities for such a quantitative definition; below we state one
such definition. Let the notation z(t)‘ ) denote the value of the output

vector z(t) with the initial state vector x(0) = x and the input vectors u(j) = u;
for j=0,1,2,...,t—1.

X,u0,-.-, Ut —

Definition 4 (Observability) A state vector x € R™ of the system (6.2) is called
unobservable over a time interval [O, T] if

(Vuo, up,...,u,_1 € Rm) : z(t)| = Z(t)|0,uo,...,u7-71

X,UQ;,.- 0y Ur—1

where 0 = 0™. System (6.2) is said to be observable if it has no unobservable state.

It is not very difficult to see that if the system (6.2) is observable as defined
in Definition 4, then this also implies that the initial state x(0) can be uniquely
determined. Exercise 6.8 asks the reader to verify that if a system is observable
then all states are observable within the time duration [0, n] Using a similar type
of recurrence unravelling as was done for the controllability case, it can be see that

system (6.2) is observable if and only if the matrix (C CA CA%? ... CA"_I)

has a rank of n.
In this remainder of this chapter, we discuss several dynamical models that are
typically used in modelling cellular processes and interactions.

6.2 Discrete-time Boolean network models

Discrete-time Boolean networks were introduced in Section 5.2. In our dynamical
systems framework, a discrete-time Boolean network is described by setting time

variables ¢ to have discrete values such as 0,1,2,... in a system of difference equa-
tions such as (6.1), where x(t) = (z1(t),z2(t),...,zn(t)) € {0,1}" for all ¢, and
fi, f2,..., fn are Boolean functions. For example, the reverse engineering method

of Jarrah et al. in Section 5.4.2.2 reconstructed a Boolean network, and the model
for the segment polarity gene network in Drosophila melanogaster given in [2] is a
Boolean network model.
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Figure 6.1 A Boolean network of two species interaction.

(z1,z2) = (0,1) and (z1,x2) = (1,0) are the fixed points of this

network. If synchronous update rule is used, then the Boolean
NOT system is defined by

z1(t+1) = 22(t), wo(t+1)=z1(1)

and thus the state vector (1, 1) does not lead to a fixed point. On
the other hand, suppose that the following asynchronous update
rule is used:

NOT
z1(t), if tis odd

x2(t), otherwise

x2(t), iftis even

z1(t), otherwise

z1(t+1) = { z2(t+1) = {

then the state vector (1, 1) leads to the fixed point (0, 1).

Note that the dynamics in (6.1) are described by simultaneously updating the
state of all the variables in the network (the so-called “synchronous update” rule).
In reality, however, the rates of transcription, translation, degradation and other
biochemical processes can vary widely from gene to gene, thus giving rise to the
so-called “asynchronous update” rule where not all variables update themselves at
each time step. Asynchronous behavior can be formally incorporated in a Boolean
model by following the formalism of Thomas [95]. In this formalism, each compo-
nent of the cellular system is associated with two variables, an usual state variable,
and an image variable corresponding to each logical function in the Boolean model
(which takes appropriate state variables as its input), and depending on the asyn-
chronous update rule the value of the image variable is copied (or not copied) to
the corresponding state variable. The fixed points (also called steady states) of a
Boolean model remain the same regardless of the update method [16, page 431].
But, other aspects of the dynamic behavior of a Boolean network may drastically
change by using asynchronous as opposed to synchronous updates, resulting in the
same initial state leading to different steady states or limit cycles (see Fig. 6.1 for
an illustration). On the other hand, asynchronous update rules provide more real-
istic modelling of biological processes by allowing individual variability of the rate
of each process and thus allowing for decision reversals. For example, it becomes
possible to model the phenomena of overturning of mRNA decay when its tran-
scriptional activator is synthesized, a phenomena that synchronous updates cannot
model. Several asynchronous versions of the synchronous Boolean model for the
segment polarity network in [2] appear in [21,22].

6.3 Artificial neural network models

Artificial neural network (ANN) models were originally used to model the connec-
tivities of neurons in brains and thus, in contrast to cellular signaling networks,
ANN models generally have a less direct one-to-one correspondence to biological
data. In the framework of dynamical systems, ANN models are discrete-time dy-
namical systems where each function f; applies a suitable transformation to a linear
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z1(t+ 1) =1/ (14 e Cr2O-Tea0t29) m
( ) 25 @0 —19
To(t + 1) = 1/ (14e1203(0)
xg(t + 1) — 1/(1+Cf(le(t)«#ZzQ(t)le)) 5

Figure 6.2 A discrete-time sigmoidal neural network and its graphical representation.

combination of its inputs, i.e., f; is of the form

filwr (), m2(t), .. an () =g | > wija; — 0
j=1

for some (common) global function g: R — R, where the w; ;’s and 6,’s are real or
integral-valued given parameters. The global function g is commonly known as the
“activation” function or the “gate function” in the ANN literature. Some popular
choices for the function g are the Heaviside or threshold function H and the sig-
moidal function o (illustrated in Fig. 6.3); other choices for the activation function
include the cosine squasher, the gaussian, the hyperbolic tangent, generalized radial
basis functions, polynomials and trigonometric polynomials, splines and rational
functions. Often an ANN is pictorially represented by a directed graph G in which
there is a node wv; corresponding to each variable z;, the node v; is labeled with
its “threshold” parameter 6;, and a directed arc (vi,vj) is labeled by its “weight”
wj ;; see Fig. 6.2 for an illustration. The topology of G is usually referred to as the
architecture of the ANN. An ANN is classified as a feed-forward or recurrent type
depending on whether G is acyclic or not. For acyclic feed-forward ANNs, the depth
of the network is usually defined to be the length (number of nodes) in a longest
directed path in the directed graph representation of the network.

—3 =

@ (b)

H(z) a(z) . .
! _ [ 1, ifz>0 sy |7 T T e
°T H(:”)_{ 0, otherwise | . 1T
T
11 0
14 70‘5-:-
1 -1
T
A
1

Figure 6.3  (a) The threshold gate function. (b) The sigmoidal gate function.

Often ANN models are used for computing a function. For this purpose, one
designates a specific variable x, € {x1,z2,...,2,} as the output of the function; if
computation of a Boolean function is desired and the variables are real-valued, then
the output of the function is obtained by a suitable discretization of the output
variable z,, e.g., designating H(:Cp — 9) as the output of the function for some
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suitable threshold value 6. In this setting, the ANN is said to compute a function f(t)
of the input x(0) = (21(0),22(0),...,2,(0)) if z,(t) = f(21(0), 22(0), ..., 2, (0)).

6.3.1 Computational powers of ANNs

It is not difficult to see that Boolean networks are special cases of the ANN models
with threshold or sigmoidal functions (cf. Exercise 6.3). The simplest type of feed-
forward ANN is the classical perceptron model [73] consisting of n + 1 variables
Z1,%2,...,Tnt1 With a corresponding update rule of x,1(t + 1) = H(wlxl(t) +
woxa(t) + -+ + wpxy(t) — 0) for some real numbers wq,ws,...,w, and 6. Such a
model has a rather limited computational power [73]. However, for more complex
feed-forward ANNs, computational powers for ANN models far exceed than that of
the Boolean networks discussed in Sections 5.2 and 6.2. Computational powers of
ANNs depend heavily on the nature of the activation function as well as whether
the network is feed-forward or recurrent.

6.3.1.1 Feed-forward ANNs Threshold networks, i.e., feed-forward ANNs with
threshold gate function, have been studied in considerable details by the theoretical
computer science research community, and upper and lower bounds on depth and
number of nodes (variables) required for these types of circuits to compute vari-
ous Boolean functions (such as computing the parity function and computing the
multiplication of binary numbers) have been obtained in computational complexity
research areas, e.g., see [46,52,77,80].

However, it is more common in practice to use ANNs with continuous activation
functions such as the sigmoidal function. It is known that feed-forward ANNs of
only depth 2 but with arbitrarily large number of variables (nodes) can approxi-
mate any real-valued function up to any desired accuracy using a continuous gate
function such as the sigmoidal function [26,61]; however, these proofs are mostly
non-constructive.

It is known that feed-forward ANNs with sigmoidal gate function are more pow-
erful in computing functions than feed-forward ANNs of having the same number of
variables with Heaviside gate function [29,67]. A more detailed theoretical compar-
ison of the computational powers of ANNs with various types of activation functions
are provided in [28,29]; in particular, [29] showed that any polynomial of degree
n with polynomially bounded coefficients can be approximated with exponential
accuracy by depth 2 feed-forward sigmoidal ANNs with a polynomial number of
nodes.

6.3.1.2 Recurrent ANNs Investigations of the computational powers of recurrent
ANNs were initiated in [86,87]; [85] provides a thorough discussion of recurrent
ANNs and analog computation in general. Recurrent ANNs gain considerably more
computational power compared to the feed-forward ANNs with increasing compu-
tation time. In the following discussion, for the sake of concreteness, assume that
the initial values of the variables at ¢ = 1 are binary, the sigmoid function is used as
the gate function, and the output of the ANN is binarized for computing a function
on its inputs. If all the weights and thresholds are integers, then the recurrent
ANNs turn out to be equivalent to finite automata and thus they recognize exactly
the class of reqular language over the binary alphabet {0, 1}. In contrast, recurrent
ANNs whose weights and thresholds are rational numbers are, up to a polynomial
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time computation, equivalent to a Turing machine. Irrational weights provide an
even further boost in computation power in the sense that, if the ANNs are al-
lowed exponential computation time, then arbitrary Boolean functions (including
non-computable functions) are recognizable [86].

Finally, a precise theory of what can be computed by noisy ANNs has not very
satisfactorily developed yet. Especially when dealing with continuous variables, one
should also allow for noise due to continuous-valued disturbances, which may lead
to stringent constraints on what can be effectively computed [68].

