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SUMMARY

Useful insights for many complex systems are often obtained by representing them as net-

works and analyzing them using algorithmic tools and network measures (i.e., ”network curva-

ture”). In this thesis, we will use (a) Gromov-hyperbolic combinatorial curvature δ based on

the properties of exact and aproximate geodesics distributions and higher-order connectivities

and (b) Geometric curvatures C based on identifying network motifs with geometric complexes

(”geometric motifs” in systems biology jargon). Gromov-hyperbolic curvature in graphs occur

often in many network applications. When the curvature is fixed, such graphs are simply called

hyperbolic graphs and include non-trivial interesting classes of ”non-expander” graphs. In this

thesis we investigate the effect of δ on expansion and cut-size bounds on graphs (here δ need not

be a constant), and the asymptotic ranges of δ for which these results provide improved approx-

imation algorithms for related combinatorial problems, minimizing bottleneck edges problem

and Small-set expansion problem. To this effect, we provide constructive bounds on node ex-

pansions for δ-hyperbolic graphs as a function of δ, and show that many witnesses (subsets

of nodes) for such expansions can be computed efficiently. We also formulate and analyze ge-

ometric curvature based on defining k-complex-based Formans combinatorial Ricci curvature

for elementary components, and using Euler characteristic of the complex that is topologically

associated with the given graph. Since, C depends on non-trivial global properties, we formulate

several computational problems related to anomaly detection in static networks, and provide

non-trivial computational complexity results for these problems.

xi



CHAPTER 1

INTRODUCTION

The analysis, discrimination, and synthesis of complex networks rely on the use of mea-

surements capable of expressing the most relevant topological features. Complex systems such

as the world-wide web, social networks, metabolic networks, and protein-protein interaction

networks can often be obtained by representing them as parameterized networks and analyzing

them using graph-theoretic tools. In principle, we can classify these networks into two major

classes:

• Static networks that model the corresponding system by one fixed network. Examples

of such networks include biological signal transduction networks without node dynamics,

and most social networks.

• Dynamic networks where elementary components of the network (such as nodes or edges)

are added and/or removed as the network evolves over time. Examples of such networks

include biological signal transduction networks with node dynamics, causal networks re-

constructed from DNA microarray time-series data, biochemical reaction networks and

dynamic social networks. Typically, such networks may have so-called critical (elemen-

tary) components whose presence or absence alters some significant non-trivial non-local

property of these networks. For example:

1
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. For a static network, there is a rich history in finding various types of critical com-

ponents dating back to quantifications of fault-tolerance or redundancy in electronic

circuits or routing networks. Recent examples of practical application of determining

critical and non-critical components in the context of systems biology include quan-

tifying redundancies in biological networks (52; 68; 5) and confirming the existence

of central influential neighborhoods in biological networks (2).

. For a dynamic network, critical components may correspond to a set of nodes or

edges whose addition and/or removal between two time steps alters a significant

topological property of the network. Popularly also known as the anomaly detection

or change-point detection (7; 49) problem, these types of problems have been studied

over the last several decades in data mining, statistics and computer science mostly

in the context of time series data with applications to areas such as medical condition

monitoring (76; 14), weather change detection (29; 61) and speech recognition (20;

64).

1.1 Why use of network curvature?

Prior researchers have proposed and evaluated a number of established network measures

such as degree-based measures (e.g., degree distribution), connectivity-based measures (e.g.,

clustering coefficient), geodesic-based measures (e.g., betweenness centrality) and other more

novel network measures (21; 53; 5; 9) for analyzing networks. The network measures considered

in this thesis are ”appropriate notions” of network curvatures. As provably demonstrated in

published research works such as (2; 74; 73; 66), these network curvature measures saliently
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encode non-trivial higher-order correlation among nodes and edges that cannot be obtained by

other popular network measures. Some important characteristics of these curvature measures

that we consider are (2, Section (III))(48):

I These curvature measures depend on non-trivial global network properties, as opposed to

measures such as degree distributions or clustering coefficients that are local in nature or

dense subgraphs that use only pairwise correlations.

I These curvature measures can mostly be computed efficiently in polynomial time, as

opposed to measures such as community decompositions, cliques or densest-k-subgraphs.

I When applied to real-world biological and social networks, these curvature measures can

explain many phenomena one frequently encounters in real network applications that are

not easily explained by other measures such as:

I paths mediating up- or down-regulation of a target node starting from the same

regulator node in biological regulatory networks often have many small crosstalk

paths, and

I existence of congestions in a node that is not a hub in traffic networks.

Further details about the suitability of our curvature measures for real biological or social

networks are provided in Section 2.3 for Gromov-hyperbolic curvature and Section 6.1.0.2

for geometric curvatures.

Curvatures are very natural measures of anomaly of higher dimensional objects in mainstream

physics and mathematics (15; 11). However, networks are discrete objects that do not neces-
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sarily have an associated natural geometric embedding. In our research we seek to adapt the

definition of curvature from the non-network domains in a suitable way for detecting network

anomalies. For example, in networks with sufficiently small Gromov-hyperbolicity and suffi-

ciently large diameter a suitably small subset of nodes or edges can be removed to stretch

the geodesics between two distinct parts of the network by an exponential amount leading to

extreme implications on the expansion properties of such networks (10; 25), which is akin to

the characterization of singularities (an extreme anomaly) by geodesic incompleteness (i.e.,

stretching all geodesics passing through the region infinitely) (40).

1.2 Two notions of graph curvature (Scalar vs. vector curvature)

In this thesis, a curvature for a graph G is a scalar-valued function C
def
= C(G) : G 7→ R.

The standard Gromov-hyperbolic curvature measure CGromov(G) = δ is always a scalar value.

Geometric curvatures however could also be defined by a vector by looking at local curvatures at

all elementary components (e.g., nodes or edges) of a network, and defining the overall curvature

as a vector of these values. There are several ways in which network curvature can be defined

depending on the type of global properties the measure is desired to affect; in this thesis we

consider two such definitions as described subsequently. We leave algorithmic analysis of such

geometric vector curvatures, which seems to require considerably different combinatorial and

optimization tools, for future research. Both scalar and vector versions of curvatures are used in

physics and mathematics to study higher-dimensional objects with their own pros and cons. For

example, for a two-dimensional curve, the standard curvature as defined by Cauchy is a scalar

curvature whereas the normal vector used in the study of differential geometry of curves is a
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vector curvature. Even though a casual glance may seem to suggest that the scalar curvature

is a weak concept with inadequate influence on the global geometry of the higher-dimensional

object that is being studied, there exists non-trivial results (e.g., the positive mass theorem of

Schoen, Yau and Witten) that suggest that this may not be the case.

1.3 Organization of this Thesis

In this thesis, first we look into Gromov-hyperbolic curvature denoted by δ which reflects

how the metric space (distances) of a graph is close to the metric space of a tree. Therefore,

Chapter 2 is dedicated to provide Gromov-hyperbolic curvature definition and relevant known

results about this topological property. In Chapter 3, We are motivated to investigate the

effect of the hyperbolicity measure δ on expansion and cut-size bounds on graphs where δ is a

free parameter and not necessarily a constant. These bounds can be used to obtain improved

approximation algorithms for related combinatorial problems depends on the values of δ. Since

arbitrarily large δ leads to the class of all possible graphs, our hope is that investigations of

this type will provide a characterization of hard graph instances for combinatorial problems

via a lower bound on δ. To this effect, in this chapter we further investigate the non-expander

properties of hyperbolic networks beyond what is shown in (83; 102) and provide constructive

proofs of witnesses (subsets of nodes) of small expansion or small cut-size.

The major motivation of this chapter is to address research questions of the following generic

nature:

”What is the effect of the hyperbolicity measure δ on expansion and cut-size bounds on

graphs (where δ is a free parameter and not a necessarily a constant)? For what asymptotic
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ranges of values of δ can these bounds be used to obtain improved approximation algorithms for

related combinatorial problems?”

Chapter 4 and chapter 5 provide algorithmic consequences of constructive bounds that found

in previous chapter and related proof techniques for two problems, minimizing bottleneck edge

problem and small set expansion problem respectively.

Then, In Chapter 6 we focus on geometric curvature denoted by C and some remarks about

this suitable measure for real-network. This chapter provides the foundations of systematic

approaches to find critical components and detect anomalies in networks.

In Chapter 7, we desire to research on questions of the following generic type:

“Given a static network, identify the critical components of the network that “en-

code” significant non-trivial global properties of the network”.

To identify critical components, one first needs to provide details for following four specific

items:

(i) network model selection,

(ii) definition of elementary critical components, and

(iii) network property selection (i.e., the global properties of the network to be investigated).

The specific details for these items in this research are as follows:

(i) Network model selection: Our network model will be undirected graphs.

(ii) Critical component definition: Individual edges are elementary members of critical

components.
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(iii) Network property selection: The network measure for this research will be appropri-

ate notions of “network curvature”. More specifically, in this part we will analyze geometric

curvatures based on identifying network motifs with geometric complexes (“geometric mo-

tifs” in systems biology jargon) and then using Forman’s combinatorializations.

Finally in Chapter 8, we conclude with some interesting future research paths of our work.



CHAPTER 2

GROMOV-HYPERBOLIC CURVATURE

In this chapter we consider a topological measure called Gromov-hyperbolicity (or, simply

hyperbolicity for short) for undirected unweighted graphs that has recently received significant

attention from researchers in both the graph theory and the network science community. This

hyperbolicity measure δ was originally conceived in a somewhat different group-theoretic con-

text by Gromov (97). The measure was first defined for infinite continuous metric space via

properties of geodesics (87), but was later also adopted for finite graphs. Lately, there have

been a surge of theoretical and empirical works measuring and analyzing the hyperbolicity of

networks, and many real-world networks, such as the following, have been reported (either

theoretically or empirically) to be δ-hyperbolic for δ = O(1):

• ”preferential attachment” scale-free networks with appropriate scaling(normalization) (98),

• networks of high power transceivers in a wireless sensor network (79),

• communication networks at the IP layer and at other levels (107), and

• an assorted set of biological and social networks (2).

2.1 Formal Definitions of Gromov-hyperbolicity

There are several equivalent definitions (up to a multiplicative constant) of Gromov’s hy-

perbolic metric space (79). The following definitions are the hyperbolicity measure via geodesic

triangles and 4-node conditions which we use in this thesis.

8
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Definition 1 (δ-hyperbolic graphs via geodesic triangles). A graph G has a (Gromov) hyper-

bolicity of δ = δ(G), or simply is δ-hyperbolic, if and only if for every three ordered triple of

shortest paths (u, v, u, w, v, w), u,v lies in a δ-neighborhood of u,w ∪ v, w, i.e., for every node x

on u, v, there exists a node y on u,w or v, w such that distG(x, y) ≤ δ. A δ-hyperbolic graph is

simply called a hyperbolic graph if δ is a constant.

Definition 2 (the class of hyperbolic graphs). Let G be an infinite collection of graphs. Then,

G belongs to the class of hyperbolic graphs if and only if there is an absolute constant δ ≥ 0

such that any graph G ∈ G is δ-hyperbolic. If G is a class of hyperbolic graphs then any graph

G ∈ G is simply referred to as a hyperbolic graph. There is another alternate but equivalent

(?up to a constant multiplicative factor?) way of defining δ-hyperbolic graphs via the following

4-node conditions.

Definition 3 (equivalent definition of δ-hyperbolic graphs via 4-node conditions). For a set

of four nodes u1, u2, u3, u4, let π = (π1, π2, π3, π4) be a permutation of {1, 2, 3, 4} denoting a

rearrangement of the indices of nodes such that

Su1,u2,u3,u4 = distuπ1 ,uπ2
+ distuπ3 ,uπ4

≤Mu1,u2,u3,u4 = distuπ1 ,uπ3
+ distuπ2 ,uπ4

≤ Lu1,u2,u3,u4 = distuπ1 ,uπ4
+ distuπ2 ,uπ3

and let ρu1,u2,u3,u4 =
Lu1,u2,u3,u4−Mu1,u2,u3,u4

2 .

Then, G is δ-hyperbolic if and only if δ = maxu1,u2,u3,u4∈V {ρu1,u2,u3,u4}.

There is a constant c > 0 such that if a graph G is δ-hyperbolic and δ2-hyperbolic via

Definition 1 and Definition 3, respectively, then 1
c δ1 ≤ δ2 ≤ cδ1. Then, Definition 1 and

Definition 3 are equivalent in the sense that they are related by a constant multiplicative
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factor (87). Since constant factors are not optimized in our proofs, we will use either of the

two definitions of hyperbolicity in the sequel as deemed more convenient. Using Definition 3

and casting the resulting computation as a (max,min) matrix multiplication problem allows

one to compute δ and a 2-approximation of δ in O(n3.69) and in O(n2.69) time, respectively

(94). Several routing-related problems or the diameter estimation problem become easier if the

network is hyperbolic (88; 89; 90; 96). For a discussion of properly scaled 4-node conditions

that yield a variety of (non necessarily hyperbolic) geometries, see (99).

2.2 Remarks on Topological Characteristics of Hyperbolicity Measure

In this section, we present some non-trivial topological characteristics of Hyperbolicity Mea-

sure, even though the hyperbolicity property is often referred to as a ”tree-like” property. For

example three following examples of these characteristics are:

• The hyperbolicity property is not hereditary (and thus also not monotone).

In Fig.1 we can see that removing a single node or edge can increase/decrease the value

of δ abruptly.

• ”Close to hyperbolic topology” is not necessarily the same as ”close to tree

topology”. For example, all bounded-diameter graphs are also hyperbolic graphs ir-

respective of whether they are tree or not (however, hyperbolic graphs need not be of

bounded diameter). In general, even for small δ, the metric induced by a δ-hyperbolic

graph may be quite far from a tree metric (88).