6.3.2 Reverse engineering of ANNs

In the context of ANN models, reverse engineering is most commonly performed in
a learning theory framework. In this framework, the architecture of the unknown
ANN is given a priori, and the goal is to “learn” or reverse-engineer the weights and
thresholds of all nodes in the architecture. Assume for concreteness that the ANN is
used to compute an unknown Boolean function f(x) = f(:vl , Lo, ... ,xn) :{0,1}" —
{0,1}, zout € {:vl,acg, - ,xn} is the output variable that provides the output at
a specific time to,y > 0 , and the set of all possible inputs to the ANN come
from some probability distribution D. Just as our reverse-engineering problems for
Boolean or signal transduction networks in Section 5.4 used biological experiments
such as perturbation or knock-out experiments to generate the necessary data, it
is assumed that we have available a set of s input-output pairs (called samples)
(xl,f(xl)), (XQ, f(XQ)), el (xs, f(xs)), where the inputs x1,Xas,...,Xs are drawn
from the set of all possible inputs based on the distribution D. The reverse en-
gineering process involves determining the values of weights and thresholds of the
ANN based on these s samples. The final outcome of such a process provides a
function f(xl, T2, ... ,xn) computed by the ANN based on the determined valued
of the weights and the thresholds. Let the error probability be defined as

error-prob,, wf Prp [?(x) # f(x) }

where the notation Pry is used the clarify that probabilities are calculated with
respect to the distribution D. Typically, the reverse engineering process is con-
sidered to be possible (or, in the terminologies of learning theory, the function f
is probably-approximately-correctly learnable) if there exists a finite s such that for
every 0 < €,0 < 1 the following holds:

Prp, [errror-prob, > ¢] < § (6.3)

In the case when reverse engineering is possible, the function s (5, 6) which provides,
for any given ¢ and §, the smallest possible s such that Equation (6.3) holds, is
called the sample complexity of the class of functions in which § belongs. It can
be proved that learnability is equivalent to finiteness of a combinatorial quantity
called the Vapnik-Chervonenkis (VC) dimension vr of the class of functions F in
which f belongs. In fact, s(s, 6) is bounded by a polynomial in /e and !/s, and is
proportional to vz in the following sense [18,98|:

s(e,8) = O ((v#/e)log (V/<) + (V/¢) log (1/5))
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A specific set of weights and threshold values, denoted by wy ;’s and 6’s, can be
computed by solving the so-called “loading problem” [30] that fits these samples by
solving the following set of equations:

F(xi) =f(xi), i=1,2,...,8 (6.4)

Generalizations to the reverse engineering of real-valued (as opposed to Boolean)
functions, by evaluation of the so-called “pseudo-dimension” are also possible (e.g.,
see [53,65]). The Vc dimension appears to grow only moderately with the complex-
ity of the topology and the gate function for many types of ANNs. For example:

» The V¢ dimension of the class of functions computed by any feed-forward
ANN with a programmable parameters and the threshold activation function
is ©(aloga) [12].

* Maass [66] and Goldberg and Jerrum [45] showed polynomial upper bounds
of the V¢ dimension of the class of functions computed by feed-forward ANNs
with piecewise-polynomial activation functions.

» Karpinski and Macintyre [59] provided a O(w?n?) upper bound on the Vc
dimension for the class of functions computed by any feed-forward ANN with
the sigmoidal activation function, where w is the number of programmable
parameters and n is the number of variables.

Unfortunately, solving Equation (6.4) exactly to find an appropriate set of weights
and thresholds may turn out to be NP-hard even for a simple 3-variable ANN
with threshold or piecewise-linear gate function [17,31]. Thus, in practice, various
types of optimization heuristics such as back-propagation [83] are used to obtain an
approximate solution.

6.3.3 Applications of ANN models in studying biological networks

Although ANN models were originally inspired by the interconnectivity patterns of
neurons in brains, they have also been successfully applied to model genetic circuits.
We review two such applications below.

6.3.3.1 Application in reverse engineering of gene regulatory networks [62] In this
application, an ANN model is to used to reverse engineer a genetic regulatory net-
work from steady state wild type versus mutant gene expression data. We described
a framework for reverse engineering in Section 5.4.2 to construct the causal relation-
ships between genes from such data. As we commented in Section 5.4.3.2, testing
such methods requires the generation of the so-called gold standard networks. Ky-
oda et al. [62] used an extended ANN model with a continuous gate function for
obtaining the differential equation models of such gold-standard networks. An il-
lustration of this application is shown in Fig. 6.4.

Perturbation experimental data via gene knock-outs can be generated from the
model in the following manner. We may start with an equilibrium point, say
X = (%1,%2,T3,T4), of the model as the wild type. To knock out the gene wv;,
we can remove the node v; and its associated arcs from the network, start the
network at X, and run the network dynamics until it reaches a new equilibrium
point X = (T, Z2,%3,Z4). To generate time series data we can simply start the
network at a prescribed initial state and run it for a specific number of time steps.
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02=—lw3 y=——2 63=0
’ zi(t+1) = R, g<5x3(t) — 3aa(t) + 1) —Mai(t)
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Figure 6.4 (a) A continuous-state discrete-time ANN with a continuous gate function
g. (b) The difference equation model corresponding to the ANN in (a). R; is the maximum
rate of synthesis of gene v;, A; is the degradation rate of the product from gene wv;, and
the threshold 6; summarizes the effect of general transcription factors on gene v;. (¢) The
specific activation function g used by Kyoda et al. [62]. (d) The topological version of the
model in (b) indicating excitory and inhibitory effects.

6.3.3.2 Application in crop simulation modelling Accurate modelling of the genetic
regulatory mechanism leading to flowering time is critical in crop modeling for
finding time intervals during which growth and yield-generating processes operate.
Welch et al. [101] provided a simple 8-node ANN with the sigmoidal gate function
to model the control of inflorescence transition in the plant Arabidopsis thaliana.

6.4 Piecewise linear models

An affine map h over a vector space z = (zl, 22, ..., zn) isgivenby h(z) =Pz+Db
where P is a n X n matrix (called the affine transformation matriz) and b =
(bl,bz, .. .,bn) is a vector. Piecewise linear (PL) systems, in the sense defined
in [91], are discrete-time systems described by equations x(t + 1) = P(x(t), u(t))
(or, in more concise notation, “x* = P(x,u)”) for which the transition mapping P
is a PL map, i.e., there is a decomposition of the state space x and the input vector
space u into finitely many pieces such that, in each of these pieces, the mapping P
is given by an affine map. The decomposition is required to be polyhedral, meaning
that each piece is described by a set of linear equalities and inequalities. Explicit
constraints on controls and states are included as part of the specification of a PL
system. Thus, the state space and input value sets are subsets of R” and R™,
respectively, indicating a priori restrictions on the allowed ranges of variables, and
to make the dynamics remain piecewise linear, these sets are required to be definable
in terms of a finite number of linear equalities and inequalities.



PIECEWISE LINEAR MODELS 187

Linear systems arise in the special case in which there is just one region. But
the PL system paradigm includes many more situations of interest, such as:

= linear systems such as x* = A x+ Bsat (u) whose actuators are subject to sat-

uration, where sat (u) = sat (u1,u2,...,Um) = (41,02, ..., Uy,) = 0 in which
1, ifu;>1
G=4 —1, ifu; <1

u;, otherwise,

= switched systems x* = A; x + B; u, where the choice of matrix pair (A;, B;)
depends on a set of linear constraints on current inputs and states, and

= systems xT = sat (Ax + Bu) for which underflows and overflows in state vari-
ables must be taken into account.

PL systems are the smallest class of systems which is closed under interconnections
and which contains both linear systems and finite automata.

6.4.1 Dynamics of PL models

it was shown in [14] that the general class of hybrid “Mixed Logical Dynamical”
systems introduced in [15] is in a precise sense equivalent to the PL systems. Based
on this equivalence, and using tools from piecewise affine systems, the authors of [14]
studied basic system-theoretic properties, and suggested numerical tests based on
mixed-integer linear programming for checking controllability and observability.

Another basic question that is often asked about the PL class of systems is the one
regarding equivalence, i.e., given two systems, do they represent the same dynamics
under a change of variables? Indeed, as a preliminary step in answering such a
question, one must determine if the state spaces of both systems are isomorphic
in an “appropriate sense”. That is, one needs to know if an invertible change of
variables is at all possible, and only then can one ask if the equations are the same.
For classical finite dimensional linear systems, this question is trivial since only the
dimensions must match. For finite automata, similarly, the question is also trivial,
because the cardinality of the state set is the only property that determines the
existence of a relabeling of variables. For other classes of systems, however, the
question is not as trivial, and single numbers such as dimensions or cardinalities
may not suffice to settle this isomorphism (i.e., state-equivalence) problem. For
example, if one is dealing with continuous-time systems defined by smooth vector
fields on manifolds, the natural changes of variables are smooth transformations,
and thus a system whose state space is a unit circle cannot be equivalent to a system
whose state space is the real line, even though both systems have a dimension of 1.
As another example, for systems whose variables are required to remain bounded,
for instance, because of saturation effects, a state-space like the unit interval [—1, 1]
looks very different from the unbounded state-space R, even though both have
dimension 1.

To provide a precise definition of equivalence between two PL systems, we start
with an equivalent alternate definition of PL sets and maps. The PL subsets of
R™ are those belonging to the smallest Boolean algebra that contains all the open
half-spaces of R”. A map h: X — Y between two PL subsets X C R® and Y C R?
is a PL map if its graph is a PL subset of R® x R’. By a PL set one means a PL
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subset of some R". Then, a PL system is a discrete-time system x* = P(x,u) with
PL state and input value sets and PL transition matrix P. Viewed in this manner,
two PL sets X and Y are PL-isomorphic if there are PL maps h;: X — Y and
ho:Y — X such that hy o ho and hs o hy both equal to the identity mapping, i.e.,
y = hi(z) is a bijective piecewise linear map.

An elegant geometric interpretation of PL-isomorphism was provided in [32] and
is summarized below. Geometrically, a PL-isomorphism is a sequence of operations
of the following type:

» make a finite number of cuts along a set of lines (or segments),

* apply an affine transformation to each piece (without dropping any lower-
dimensional pieces), and

» paste it all together.

For example, consider the interior A of the triangle in R? obtained as the interior
of the convex hull of the points (0,0), (1,1) and (2,0), and the interior O of the
open square with points (0,0), (1,1), (0,1), and (1,0). Then, A is PL-isomorphic
to O as shown below:

AN A N Ve

Sontag in [92] introduced and developed a logic formalism of the PL systems (“PL
algebra”) to help in classifying PL sets that are equivalent under isomorphism. The
critical step in this classification was to associate to each PL set X a “label” with
the property that two PL sets X and Y are isomorphic if and only if their labels
are related in a certain manner. Subsequent algorithmic developments on this type
of equivalence checking procedures are described in [32].

6.4.2 Biological application of PL models

PL systems are quite powerful in modelling biological systems since they may be
used as identification models (by means of piecewise linear approximations), or as
controllers for more general systems. Arbitrary interconnections of linear systems
and finite automata can be modeled by PL systems, and vice-versa. More precisely,
given any finite automaton with state space @), input alphabet ¥, and state tran-
sition function §: Q@ x ¥ — @, we allow the state ¢ € Q) of the finite automaton to
control switching among |@| possible linear dynamics in the following manner:

x(t+1)
q(t+1)

Agx(t) + Byu(t) + ¢4
6(q(t), h(x(t),u(?)))

where Ap, As, ..., A‘Q‘ S Ran, Bi,Bs,..., B‘Q| € R"™™ ¢,co,..., Q| € R™,
and h: R” x R™ — ¥ is a PL map representing quantized observations of the linear
systems.

We now discuss two specific applications of PL systems in modelling biological
processes.

(6.5)
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6.4.2.1 PL models for genetic regulatory networks PL models for regulatory net-
works can be built starting with the formulations proposed originally by Glass and
Kauffman [43]. Such an approach was illustrated and investigated by Casey, Jong,
and Gouzé in [20]. We illustrate the approach by starting with the special form of
system (6.1):

I (t + 1) = fl (X(t)) + (1 - /\1),@1
T, (t + 1) = fn(x(t)) + (1 — /\n)xn

where we omitted the input vector under the assumption that the state vector x
can itself be influenced externally. The parameter \; represents the degradation
rate of the i'" molecular component (e.g., protein). The function f; representing
the synthesis rate of the i*® molecular component is approximated by the piecewise-
linear function by taking a linear combination of the form:

fi (X(t)) = Ki11 (X(t)) =+ Ki 22 (X(t)) 4+ 4 Kieli e (X(t))

where the x;; > 0 parameters control the rates of regulation. The Boolean reg-
ulatory functions n;; model the conditions of regulation of z; by the remaining
variables, and is written as an appropriate combinations of the Heaviside (thresh-
old) functions H(xg —92)’3 and 1—7{(:1:g —9g)’s, for various £ € {1, 2,..., n}, where
0,’s are appropriate threshold concentration parameters.

As an illustration, suppose that we want to model the following regulatory mech-
anism: gene xp is expressed at the rate of 0.23 if the concentration of protein xs
is above 0.3 and the concentration of protein x3 is below 0.9; otherwise gene x; is
not expressed. This is obtained by the equation:

Fil (21 (), ma(t), 23(t) ) ) = 0.23H (w5 — 0.3) [1 — H (s — 0.9)}

It is easy to verify that the above kind of system partitions the entire n-dimensional
state space into a finite number of n-dimensional hyper-rectangular regions (“pieces”)
and within each such region the behavior of the dynamics is linear. For example,
consider the following system:

5 = 01H(0321) (1-H(0.202) ) +07a

(6.7)
3 = 02H(0.321)H(0.222) + 0.9z

and suppose that 0 < x1(t),z2(¢t) < 1 for all ¢ > 0. Then, the two-dimensional

state space is partitioned as shown in Fig. 6.5.

6.4.2.2 Hybrid automata for delta-notch protein signalling Several cellular pro-
cesses, such as pattern formation due to lateral inhibition [41, 64], involve the
so-called Delta-Notch protein signaling mechanism. A model for the regulation
of intracellular protein concentrations in this signalling mechanism through the
feedback system was described in [40] using the experimentally observed rules for
the associated biological phenomenon. In this model, each cell was implemented as
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if 1(t) > 0.3 and z2(t) < 0.2 Graphical illustration of the hyperplane
then x1(t+1)=0.140.7z1(¢t) (colored black) that shows x1(t + 1) as
Zo(t+1) = 0.9 z5(t) a function of x1(t) and x2(t) when
0.3 < IEl(t) <1land0.2< SCQ(t) <1
if x1(t) > 0.3 and x2(t) > 0.2 z1(t+1)
then z1(t+1) = 0.721(t) A gmm
z2(t+1) =0.240.9z2(t) 0 R4
PR B A
7/ | 4 |
. | 1
if x1(t) < 0.3 and x2(t) > 0.2 1+ | za(t I
then (¢4 1) =0.7z1(t) Y
I’Q(t + ].) =0.9 l’g(t) ! /~/ : //
0.21+ 177 7
0.2 —p>( - L/_ — _I/
if x1(t) < 0.3 and x2(t) < 0.2 %0 o3 i > z1(t)

then z1(t+1) = 0.721(t)

Figure 6.5 Rectangular partition of state space induced by system (6.7).

a piecewise linear hybrid automaton with 4 states. In this section, we review this
application after defining a piecewise linear hybrid automata.

Recall that a standard non-deterministic finite automata (NFA) is defined [56] as
a b-tuple (Q, 3,9, qo, F) where @ is a finite set of states, X is a finite input alphabet,
5: Q x ¥ — 29 is the state transition map where 29 denotes the power set of Q,
go € Q is the initial state, and ) C F C @ is the set of final (accepting) states. See
Fig. 6.6(a) for an illustration. This NFA model can be combined with a piecewise-
linear dynamics to obtain a piecewise-linear hybrid automata (PLHA) [5,40] as
discussed below.

In PLHA, the set of states Q are of two types: a set of m discrete states

Q¢ = {ql,qg,...,qm}, and a set Q¢ = {xl,xg,...,xn} of m continuous state
variables such that every state variable ¢ € Q¢ assumes a real value. We also
have a set of m discrete inputs ¥ = {01,02, . .,am}, a set of ¢ linear functions
g1,02,...,0:: R"™ — R where

n m

g] (‘Ilv‘IQa vy I, 01,02,. .., UM) = (ijykxk> — Pjn+1 + Zp_/j,ko.k

k=1 k=1

for some numbers p;1,...,pjn+1,Pj15- 5P, € R. These functions are used to

define linear constraints that decide the boundaries of the piecewise-linear system
and associate discrete states with these regions in the following manner. Let a
“sign pattern” s = (81, 82y, st) € {<,<,=,>,>,U}! denote the intersection of ¢



PIECEWISE LINEAR MODELS 191

Q' ={q. @2}, Q° = {1,122}

g1(z1,72) = 21, g2(T1,22) = T2

93(1‘1,1‘2) =x1+x2 — 1, 94(581,582) =22 — 1
S((h) = (>7>7S7>)7 S(qZ) = (>a >, <, S)

Q5 =(0,0.4), Qf ={a}

ag,,1 = 1/100, aq, 2 = —1/100

Ugy,1 = 2/50, g, 2 = —1/100
40, 1,4} Vay+xe =1:8(q1, 21, 22) = (g2, 21, 2)
0,1

0 1
{ao} {a1,q2}
T {Q2}

q2 {QO} —

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 6.6  (a) An example of a NFA. The input 0101 € X7 is accepted by the NFA since
there is a directed path from the initial state go to a final state g2 labeled 0101. (b) An
example of a piecewise-linear hybrid automata (PLHA) with two continuous state variables
and no inputs. A hypothetical trajectory of the dynamics is shown by thick black lines with
arrows.

half-spaces where the j* half-space is

gj(azl,xg,...,xn,al,ag,...,am)>O, if s, is >
gj(azl,xg,...,xn,al,ag,...,am)20, if 55 is >
gj(xl,l'g,...,Jin,Ul,Ug,...,O'm) :O, iij is =
gj(azl,xg,...,xn,al,ag,...,am)§O if s;is <
gj(azl,xg,...,xn,al,ag,...,am)<O, if s;is <
9/ (xl, Ty Ty 01,02, .., om) = U, if there is no constraint involving s;

Then, each discrete state ¢ € Q9 is associated with a distinct sign-vector s(q) such
that the state ¢ is active if all the corresponding half-space constraints are satis-
fied. We can then define adjacency of two states as being the adjacency of their
corresponding geometric regions in the n-dimensional space, e.g., two states may
be adjacent if their sign patterns differ in ezactly one coordinate. It is possible
in practice to design algorithms to check this kind of geometric adjacency in the
n-dimensional space [40]. The state transition map §: Q% x Q¢ x ¥ 2Q"%Q° pow
involves both discrete and continuous states by allowing a switch from a discrete
state to another adjacent discrete state at the boundary of the two regions corre-
sponding to the two states. At the “inside” of the region for a discrete state g, the
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continuous state variables x = (wl, To,..., :Cn) evolve in a linear manner given by
dx(t) [ZZ; ]
dt agn
or
1 (t+1) z1(t) agq,1
[ 12(t+1) ] — [ mg(t) + |: a.q.,.2 :|
T (t+1) T (t) Qq,n

for some aq,1, 04,2, - - -, 0q,n- The system is started by specifying an initial condition
Q& x Qg of the discrete and continuous states. Fig. 6.6(b) illustrates a PLHA.

More discussions related to various abstractions of hybrid automata and their
decidability issues can be found in [5]. In particular, the formalism described above
allows symbolic description of many parameters without specific numerical instan-
tiation, e.g., the elements a4 1, ..., a4, can be represented symbolically using a few
free parameters and constraints over these parameters. For example, an exponen-
tial decay with a rate of r for a continuous state variable x; € Q¢ in a discrete
state ¢ € Q% can be obtained by specifying aq; = rx;+r' where r’ determines the
boundary condition.

>

Figure 6.7 Hexagonal lattice of cells for Delta-Notch protein signalling. A cell with its
six neighbors is shown amplified.