• Hyperbolicity is not necessarily the same as tree-width. A somewhat related

similar popular measure used in both the bioinformatics and theoretical computer science
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literature is the treewidth measure first introduced by Robertson and Seymour (109).

Many NP-hard problems on general networks in fact allow polynomial-time solutions if

restricted to classes of networks with bounded treewidth (86). However, as observed in

(103) and elsewhere, the two measures are quite different in nature.

When δ is a constant, we can categorize trees, chordal graphs, cactus of cliques, AT-free

graphs, link graphs of simple polygons, and any class of graphs with a fixed diameter as hy-

perbolic graph classes and when δ is not a constant, examples of non-hyperbolic graph classes

include expanders, simple cycles, and, for some parameter ranges, the Erdos-Renyi random

graphs. In this research, to avoid division by zero in terms involving 1/δ, we will assume

δ > 0. In other words, we will treat a 0-hyperbolic graph (a tree) as a 1-hyperbolic graph in

the analysis.

Figure 1: Hyperbolicity is not a hereditary property.

2.3 Relevant Known Results for Gromov Hyperbolicity

Here we summarize relevant known results that are used in this paper below; many of these

results appear in several prior works, e.g., (2; 83; 87; 97; 103).

Fact 1 (Cylinder removal around a geodesic). (102) Assume that G is a δ-hyperbolic

graph. Let p and q be two nodes of G such that distG(p, q) = β > 6, and let p′,q′ be nodes on

a shortest path between p and q such that distG(p, p′) = distG(p′, q′) = distG(q′, q) = β/3. For
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any 0 < α < 1/4, let C be set of nodes at a distance of αβ − 1 of a shortest path p′, q′ between

p′ and q′, i.e., let C = {u|∃v ∈ p′, q′ : distG(u, v) = αβ − 1}. Let G−C be the graph obtained

from G by removing the nodes in C. Then, distG−C (p, q) ≥ (β/60)2αβ/δ.

Figure 2: Illustration of Fact 1. By growing the shaded region and

removing nodes in its boundary, one can selectively extract longer

paths in the graph (i.e., the length of a shortest path between p and

q increases when the nodes in the boundary of the shaded region

are removed and the increase of the length of such a shortest path

is more the larger the shaded region is). Translating the region

slightly does not change this property much.

Fig. 2 pictorially illustrates this result.

Fact 2 (Exponential divergence of geodesic rays). [Simplified reformulation of (2), The-

orem 10] Assume that G is a δ-hyperbolic graph. Suppose that we are given the following:

• three integers κ ≥ 4, α > 0, r > 3κδ, and

• five nodes v, u1, u2, u3, u4 such that distG(v, u1) = distG(v, u2) = r, distG( u1, u2) ≥ 3κδ,

distG(v, u3) = distG(v, u4) = r + α, and distG(u1, u4) = distG(u2, u3) = α.
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Consider any path Q between u3 and u4 that does not involve a node in
⋃

0≤j≤r+αBG(v, j).

Then, the length |Q| of the path Q satisfies |Q| > 2α/(6δ)+κ+1.

Figure 3: Illustration of Fact 2. Geodesic rays diverging sufficiently cannot

connect back without using a sufficiently long path.

Fig. 3 pictorially illustrates this result.



CHAPTER 3

EFFECT OF GROMOV-HYPERBOLIC CURVATURE ON CUT AND

EXPANSION

In this section we provide an upper bounds for node expansions for hyperbolic graph G. We

show that many witnesses of subset of nodes satisfying such expansion bounds can be found

efficiently in polynomial time while they form a nested (laminar) family, or have limited overlap

in the sense that every subset has a certain number of ”private” nodes not contained in any

other subset.

These bounds also imply in an obvious manner corresponding upper bounds for the edge-

expansion of G and for the smallest non-zero eigenvalue of the Laplacian of G. To illustrate

these non-trivial bounds, suppose that the maximum degree d and the hyperbolicity value δ

grows asymptotically very slowly with respect to the number of nodes n, and the diameter

D to be of the order of the minimum possible value of logd n. In Remark 1, we provide an

explanation of the asymptotic of these bounds in comparison to expander graphs. In particular,

if δ is fixed (i.e., G is hyperbolic) then d has to be increased to at least 2Ω(
√

log logn/ log log logn)

to get a positive non-zero Cheeger constant, whereas if d is fixed then δ need to be at least

Ω(log n) to get a positive non-zero Cheeger constant (this last implication also follows from the

results in).

In the last part we deal with the absolute size of s− t cuts in hyperbolic graphs, and shows

that a large family of s-t cuts having at most dO(δ) cut-edges can be found in polynomial time

14
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in δ-hyperbolic graphs when every node other than s and t has a maximum degree of d and the

distance between s and t is at least Ω(δ log n).

3.1 Basic Notations and Assumptions

We first define basic concepts and terminologies throughout this chapter. We will simply

write log to refer to logarithm base 2. Our basic input is an ordered triple 〈G, d, δ〉 denoting

the given connected undirected unweighted graph G = (V,E) of hyperbolicity δ in which every

node has a degree of at most d > 2. We will always use the variable m and n to denote

the number of edges and the number of nodes, respectively, of the given input graph. In our

analysis throughout the chapter, we assume that n is always sufficiently large. For notational

convenience, we will ignore floors and ceilings of fractional values in our theorems and proofs,

e.g., we will simply write n/3 instead of bn/3c or dn/3e, since this will have no effect on the

asymptotic nature of the bounds. We will also make no serious effort to optimize the constants

that appear in the bounds in our theorems and proofs. In addition, the following notations will

be used throughout the chapter:

• |P| is the length (number of edges) of a path P of a graph.

• u, v is a shortest path between nodes u and v. In our proofs, any shortest path can be

selected but, once selected, the same shortest path must be used in the remaining part

of the analysis.

• distH(u, v) is the distance (number of edges in a shortest path) between nodes u and v in

a graph H (and is ∞ if there is no path between u and v in H).
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• D(H) = maxu,v∈V ′{distH(u, v)} is the diameter of the graph H = (V ′, E′). Thus, in

particular, u, v ∈ V for our input graph G there exists two nodes p and q such that

distG(p, q) = D(G) ≥ logdn.

• For a subset S of nodes of the graph H = (V ′, E′), the boundary ∂H(S) of S is the set of

nodes in V ′\S that are connected to at least one node in S, i.e.,

∂H(S) = {u ∈ V ′\S|v ∈ S ∧ {u, v} ∈ E′}

Similarly, for any subset S of nodes, cutH(S) denotes the set of edges of H that have

exactly one end-point in S.

The readers should note that our definition of ∂H(S) involved the set of the nodes, and

not the set of edges, that are connected to S.

• BH(u, r) is the set of nodes contained in a ball of radius r centered at node u in a graph

H, i.e., BH(u, r) = {v|distH(u, v) ≤ r}

3.2 Node and Edge Expansions

In this section we define the node (or edge) expansion ratios of a δ-hyperbolic graph for

some (not necessarily constant) δ. The following definitions are standard in the graph theory

literature and repeated here only for the sake of completeness.

Definition 4 (Node and edge expansion ratios of a graph).

(a) The node expansion ratio hG(S) of a subset S of at most |V |/2 nodes of a graph G = (V,E)
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is defined as hG(S) = |∂G(S)|
|S| . If hG(S) > c for some constant c > 0 and for all subsets S of at

most |V |/2 nodes then we call G a node-expander.

(b) The edge expansion ratio gH(S) of a subset S of at most |V |/2 nodes of a graph G = (V,E)

is defined as gG(S) = |cutG(S)|
|S| . If hG(S) > c for some constant c > 0 and for all subsets S of

at most |S| ≤ |V |/2 nodes then we call G an edge-expander or sometimes simply an expander.

Definition 5 (Witness of node or edge expansions). A witness of a node (respectively,

edge) expansion bound of c of a graph G = (V,E) is a subset S of at most |V |/2 nodes of G

such that hG(S) ≤ c (respectively, gG(S) ≤ c).

Notation hG = min
S⊂V :|S|≤|V |/2

{
hG(S)

}
will denote the minimum node expansion of a graph

G = (V,E).

For any graph G = (V,E), any subset S containing exactly |V |/2 nodes has |∂G(S)| ≤ |V |/2,

and thus 0 < hG = min
S⊂V :|S|≤|V |/2

{
hG(S)

}
≤ 1 All our expansion bounds in this section will be

stated for node expansions only. Since gG(S) ≤ d hG(S) for any graph G whose nodes have a

maximum degree of d, our bounds for node expansions translate to some corresponding bounds

for the edge expansions as well.

3.3 Overview of Our Results

Before proceeding with formal theorems and proofs, we first provide an informal non-

technical intuitive overview of our results.

. Our first two results in Section 3 provide upper bounds for node expansions for the triple

〈G, d, δ〉. as a function of n, d, and δ. These two results, namely Theorem 6 and Theorem
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8, provide absolute bounds and show that many witnesses (subset of nodes) satisfying such

expansion bounds can be found efficiently in polynomial time satisfying two additional

criteria:

. the witnesses (subsets) form a nested family, or

. the witnesses have limited overlap in the sense that every subset has a certain number

of ”private” nodes not contained in any other subset.

These bounds also imply in an obvious manner corresponding upper bounds for the edge-

expansion of G and for the smallest non-zero eigenvalue of the Laplacian of G. diverges

further In Remark 1, we provide an explanation of the asymptotic of these bounds in

comparison to expander-type graphs. For example, if δ is fixed (i.e., G is hyperbolic) then

d has to be increased to at least 2Ω
(√

log logn/ log log logn
)

to get a positive non-zero Cheeger

constant, whereas if d is fixed then δ need to be at least Ω(log n) to get a positive non-zero

Cheeger constant (this last implication also follows from the results in (83; 103)).

. Our last result in this section, namely Lemma 9, deals with the absolute size of s-t cuts in

hyperbolic graphs, and shows that a large family of s-t cuts having at most dO(δ) cut-edges

can be found in polynomial time in δ-hyperbolic graphs when d is the maximum degree of

any node except s, t and any node within a distance of 35δ of s and the distance between

s and t is at least Ω(δ log n). This result is later used in designing the approximation

algorithm for minimizing bottleneck edges and small set expansion problems in Section 4

and 5 respectivley.
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3.4 Effect of δ on Expansions and Cuts in δ-hyperbolic Graphs

The two results in this section are related to the node (or edge) expansion ratios of a graph

that is δ-hyperbolic for some (not necessarily constant) δ.

3.4.1 Nested Family of Witnesses for Node/Edge Expansion

Here our goal is to find a large nested family of subsets of nodes with good node expansion

bounds. A family of sets S1, S2, ..., Sl is called nested if S1 ⊂ S2 ⊂ ... ⊂ Sl. For two nodes p

and q of a graph G = (V,E), a cut S of G that ”separates p from q” is a subset S of nodes

containing p but not containing q, and the set of cut edges cutG(S, p, q) corresponding to the

cut S is the set of edges with exactly one end-point in S, i.e.,

cutG(S, p, q) =

{{
u, v
}
|p, u ∈ S and q, v ∈ V \S

}

Recall that d denotes the maximum degree of any node in the given graph G.

Theorem 6. For any constant 0 < µ < 1, the following result holds for < G, d, δ >. Let p and

q be any two nodes of G and let ∆ = distG(p, q). Then, there exists at least t = max{ ∆µ

56 log d , 1}

nested family of subsets of nodes ∅ ⊂ S1 ⊂ S2 ⊂ ... ⊂ Sl at each of at most n/2 nodes with the

following properties:

. ∀j ∈ {1, 2, ..., t} :

hG(Sj) ≤ min

{
8 ln(n2 )

∆
,max{ 500 lnn

∆2
∆µ

28δ log(2d)

}}
.
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. All the subsets can be found in a total of O(n3 log n+mn2) time.

. Either all the subsets S1, S2, ..., St contain the node p, or all of them contain the node q.

Corollary 7. Letting p and q be two nodes such that distG(p, q) = D(G) = D realizes the

diameter of the graph G, we get the bound:

hG(Sj) ≤ min

{
8ln(ln /2)

D
,max

{
(

1

D
)1−µ, (500 ln)/

(
D 2

Dµ

28 δ log(2d)

)}

Since D > log n/ log d, the above bound implies:

hG(Sj) ≤ max

{
(log d/ log n)1−µ, (500 log d)/

(
2logµ n/28 δ log1+µ(2d)

)}
(3.1)

Remark 1. The following observations may help the reader to understand the asymptotic nature

of the bound (3.1).

(a) The first component of the bound is O(1/ log1−µ n) for fixed d, and is Ω(1) only when

d = Ω(n).

(b) To better understand the second component of the bound, consider the following cases (recall

that hG = Ω(1) for an expander):

• Suppose that the given graph is a hyperbolic graph of constant maximum degree, i.e., both

δ and d are constants. In that case,



21

(500 log d)/

(
2

logµ n

28 δ log1+µ(2d)

)
= O

(
1/
(
2O(1) logµ n

))
= O(1/ polylog (n))

• Suppose that the given graph is hyperbolic but the maximum degree d is arbitrary. In that

case,

(500 log d)/

(
2

logµ n

28 δ log1+µ(2d)

)
= O(log d/(2O(1) logµ n/ log1+µ d)) = O(log d/polylog(n)1/ log1+µ d)

and thus d has to be increased to at least 2Ω
(√

log logn/ log log logn
)

to get a constant upper

bound.

• Suppose that the given graph has a constant maximum degree but not necessarily hyperbolic

(i.e., δ is arbitrary). In that case,

(500 log d)/

(
2

logµ n

28 δ log1+µ(2d)

)
= O

(
1/2O(1) logµ n/δ

)

and thus δ need to be at least Ω(logµ n) to get a constant upper bound.