Ghosh and Tomlin used the PLHA model in [40] to study the Delta-Notch protein
signaling mechanism that is responsible for many cellular processes. The cells are
assumed to be packed in a hexagonal lattice with each cell (except those at the
boundary of the lattice) having six neighboring cells (see Fig. 6.7). The parameters
of the PLHA for each cell are as follows [40]:

6
Q' ={q. ¢ ¢}, Q°=(v1,22) ER?, T = {UN = ZwDelta,i}
i=1

01 (21, w2, un) = =22 — hp, g2(21,22,un) =uny — hy
S(ql) = (<7< )7 S(Q2) = ( >, < )7 S(Q3) = ( <z )7 S(Q4) = (272)
g1 = Ags,1 = —Ap T1(t), Qg2 = g2 = —AN22(1), ag,1 = Rp — Ap x1(?)

aq372 = aq472RN — )\N ZEQ(t), aq471 = RD — )\D :Z?l(t)

Qf = Q% Q= {(x1,22) 1,72 € R}
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Biological interpretations of various parameters are as follows:

Q¢ four discrete states to switch ON or OFF the production of the Delta
protein or the Notch protein individually
r1 and x2 concentrations of Delta and Notch proteins, respectively
up and uny :  inputs to physically realize the biological constraint that production

of Notch protein in a cell is turned ON by high levels of the Delta
protein in the immediate neighbourhood of the cell, and the produc-
tion of the Delta protein is switched ON by low levels of the Notch
protein in the same cell

TDelta,i : value of 71 in the i*® neighboring cell
Ap and Ay decay constants for Delta and Notch proteins, respectively
Rp and Ry constant production rates for Delta and Notch proteins, respectively
hp and hy switching thresholds for productions of Delta and Notch proteins,
respectively

Note that cells influence and are influenced by their six neighboring cells via
the input ux and the variables Zpeita,; for j = 1,2,...,6. Empirical estimates for
the thresholds hp and hy are provided in [41]. A major goal of [40] in formu-
lating the above PLHA model for Delta-Notch signalling was to determine initial
conditions from which specific equilibrium points of the dynamics are reachable
(the so-called “backward reachability” problem). To this effect, Ghosh and Tom-
lin [40] designed and implemented an efficient heuristic algorithm for the backward
reachability problem for this model.

6.5 Monotone systems

1 Input to 1
I sub-system 2 1
1 Output from 1
sub-system sub-system
1 39 3 1
1 1
1 1
sub-system sub-system
ﬁ 7 — g4 —_—
Inputs : Outputs
Eﬁ I " ﬁiom
e b-system the
! — by 1
system , System
! 1
U ]

Figure 6.8 A system composed of five interconnected subsystems.

One approach to mathematical analysis of complex biological systems relies upon
viewing them as made up of sub-systems whose behavior is simpler and easier
to understand. Coupled with appropriate interconnection rules, the hope is that
emergent properties of the complete system can be deduced from the understanding
of these subsystems. Diagrammatically, one can picture this as in Fig. 6.8, which
shows a full system as composed of five interconnected sub-systems.

An interesting class of biological systems with simpler behaved dynamics are
systems with monotone dynamics (or, simply, the monotone systems) [54,55,89].
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Monotone systems constitute a nicely behaved class of dynamical systems in sev-
eral ways. For example, for these systems, pathological behaviors of dynamics
(e.g., chaotic attractors) are ruled out. Even though they may have arbitrarily
large dimensionality, monotone systems behave in many ways like one-dimensional
systems, e.g., bounded trajectories generically converge to steady states, and there
are no stable oscillatory behaviors (limit cycles). Monotonicity with respect to
orthant orders is equivalent to the non-existence of negative loops in systems;
analyzing the behaviors of such loops is a long-standing topic in biology in the
context of regulation, metabolism and development, starting from the work of
Monod and Jacob in 1961 [74], and culminating in many subsequent works such
as [7,9,23,63,71,78,82,90,96]. An interconnection of monotone systems may or
may not be monotone: “positive feedback” preserves monotonicity, while “negative
feedback” destroys it. Thus, oscillators such as circadian rhythm generators require
negative feedback loops in order for periodic orbits to arise, and hence are not
themselves monotone systems; however they can be decomposed into monotone
subsystems [10]. Theoretical characterizations of the behavior of non-monotone
interconnections are available in [6,8, 35,38, 39].

A key point brought up in [93,94] is that new techniques for monotone systems
in many situations allow one to characterize the behavior of an entire system,
based upon the “qualitative” knowledge represented by general network topology
and the inhibitory or activating character of interconnections, combined with only a
relatively small amount of quantitative data. The latter data may consist of steady-
state responses of components (dose-response curves and so forth), and there is no
need to know the precise form of dynamics or parameters such as kinetic constants
in order to obtain global stability conclusions.

6.5.1 Definition of monotonicity

Recall that a partial order < over a set U is a binary relation that is reflexive (i.e.,
u =2 u for every u € U), antisymmetric (i.e., if u < v’ and v’ < u then v = u'), and
transitive (i.e., if w < v’ and v’ < u” then u < u”). For example, the + relation on
the set of positive integers N defined by “a b if and only if a is an integral multiple
of b” is a partial order relation.

For easier understanding, we illustrate the definition of monotonicity of dynamics
of a system when it is expressed via the differential equation model (5.1) with no
inputs, i.e.,

dz(;;t(t) = fi(;pl(t),xQ(t), ... ,:zrn(t)), 1=1,2,...,n (6.8)

or, in concise vector notation, X = f(x) '
However, much of the discussion also applies to more general types of dynamical
systems such as delay-differential systems or certain systems of reaction-diffusion
partial differential equations. We will discuss in Section 6.5.2.1 how to incorporate
control inputs (and outputs) in our definitions of monotonicity.

An additional requirement that we need before giving the definition of a mono-
tone system is that, for each i and j, either 3+ 9/; > 0 for all x or j] < 0 for all x. In
other words, in our model the direct effect that one given varlable has over another
variable is unambzguous in the sense that it is always inhibitory or always excitory.
Thus, for example, if protein binds to the promoter region of another gene, we
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assume that it does so either to prevent the transcription of the gene or to facilitate
it irrespective of the respective concentrations. As explained in details in [22], this
requirement is not a severe restriction. Firstly, note that this unambiguity assump-
tion does not prevent a protein from having an indirect influence, through other
molecules, that can ultimately lead to the opposite effect on a gene from that of a di-
rect connection. Secondly, in biomolecular networks, ambiguous signs in Jacobians
often represent heterogeneous mechanisms, and introducing a new species into the
model (i.e., an additional variable for this intermediate form) reduces the original
system to an equivalent new system in which the signs of the Jacobian entries are
unambiguous. Finally, small-scale negative loops that are abundant in nature often
represent fast dynamics which may be collapsed into self-loops via time-scale de-
composition (singular perturbations or, specifically for enzymes, “quasi-steady state
approximations”) and hence may be viewed as diagonal terms, but the requirement
of a fixed sign for Jacobian entries is not imposed on diagonal elements.

The dynamics of a monotone system preserves a specific partial order of its inputs
over time. More precisely, monotonicity is defined as follows.

Definition 5 [55,75] Given a partial order < over R™, system (6.8) is said to be
monotone with respect to < if

Vt>0: (a:l(()),...,xn(())) = (y1(0),---7yn(0))
= (z1(t), ...,z (1) = (11 (1), .-, yn(D))

where (z1(t),...,zn(t)) and (y1(t),...,yn(t)) are the solutions of (6.8) with initial
conditions (x1(0),...,2,(0)) and (y1(0),...,yn(0)), respectively.

Of course, whether a system is monotone or not depends on the partial order
being considered. We will consider the following partial order that has been inves-
tigated in previous research works such as [9,27,89].

Definition 6 (orthant order) For a given s = (sl, . sn) € { -1, 1}”, an or-
thant order =g is a partial order over R™ defined by

Vx = (:El,;vg,...,xn) eR"Vy = (yl,yg,...,yn) ER": xS, y<=Vi:s;x; < sy

An example of orthant order is the “cooperative order” which is the partial order
< for s = (1,1,...,1), de., x Rq1,..1 y<=Vi:z; <y, ; in traditional compu-
tational geometry literature the cooperative order is also known as the dominance
relationship between n-dimensional points [49].

In the rest of our discussions on monotone systems, we will use the term “mono-
tone systems” with the assumption that the monotonicity is with respect to some
fixed orthant order <.
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6.5.2 Combinatorial characterizations and measure of monotonicity
The reader can easily verify the following characterization of monotone systems [75].

(Kamke’s condition) Consider an orthant order < generated by s = (51, ce sn)
Then, the system (6.8) is monotone with respect to < if and only if

Vi<i#j<n: sisjngO

K2

Based on Kamke’s condition, DasGupta et al. [27] discussed an elegant graph-
theoretic characterizations of monotonicity of the system (6.8) that may be sub-
jected to algorithmic analysis. For this characterization, we consider the sys-
tem (6.8) and its associated signed (directed) graph G = (V,E) as defined in
Section 5.1.3. To provide an intuition behind the first characterization, consider
the following biological system with three variables:

921 (1) — (23(t) ) — @ (t),  2(t) = 2a1(t) — 9 (wa(t))

6.9
9 () = a(t) — 3as(t) o

The associated signed graph for this system is as shown below:

It is possible to show that the system (6.9) is not monotone with respect to <

for any s (cf. Exercise 6.10). But, if we remove the term (arg(t))fg in the first
equation, we obtain a system that is monotone with respect to <7 1,1. A cause of
non-monotonicity of the system is the existence of sign-inconsistent paths between
two nodes in an undirected version of the signed graph, i.e., the existence of both
an activation and an inhibitory path between two nodes when the directions of the
arcs are ignored. Define a closed undirected chain in G as a sequence of nodes
Ziy, ..., Ti. such that x;, = z;_ , and such that for every t = 1,...,r — 1 either
(wi,,xi,,,) € E or (xj,,,,2;,) € E. The graph G is said to be sign-consistent if
all paths between any two nodes have the same parity or, equivalently, all closed
undirected chains in G have a parity of 1 (i.e., all closed undirected chains have
an even number, possibly zero, of arcs labeled —1). The following characterization
now holds [27,33,88].