3.4.1.1 Proof of Theorem 6

To prove the bounds and consequently to show hyperbolic graphs are not expander, we

use the same cylinder or ball removing approach in (83; 102). However, we try to find these

witnesses while optimizing the corresponding expansion bounds. Our proof is divided into three

steps. In step (I), we analyze the first component of the expansion bounds. In step (II), we

analyze the second component, and in last step (step (III)) we show the time complexity of the

algorithm.
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(I) Proof of the easy part of the bound,i.e., hG(Sj) ≤ (8 ln(n/2))/∆

The proof for this part is straightforward. Without loss of generality, we assume |BG(p,∆)| ≤

min
{
|BG(p,∆/2)|, |BG(q,∆/2)|

}
≤ n/2. Consider the sequence of balls BG(p, r) for r =

0, 1, 2, ...,∆/2. Thus it follows that:

n/2 > |BG(p,∆/2)| ≥
(∆/2)−1∏
l=0

(1 + hG(BG(p, l)))

≥
(∆/2)−1∏
l=0

ehG(BG(p,l))/2 = e
∑(∆/2)−1
l=0 hG(BG(p, l))

⇒ ln(n/2) >

(∆/2)−1∑
l=0

hG(BG(p, l))/2⇒
∑(∆/2)−1

l=0 hG(BG(p, l))

∆/2
<

(4 ln (n/2))

∆

By a simple averaging argument, there must now exist ∆/4 > max{ ∆µ

56 log d , 1} distinct balls (sub-

sets of nodes) BG(p, r1) ⊂ BG(p, r2) ⊂ ... ⊂ BG(p, r∆/4) such that |BG(p, rj)| < (8 ln(n/2))/∆

for j = 1, 2, ...,∆/4. It is straightforward to see that these balls can be found within the desired

time complexity bound.

(II)Proof of the difficult part of the bond,i.e., hG(Sj) ≤ max

{
(1/∆)1−µ, 500 lnn

∆2
∆µ

28 δ log(2d)

}
(II-a)The easy case of ∆ = O(1)

Here first we consider the case ∆ = O(1) and then we will extend it to case ∆ = ω(1).

When ∆ = O(1), we know ∆ = c for any some constant c ≥ 1 then since δ ≥ 1/2, d > 1and n

is sufficiently large, we have (500 lnn)/(∆2∆µ/(28δ log(2d))) > (500 lnn)/(∆2(1/14)∆µ
) > 1. Thus,

any subset of n/2 nodes containing p satisfies the claimed bound, and the number of such

subsets is
(n

2
−1

n−2

)
� t.
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(II-b) The case of ∆ = ω(1)

For the case ∆ = ω(1) we assume that D(n) = ω(1), limn→∞D(c) > c for any constant c.

Let p′, q′ be nodes on a shortest path between p and q such that distG(p, p′) = distG(p′, q′) =

∆/3. For our analysis we also set the value of parameter

α = α0 = 1/(7∆1−µ log(2d)) (3.2)

where α0 is less than 1/41.

Let C be set of nodes at a distance of bα∆c > α∆ − 1 of a shortest path p′, q′ between p′

and q′. Thus,

C = {u|∃v ∈ p′, q′ : distG(u, v) = dα∆e} ⇒ |C| ≤ (∆/3)dbα∆c < (∆/3)dα∆ (3.3)

Let graph G−C is reached by removing the nodes in C from graph G and by Fact 1, we will

have

distG−C(p, q) ≥ (∆/60)2α∆/δ. (3.4)

1We will later need to vary value of α in our analysis.
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Let BG(p, r) be the ball of radius r centered at node p in G with |BG(p, r)| ≤ n/2, and let

h̄(p, j) :=

(∑j−1
l=0 BG(p, l)

)
/j. Then, since |BG(p, 0)| = 1 and BG(p,r)

BG(p,r−1) = 1+hG(BG(p, r−1)),

we have

|BG(p, r)| =
r−1∏
j=0

(1 + hg(BG(p, j)))

≥
r−1∏
j=0

ehG(BG(p,j))/2 = e
∑r−1
j=0 hG(BG(p,j))/2 = erh̄(p,r)/2 (3.5)

Assume without loss of generality that1

|BG−c(p, distG−c(p, q)/2)| ≤ |BG−c(q, distG−c(p, q)/2)| ≤ (n− |C|)/2 < n

2
(3.6)

Case 1: There exists a set of t distinct indices {i1, i2, ..., it} ⊆ {0, 1, 2, ..., distG−C (p , q)/2} such

that, i1 < i2 < ... < it and, for all 1 ≤ s ≤ t, hG(BG(p, is)) = hG(BG−c(p, is)) ≤ (1/∆)1−µ (see

Fig.4). Then, the subsets BG(p, i1) ⊂ BG(p, i2) ⊂ · · · ⊂ BG(p, it) satisfy our claim.

Case 2: If Case 1 does not hold. In this case, we have

(∆/3)−α∆−1∑
l=0

hG(BG(p, l)) > ((distG−c(p, q)/2)− (t− 1))(1/∆)1−µ

> ((∆/3)− α∆− t)(1/∆)1−µ > ∆µ/4 (3.7)

1Note that if no path between nodes p and q in G−C then distG−C
(p, q) = ∞ and

BG−C

(
p, distG−C

(p, q)/2
)

and BG−C

(
q, distG−C

(p, q)/2
)

contain all the nodes reachable from p and q
respectively, in G−C .
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Let rp be the least integer such that BG−C (p, rp) = BG−C (p, rp + 1). Since G is a connected

graph and, for all r ≤ (∆/3)− α∆ we have BG(p, r) ∩C = ∅ ≡ BG−C (p, r) = BG(p, r) we have

rp ≥ (∆/3)− α∆ (see Fig. 4).

The current strategy may be failed when rp is precisely (∆/3)−α∆. This could be happen

when p is disconnected from q in G−C .

Failure of the strategy in proof of Theorem 5

Note that it is possible that rp is precisely (∆/3)−α∆ or not too much above it (this could

happen when p is disconnected from q in G−C). Consequently, we may not be able to use our

current technique of enlarging the ball BG−C(p, r) for r beyond (∆/3)−α∆ to get the required

number of subsets of nodes as claimed in the theorem. A further complication arises because,

for r > (∆/3) − α∆, expansion of the balls BG(p, r) in G-C may differ from that in G, i.e.,

hG(BG−C(p, r)) need not be the same as hG−C(BG−C(p, r)).

Rectifying the current strategy

We now change our strategy in the following manner. Let us write rp as rp,α∆ to show

its dependence on α∆ and let α1 = 1
14∆1−µ log(2d)

. Vary α from α = α1 to α = α1/2 in steps

of −1/∆, and consider the sequence of values rp,α1∆, rp,α1∆−1, ..., rp,α1∆/2. Let Cα1∆−l denote

the set of nodes in C when α is set equal to α1 − (l/∆) for l = 0, 1, 2, ..., α1∆/2 (see Fig. 6).

Consider the two sets of nodes Cα1∆−l and Cα1∆−l′ with l < l′. Obviously, Cα1∆−l 6= Cα1∆−l′

for any l 6= l′.
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Figure 4: Illustration of various cases in the proof of Theorem 5.

Nodes on the boundary of the lightly cross-hatched region belong

to Cα1∆−l.

Case 2.1 (relatively easier case): Removal of each of the set of nodes Cα1∆, Cα1∆−1, ..., C(α1∆)/2

disconnects p from q in the corresponding graphs G−Cα1∆, G − Cα1∆−1, ..., G − C(α1∆)/2, re-

spectively.

Then, for any 0 ≤ l ≤ (α1∆)/2, we have

rp,α1∆−l ≥ (∆/3)− α1∆ + l ≥ (∆/3)− α1∆
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∣∣∣∣BG−Cα1∆−l
(p, rp,α1∆−l)

∣∣∣∣ > ∣∣∣∣BG−Cα1,∆

(
p, (

∆

3
)− α1∆

)∣∣∣∣ ≥ e 1
2

∑(∆/3)−α1D−1
j=0 hG(BG(p,j))

> e∆µ/8∣∣∣∣∂G(BG−Cα1∆−l
(p, rp,α1∆−l)

)∣∣ ≤ ∣∣Cα1∆−l| ≤
∣∣Cα1∆

∣∣ < (∆/3)dα1∆

hG

(
BG−Cα1∆−t(p, rp,α1∆−l)

)
=

∣∣∣∣∂G(BG−Cα1∆−l
(p, rp,α1∆−l)

)∣∣∣∣∣∣∣∣BG−Cα1∆−l(p, rp,α1∆−l)

∣∣∣∣
<

(∆/3)dα1∆

e∆∆µ/8
=

(∆/3)d
∆µ

14 log(2d)

e∆µ/8
<

(∆/3)(d1/ log d)∆µ/14

e∆µ/8

=
(∆/3)2∆µ/14

e∆µ/8
<

∆/3

2∆µ/20
<

(
1

∆

)1−µ
, since µ > 0 and ∆ = ω(1) (3.8)

This inequality (3.8) implies that there exists a set of 1 + (α1∆)/2 = 1 + (∆µ)/(28 log(2d)) >

∆µ/(56 log d)

subset of nodes BG−Cα1∆
(p, rp,α1∆) ⊂ BG−Cα1∆−1

(p, rp,α1∆−1) ⊂ ... ⊂ BG−Cα1∆/2
(p, rp,α1∆/2)

such that each subset BG−Cα1∆−l(p, rp,α1∆−l) has hG(BG−Cα1∆−l
(p, rp, α1∆ − l)) < (1/∆)1−µ.

This proves our claim.

Case 2.2 (the difficult case): Case 2.1 does not hold.

This means that there exists an index 0 ≤ t ≤ (α1∆)/2 such that the removal of the set of

nodes in Cα1∆−t does not disconnect p from q in the corresponding graphs G−Cα1∆−t. This

implies rp,α1∆−t > distG−Cα1∆−t(p,q)/2. For notational convenience, we will denote Cα1∆−t and

G − Cα1∆−t simply by C and G−C , respectively. We redefine α0 = α1 − (t/∆) such that

α1∆− t = α0∆. Note that α1/2 ≤ α0 ≤ α1.

First goal: show that our selection of α0 ensures that removal of nodes in C does
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not decrease the expansion of the balls BG−C (p, r) in the new graph G−C by more

than a constant factor.

First, note that the goal is trivially achieved if If r ≤ (∆/3) − α0∆ since for all r ≤

(∆/3)− α0∆ we have hG−C (BG−C (p, r)). Thus, assume that r > (∆/3)− α0∆. To satisfy our

goal, it suffices if we can show the following assertion:

∀(∆/3)− α0∆ < r ≤ distG−C (p, q)/2 : hG(BG−C (p, r − 1)) > (1/∆)1−µ ⇒

hG−C (BG−C(p,r−1)) ≥ hG(BG−C (p, r − 1)/2) (3.9)

We verify the above statement as shown below. First, note that:

hG−C
(
BG−C(p, r − 1)

)
≥ hG

(
BG−C(p, r − 1)

)
/2

≡
∣∣∂G(BG−C(p, r − 1))

∣∣− ∣∣∂G(BG−C(p, r − 1)) ∩ C
∣∣∣∣BG−C(p, r − 1)

∣∣ ≥ hG
(
BG−C(p, r − 1)

)
/2

⇐
∣∣∂G(BG−C(p, r − 1)

)∣∣− ∣∣C∣∣∣∣BG−C(p, r − 1)
∣∣ ≥ hG

(
BG−C(p, r − 1)

)
/2

≡ ∂G
(
BG−C(p, r − 1)

)
BG−C(p, r − 1)

− |C|
BG−C(p, r − 1)

≥ hG
(
BG−C(p, r − 1)

)
/2

≡ hG
(
BG−C(p, r − 1)

)
−

∣∣C∣∣
BG−C(p, r − 1)

≥ hG
(
BG−C(p, r − 1)

)
/2

≡ 2
∣∣C∣∣

hG
(
BG−C(p, r − 1)

) ≤ ∣∣BG−C(p, r − 1)
∣∣

⇐ 2
∣∣C∣∣

hG
(
BG−C(p, r − 1)

) ≤ e∆µ/8
, since

∣∣BG−C(p, r − 1)
∣∣ ≥ ∣∣∣∣BG−C(p, (∆

3
)− α0∆

)∣∣∣∣
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= |BG−C(p, (
∆

3
)− α0∆)| ≥ |BG−C(p, (

∆

3
)− α1∆)| ≥ e∆µ/8

⇐
(
(∆/3)dα0∆)(2/(hG(BG−C(p, r − 1)

)))
≤ e∆µ/8

since|C| < (∆/3)dα0∆

≡ (∆µ/8) ≥ ln ∆ + α0∆ ln d− ln(3/2)− ln
(
hG(BG−C(p, r − 1)

))
⇐ (∆µ/8) ≥ ln ∆ + α0∆ ln d− ln 3/2− ln

(
hG(BG−C(p, r − 1))

)
, sinceα0 ≤ α1

⇐ α1 ≤
(∆µ/8)− ln ∆ + ln(hG(BG−C(p, r − 1)))

∆ ln d
(3.10)

Now, if hG(BG−C(p, r − 1)) > (1/∆)1−µ then since ∆ = ω(1)wehave :

(∆µ/8)− ln(∆ + lnhG(BG−C(p, r − 1))) > (∆µ/8)− ln ∆− (1−µ) ln ∆ > (∆µ/7)

Thus, Inequality (3.10) is satisfied by our selection of α1 = 1/(14∆1−µ log(2d)). This verifies

(3.9) and satisfies our first goal.

Second goal: Use the first goal and the fact that distG−C(p, q) is large enough to

find the desired subsets.