(Combinatorial characterization of monotonicity)

System (6.8) is monotone with respect to some orthant order if and only if
G is sign-consistent, i.e., all closed undirected chains of its associated signed
graph G have parity 1.

Fig. 6.9 illustrates the above combinatorial characterization of monotonicity.

Of course, one should not expect complex biological systems to have a associated
signed graph that is consistent. However, if the number of inconsistent pairs of path
in the undirected versions of a sign graph is small, it may well be the case that the
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&2

(b)

Figure 6.9 Two signed graphs. The graph in (a) is sign-consistent, but the graph in
(b), which differs in just one edge from (a), is not sign-consistent since it has two paths
in its undirected version with different parity between nodes x1 x4, namely a direct path of
odd parity and a path of even parity transversing node xs. Self-loops, which in biochemical
systems often represent degradation terms, are ignored in the definition.

network is in fact consistent in a practical sense. For example, a gene regulatory
network represents all potential effects among genes. These effects are mediated
by proteins which themselves may need to be activated in order to perform their
function, and this activation may, in turn, depend on certain extracellular ligands
being present. Thus, depending on the particular combination of external signals
present, different subgraphs of the original signed graph describe the system under
those conditions, and these graphs may individually be consistent. For example,
in Fig. 6.9 (b), the edges x4 4 1 and x4 - x5 may be present under completely
different environmental conditions A and B. Thus, under either of the conditions A
or B, the signed graph would be consistent, even though the entire signed graph is
not consistent. Evidence that this is indeed the case is provided by [69], where the
authors compare certain biological networks and appropriately randomized versions
of them and show that the original networks are closer to being consistent. Thus,
we are led to the computational problem of computing the smallest number of arcs
that have to be removed so that there remains a consistent graph. We formalize
this computational question as the sign consistency (SGN-CONST) problem (see
Fig. 6.10) to determine how close to being monotone a system is [27,57]. For
example, for the particular signed graph shown in Fig. 6.11, removal of just one
arc (:102, :104) suffices (in this case, the solution is unique: no single other arc would
suffice; for other graphs, there may be many minimal solutions).

We remind the reader that the above combinatorial characterization of mono-
tonicity is via the absence of undirected closed chains of parity 1. Thus, in particular,
any monotone system has (i) no negative feedback loops, and (ii) no incoherent
feed-forward-loops. However, some systems may not be monotone even if (i) and
(ii) hold; the following example was shown in [1]:
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Problem name: sign consistency (SGN-CONST)

Instance: a directed graph G = (V, E) with an arc labeling function £: F —
{-1,1}.

Valid Solutions: a node labeling function ¢: V' — {—1,1}.

Objective: maximize ’Fg , where Fy = {(u,v) € E | L(u,v) = L(u)l(v)} is the
set of consistent arcs for the node labeling function ¢.

Figure 6.10  Definition of the sign consistency problem.

Figure 6.11  Deletion of the arc (xg, x4) makes the given signed graph consistent. The
node labels are shown besides the nodes.

Based on the formulation of the SGN-CONST problem, Albert et al. [1] defined
the degree of monotonicity of a signed graph to be

M = }%T’ (6.10)

where Iy, C E is the set of consistent arcs in an optimal node labeling £,p¢, and
the |E| term in the denominator in Equation (6.10) is a min-max normalization to
ensure that 0 < M < 1. Note that the higher the value of M is the more monotone
the network is.

An interesting interpretation of the SGN-CONST problem in statistical mechanics
terms was discussed in [27]. We briefly recount the interpretation here. Think of
the arc labels as “interaction energies”, and node labels in the SGN-CONST problem
as the (magnetic) “spin configurations”. Note that an arc {u, v} € F is consistent
in a node labeling ¢ provided L(u,v)¢,¢, = 1. A graph with +1 arc labels is
called an Ising spin-glass model in statistical physics. A “non-frustrated” spin-
glass model is one for which there is a spin configuration for which every arc is
consistent [11,24,36,58]. This is the same as a consistent graph in our previous
discussion. Moreover, a spin configuration that maximizes the number of consistent
edges is a “ground state”, namely one for which the “free energy” with no exterior
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magnetic field ( — > (uw)eE L(u,v)l,0,) is minimized. Thus, solving the SGN-
CONST problem amounts to finding ground states.

6.5.2.1 Incorporating control inputs As we illustrated in Fig. 6.8, a useful approach
to the analysis of biological systems consists of decomposing a given system into
an interconnection of monotone subsystems. The formulation of the notion of in-
terconnection requires subsystems to be endowed with “input and output channels”
through which information is to be exchanged. In order to address this we may
use the “controlled” dynamical systems defined by Equation (5.1) in Section 5.1.2,
namely
x=f (x, u)

Specifying the time-dependency of the input vector u by a function u(t) € R™ for
t > 0, it follows that each input defines a time-dependent dynamical system in the
usual sense. We associate a feedback function h: R™ — R™ with system (5.1) to
create the closed loop system x = f(x, h(x)). Finally, if x € R" and u € R™ are
ordered by the orthant orders =X(,, . 4,.) and =X(q . q4,.) respectively, then we say
that the system is monotone if it satisfies Kamke’s condition for every u, and also

) af;
VE,j: qrgj 8—1; >0

See [9] for further discussions on this.

6.5.3 Algorithmic issues in computing the degree of monotonicity M

To calculate the degree of monotonicity M via Equation (6.10), we obviously need to
develop an efficient algorithm to compute an exact or approximate solution to the
SGN-CONST problem. A special case of SGN-CONST, namely when £(u,v) = —1 for
every edge (u,v) € E, is the well-known MAX-CUT problem (e.g., see [99]) which is
NP-hard. Thus, we cannot hope for an efficient algorithm to find an ezact solution
for SGN-CONST when the size of the signed graph is large.

SGN-CONST can be posed as a special type of “constraint satisfaction problem” in
the following manner. Let 7: {—1,1} — {0, 1} be the linear transformation defined
by 7(z) = 5%, Then, 7(1) = 0, 7(—1) = 1 and the constraint £(u,v) = £(u){(v) is
equivalent to £(u,v) = 7(€(u))+7(¢(v)) (mod 2). Thus, SGN-CONST can be posed
as an optimization problem in which we have |E| linear equations over GF(2) involv-
ing |V| Boolean variables, with one equation per arc and each equation involving
ezxactly two variables, and the goal is to assign truth values to the Boolean variables
to satisfy a mazimum number of equations. For algorithms and lower-bound results
for general cases of these types of problems, such as when the equations are over
GF(p) for an arbitrary prime p or when there are an arbitrary number of variables
per equation or when the goal is to minimize the number of unsatisfied equations,
see references such as [25,51]. Below we outline an approximation algorithm for
SGN-CONST used by DasGupta et al. [27] based on the semidefinite programming
(SDP) technique used by Goemans and Williamson for MAX-CUT in [44]; readers
not very familiar with the SDP technique are also referred to an excellent treatment
of this technique in the book by Vazirani [99].
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The starting point in applying the SDP method is to observe that SGN-CONST
can be written down as the following quadratic integer programming (QIP) problem:

maximize % Z (1_&16”) + Z (1+é“£”) (6.11)

(u,v)EE (u,v)EE
L(u,w)=—1 L(u,v)=1

subject to Vv e V: (Zv)2 =1

Since this QIP formulation is also NP-hard, we cannot solve it directly. Thus,
we “relax” this to a “vector program” (VP) by allowing each variable £, to be a real

%
vector £, over an n-dimensional unit-norm hyper-sphere in the following manner
(where “-” denotes the vector inner product):

maximize % Z (1—5_:2) + Z(lﬂ-ZZ)

(u,v)EE (u,v)EE
L(u,v)=—1 L(u,v)=1 (612)
— =
subject to Vo eV: 4, -4, =1
%
VoeV: ¢, eRYI

The above vector program can in fact be solved ezactly in polynomial time. For this
purpose we first formulate the following semi-definite programming (SDP) optimiza-
tion problem; this SDP optimization problem can be solved exactly in polynomial
time using any existing algorithm for SDP using ellipsoid, interior-point or convex-
programming methods [3,48,75,76,97], or by using any existing software for solving
SDP optimization problems (e.g., SDP optimization solving module in MATLAB):

maximize % Z (1 — yu,v) + Z (1 +yu,v)

u,v)EE u,v)EE
ll((u,v)):fl [(:(uﬂ))):l (613)

subject to: Vv € Vi yy,0 =1

Y = [yuvu] is a symmetric positive semidefinite matrix

Since any solution matrix Y to (6.13) is positive semi-definite, such a solution
matrix Y can be written as Y = BT B for some real matrix B € RIVI*IVI, Such
a decomposition of Y can be found by the well-known Cholesky decomposition
algorithm [47] (MATLAB provides an implementation of this algorithm). Once the

_>
matrix B is found, the solution vectors {KU "U € V} to (6.12) can be found by

%
setting £, to the column of B that consists of the entries {yu,v |u e V}.
What remains now is to compute mappings P,: £, — {—1, 1} for every v € V

%
such that the set of values {¢, = P,({,)|v € V} provide a solution of (6.11) of
desired quality. Mappings P, is computed by the following randomized algorithm.

(a) Select a vector 7= (rl, ST r|V|) over the |V|-dimensional unit-norm hyper-
sphere uniformly at random. For example, this can be done by sampling 7“;-, for
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each 1 < j < |V, from a normal distribution of zero mean and unit standard
deviation (i.e., Pr[a < 1) < b] = f: (1/va=) e =" /2 dx for any ) C la,b] C R),

and then normalizing the coordinates so that the 2-norm of the resulting vector
/

r
is 1, i.e., setting r; = —L=—= for j =1,2,...,|V|.

1, 7 -0, >0

1 otherwise where “-” denotes the vector
b)

(b) For each v € V, set £, = {
inner product.