First assume that there exists a set of t = max{1,∆µ/(56 log d)} indices i1 < i2 < ... < it ∈

(∆/3)− α0∆ + 1, (∆/3)− α0∆ + 2, ..., (distG−C(p, q))/2 such that

∀1 ≤ s ≤ t : hG(BG−C(p, is)) ≤ (1/∆)1−µ (3.11)

Obviously, the existence of these subsets BG−C(p, i1) ⊂ BG−C(p, i2) ⊂ ... ⊂ BG−C(p, it) proves

our claim. Otherwise, there are no sets of t indices to satisfy last constraint. This implies that
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there exists a set of ζ = distG(p, q)/2− ((∆/3)− α0∆))− (t− 1) distinct indices j1, j2, ..., jζ in

{(∆/3)− α0∆ + 1, (∆/3)− α0∆ + 2, ..., (distG−C(p, q))/2} such that

∀1 ≤ s ≤ ζ : hG(BG−C(p, js)) > (1/∆)1−µ ⇒

∀1 ≤ s ≤ ζ : hG − C(BG−C(p, js)) ≥ hG(BG−C(p, js))/2 (3.12)

This in turn implies

∣∣BG−C(p,distG−C(p,q))/2| >
( (∆/3)−α0−1∏

j=0

1+hG(BG−C(p, j))

)( (∆/3)−α0+ζ−1∏
j=(∆/3)−α0

(1+(hG(BG−C(p, j))/2))

)

>

( (∆/3)−α0∆−1∏
j=0

ehG(BG−C(p,j))/2)

)( (∆/3)−α0∆+ζ−1∏
(∆/3)−α0∆

ehG(BG−C(p,j))/4

)

=

(
e
∑(∆/3)−α0∆−1
j=0 hG(BG−C(p,j))/2

)(
e
∑(∆/3)−α0∆+ζ−1

(∆/3)−α0∆
hG(BG−C(p,j))/4

)
>

e
∑(∆/3)−α0∆+ζ−1
j=0 hG(BG−C(p,j))/4 (3.13)

Using (3.13) and our specific choice of the node p(over node q), we have

n/2 >
∣∣BG−C(p, distG−C(p, q)/2)

∣∣ > e
∑(∆/3)−α0∆+ζ−1
j=0 hG(BG−C(p,j))/4

⇒
(∆/3)−α0∆+ζ−1∑

j=0

hG
(
BG−C(p, j)

)
/4 < 4 lnn (3.14)
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We know claim that there must exist a set of t = ∆µ/(56 log d) distinct indices i1, i2, ... < it in

{0, 1, ..., (∆/3)− α0∆ + ζ − 1} such that

∀1 ≤ s ≤ t : hG(BG−C(p, is)) ≤ (500 lnn)/

(
∆2∆µ/(28δ log(2d))

)
(3.15)

The existence of these indices will obviously prove our claim. Suppose, for the sake of contra-

diction, that this is not the case. Together with (3.14) this implies:

4 lnn >

(∆/3)−α0∆+ζ−1∑
j=0

hG(BG−C(p, j))

>

(
∆

3
)− α0∆ + ζ − (∆µ/(56 log d)) + 1

)(
(500 lnn)/

(
∆2∆µ/(28δ log(2d))

))
⇒
(

(distG−C(p, q)/2)−max

{
1, (∆µ/(28 log d))

})(
(500 lnn)/(∆2∆µ/(28δ log(2d)))

)
< 4 lnn,

⇒
(

(∆/120)2(α1∆)(2δ) −max

{
1, (∆µ/(28 log d))

})(
(500lnn)/(∆2∆µ/(28δ log(2d)))

)
< 4 lnn,

≡
(

(∆/120)2(∆µ/ log(2d)

)
−max

{
1, (∆µ/(28 log d))

})(
125/

(
∆2∆µ/(28δ log(2d))

))
< 1

⇒
(

(∆/120)2(∆µ/ log(2d)

)(
125/

(
∆2∆µ/(28δ log(2d))

))
< 1 ≡ 125/121 < 1, since ∆ = ω(1)

(3.16)
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Since (3.16) is false, there must exist a set of t distinct indices i1 < i2 < ... < it such that

(3.15) holds and the corresponding sets BG−C(p, i1) ⊂ BG−C(p, i2) ⊂ ... ⊂ BG−C(p, it) prove

our claim.

Figure 5: Illustration of various cases in the proof of Theorem 6. Nodes on

the boundary of the lightly shaded region belong to Cα1∆.

(III)Time complexity for finding each witness:

Here we show the overview of the algorithm to find each witness provided and the whole

time complexity. We can implement the following steps:

• Find two nodes p and q such that distG(p, q) = ∆ in time O(n2 log n+mn).

• Using breadth-first-search (BFS), find the two nodes p′, q′ as in the proof in O(m + n)

time.

• There are at most α1∆/2 = ∆µ/(28 log(2d)) < n possible values of α considered in the

proof. For each α, the following steps are needed:

– Use BFS to find the set of nodes C in O(n2 +mn) time.

– Compute G−C in time O(m+ n).

– Using BFS, compute BG−C(p, r) for every 0 ≤ r ≤ distG−C(p, q)/2 in O(m+n) time.
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– Compute hG(BG−C(p, r)) for every 0 ≤ r ≤ distG−C(p, q)/2 in O(n2 + mn) time,

and select a subset of nodes with a minimum expansion.

3.4.2 Family of Witnesses of Node/Edge Expansion With Limited Mutual Overlaps

In this section we will generate a family of cuts that are are sufficiently different from each

other, i.e., they are either disjoint or have limited overlap. The following theorem addresses the

central result.

Theorem 8. Let p and q be any two nodes of G with distG(p, q) = ∆ > 8. For any constant

0 < µ < 1 and any positive integer τ < ∆/

((
42δ log(2d) log(2∆)

)1/µ)
, we can find bτ/4c

distinct collections of subsets of nodes ∅ ⊂ F1,F2, ...,Fbτ/4c ⊂ 2V that each has at least tj =

max{ (∆/τ)µ

56 log d , 1} nested family of subsets ∅ ⊂ Vj,1 ⊂ Vj,2, ...,⊂ Vj,tj ⊂ V in time O(n3 log n+mn2)

such that:

• ∀j ∈ {1, 2, ..., bτ/4c} ∀S ∈ Fj :

hG(S) ≤ max

{(
1

∆/τ

)1−µ
,

360 log n

∆/τ2
(∆/τ)µ

7δ log(2d)

}
.

• (limited overlap claim) For every pair of subsets Vi,k ∈ Fi and Vj,k′ ∈ Fj with i 6= j, either

Vi,k ∩ Vj,k′ = ∅ or at least ∆/(2τ) nodes in each subset do not belong to the other subset.

Remark 2. Consider a bounded-degree hyperbolic graph, i.e., assume that δ and d are constants.

Setting τ = ∆1/2 gives Ω(∆1/2) nested families of subsets of nodes, with each family having at
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least Ω(∆1/2) subsets each of maximum node expansion (1/∆)(1−µ)/2, such that every pairwise

non- disjoint subsets from different families have at least Ω(∆1/2) private nodes.

Proof. Select τ ≤ ∆/4 such that τ satisfies the following:

∆/(60τ)2((∆/τ)µ)/(28δ log(2d)) > (∆/τ) + 2∆ (3.17)

Note that τ ≥ (42δ log(2d) log(2∆))1/µ/∆ satisfies inequality (3.8) since

∆/(60τ)2((∆/τ)µ)/(28δ log(2d)) > (∆/τ) + 2∆

⇒ (∆/τ)µ > 28δ log(2d) log(60 + 120τ) > 168δ log(2d) log(2∆)

⇒ τ < ∆/((42δ log(2d) log(2∆))1/µ), since τ < ∆/4

Let (p = p1, p2, ..., pτ+1 = q) be an ordered sequence of τ + 1 nodes such that distG(pi, pi+1) =

∆/τ for i = 1, 2, ..., τ . Applying Theorem 5 for each pair (pi, pi+1), we get a nested family

∅ ⊂ Fi ⊂ 2V of subsets of nodes such that ti = |Fi| ≥ max{ (∆/τ)µ

56 log d , 1} , and, for any Vi,k ∈ Fi,

hG(Vi, k) ≤ max
{

(1/(∆/τ))1−µ, (360 log n)/((∆/τ)2(∆/τ)µ/(7δ log(2d)))
}

Recall that the subset of nodes Vi,k was constructed in Theorem 5 in the following manner (see

Fig. 5 for an illustration):

• Let li and ri be two nodes on a shortest path pi, pi+1 such that distG(pi, li) = distG(li, ri) =

distG(ri, pi+1) = distG(pi, pi+1)/3.
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• For some 1/
(
28(∆/τ)1−µ log(2d)) ≤ αi,k ≤ 1/(14(∆/τ)1−µ log(2d)

)
< 1/4, construct the

graph G−Ci,k obtained by removing the set of nodes Ci,k which are exactly at a distance

of d αi,kdistG(pi, pi+1)e from some node of the shortest path li, ri.

• The subset Vi,k is then the ball BG−Ci,k (yi, ai,k) for some ai,k ∈ [0, distG−Ci,k(pi, p(i+1))/2]

and for some yi ∈ {pi, pi+1}. If yi = pi then we call the collection of subsets Fi ”left

handed”, otherwise we call Fi ”right handed”.

We can partition the set of τ collections F1, ...,Fτ into four groups depending on whether the

subscript j of Fj is odd or even, and whether Fj is left handed or right handed. One of these

4 groups must at least bτ/4c family of subsets. Suppose, without loss of generality, that this

happens for the collection of families that contains Fi,k when i is even and Fi,k is left handed

(the other cases are similar). We now show that subsets in this collection that belong to differ-

ent families do satisfy the limited overlap claim.

Figure 6: Illustration of various quantities related to the proof of Theorem 6.

Nodes within the lightly cross-hatched region belong to Ci,k and Cj,k′ . Note that

BG−Ci,k (pi, ai,k) and BG−Cj,k′
(pj , aj,k′) need not to be balls in the original graph G.
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Consider an arbitrary set in the above-mentioned collection of the form Vi,k = BG−Ci,k(pi, ai,k)

with even i. Let Ci,k denote the nodes in the interior of the closed cylinder of nodes in G

which are at a distance of at most dαi,kdistG(pi, pi+1)e from some node of the shortest path

li, ri, i.e., let Ci,k = {u|∃v ∈ li, ri : distG(u, v) ≤ dαi,kdistG(pi, pi+1)e}(see Fig. 3). Let

Vj , k
′ = BG−Cj,k′ (pj , aj,k′) be a set in another family Fj with even j 6= i (see Fig. 3). Assume,

without loss of generality, that i is smaller than j, i.e., i ≤ j − 2 (the other case is similar).

Proposition 1. Ci,k ∩BG−cj,k′ (pj ,∆/(2τ)) = φ

Proof. Assume for the sake of contradiction that u ∈ Ci,k ∩ BG−Cj,k′ (pj ,∆/(2τ)) 6= φ.

Since u ∈ Ci,k, there exists a node v ∈ li, ri such that distG(v, u) ≤ dαi,kdist(pi, pi+1)e <

distG(pi, pi+1)/4 = ∆/(4τ).

Thus,

u ∈ BG−Cj,k′ (pj ,∆/(2τ))⇒ distG−Cj,k′ (u, pi) ≤ ∆/(2τ)⇒ distG(u, pj) ≤

∆(2τ)⇒ distG(v, pj) ≤ distG(u, v) + distG(u, pj) < ∆/(4τ) + ∆/(2τ) < ∆/τ

which contradicts the fact that distG(v, pj) > distG(v, pj) > distG(pi+1, pj) = ∆/τ . q

Proposition 2. distG−Cj,k′ > ∆/(2τ) for any node u ∈ Vi,k ∩ Vj,k′ = BG−Ci,k(pi, ai,k) ∩

BG−Cj,k′ (pj , aj,k′).

Proof. Assume for the sake of contradiction that z = distG−Cj,k′ (u, pi) ≤ ∆/(2τ). Since

u ∈ Vi,k = BG−Ci,k(pi, ai,k), this implies distG−Ci,k(pi,k, u) ≤ ai,k ≤ distG−Ci,k/2



37

Since u ∈ Vj,k′ = BG−Ci,k(pj , aj,k′) for some aj,k′ , this implies u ∈ BG−Cj,k′ (pj , z). Since

z ≤ ∆/(2τ), by Proposition 1 Ci,k ∩BG−Cj,k′ = φ, and therefore

∆/(2τ) ≥ z = distG−Cj,k′ (u, pj) = distG−Ci,k∪Cj,k′ (u, pj) ≥ distG−Ci,k(u, pj)

since Ci,k ∩BG−Cj,k′ (pj , z) = φ which in turn implies

distG−Ci,k(pi, pj) ≤ distG−Ci,k(pi, u) + distG−Ci,k(u, pj) ≤ distG−Ci,k(pi, pi+1)

/2 + ∆/(2τ) (3.18)

Since Hausdorff distance between the two shortest paths li, ri and pj , pj+1 is at least (j − i −

1)∆/τ + ∆/(3τ) > αi,kdistG(pi, pi+1) and distG−Ci,k(pj , pi+1)

= (j − i)∆/τ < ∆, we have

distG−Ci,k(pi, pi+1)) ≤ distG−Ci,k(pj , pi+1) ≤ distG−Ci,k/2 + ∆/(2τ) + ∆

⇒ distG−Ci,k(pi, pi+1) ≤ ∆/τ + 2∆ (3.19)

On the other hand, by Fact 1we have:

distG−Ci(pi, pi+1) ≥ ∆/(60τ)2(αi,k∆)/(δτ) ≥ ∆/(60τ)2((∆/τ)µ)/(28δ log(2d)) (3.20)

Inequalities (3.19) and (3.20) together imply

∆/(60τ)2((∆/τ)µ)/(28δlog(2d)) ≤ (∆/τ) + 2∆ (3.21)
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Inequality (3.21) contradicts Inequality (3.17). q

To complete the proof of limited overlap claim, suppose that Vi,k ∩ Vj,k′ 6= φ and let u ∈

Vi,j ∩ Vj,k′ . Proposition 2 implies that Vj,k′ ⊃ BG−Cj,k′ (pj ,∆/(2τ)),

u /∈ BG−Cj,k′ (pj ,∆/(2τ)), and thus there are t least ∆/(2τ) node on a shortest path in G−Cj,k′

from pj to a node at a distance of ∆/(2τ) from pj that are not in Vi,k. q

3.4.3 Family of Mutually Disjoint Cuts

Given two distinct nodes s, t ∈ V of a graph G = (V,E) and a cut that separates s from t,

we have following definitions:

• The cut-edges ξG(S, s, t) corresponding to this cut is the set of edges with one end-point

in S,

ξG(S, s, t) = {{u, v}|u ∈ S, v ∈ V \S, {u, v} ∈ E},

• Cut-nodes VG(S, s, t) corresponding to this cut is the end-points of these cut-edges that

belong to S,

VG(S, s, t) = {u|u ∈ S, v ∈ V \S, {u, v} ∈ E}

Note that in the following lemma d is the maximum degree of any node ”except s, t

and any node within a distance of 35δ of s” (degrees of these nodes may be arbitrary).

Lemma 9. Given 〈G, d, δ〉, where d is the maximum degree of any node except s, t and any

node within a distance of 35δ of s. Suppose s and t are two nodes of G such that distG(s, t) >

48δ+ 8δ log n. There exists a set of at least (distG(s, t)− 8δ log n)/(50δ) = Ω(distG(s, t)) (node

and edge) disjoint cuts such that each such cut has at most d12δ+1 cut edges.
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Remark 3. Suppose that G is hyperbolic ( i.e., δ is a constant), d is a constant, and s and t

be two nodes such that distG(s, t) > 48δ+ 8δ log n = Ω(log n). Lemma 9 then implies that there

are Ω(distG(s, t)) s-t cuts each having O(1) edges. If, on the other hand, δ = O(log log n), then

such cuts have polylog (n) edges.

Remark 4. The bound in Lemma 9 is obviously meaningful only if δ = o(log n). If δ = Ω(logn),

then δ-hyperbolic graphs include expanders and thus many small-size cuts may not exist in

general.

Proof. Recall that we may assume that δ ≥ 1/2. We start by doing a BFS starting from

node s. Let Li be the sets of nodes at the ith level (i.e., ∀u ∈ Li : distG(s, u) = i); obviously

t ∈ LdistG(s,t). Assume distG(s, t) > 48δ + 8δlogn, and consider two arbitrary paths P1 and P2

between s and t passing through two nodes v1, v2 ∈ Lj for some 48δ ≤ jdistG(s, t)− 7δ log n.

We first claim that distG(v1, v2) < 12δ. Suppose, for the sake of contradiction, suppose that

distG(v1, v2) ≥ 12δ. Let v′1 and v′2 be the first node in level Lj+6δ logn visited by P1 and P2,

respectively. Since both P1 and P2 are paths between s and t and j + 6δ log n < distG(s, t)

implies Lj+6δ logn+1 6= ∅, there must be a path P3 between v′1 and v′2 through t using nodes not

in
⋃

0≤l≤j+6δ lognLl . We show that this is impossible by Fact 2. Set the parameters in Fact 2

in the following manner: κ = 4, α = 6δ log n, r = j > 12κδ = 48δ;u1 = v1, u2 = v2, u4 = v′1,and

u3 = v′2 . Then the length of P3 satisfies |P3| > 2logn+5 > n which is impossible since |P3| < n.

We next claim that, for any arbitrary node in level v ∈ Lj lying on a path between s and t,

BG(v, 12δ) provides an s-t cut cutG(BG(v, 12δ), s, t) having at most ξG(BG(v, 12δ), s, t) ≤ d12δ+1

edges. To see this, consider any path P between s and t and let u be the first node in Lj visited
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by the path. Then, distG(u, v) ≤ 12δ and thus v ∈ BG(v, 12δ). Since nodes in BG(v, 12δ) are

at a distance of at least 35δ from s and t ∈ /BG(v, 12δ), d is the maximum degree of any node

in BG(v, 12δ) and it follows that ξG(BG(v, 12δ), s, t) ≤ d∂G(BG(v, 12δ − 1)) ≤ d12δ+1.

We can now finish the proof of our lemma in the following way. Assume that distG(s, t) >

48δ+ 8δ log n. Consider the levels Lj for j ∈ {50δ, 100δ, 150δ, ..., (distG (s, t)− 8δ log n)/(50δ)}.

For each such level Lj , select a node vj that is on a path between s and t and consider the subset

of edges cutG(BG(vj , 12δ), s, t). Then, cutG(BG(vj , 12δ), s, t) over all j provides our family of

s-t cuts. The number of such cuts is at least (distG(s, t) − 8δlogn)/(50δ). To see why these

cuts are node and edge disjoint, note that ξG(BG(vj , 12δ), s, t) ∩ ξG(BG(vl, 12δ), s, t) = φ and

VG(BG(vj , 12δ), s, t) ∩ VG(BG(vl, 12δ), s, t) = φ for any j 6= l since distG(vj , vl) > 50δ. q



CHAPTER 4

HYPERBOLICITY AND NETWORK DESIGN APPLICATION

In this section, we consider a few algorithmic applications of the bounds and proof techniques

we showed in the previous section. we discuss some applications of these bounds in designing

improved approximation algorithms for two graph-theoretic problems for δ-hyperbolic graphs

when δ does not grow too fast as a function of n: We show in Section 4.1 (Lemma 10) that the

problem of identifying vulnerable edges in network designs by minimizing shared edges ad- mits

an improved approximation provided δ = o(log n/ log d). We do so by relating it to a hitting

set problem for size-constrained cuts (Lemma 11) and providing an improved approximation

for this latter problem (Lemma 12). We also observe that obvious greedy strategies fail for such

problems miserably.

4.1 Minimizing Bottleneck Edges Problem

In this section we consider the following problem.

Problem 1 (Unweighted Uncapacitated Minimum Vulnerability problem (Uumv)

(81; 106; 115)) The input to this problem a graph G = (V,E), two nodes s, t ∈ V , and two

positive integers 0 < r < κ. The goal is to find a set of κ paths between s and t that minimizes

the number of ”shared edges”, where an edge is called shared if it is in more than r of these κ

paths between s and t. When r = 1, the Uumv problem is called the ”minimum shared edges”

(Mse) problem.

41
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We will use the notation OPTUumv(G, s, t, r, κ) to denote the number of shared edges in

an optimal solution of an instance of Uumv. Uumv has applications in several communication

network design problems (see (113; 115) for further details). The following computational

complexity results are known regarding Uumv and Mse for a graph with n nodes and m edges

(see (81; 106)):

• Mse does not admit a 2log
1−εn-approximation for any constant ε > 0 unless NP ∈

DTIME(nlog logn).

• Uumv admits a bκ/(r + 1)c-approximation. However, no non-trivial approximation of

Uumv that depends on m and/or n only is currently known.

• Mse admits a min {n3/4,m1/2}-approximation.

4.1.1 Greedy Fails for Uumv or Mse Even for Hyperbolic Graphs (i.e., Graphs

With Constant δ)

Several routing problems have been looked at for hyperbolic graphs (i.e., constant δ) in

the literature before (e.g., see (92; 101)) and, for these problems, it is often seen that simple

greedy strategies do work. However, that is unfortunately not the case with Uumv or Mse. For

example, one obvious greedy strategy that can be designed is as follows.
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(*Greedy strategy*)

Repeat κ times

Select a new path between s and t that shares a minimum number

of edges with the already selected paths

The above greedy strategy can be arbitrarily bad even when r = 1, δ ≤ 5/2 and every node

except s and t has degree at most three as illustrated in Fig. 7; even qualifying the greedy step

by selecting a shortest path among those that increase the number of shared edges the least

does not lead to a better solution.

Figure 7: A bad example for the obvious greedy strategy. (a) The given graph in which every

node except s and t has degree at most 3 and δ ≤ 5/2 . (b) Greedy first selects the (n− 2)/14

edge-disjoint shortest paths shown in thick black. (c) Greedy then selects the shortest paths

shown in light gray one by one, each of which increases the number of shared edges by one

more. Thus, greedy uses (n − 2)/7 shared edges. (d ) An optimal solution uses only 5 edges,

i.e., OPTUumv(G, s, t, 1, κ) = 5.
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4.1.2 Improved Approximations for Uumv or Mse for δ Up To o( logn
log d )

Note that in the following lemma d is the maximum degree of any node ”except

s, t and any node within a distance of 35δ of s” (degrees of these nodes may be arbitrary).

For up to δ = o(log n/ log d), the lemma provides the first non-trivial approximation of Uumv as

a function of n only (independent of κ) and improves upon the currently best min
{
n3/4,m1/2

}
-

approximation of Mse for arbitrary graphs.

Lemma 10. Let d be the maximum degree of any node except s, t and any node within a distance

of 35δ of s (degrees of these nodes may be arbitrary). Then, Uumv (and, consequently also Mse)

for a δ-hyperbolic graph G can be approximated within a factor of O
(

max
{

log n, dO(δ)
})

.

Remark 5. Thus for fixed d Lemma 2 provides improved approximation as long as δ = o(log n).

Note that our approximation ratio is independent of the value of κ. Also note that

δ = Ω(log n) allows expander graphs as a sub-class of δ-hyperbolic graphs for which Uumv or

Mse is expected to be harder to approximate.

Proof of Lemma 2

Our proof strategy has the following two steps:

• We define a new more general problem which we call the edge hitting set problem for size

constrained cuts (Ehssc), and show that Uumv (and thus Mse) has the same approxima-

bility properties as Ehssc by characterizing optimal solutions of Uumv in terms of optimal

solutions of Ehssc.
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• We then provide a suitable approximation algorithm for Ehssc.

4.1.2.1 Edge hitting set for size-constrained cuts (Ehssc)

The input to Ehssc is a graph G = (V,E), two nodes s, t ∈ V , and a positive integer

0 < k ≤ |E|. Define a size-constrained s-t cut to be a s-t cut S such that the number of cut-

edges cutG(S,s,t) is at most k. The goal of Ehssc is to find a hitting set of minimum cardinality

for all size-constrained s-t cuts of G, i.e., find Ẽ ⊂ E such that |Ẽ| is minimum and

∀s ∈ S ⊂ V \{t} : |ξG(S, s, t)| ≤ k ⇒ ξG(S, s, t) ∩ Ẽ 6= ∅

We will use the notation EEhssc(G, s, t, k) to denote an optimal solution containing OPTEhssc

(G, s, t, k) edges of an instance of Ehssc.

Lemma 11 (Relating Ehssc to Uumv). OPTUumv(G, s, t, r, κ) = OPTEhssc(G, s, t, dκ/re − 1).

Proof. Note that any feasible solution for Uumv must contain at least one edge from ev-

ery collection of cut-edges EG(S,s,t) satisfying |ξG(S, s, t)| ≤ κ/r − 1, since otherwise the

number of paths going from ξG(S, s, t)toV \ξG(S, s, t) is at most rκ1 < κ. Thus we get

OPTUumv(G, s, t, r, ) ≥ OPTEHSSC(G, s, t, dκ\re − 1, )
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On the other hand, OPTUumv(G, s, t, r, κ) ≤ OPTEhssc(G, s, t, d/re1) can be argued as fol-

lows. Consider the set of edges ξEhssc(G, s, t, dκ/re1) in an optimal hitting set, and set the

capacity c(e) of every edge e of G as

c(e) =


∞ , if e ∈ EHssc(G, s, t, dκ/re)

r , otherwise

The value of the minimum s-t cut for G is then at least min{∞, rdκ\re} ≥ κ which implies

(by the standard max-flow-min-cut theorem) the existence of κ flows each of unit value. The

paths taken by these κ flows provide our de- sired κ paths for Uumv. Note that at most r paths

go through any edge e with c(e)\ = ∞ and thus OPTUumv(G, s, t, r, κ) ≤ e|c(e)\ =∞ =

OPTEHSSC(G, s, t, dκ/re − 1) q

Now, we turn to providing a suitable approximation algorithm for Ehssc. Of course, Ehssc

has the following obvious exponential-size LP-relaxation since it is after all a hitting set problem:

minimize
∑
e∈E

xe subject to

∀s ∈ S ⊂ V \{t} such that cutG(S, s, t) ≤ k :
∑

e∈ξG(S,s,t)

xe ≥ 1

∀e ∈ E : xe ≥ 0

Intuitively, there are at least two reasons why such a LP-relaxation may not be of sufficient

interest. Firstly, known results may imply a large integrality gap. Secondly, it is even not very
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clear if the LP-relaxation can be solved exactly in a time efficient manner. Instead, we will

exploit the hyperbolicity property and use Lemma 9 to derive our approximation algorithm.

Lemma 12. [Approximation algorithm for EHSSC] EHSSC admits a O
(

max
{
δ log n, do(δ)

})
-

approximation.

Proof. Our algorithm for Ehssc can be summarized as follows:

The following case analysis of the algorithm shows the desired approximation bound.

Case 1: k ≤ d12δ+1. Let F1,F2, ...Fl be the sets whose edges were added to A; thus, |A| ≤ kl.

Since |Fj | ≤ k and Fj ∩ Fj′ = ∅ for j 6= j′, OPTEHSSC(G, s, t, k) ≥ l, thus providing an

approximation bound of k ≤ d12δ+1.