Let £op¢ be an optimum node labeling function for SGN-CONST with |Fg0pt} consis-
tent edges. It can be shown that the above randomized algorithm provides a node
labeling function £,pprox to SGN-CONST with |Fg | consistent edges such that

approx

B (|5

approx } 2K ’Fecpt‘

' . 20/, 2 (20/,
where kK = min< min 7/, (7/)
0<6<m 1 —cosf’ 0<6<m 1+ cosf

mentary calculus that x > 0.87856; thus on an average the approximate solution
retains at least 87.85% of the number of consistent edges in an optimal solution.
The above randomized approach to compute the mappings P, can be made deter-
ministic (i.e., can be “de-randomized”) [70], but the derandomization procedure is
complicated. Instead, one usually runs the randomized algorithm for computing
the P,s many times and accepts the best of these solutions; it can be shown that
such an approach retains at least x fraction of the optimal number of consistent
edges with very high probability [34].

}. It can be shown using ele-
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EXERCISES

6.1 Convince yourself that delays may affect the dynamic behavior in a non-
trivial manner by considering the following two discrete-time synchronous-update
two-species interactions:

8
Ay
—~
~
=
Il
ST

xl(t—1)+%l’2(t—2) :El(t): xl(t—2)+%l’2(t—2)

=

8
M)
—~
~+
N>
|
=

1’2(15—1)4—%%1(15—2) :Ez(t): xl(t—2)+%l’2(t—2)

==

with x1(1) = x2(1) = 0 and z1(2) = x2(2) = 1, and observing the asymptotic
behaviors of z1(t) and x2(t). Can you give an estimate of the asymptotic growth
of the two variables (as a function of t) in the two systems?

6.2 Determine if the following system is controllable by constructing the control-

lability matrix:
o 2 5 ,Tl(t) 3 5 ’U,l(t)
=1 7| (et o 1 us(t)

6.3 Show that a Boolean network can be simulated by a ANN with threshold
gate function by showing that each of the logical gates AND, OR, and NOT can
be simulated by a node with threshold gate function by appropriately choosing the
parameters of the threshold function.

6.4 Consider the network model shown in Fig. 6.4.

a) Starting with the initial states z1(0) = 2z2(0) = z3(0) = z4(0) = /2,
generate a time-series data by running the network for 4 time steps. Now,
use the method of Jarrah et al. (discussed in Section 5.4.2.2) to reverse
engineer a causal network and its corresponding Boolean counterpart.

b) Repeat Exercise 6.4.a by running the network for 10 time steps. Is there
any improvement in the quality of the reconstructed network ?

6.5 The goal of this exercise is to convince the reader that PL systems can sim-
ulate Boolean circuits.
a) Consider the Boolean AND function on n Boolean inputs: z,,, = 21 A
X2 A -+ Axy,. Assume that each Boolean variable z; € {0,1} is obtained
from a corresponding real-valued variable 0 < y; < 1 by the thresholding
rule y; = H (x; —1/2), where H is the threshold function described in
Fig. 6.3. Write down a PL system of the form as shown in Equation (6.6)
that produced the output of the AND gate on y1,y2, ..., Yn.
b) Repeat Exercise 6.5.a for a Boolean OR gate: x:g_H =21V V-V,

6.6 Show that NFas and the PL systems (6.6) are subclasses of the PLHAs.

6.7 Prove that transformations of the form outlined in Equation (6.5) can be
used to simulate an arbitrary interconnection of linear systems and finite automata
by a PL system.
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6.8 Suppose that Definition 4 is used for the definition of observability of the
system (6.2). Show that if an initial state x(0) is unobservable for the time duration
[O, n] then it is unobservable over any time duration.

6.9 Write a computer program in your favorite programming language to simulate
the dynamics of the PLHA model for Delta-Notch signalling for one cell (thus,
Zi Delta = 0 for i =1,2,...,6). Test your program with various initial conditions.

6.10 Show that the system (6.9) is not monotone with respect to <, for any s.



CHAPTER 7

CASE STUDY OF BIOLOGICAL MODELS

In the preceding two chapters, we have seen the underlying principles behind synthe-
sizing and analyzing several types of biological models. In this chapter, we discuss
dynamical and topological properties of a few specific biological models. Our goal
in this chapter is not to provide every possible details of these models, but rather to
point out salient features of these models that have made them attractive in their
applications.

7.1 Segment polarity network models

An important part of the development of the early Drosophila (fruit fly) embryo is
the differentiation of cells into several stripes (“segments”), each of which eventu-
ally gives rise to an identifiable part of the body such as the head, the wings and
the abdomen. Fach segment then differentiates into a posterior and an anterior
part, in which case the segment is said to be polarized; this differentiation process
continues up to the point when all identifiable tissues of the fruit fly have devel-
oped. Differentiation at this level starts with differing concentrations of certain key
proteins in the cells; these proteins form striped patterns by reacting with each
other and by diffusion through the cell membranes (see Fig. 7.1 for an illustration).
The genes involved in the process include engrailed (en), wingless (wg), hedgehog
(hh), patched (ptc), cubitus interruptus (ci) and sloppy paired (slp), coding for the
proteins (denoted by corresponding capitalized names) EN, WG, HH, PTC, Cl and

Models and Algorithms for Biomolecules and Molecular Networks, first edition. 209
By
Bhaskar DasGupta and Jie Liang Copyright (© 2015 John Wiley & Sons, Inc.



210 CASE STUDY OF BIOLOGICAL MODELS

SLP, respectively. Two additional proteins resulting from transformations of the
protein Cl also play important roles: Cl may be converted into a transcriptional
activator CIA, or may be cleaved to form a transcriptional repressor CIR.
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Figure 7.1 A schematic diagram of the early development of a Drosophila embryo. Each
hexagon represents a cell, and neighboring cells interact to form a collective behavior. In
this figure, an initial striped pattern of the genes en and wg induces the production of the
gene hh, but only in those cells that are producing en.

7.1.1 Boolean network model

Albert and Othmer [4] developed and analyzed a Boolean model based on the binary
ON/OFF representation of mRNA and protein levels of five segment polarity genes.
This model was constructed based on the known topology and was validated using
published gene and expression data. The expressions of the segment polarity genes
occur in stripes encircling the embryo. The key features of these patterns can be
represented in one dimension by a line of 12 interconnected cells, grouped into
3 parasegment primordia, in which the genes are expressed in every fourth cell.
In Albert and Othmer’s model, parasegments are assumed to be identical, and
thus only one parasegment of four cells is considered. Therefore, in their model
the Boolean variables are the expression levels of the segment polarity genes and
proteins in each of the four cells. For further details, the reader is referred to [4].

7.1.2 Signal transduction network model

In the gene regulatory network model for segment polarity, the interactions incor-
porated include translation (protein production from mRNA), transcriptional reg-
ulation, and protein-protein interactions. Two of the interactions are inter-cellular,
namely the proteins WG and HH may leave the cell in which they are produced and
interact with receptor proteins in the membranes of neighboring cells. The network
for a single cell was first published in [8] and later appeared in slightly modified
form in [4,12]. Fig. 7.2 shows the network.
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Figure 7.2 [8] The Drosophila segment polarity regulatory network for one cell with
the interpretation of the regulatory role of PTC on the reaction Cl— CN as PTC — CN and
PTCHCI.

As illustrated in papers such as [2,7], one can build a 1-dimensional multi-cellular
version of this network by considering a row of n cells, each of which has separate
variables for each of the compounds, and letting the cell-to-cell interactions be as
shown in Fig. 7.3 using cyclic boundary conditions. One can calculate the degrees
of monotonicity and redundancy for this network as follows:

» Albert et al. |2] show that, for n > 1, R, > 3/11.

» DasGupta et al. [7] show that the 1-dimensional network follows a monotone
dynamics if we remove 3 edges from the network for every cell (and, similarly,
remove 3n edges from the n-node network).

7.2 ABA-induced stomatal closure network

Microscopic stomatal pores of plants have a surrounding pair of guard cells. It is
known that plants take in carbon dioxide as well as lose water through these pores,
and this process is controlled by the surrounding guard cells [11]. During drought,
the plant hormone abscisic acid (ABA) inhibits stomatal opening and promotes
stomatal closure, thereby promoting water conservation.

Dozens of cellular components have been identified to function in ABA regulation
of guard cell volume and thus of stomatal aperture [6,10,16]. Based on these and
other known interactions, Li et al. [15, Table S1] compiled a list of about 140 direct
interactions and double-causal inferences, both of type “A promotes B” and “C
promotes process (A promotes B)”, and manually synthesized a network of 54 nodes
and 92 (activation or inhibitory) arcs that accurately portrays the dynamics of the
regulation (see Fig. 7.4). Because the interaction data contains both direct and
double-causal interactions, with additional information about interactions that are
known to be direct with absolute certainty (“mandatory” edges in the terminology
in Chapter 5.3.1), Albert et al. [1,3] were able to exploit the algorithmic framework
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Figure 7.3 A 1-dimensional 3-cell Drosophila segment polarity regulatory network with
cyclic boundary conditions.

shown in Fig. 5.4 and use this framework in their NET-SYNTHESIS software [14] to
automatically generate a slightly more minimal network of 57 nodes and 84 edges.

7.3 Epidermal growth factor receptor signaling network

Epidermal Growth Factor (EGF) is a protein that is frequently stored in skin and
other epithelial tissues, and is released when rapid cell division is needed (e.g.,
after an injury). The function of EGF is to bind to a receptor, the Epidermal
Growth Factor Receptor (EGFR), on the membrane of the cells. The EGFR, on
the inner side of the membrane, has the appearance of a scaffold with dozens of
docks to bind with numerous agents, and starts a large number of reactions at the
cell level that ultimately induces cell division. In 2005, Oda et al. [17] integrated
the information about this process from multiple sources to define a network with
330 known molecules under 211 chemical reactions. Each reaction in the network
classifies the molecules as reactants, products, and/or modifiers (enzymes). The
network was made available in the supplementary material of [17] in SBML! format.