Case 2: k ≤ d12δ+1 and distG(s, t) ≤ 48δ + 8δ log n. Since OPTEHSSC(G, s, t, k) ≥ 1, this

provides a O(δ log n)-approximation.

Case 3: k > d12δ+1 and distG(s, t) > 48δ + 8δ log n. Use Lemma 1 to find a collections

S1, S2, ..., Sl of l = distG(s, t)−8δ log n)/(50δ) edge and node disjoint s-t cuts. Since cutG(S,j , s, t) ≤
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d12δ+1 < k, any valid solution of EHSSC must select at least pne edge from ξG(Sj , s, t). Since

the cuts are edge and node disjoint, it follows that

OPTEHSSC(G, s, t, k) ≥ (distG(s, t)− 8δ log n)/(50δ).

Since we return all the edges in a shortest path between a and t as the solution, approximation

ratio achieved is distG(s, t)/

(
distG(s,t)−8δ logn

50δ < 100δ

)
q



CHAPTER 5

HYPERBOLICITY AND SMALL-SET EXPANSION PROBLEM

In this section, we provide a polynomial-time solution for a type of small-set expansion

problem originally proposed by Arora, Barak and Steurer (80) for the case when δ is sub-

logarithmic in n.

5.1 Small-set Expansion Problem

The small set expansion (Sse) problem was studied by Arora, Barak and Steurer in(80)

(and also by several other researchers such as ) in an attempt to understand the computational

difficulties surrounding the Unique Games Conjecture (UGC). To define Sse, we will also use

the normalized edge-expansion of a graph which is defined as follows (91). For a subset of nodes

S of a graph G, let volG(S) denote the sum of degrees of the nodes in G. Then, the normalized

edge expansion ratio φG(S) of a subset S of nodes of at most |V |/2 nodes of G is defined as

G(S) =cutG(S)/volG(S). Since we will deal with only d-regular graphs in this subsection, G(S)

will simplify to cutG(S)/(d|S|).

Definition 13 ((Sse Problem) [ a case of [(80), Theorem 2.1], rewritten as a problem

]). Suppose that we are given a d-regular graph G = (V,E) for some fixed d, and suppose G has

a subset of at most ζn nodes S, for some constant 0 < ζ < 1/2, such that φG(S) ≤ ε for some

constant 0 < ε ≤ 1. Then, find as efficiently as possible a subset S′ of at most ζn nodes such

that φG(S) ≤ ηε for some ”universal constant” η > 0.

49



50

In general, computing a very good approximation of the Sse problem seems to be quite hard;

the approximation ratio of the algorithm presented in (109) roughly deteriorates proportional

to
√
log(1/ζ), and a O(1)-approximation described in (82) works only if the graph excludes two

specific minors. The authors in (80) showed how to design a sub-exponential time (i.e., O(2cn)

time for some constant c < 1) algorithm for the above problem. As they remark, expander

like graphs are somewhat easier instances of Sse for their algorithm, and it takes some non-

trivial technical effort to handle the ”non-expander” graphs. Note that the class of ?-hyperbolic

graphs for δ = o(logn) is a non-trivial proper subclass of non-expander graphs. We show that

Sse (as defined in Definition 13) can be solved in polynomial time for such a proper subclass of

non-expanders.

5.2 polynomial time solution of Sse for δ-hyperbolic graphs

Lemma 14 (polynomial time solution of Sse for δ-hyperbolic graphs when δ is sub-logarithmic

and d is sub-linear). Suppose that G is a d-regular δ-hyperbolic graph. Then the Sse problem

for G can be solved in polynomial time provided d and δ satisfy:

d ≤ 2log(1/3)−ρ
n and δ ≤ logρ n for some constant 0 < ρ < 1/3

Remark 6. Computing the minimum node expansion ratio of a graph is in general NP-hard and

is in fact Sse-hard to approximate within a ratio of C
√
hG log d for some constant C > 0 (102).

Since we show that Sse is polynomial-time solvable for δ-hyperbolic graphs for some parameter
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ranges, the hardness result of (102) does not directly apply for graph classes that belong to these

cases, and thus additional arguments may be needed to establish similar hardness results for

these classes of graphs.

Proof. Our proof is quite similar to that used for Theorem 6. But, instead of looking for

smallest possible non-expansion bounds, we now relax the search and allow us to consider

subsets of nodes whose expansion is just enough to satisfy the requirement. This relaxation

helps us to ensure the size requirement of the subset we need to find.

We will use the construction in the proof of Theorem 1 in this proof, so we urge the readers

to familiarize themselves with the details of that proof before reading the current proof. Note

that hG(S) ≤ ε implies φG(S) ≤ d hG(S)/d ≤ ε. We select the nodes p and q such that ∆ =

distG(p, q) = logd n = log n/ log d, and set µ = 1/2. Note that (360 log n)/∆2∆µ/(28δ log(2d)) <

(1/∆)1−µ since

(360 log n)/

(
∆2∆µ/(28δ log(2d)

)
< (1/∆)1−µ

⇐ (360 log d)/

(
2(logn)1/2/(56δ(log d)3/2)

)
< (log d/ log n)1/2

⇐ 9 + log log n/2 <

(
log n)1/2

)
/

(
56 log(1−ρ)/2 n

)
− log(1−ρ)/2 n

and the last inequality clearly holds for sufficiently large n.
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First, suppose that there exists 0 ≤ r ≤ ∆
3 −α∆ such that hG(BGC(p, r)) = hG(BG(p, r)) ≤

ε. We return S′ = BG(p, r)3 as our solution, To verify the size requirement, note that

|BG(p, r)| ≤ |BG(p, (∆/3)− α∆)| ≤ |BG(p,∆/3)|
∆/3∑
i=0

di < d(∆/3)+1 = dn1/3 < ζn (5.1)

where the last inequality follows since d ≤ 2 log(1/3)ρ n and ζ is a constant. Otherwise, no

such r exists, and this implies

|BG(p, (∆/3) − α∆)| ≥ (1 + ε)(∆/3)−α∆ > (1 + ε)∆/4 ≥ eε∆/8 = eε log dn/8=nε log de/8

Now there are two major cases as follows.

Case1:t here exists at least one path between p and q in G−C .

We know that distG−c(p, q) ≥ (∆/60)2α∆/δ and (by choice of p) |BG−c(p, distG−c(p, q)/2)| <

n/2. Let p = u0, u1, ..., ut = q be the nodes in successive order on a shortest path from p to q of

length t = distG−C (p, q). Perform a BFS starting from p in G−C and let Li be the sets of nodes

at the ith level (i.e.,∀u ∈ Li : distG−C (p, q) = i). Note that |⋃t/2
j=0 Lj | ≤ n/2. Consider the

levels L0,L1, ...Lt/2, and partition the ordered sequence of integers 0, 1, 2, ..., t/2 into consecutive

blocks ∆0.∆1, ...,∆(1+(t/2))/κ−1 each of length η = (8/ε) lnn, i.e.,

0, 1, ..., η − 1︸ ︷︷ ︸
∆0

, η, η + 1, ..., 2η − 1︸ ︷︷ ︸
∆1

, ........, (t/2)− η + 1, (t/2)− η + 2, ..., (t/2)︸ ︷︷ ︸
∆(t+(t/2))/η−1
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We claim that for every ∆i, there exists an index i∗ within i∗ (i.e., there exists an index

iη ≤ i∗ ≤ iη + η − 1)such that hG(Li∗) ≤ ε. Suppose for the sake of contradiction that this is

not true. Then, it follows that

∀iη ≤ j ≤ iη + η − 1 : hG−C(Lj) ≥ hG(Lj)/2 > ε/2

⇒ |Liη+η−1| > |Liη|(1 + (ε/2))η ≥ (1 + (ε/2))(8/ε) lnn

≥ e(ε/4)((8/ε) lnn) = n2 > n

which contradicts the fact that |⋃t/2
j=0 Lj | ≤ n/2. Since

∑(1+(t/2))/κ−1
i=0 |Li∗ | < n/2, there exists

a set Lk∗ such that hG(Lk∗) ≤ ε and

|Lki | <
n/2

(1 + (t/2))/κ
< nκ/t < (8n ln)/

(
ε(∆/60)2∆1/2/(7δ log(2d))

)
≤
(

48n log(1/3)−ρ n
)
/

(
ε2(logρ/2 n)/14

)
< ζn

Case2: there is no path between p and q in G−c.

In this case,were turn BG−C (p, (∆/3)−α∆) = BG(p, (∆/3)−α∆) as our solution. The size

requirement follows since |BG(p, (∆/3) − α∆)| < ζn was shown in (5.1). Note that nodes in

BG(p, (∆/3)− α∆) can only be connected to nodes in C, and thus
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hG(BG(p, (∆/3)− α∆)) ≤ |C|/|BG(p, (∆/3)− α∆)|

≤ ((∆/3)dα∆)/

(
nε logd e/8

)
< nα−(ε logd e/8) log n

< n1/(7∆1/2 log(2d))−(ε/(8 ln d)) log n < ε

where the penultimate inequality follows since ∆ = ω(1).

In all cases, the desired subset of nodes can be found in O(n2 log n) time. q



CHAPTER 6

GEOMETRIC CURVATURE

In this section, we describe generic geometric curvatures of graphs by using correspondence

with topological objects in higher dimension.

6.0.1 Basic Definitions and Notations

For an undirected unweighted graphG = (V,E) of n nodes v1, . . . , vn, the following notations

related to G are used throughout:

I vi1 ↔ vi2 ↔ vi3 ↔ · · · ↔ vik−1
↔ vik denotes a path of length k−1 consisting of the edges

{vi1 , vi2}, {vi2 , vi3}, . . . , {vik−1
, vik}.

I u, v and distG(u, v) denote a shortest path and the distance (i.e., number of edges in u, v)

between nodes u and v, respectively.

I diam(G) = maxvi,vj{distG(vi, vj)} denotes the diameter of G.

I G \ E′ denotes the graph obtained from G by removing the edges in E′ from E.

A ε-approximate solution (or simply an ε-approximation) of a minimization (resp., maximiza-

tion) problem is a solution with an objective value no larger than (resp., no smaller than) ε

times (resp., 1/ε times) the value of the optimum; an algorithm of performance or approxima-

tion ratio ε produces an ε-approximate solution. A problem is ε-inapproximable under a certain

complexity-theoretic assumption means that the problem does not admit a polynomial-time ε-

approximation algorithm assuming that the complexity-theoretic assumption is true. We will

55
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also use other standard definitions from structural complexity theory as readily available in any

graduate level textbook on algorithms such as (70).

6.1 Remarks on basic topological concepts

We first review some basic concepts from topology; see introductory textbooks such as (41;

34) for further information. Although not necessary, the reader may find it useful to think of

the underlying metric space as the r-dimensional real space Rr be for some integer r > 1.

I A subset S ⊆ Rr is convex if and only if for any x, y ∈ S, the convex combination of x

and y is also in S.

I A set of k + 1 points x0, . . . , xk ∈ Rr are called affinely independent if and only if for all

α0, . . . , αk ∈ R
∑k

j=0 αjxj = 0 and
∑k

j=0 αj = 0 implies α0 = · · · = αk = 0.

I The k-simplex generated by a set of k + 1 affinely independent points x0, . . . , xk ∈ Rr is

the subset S
(
x0, . . . , xk

)
of Rr generated by all convex combinations of x0, . . . , xk.

. Each (`+1)-subset
{
xi0 , . . . , xi`

}
⊆
{
x0, . . . , xk

}
defines the `-simplex S

(
xi0 , . . . , xi`

)
that is called a face of dimension ` (or a `-face) of S

(
x0, . . . , xk

)
. A (k − 1)-face,

1-face and 0-face is called a facet, an edge and a node, respectively.

I A (closed) halfspace is a set of points satisfying
∑r

j=1 ajxj ≤ b for some a1, . . . , ar, b ∈ R.

The convex set obtained by a bounded non-empty intersection of a finite number of

halfspaces is called a convex polytope (convex polygon in two dimensions).
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. If the intersection of a halfspace and a convex polytope is a subset of the halfspace

then it is called a face of the polytope. Of particular interests are faces of dimensions

r− 1, 1 and 0, which are called facets, edges and nodes of the polytope, respectively.

I A simplicial complex (or just a complex) is a topological space constructed by the union

of simplexes via topological associations.

6.1.0.1 Geometric curvature definitions

Informally, a complex is “glued” from nodes, edges and polygons via topological iden-

tification. We first define k-complex-based Forman’s combinatorial Ricci curvature for ele-

mentary components (such as nodes, edges, triangles and higher-order cliques) as described

in (32; 74; 73), and then obtain a scalar curvature that takes an appropriate linear combination

of these values (via Gauβ-Bonnet type theorems (12)) that correspond to the so-called Euler

characteristic of the complex that is topologically associated with the given graph. In this

regard, we consider such Euler characteristics of a graph to define geometric curvature.

To begin the topological association, we (topologically) associate a q-simplex with a (q+1)-

clique Kq+1; for example, 0-simplexes, 1-simplexes, 2-simplexes and 3-simplexes are associated

with nodes, edges, 3-cycles (triangles) and 4-cliques, respectively. Next, we would also need

the concept of an “order” of a simplex for more non-trivial topological association. Consider

a p-face fp of a q-simplex. An order d association of such a face, which we will denote by

the notation fpd with the additional subscript d, is associated with a sub-graph of at most d
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nodes that is obtained by starting with Kp+1 and then optionally replacing each edge by a path

between the two nodes. For example,

• f0
d is a node of G for all d ≥ 1.

• f1
2 is an edge, and f1

d for d > 2 is a path having at most d nodes between two nodes

adjacent in G.

• f2
3 is a triangle (cycle of 3 nodes or a 3-cycle), and f2

d for d > 3 is obtained from 3 nodes

by connecting every pair of nodes by a path such that the total number of nodes in the

sub-graph is at most d.