For the purpose of analyzing the monotonicity of dynamics of the above biochem-
ical network, DasGupta et al. [7] imported the information about the classification

1Systems Biology Markup Language, see http://www.sbml.org.
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Figure 7.4 A pictorial representation of the network manually synthesized by Li et al. [15].
Nodes in the network correspond to proteins, genes and other small molecules (e.g., RAC1
is a small GTPase protein).

of the molecules as reactants, products or enzymes to MATLAB using the Systems
Biology Toolbox, and defined a network G in the following manner:

(a.) There are 330 nodes v, . . ., v330 corresponding to the 330 molecules my, . . . , m330.
(P;) The network has 855 arcs which were added in the following manner:

(Ps’l) If there exists a reaction in which m; is a product and m; is either a
reactant or a modifier, then we add the arc v; — v; to the network.

(P;Q) If there exists a reaction in which m; is a reactant and m; is either a
reactant or a modifier, then we add the arc v; 4 v; to the network.

(993) If both the arcs v; — v; and v; - v; exists by (p/l) and (pyfl) for any
pair of nodes v; and v;, then we remove both the arcs v; = v; and v; 4 v;
from the network (in the terminology of [7], both the arcs are removed and
an arc from v; to v; is added with the label “undefined” (NaN)). There are
exactly 7 such pairs of nodes in the network.

(994) In a few reactions there was a modifier or a reactant involved which had
an inhibitory effect in the reaction, but the effect of this compound on the
remaining participants of the reaction was the opposite from that described
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above. In such cases, the network was corrected manually by looking at
the annotations given for each reaction.

G as constructed above has more arcs than the digraph displayed in [17]. The
reason for this is as follows: if molecules m; and m; are both reactants in the
same reaction, then the presence of m; will have an indirect inhibiting effect on
the concentration of m;, since it would accelerate the reaction which consumes m;
(assuming m; is not also a product). Therefore an inhibitory arc must also appear
from m; to m;, and vice versa. Similarly, modifiers have an inhibiting effect on
reactants.

DasGupta et al. [7] applied the algorithmic procedures discussed in Chapter 6.5.3
and found that the network can be made monotone by deleting 219 arcs, and
thus the entire network can be decomposed as the feedback loop of a controlled
monotone system using 219 inputs. To check whether removing significantly fewer
than 219 arcs may also provide a monotone network, DasGupta et al. [7] suggested
the following two heuristic approaches:

» For a suitable positive integer k, consider the k£ nodes with the highest out-
degrees (“hubs”), and eliminate all the outgoing arcs associated to these hubs
from the reaction network G to form a new network G’. Then, use the al-
gorithm for the combinatorial characterization via the sign-consistency (SGN-
CoNST) problem as discussed in Chapter 6.5.2 on G’ to find a node labeling
function ¢y, of the nodes and a set of m arcs that can be removed to eliminate
all remaining undirected closed chains of parity —1. Finally, put back to the
reduced network among those arcs that were taken out the ones which are
consistent with respect to the node labels induced by ¢y .

» Make suitable changes of variables in the original system using the mass con-
servation laws. Such changes of variables are discussed in many places, e.g.,
see [5,19]. In terms of the associated signed graph, the result of the change of
variables is often the elimination of one of the cycles. The simplest target for a
suitable change of variables is a set of three nodes that form part of the same
chemical reaction, for instance two reactants and one product, or one reactant,
one product and one modifier. It is easy to see that such nodes are connected
in the associated signed graph by a cycle of three arcs. To the extent to which
most of these triangles can be eliminated by suitable changes of variables, this
can yield a much lower number of arcs to be removed.

7.4 C. elegans metabolic network

This network was constructed and studied by Jeong et al. [13] and was also subse-
quently investigated by other researchers such as [2,9].

Data-sources for the C. elegans metabolic network includes two types of nodes,
namely the metabolites and reaction nodes, and the arcs are directed either from
those metabolites that are the reactants of a reaction to the reaction node, or
from the reaction node to the products of the reaction. The network constructed
in [13] had 651 nodes and about 2040 arcs (after removal of duplicate arcs). Thus,
the network is dense with an average degree of 3.13. Albert et al. [2] found by
empirically evaluation that for this network the degree of redundancy Ry, is 0.669
and the degree of monotonicity M is 0.444.
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The degree of redundancy of the metabolic network is surprisingly high among
similar biological networks. A biological basis for this could be due to the exis-
tence of currency metabolites. Currency metabolites (also called carrier or current
metabolites) are abundant in normal cells and occur in widely different exchange
processes. For example, ATP can be seen as the energy currency of the cell. Be-
cause of their wide participation in diverse reactions, currency metabolites tend to
be the highest degree nodes of metabolic networks. For the metabolic network,
redundant arcs appear if both (one of) the reactant(s) and (one of) the product(s)
of a reaction appear as reactants of a different reaction, or conversely, both (one of)
the reactant(s) and (one of) the product(s) of a reaction appear as products of a
different reaction. Thus, intuitively, metabolites that participate in a large number
of reactions will have a higher chance to be the reactant or product of redundant
arcs. Based on their empirical analysis, Albert et al. [2] concluded that the high
redundancy of the C. elegans metabolic network is in fact mostly due to inclusion
of currency metabolites.

7.5 Network for T cell survival and death in large granular lymphocyte
leukemia

Large Granular Lymphocytes (LGL) are medium to large size cells with eccentric
nuclei and abundant cytoplasm. In normal adults, LGL comprise about 10% to
15% of the total peripheral blood mononuclear cells. LGL can be further divided
into two major lineages: CD3-natural-killer (NK) cell lineage, which comprises 85%
of LGL cells and mediates non-major histocompatibility complex-restricted cyto-
toxicity, and CD3+ lineage, which comprises 15% of LGL and represents activated
cytotoxic T cells. LGL leukemia is a type of disordered clonal expansion of LGL and
their invasions in the marrow, spleen and liver. LGL leukemia was further divided
into T-cell LGL leukemia and NK-cell LGL leukemia. Ras is a small GTPase which is
essential for controlling multiple essential signaling pathways, and its deregulation
is frequently seen in human cancers. Activation of H-Ras requires its farnesylation,
which can be blocked by farnesyltransferase inhibitiors (FTIs). This envisions FTls
as future drug target for anti-cancer therapies. One such FTI is tipifarnib, which
shows apoptosis induction effect to leukemic LGL in vitro. This observation, to-
gether with the finding that Ras is constitutively activated in leukemic LGL cells,
leads to the hypothesis that Ras plays an important role in LGL leukemia, and may
functions through influencing Fas/FasL pathway.

Kachalo et al. [14] synthesized a cell-survival/cell-death regulation-related sig-
naling network for T-LGL leukemia from the TRANSPATH 6.0 database with ad-
ditional information manually curated from literature search. The 359 nodes of
this network represented proteins/protein families and mRNAs participating in
pro-survival and Fas-induced apoptosis pathways, and the 1295 arcs in the net-
work represented regulatory relationships between these nodes, including protein
interactions, catalytic reactions, transcriptional regulation (for a total of 766 di-
rect interactions), and known indirect causal regulation. The approach used by
Kachalo et al. [14] was to focus special interest on the effect of Ras on apopto-
sis response through Fas/FasL pathway by designating nodes that correspond to
proteins with no evidence of being changed during this effect as pseudo-nodes and
simplifying the network via iterations of the PNC and TR operations described in
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Sections 5.3.3.1 and 5.3.3.2 to simplify the network to contain 267 nodes and 751
arcs.

Saadatpour et al. [18] further investigated the T-LGL network and found that
14 nodes of the network have high importance in the sense that blocking any of
these nodes disrupts (almost) all signaling paths from the complementary node to
apoptosis, thus providing these nodes as possible candidate therapeutic targets. All
of these nodes are also found to be essential for the T-LGL survival state according to
a dynamic model, i.e., reversing their states causes apoptosis to be the only possible
outcome of the system. Moreover, experimental verification of the importance of
these nodes exists for 10 of the 14 nodes [18].
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EXERCISES

7.1 The purpose of this exercise is to get the reader familiar with the algorithmic
framework shown in Fig. 5.4 and the NET-SYNTHESIS software in [14] that uses
this algorithmic framework. Consider the following small subset of the interactions
reported in [15]:

ABA 4 NO

ABA — PLD

ABA — GPA1

ABA — PLC

GPAl1 — PLD

PLD — PA

NO 4 KOUT

KOUT — Closure

PA — Closure

PLC — (ABA — KOUT)

For each of the following tasks, report the network generated and verify that it
is correct.

a) Generate the network using only the direct interactions and perform tran-
sitive reduction on the graph (e.g., in NET-SYNTHESIS software, select
“Reduction (slower)” from the Action menu).

b) Add double-causal inferences to the network (e.g., in NET-SYNTHESIS
software, select “Add pseudonodes” from the Action menu).
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¢) Perform pseudo-node collapse (e.g., in NET-SYNTHESIS software, select
“Collapse pseudonodes” from the Action menu).

d) Perform a follow-up round of binary transitive reduction and pseudo-node
collapse until the graph cannot be reduced further.

7.2 Collect 5 biological networks from existing bioinformatics literature. For each
network, do the following.
a) Explain in details the biological process that is modeled by the network.
b) Investigate topological and dynamical properties such as
» degree distribution and connectivity,
» degree of redundancy Rrrs,

» degree of monotonicity M.

7.3  Show that Ry, > 3/11 for the 1-dimensional n-cell Drosophila segment polarity
regulatory network with cyclic boundary conditions.
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GF(2) Galois field of two elements 0 and 1. The addition rule for this
field is ¢ = a+ b (mod 2) and the multiplication rule is ¢ = ab.

R Set of real numbers.

R"™ n-dimensional space whose each component is a real number.

e Base of natural logarithm.

g1 0 g2 The composition of two functions g; and ga, i.e., g1 o g2(x) =
91(92(2)).

Apoptosis Programmed cell-death.

Chemical reactions, reactants and products

A chemical reaction is a chemical transformation in which a set
of substances (called reactants) together produce another set of
substances (called products).