Naturally, the higher the values of p and q are, the more complex are the topological associations.

Let Fkd be the set of all fkd ’s in G that are topologically associated. With such associations

via p-faces of order d, the Euler characteristics of the graph G = (V,E) and consequently the

curvature can defined as

Cpd(G)
def
=

p∑
k=0

(−1)k
∣∣∣Fkd ∣∣∣ (6.1)

It is easy to see that both C0
d(G) and C1

d(G) are too simplistic to be of use in practice. Thus,

we consider the next higher value of p, namely when p = 2. Letting C(G) denote the number

of cycles of at most d+ 1 nodes in G, we get the measure

C2
d(G) = |V | − |E|+ |C(G)|
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6.1.0.2 Are geometric curvatures a suitable measure for real-world networks ?

The usefulness of geometric curvatures for real-world networks was demonstrated in publi-

cations such as (74; 73; 66).

Here is an example when the curvature is related to other network measures:

Relating C2
3 to other known network measures The global clustering coefficient of a graph

G is defined as (72):

C
def
= C(G) =

3 ∆

τ
where

∆ = # of 3-cycles in G

τ = # of (node-induced) sub-graphs of G of 3 nodes and 2 edges

Letting degj denote the degree of node vj , we therefore get

C =
3 ∆∑n

j=1
degj(degj−1)

2

=
3
(
C2

3 − |V |+ |E|
)(

1
2

∑n
j=1 deg

2
j

)
− |E|

For the special case when G is a d-regular graph for some d ≥ 3, we get

C =
3
(
C2

3 − |V |+ d |V |
2

)
d2 |V |

2 − d |V |
2

=
6C2

3

d (d− 1) |V | +
1

d
− 1

d2 − d

Relationships between C2
3 and the average clustering coefficient can also be derived in a similar

manner.



CHAPTER 7

EFFECT OF GEOMETRIC CURVATURE ON ANOMALY DETECTION

7.1 Introduction

Anomaly detection problems (also called change-point detection problems) have been stud-

ied in data mining, statistics and computer science over the last several decades (mostly in

non-network context) in applications such as medical condition monitoring, weather change

detection and speech recognition. In recent days, however, anomaly detection problems have

become increasing more relevant in the context of network science since useful insights for many

complex systems in biology, finance and social science are often obtained by representing them

as some type of networks. Notions of local and non-local curvatures of higher-dimensional

geometric shapes and topological spaces play a fundamental role in physics and mathematics

in characterizing anomalous behaviors of these higher dimensional entities. However, using

curvature measures to detect anomalies in networks is not yet very common due to several

reasons such as lack of preferred geometric interpretation of networks and lack of experimental

evidences that may lead to specific desired curvature properties (unlike their counter-parts in

theoretical physics).
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7.2 Formalizations of two anomaly detection problems on networks

In this section, we formalize two versions of the anomaly detection problem on networks. An

underlying assumption on the behind these formulations is that the graph adds/deletes edges

only while keeping the same set of nodes.

7.2.1 Extremal anomaly detection for static networks

The problems in this subsection are motivated by a desire to quantify the extremal sensitivity

of static networks. The basic decision question is: “is there a subset among a set of prescribed

edges whose deletion may change the network curvature significantly?”. This directly leads us

to the following decision problem:

Problem name: Extremal Anomaly Detection Problem (EadpC(G, Ẽ, γ))

Input: • A curvature measure C : G 7→ R

• A connected graph G = (V,E), an edge subset Ẽ ⊆ E such that

G \ Ẽ is connected and a real number γ < C(G) (resp., γ > C(G))

Decision question: is there an edge subset Ê ⊆ Ẽ such that C(G \ Ê) ≤ γ

(resp., C(G \ Ê) ≥ γ) ?

Optimization question: if the answer to the decision question is “yes” then minimize |Ê|

Notation: if the answer to the decision question is “yes” then

the minimum possible value of |Ê| is denoted by OPTEadpC
(G, Ẽ, γ)

The following comments regarding the above formulation should be noted:
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. For the case γ < C(G) (resp., γ > C(G)) we allow C(G \ Ẽ) > γ (resp., C(G \ Ẽ) < γ), thus

Ê = Ẽ need not be a feasible solution at all.

. The curvature function is only defined for connected graphs, thus we require G \ Ẽ to be

connected.

. The edges in E \ Ẽ can be thought of as “critical” edges needed for the functionality of

the network. For example, in the context of inference of minimal biological networks from

indirect experimental evidences (4; 3), the set of critical edges represent direct biochemical

interactions with concrete evidence.

7.2.2 Targeted anomaly detection for dynamic networks

These problems are primarily motivated by change-point detections between two successive

discrete time steps in dynamic networks (7; 49), but they can also be applied to static networks

when a subset of the final desired network is known. Fig. Figure 9 illustrates targeted anomaly

detection for a dynamic biological network.

Problem name: Targeted Anomaly Detection Problem (TadpC(G1, G2))

Input: • Two connected graphs G1 = (V,E1) and G2 = (V,E2) with E2 ⊂ E1

• A curvature measure C : G 7→ R

Valid solution: a subset of edges E3 ⊆ E1 \ E2 such that C(G1 \ E3) = C(G2).

Objective: minimize |E3|.

Notation: the minimum value of |E3| is denoted by OPTTadpC
(G1, G2)
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7.2.3 Two examples in which curvature measures detect anomaly where other simpler

measures do not

It is obviously practically impossible to compare our curvatures measures for anomaly detec-

tion with respect to every possible other network measure that has been used in prior research

works. However, we do still provide two illustrative examples of comparing our curvature mea-

sures to the well-known densest subgraph measure which is defined as follows. Given a graph

G = (V,E), the densest subgraph measure find a subgraph (S,ES) induced by a subset of nodes

∅ ⊂ S ⊆ V that maximizes the ratio (density) ρ(S)
def
= |ES |

|S| . Let ρ(G)
def
= max∅⊂S⊆V {ρ(S)}

denote the density of a densest subgraph of G. An efficient polynomial time algorithm to com-

pute ρ(G) using a max-flow technique was first provided by Goldberg (38). We urge the readers

to review the definitions of the relevant curvature measures (in Section 1.2) and the anomaly

detection problems (in Section 7.2) in case of any confusion regarding the examples we provide.

7.2.3.1 Extremal anomaly detection for a static network

Consider the extremal anomaly detection problem (Problem Eadp in Section ??) for a

network G = (V,E) of 10 nodes and 20 edges as shown in Fig. Figure 8 using the geometric

curvature C2
3 as defined by Equation (Equation 6.1). It can be easily verified that C2

3(G) = 6

and ρ(G) = 9/4. Let Ẽ = E and suppose that we set our targeted decrease of the curvature or

density value to be 75% of the original value, i.e., we set γ = 3/4×C2
3(G) = 9/2 for the geometric

curvature measure and γ = 3/4 × ρ(G) = 27/16 for the densest subgraph measure. It is easily

verified that C2
3(G \ {e1}) = 0, thus showing OPTEadpC23

(G, Ẽ, γ) = 1. However, many more

than just one edge will need to be deleted from G to bring down the value of ρ(G) to 27/16.
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Figure 8: Toy example of extremal anomaly detection discussed in Section.

7.2.3.2 Targeted anomaly detection for a dynamic biological network
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0.4x1(t)

1 + e−3.66 t+11

microarray output

> 0.60 ⇒> 0.60 ⇒> 0.60 ⇒ ON (1)

< 0.55 ⇒< 0.55 ⇒< 0.55 ⇒ OFF (0)

δ =δ =δ = value of Gromov curvature

ttt . . .. . .. . . 222 333 . . .. . .. . .

x1(t)x1(t)x1(t) . . .. . .. . . 1.001.001.00 1.001.001.00 . . .. . .. . .

x2(t)x2(t)x2(t) . . .. . .. . . 0.800.800.80 0.800.800.80 . . .. . .. . .

x3(t)x3(t)x3(t) . . .. . .. . . 0.640.640.64 0.640.640.64 . . .. . .. . .

x4(t)x4(t)x4(t) . . .. . .. . . 0.520.520.52 0.900.900.90 . . .. . .. . .

Figure 9: Toy example of targeted anomaly detection discussed in Section.

Consider the targeted anomaly detection problem (Problem Tadp in Section 7.2.2) for

a dynamic biological network of 4 variables x1, x2, x3, x4 as shown in Fig. Figure 9, where

x1 affects x4 with a delay, using the Gromov-hyperbolic curvature (Definition 1). Suppose

that the network inference from microarray data is done by incorporating a time delay of

two in the hitting-set approach of Krupa (44). It can be easily verified that CGromov(G1) =

ρ(G1) = 1, CGromov(G2) = 0, and ρ(G2) = 1/2. Since CGromov(G1 \ {x1, x4}) = 0 it follows that
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OPTTadpCGromov

(G1, G2) = 1; however, 2 edges will need to be deleted from G1 to bring down

the value of ρ(G1) to ρ(G2).

7.2.4 Algebraic approaches for anomaly detection

In contrast to the combinatorial/geometric graph-property based approach investigated

in this paper and elsewhere, an alternate approach for anomaly detection is the algebraic

tensor-decomposition based approach studied in the contexts of dynamic social networks (67)

and pathway reconstructions in cellular systems and microarray data integration from several

sources (6; 59). This approach is quite different from the ones studied in this paper with its

own pros and cons.

7.3 Computational complexity of extremal anomaly detection problems

7.3.1 Why only the edge-deletion model?

In this research we add or delete edges from a network while keeping the node set the same.

This scenario captures a wide variety of applications such as inducing desired outcomes in

disease-related biological networks via gene knockout (65; 78), inference of minimal biological

networks from indirect experimental evidences or gene perturbation data (4; 3; 71), and finding

influential nodes in social and biological networks (5), to name a few. However, the node

addition/deletion model or a mixture of node/edge addition/deletion model is also significant

in many other applications. Although some of our complexity results can be easily extended

for bounded-degree graphs to the node deletion model, we do not outline these generalizations

here but leave it as a separate future research topic.
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7.3.2 Geometric curvatures: exact and approximation algorithms for EADPC2
d

Theorem 15.

(a) The following statements hold for EadpC2
d
(G, Ẽ, γ) when γ > C2

d(G):

(a1) We can decide in polynomial time the answer to the decision question ( i.e., if there exists

any feasible solution Ê or not).

(a2) If a feasible solution exists then the following results hold:

(a2-1) Computing OPTEadp
C2
d

(G, Ẽ, γ) is NP-hard for all d that are multiple of 3.

(a2-2) If γ is sufficient larger than C2
d(G) then we can design an approximation algorithm

that approximates both the cardinality of the minimal set of edges for deletion and

the absolute difference between the two curvature values. More precisely, if γ ≥

C2
d(G) +

(
1
2 + ε

)
(2|Ẽ| − |E|) for some ε > 0, then we can find in polynomial time a

subset of edges E1 ⊆ Ẽ such that

|E1| ≤ 2OPTEadp
C2
d

(G, Ẽ, γ) and
C2
d(G \ E1)− C2

d(G)

γ − C2
d(G)

≥ 4ε

1 + 2ε

(b) The following statements hold for EadpC2
d
(G, Ẽ, γ) when γ < C2

d(G):

(b1) We can decide in polynomial time the answer to the decision question ( i.e., if there exists

any feasible solution Ê or not).

(b2) If a feasible solution exists and γ is not too far below C2
d(G) then we can design an

approximation algorithm that approximates both the cardinality of the minimal set of edges
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for deletion and the absolute difference between the two curvature values. More precisely,

letting ∆ denote the number of cycles of G of at most d + 1 nodes that contain at least

one edge from Ẽ, if γ ≥ C2
d(G)− ∆

1+ε for some ε > 0 then we can find in polynomial time

a subset of edges E1 ⊆ Ẽ such that

|E1| ≤ 2OPTEadp
C2
d

(G, Ẽ, γ) and
C2
d(G \ E1)− C2

d(G)

γ − C2
d(G)

≤ 1− ε

(b3) If γ < C2
d(G) then, even if γ = C2

d(G\Ẽ) ( i.e., a trivial feasible solution exists), computing

OPTEadp
C2
d

(G, Ẽ, γ) is at least as hard as computing TadpC2
d
(G1, G2) and therefore all

the hardness results for TadpC2
d
(G1, G2) apply to OPTEadp

C2
d

(G, Ẽ, γ).

7.3.3 Proof techniques and relevant comments regarding Theorem 15

I (on proofs of (a1) and (b1)) After eliminating a few “easy-to-solve” sub-cases, we

prove the remaining cases of (a1) and (b1) by reducing the feasibility questions to suitable

minimum-cut problems; the reductions and proofs are somewhat different due to the nature

of the objective function. It would of course be of interest if a single algorithm and proof

can be found that covers both instances and, more importantly, if a direct and more efficient

greedy algorithm can be found that avoids the maximum flow computation.

I (on proofs of (a2-2) and (b2)) Our general approach to prove (a2-2) and (b2) is to

formulate these problems as a series of (provably NP-hard and polynomially many) “con-

strained” minimum-cut problems. We start out with two different (but well-known) poly-

topes for the minimum cut problem (polytopes (Equation 7.3) and (Equation 7.3)′). Even
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though the polytope (Equation 7.3)′ is of exponential size for general graphs, it is of poly-

nomial size for our particular minimum cut version and so we do not need to appeal to

separation oracles for its efficient solution. We subsequently add extra constraints corre-

sponding to a parameterized version of the minimization objective and solve the resulting

augmented polytopes (polytopes (Equation 7.4) and (Equation 7.4)′) in polynomial time to

get a fractional solution and use a simple deterministic rounding scheme to obtain the desired

bounds.