Currency metabolites

Currency metabolites (sometimes also referred to as carrier or cur-
rent metabolites) are ubiquitous substrates having a high turnover
and occurring in widely different exchange processes. For exam-
ple, ATP can be seen as the energy currency of the cell. There is
some discussion in the literature on how large the group of cur-
rency metabolites is, but the consensus list includes H,0, ATP,
ADP, NAD and its variants, NH4+, and PO43~ (phosphate).

Equivalence relation
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A relation R on a set X is a set of ordered pairs of elements of X.
R is an equivalence relation if it is reflexive (i.e., (z,z) € R for
every x € X), symmetric (i.e., (z,y) € R implies (y.z) € R) and
transitive (i.e., (z,y) € R and (y,2) € R imply (x,2) € R). Any
equivalence relation produced a partition of X where elements in
the same partition are mutually related to each other.

Hyper-rectangle A generalization of two-dimensional rectangles to more than two

Occam’s razor

Pocket

dimensions. A n-dimensional hyper-rectangle is a Cartesian prod-
uct of n intervals.

The general principle that recommends selection among competing
hypotheses the one that makes the fewest new assumptions.

A pocket on a protein is a concave unfilled region connected to
the outside with a constriction, namely, it has an opening that is
narrower than one interior cross-section.

Power set of aset S The set of all subsets of S.

Rational number A number of the form p/q where p and ¢ are integers and ¢ # 0.

T-LGL

Void

T-cell large granular lymphocyte leukemia represents a spectrum
of lympho-proliferative diseases.

A void inside a protein is a connected interior empty space fully
buried from the outside of the protein.
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approximation ratio, 146 state, 78
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application to cellular networks, 185
crop simulation modelling, 186 asynchronous update, 137
reverse engineering of gene regula- definition, 137
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architecture, 182
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depth, 182

feed-forward, 182

function computation, 182 Chai 1 s
gate function, 182 ain polymer, 84,

sigmoidal, 182 chain growth, 85, 87, 93, 94
threshold, 182 configuration, 85, 87
conformational entropy, 78
excluded volume, 87

Boolean networks, 137

Feed-forward Boolean network, 138
limit cycle, 138
synchronous update, 137

Cell, 133
eukaryotic, 133
prokaryotic, 133

recurrent, 182
reverse engineering (learning), 184

loading problem, 185 generating chain polymer, 86
probably-approximately-correctly learn- growth strategy, 84
able, 184 loop entropy, 78
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Vapnik-Chervonenkis dimension, 184 coordinates, 87
self-avoiding polymer chains, 84, 87
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end-to-end distance, 87
Chemical reaction, 104
Continuous time Markov process, 78

Decoys
sequence decoys, 47
structural decoys, 47
Discrete chemical master equation, 105
ACME, 107
approximation, 113
continuous chemical master equa-
tion, 113
Fokker-Planck approach, 113
Gaussian process, 116
Langevin assumptions, 115
Langevin approach, 115
Poisson process, 116
stochastic differential equation, 113
Taylor expansion, 114
direct solution, 106
finite buffer, 106
buffer capacity, 106
finite buffer algorithm, 106, 121, 122
iBD, 107
independent birth-death component, 107
multi-finite buffer, 107
optimal state enumeration, 106
reaction network decomposition, 107
truncation error, 111
Dynamical systems, 177
Boolean models, 180
communication delays, 178
control-theoretic concepts, 179
controllability, 179
observability, 180
deterministic vs. stochastic dynamics,
178
discrete vs. continuous state variables,
177
discrete vs. continuous time variables,
177
monotone dynamics, 193
algorithmic issues in computing the
degree of monotonicity, 199
characterizations, 196
definition, 194
degree of monotonicity, 198

Ensemble properties, 77

Geometric constructs, 4
computing Delaunay tetrahedrization,
12

edge flip, 13
incremental algorithm, 12, 13
locally Delaunay, 13

computing Voronoi diagram, 14

discrete flow, 11

convex hull, 5

Delaunay tetrahedrization, 5
Delaunay triangulation, 5
power distance, 5

Voronoi cell, 4

Voronoi diagram, 4

Voronoi region, 4

Interaction networks models, 133
dynamical, 135
continuous state, 136
continuous time, 136
differential equations model, 135
discrete state, 136
discrete time, 136
hybrid state, 136
signed graphs, 137
associated signed graph, 137
topological, 134
directed graphs, 134
Ising model, 79
energy, 79

Marginal distribution, 86
Markov chain, 81
conditions, 81
aperiodicity, 82
irreducibility, 82
recurrent state, 82
detailed balance, 82, 84
property, 81
steady state, 82
time reversibility, 82
time reversible processes, 82
transition probability, 81
transition probability matrix, 82
Markov process, 81
MAX-CUT problem, 199
Molecular species, 104

Non-deterministic finite automata (Nra), 190

Piece-wise linear model, 186
biological applications, 188
delta-notch protein signalling, 189
genetic regulatory networks, 189
dynamics, 187
PL-isomorphism, 188
equivalence, 187
piecewise-linear hybrid automata, 189
Potential function, 29
assumptions, 58
binding free energy, 57
Boltzmann assumption, 34
Boltzmann distribution, 33
data dependency, 64
deriving parameter values, 31
distance and packing dependent alpha
potential, 44
effective potential energy, 33



empirical potential function, 30
from optimization, 47
functional form, 31
weighted linear sum, 31
general framework, 31
optimization, 31
statistical analysis, 31
geometric potential function, 44
geometric view, 48
knowledge-based effective energy func-
tion, 30
membrane proteins, 62
Miyazawa-Jernigan contact potential,
34
hydrophobic nature, 39
non-additivity, 59
nonlinear potential function, 52
derivation, 52
optimality criterion, 50
optimization techniques, 53
partition function, 33, 57, 58
sequence dependency, 60
physics-based potential function, 30
probability of occupancy, 32
protein design, 56
protein stability, 57
protein structure prediction, 53
protein-protein docking prediction, 54
reference states, 33, 42, 45, 62
ideal gas, 43
internal random model, 62
permutation model, 62
Rosenblatt perceptron method, 50
theoretical model, 32
three-body interactions, 60
Protein descriptors, 31
Protein design, 47
Protein folding, 29
thermodynamic hypothesis, 29
Protein function prediction, 16
enzyme function prediction, 18
evolution of protein surfaces, 18
graph based methods, 16
matching pocket surfaces, 17
Protein representation, 31
Protein structure, 1
computing surface area, 14
computing volume, 14
packing analysis, 15
atom ball, 2
atom radius, 2
computing surface area, 9
computing volume, 9
Connolly’s surface, 4
crystallography, 1
depressions, 11
distinction between voids and pockets,
11
electron density map, 1
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elementary surface pieces, 4
experimental techniques, 1
fused ball model, 2
hard sphere model, 2
idealized ball model, 2
Lee-Richards surface, 3
metric measurement, 9
molecular surface, 4
nuclear magnetic resonance (NMR), 1
pockets, 11
re-entrant surfaces, 4
refinement, 1
size properties, 9
solvent accessible surface, 3
space filling model, 2
surface, 3
union of ball model, 3
united atom, 2
van der Waals radius, 2
voids, 4, 11
Protein structure and function, 16
Protein structures
near neighbors, 44
degree of near neighbors, 45

Quadratic integer programming, 200
semi-definite optimization, 200
Cholesky decomposition, 200

vector program, 200

Rare event, 79
Reaction, 104
linear and nonlinear reactions, 104
reaction probability, 117
reaction rate, 104
intrinsic reaction rate, 104
reaction trajectory, 117
trajectory, 117
Markovian process, 118
probability of reaction trajectory, 118

Sampling technique, 77
importance sampling, 85
bias correction, 85, 89
weights, 85, 86, 89
bias correction, 86
joint trial distribution, 87
Markov chain Monte Carlo, 83
Metropolis Monte Carlo, 81, 83
move set, 84
proposal function, 84
proposal probability, 83
trial function, 84
partial sample, 86
proposal distribution, 80
rejection sampling, 80
sampling distribution, 80, 85, 89
sequential importance sampling, 85, 89
sequential Monte Carlo, 84, 87
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look-ahead, 87 GPU-based solver, 108
partial sample, 89 iterative solver, 108
prune, 89 matrix exponential, 108
resampling, 89 phage lambda, 122
resampling probability, 89 steady state probability landscape,
sample variance, 89 108
weights, 89 small copy numbers, 103
target distribution, 79, 83-86, 89 state space, 106
decomposition, 86 finite state projection, 110
intermediate distribution, 86, 89 Krylov subspace method, 108
trial distribution, 80, 85, 86 simplification, 108
Scoring function, 30 truncation error, 111
Scoring matrices, 78 stochastic simulation, 117
Signal transduction networks, 139 Gillespie algorithm, 118
NET-SYNTHESIS software, 142 stochastic simulation algorithm, 118
biochemical evidence, 140 theoretical framework, 104
correlation between dynamic and re- transition rate, 105
dundancy, 152 transition rate matrix, 105, 108
data Collection, 142 Stoichiometry, 104
excitory and inhibitory influence, 139 stoichiometry vector, 104
genetic evidence of differential responses,
140 Testosterone dynamics, 174
graph-theoretic notations and termi- Topological structures of molecules, 6
nologies, 139 Delaunay complex, 6
null hypothesis model, 153 simplices, 6
degree distribution, 153 simplicial complex, 6
null hypothesis testing, 155 Two-species interaction, 207
null model
bias correction, 155 Uniform distribution, 87, 89

other network reduction rules, 148
pharmacological evidence, 140
pseudo-node collapse, 147
random networks, 153
redundancy and degeneracy, 149
information theoretic measures, 150
topological measure, 151
reverse engineering, 155
combinatorial approach, 163
modular response analysis, 156
quality evaluation, 166
synthesis, 140
transitive reduction, 145
greedy approach, 146
Specific biological models, 209
C. elegans metabolic network, 214
T-LGL cell survival and death network,
215
ABA-induced stomatal closure network,
211
Drosophila segment polarity model, 209
Boolean, 210
Signal transduction, 210
EGFR signaling network, 212
Stochasticity, 103
microstate, 104
Monte Carlo simulation, 117
probability landscape, 104, 121
dynamically evolving probability land-
scape, 108