. Our algorithmic approach uses a sequence of dlog2(1 + |Ẽ|)e = O(log |E|) linear-

programming (LP) computations by using an obvious binary search over the relevant

parameter range. It would be interesting to see if we can do the same using O(1) LP

computations.

. Is the factor 2 in “|E1| ≤ 2OPTEadp
C2
d

(G, Ẽ, γ)” an artifact of our specific round-

ing scheme around the threshold of 1/2 and perhaps can be improved using a cleverer

rounding scheme? This seems unlikely for the case when γ < C2
d(G) since the inap-

proximability results in (b3) include a (2 − ε)-inapproximability assuming the unique

games conjecture is true. However, this possibility cannot be ruled out for the case

when γ > C2
d(G) since we can only prove NP-hardness for this case.

. There are subtle but crucial differences between the rounding schemes for (a2-2) and

(b2) that is essential to proving the desired bounds. To illustrate this, consider an

edge e with a fractional value of 1/2 for its corresponding variable. In the rounding

scheme (Equation 7.5) of (a2-2) e will only sometimes be designated as a cut edge,
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whereas in the rounding scheme (Equation 7.5)′ of (b2) e will always be designated as

a cut edge.

I (on the bounds over γγγ in (a2-2) If |Ẽ| / 1
2 |E| then the condition on γ is redundant (i.e.,

always holds). Thus indeed the 2-approximation is likely to hold unconditionally for practical

applications of this problem since anomaly is supposed to be caused by a large change in

curvature by a relatively small number of elementary components (edges in our cases).

Furthermore, if |E| ≤ 2|V | then the condition on γ always holds irrespective of the value of

|Ẽ|, and the smaller is |Ẽ| with respect to |E| the better is our approximation of the curvature

difference. As a general illustration, when ε = 1/5 the assumptions are γ ≥ C2
d(G)+ 7

10(2|Ẽ|−

|E|), and the corresponding bounds are |E1| ≤ 2OPTEadp
C2
d

(G, Ẽ, γ) and
C2
d(G\E1)−C2

d(G)

γ−C2
d(G)

≥

4
7 .

I (on the hardness proof in (a2-1)) Our reduction is from the densest-k-subgraph (DkS3)

problem. We use the reduction from the CLIQUE problem to DkS3 detailed by Feige and

Seltser in (31) which shows that DkS3 is NP-hard even if the degree of every node is at most

3. For convenience in doing calculations, we use the reduction of Feige and Seltser starting

from the still NP-hard version of the CLIQUE problem where the input instances are (n−4)-

regular n-node graphs. Pictorially, the reduction is illustrated in Fig. Figure 10. Note that

DkS3 is not known to be (1 + ε)-inapproximable assuming P6= NP (though it is likely to

be), and thus our particular reduction cannot be generalized to (1 + ε)-inapproximability

assuming P 6= NP.
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Figure 10: Illustration of the reduction in the proof of Theorem.(a)The original in-

stance of the α-CLIQUE problem on an n-node graph. (b)Illustration of the NP-

hardness reduction from α-CLIQUE to DkS3 by Feige and Seltser (c) Illustration

of associations of nodes with unique 3-cycles such that an edge between two nodes

are adjacent correspond to sharing an unique edge of their associated 3-cycles. (d)

Splitting of every edge of G1 into a path of µ edges for the case when d = 3µ for some

integer µ > 1.

7.3.3.1 Proof of Theorem 15

(a1) and (a2-2) Let the notation C(H) denote the set of cycles having at most d + 1 nodes

in a graph H. Assume ∆ = |C(G)| and let C(G) = {F1,F2, . . . ,F∆}; thus C2
d(G) = n−m+ ∆
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where |V | = n and |E| = m. Since d is fixed, ∆ = O(nd) and all the cycles in C(G) can be

explicitly enumerated in polynomial (O(nd)) time. Let C′(G) = {F1,F2, . . . ,F∆′} ⊆ C(G) be

the set of ∆′ ≤ ∆ cycles in C(G) that involve one of more edges from Ẽ. We first observe that

the following sub-cases are easy to solve:

• If γ > n− (m−|Ẽ|) + ∆ then we can assert that there is no feasible solution. This is true

because for any E′ ⊆ Ẽ it is true that C2
d(G \ E′) is at most n− (m− |Ẽ|) + ∆.

• If γ ≤ n− (m− |Ẽ|) + ∆ and ∆′ = 0 then there exists a trivial optimal feasible solution

of the following form:

select any set of m1 edges from Ẽ where m1 is the least positive integer satisfying

n− (m1 − |Ẽ|) + ∆ ≥ γ.

Thus, we assume that γ ≤ n − (m − |Ẽ|) + ∆ and ∆′ > 0. Consider a subset E1 ⊆ Ẽ of

m1 = |E1| ≤ |Ẽ| edges for deletion and suppose that removal of the edges in E1 removes

∆1 ≤ ∆′ cycles from C′(G) (i.e., |C′(G \ E1)| = ∆′ −∆1). Then,

C2
d(G \ E1) = n− (m−m1) + (∆−∆1) = n−m+ ∆ + (m1 −∆1) = C2

d(G) + (m1 −∆1)

(7.1)

and consequently one can observe that

C2
d(G \ E1) ≥ γ ≡ m1 −∆1 ≥ γ − C2

d(G) ≡ ∆1 −m1 ≤ C2
d(G)− γ

≡ ∆1 + (m−m1) ≤ C2
d(G)− γ +m ≡ ∆1 + (|Ẽ| −m1) ≤ C2

d(G)− γ + |Ẽ| def
= Γ (7.2)
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Note that Γ = C2
d(G) − γ + |Ẽ| = n − (m − |Ẽ|) + ∆ − γ ≥ 0 and |Ẽ| − m1 is the number

of edges in Ẽ that are not in E1 and therefore not selected for deletion. Also, note that Γ

is a quantity that depends on the problem instance only and does not change if one or more

edges are deleted. Based on this interpretation, we construct the following instance (digraph)

G = (V, E) of a (standard directed) minimum s-t cut problem (where cap(u, v) is the capacity

of a directed edge (u, v)):

• The nodes in V are as follows: a source node s, a sink node t, a node (an “edge-node”)

ue for every edge e ∈ Ẽ and a node (a “cycle-node”) uFi for every cycle Fi ∈ C′(G). The

total number of nodes is therefore O(|Ẽ|+ nd), i.e., polynomial in n.

• The directed edges in E and their corresponding capacities are as follows:

– For every edge e ∈ Ẽ, we have a directed edge (s, ue) (an “edge-arc”) of capacity

cap(s, ue) = 1.

– For every cycle Fi ∈ C′(G), we have a directed edge (a “cycle-arc”) (uFi , t) of capacity

cap(uFi , t) = 1.

– For every cycle Fi ∈ C′(G) and every edge e ∈ Ẽ such that e is an edge of Fi, we

have a directed edge (an “edge-cycle-arc”) (ue, uFi) of capacity cap(ue, uFi) =∞.

For an s-t cut (S,V \S) of G (where s ∈ S and t /∈ S), let cut(S,V \S) = {(x, y) |x ∈ S, y /∈ S}

and cap(cut(S,V \S)) =
∑

(x,y)∈cut(S,V\S) cap(x, y) denote the edges in the cut and the capacity

of the cut, respectively. It is well-known how to compute a minimum s-t cut of value Φ
def
=
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min∅⊂S⊂V, s∈S, t/∈S{cap(cut(S,V \ S))} in polynomial time (22). The following lemma proves

part (a1) of the theorem.

Lemma 16. There exists any feasible solution of EadpC2
d
(G, Ẽ, γ) if and only if Φ ≤ Γ. More-

over, if (S,V \ S) is a minimum s-t cut of G of value Φ ≤ Γ then Ê = {e |ue ∈ S} is a feasible

solution for EadpC2
d
(G, Ẽ, γ).

Proof. Suppose that there exists a feasible solution E1 ⊆ Ẽ with m1 = |E1| edges for

EadpC2
d
(G, Ẽ, γ), and suppose that removal of the edges in E1 removes ∆1 cycles from C′(G).

Consider the cut (S,V \ S) where

S = {s}
⋃
{ue | e ∈ E1}

⋃
{uFi | Fi contains at least one edge from E1 }

Note that no edge-cycle-arc belongs to cut(S,V \ S) and therefore

cap(cut(S,V\S)) = |{(s, ue) | e /∈ E1}|+|{(uFi , t) | Fi contains at least one edge from E1 }| = (|Ẽ|−m1)+∆1

and thus by Inequality (Equation 7.2) we can conclude that

C2
d(G\E1) ≥ γ ≡ ∆1 +(|Ẽ|−m1) ≤ Γ ≡ cap(cut(S,V \S)) ≤ Γ ⇒ Φ ≤ cap(cut(S,V \S)) ≤ Γ

For the other direction, consider a minimum s-t cut (S,V \ S) of G of value Φ ≤ Γ. Consider

the solution E1 = {e |ue ∈ S} ⊆ Ẽ for EadpC2
d
(G, Ẽ, γ), and suppose that removal of the edges

in E1 removes ∆1 cycles from C′(G). Since G admits a trivial s-t cut ({s},V \ {s}) of capacity
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m1 < ∞, no edge-cycle-arc can be an edge of any minimum s-t cut of G, i.e., cut(S,V \ S)

contains only edge-arcs or cycle-arcs. Let E2 = {Fj |uFj ∈ S}. Consider an edge e ∈ E1 and

let Fj be a cycle in C′(G) containing e. Since cut(S,V \ S) contains no edge-cycle-arc, it does

not contain the arc (ue, uFj ). It thus follows that the cycle-node uFj must also belong to S and

thus |E2| = ∆1. Now note that

Φ = |{ue |ue /∈ S}|+ |{uFj |uFj ∈ S}| = (|Ẽ| − |E1|) + ∆1 ≤ Γ = C2
d(G)− γ + |Ẽ|

≡ C2
d(G \ E1) = C2

d(G) + |E1| −∆1 ≥ γ

q

This completes a proof for (a1). We now prove (a2-2). Let Ê ⊆ Ẽ be an optimal solu-

tion of the optimization version of EadpC2
d
(G, Ẽ, γ) having OPTEadp

C2
d

(G, Ẽ, γ) nodes. Note

that OPTEadp
C2
d

(G, Ẽ, γ) ∈ {1, 2, . . . , |Ẽ|} and thus in polynomial time we can “guess” every

possible value of OPTEadp
C2
d

(G, Ẽ, γ), solve the corresponding optimization problem with this

additional constraint, and take the best of these solutions. In other words, it suffices if we can

find, under the assumption that OPTEadp
C2
d

(G, Ẽ, γ) = κ for some κ ∈ {1, 2, . . . , |Ẽ|}, find a

solution E1 ⊆ Ẽ satisfying the claims in (a2-2).

We showed in part (a1) that the feasibility problem can be reduced to finding a minimum s-t

cut of the directed graph G = (V, E). Notice that G is acyclic, and every path between s and t has

exactly three directed edges, namely an edge-arc followed by a edge-cycle-arc followed by a cycle-

arc. The minimum s-t cut problem for a graph has a well-known associated convex polytope of
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polynomial size (e.g., see (70, pp. 98-99)). Letting pβ to be the variable corresponding to each

node β ∈ V, and dα to be the variable associated with the edge α ∈ E , this minimum s-t cut

polytope for the graph G is as follows:

minimize
∑

α∈E cap(α)dα =
∑

α∈E, α is not edge-cycle-arc dα +
∑

α∈E, α is edge-cycle-arc ∞× dα

subject to dα ≥ pβ − pξ for every edge α = (β, ξ) ∈ E

ps − pt ≥ 1

0 ≤ pβ ≤ 1 for every node β ∈ V

0 ≤ dα ≤ 1 for every edge α ∈ E

(7.3)

It is well-known that all extreme-point solutions of (Equation 7.3) are integral. An integral

solution of (Equation 7.3) generates a s-t cut (S,V \ S) by letting S = {β | pβ = 1} and

cut(S,V \S) = {α | dα = 1}. For our case, we have an additional constraint in that the number
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of edges to be deleted from Ẽ is κ, which motivates us to formulate the following polytope for

our problem:

minimize
∑

α∈E cap(α)dα =
∑

α∈E, α is not edge-cycle-arc dα +
∑

α∈E, α is edge-cycle-arc ∞× dα

subject to dα ≥ pβ − pξ for every edge α = (β, ξ) ∈ E

ps − pt ≥ 1

0 ≤ pβ ≤ 1 for every node β ∈ V

0 ≤ dα ≤ 1 for every edge α ∈ E
∑

ue∈V pue = κ

(7.4)

Let OPT(Equation 7.4) denote the optimal objective value of (Equation 7.4).

Lemma 17. OPT(Equation 7.4) ≤ Γ.

Proof. Suppose that removal of the edges in the optimal solution Ê removes ∆̂ ≤ ∆′ cycles

from C′(G). We construct the following solution of (Equation 7.4) with respect to the optimal

solution Ê of EadpC2
d
(G, Ẽ, γ) having |Ê| = κ nodes:

S = {s}
⋃
{ue | e ∈ Ê}

⋃{
uFi | Fi contains at least one edge from Ê

}

pβ =


1, if β ∈ S

0, otherwise

dα =


1, if α ∈ cut(S,V \ S)

0, otherwise

It can be verified as follows that this is indeed a feasible solution of (Equation 7.4):
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• Since ps = 1 and pt = 0, it follows that ps − pt ≥ 1 is satisfied.

• No edge-cycle-arc belongs to cut(S,V \ S). Thus, if α = (β, ξ) is an edge-cycle-arc then

dα = 0 and it is not the case that pβ = 1 and pξ = 0. Thus for every edge-cycle-arc α the

constraint dα ≥ pβ − pξ is satisfied.

• Consider an edge-arc α = (s, ue); note that ps = 1. If ue ∈ S that pue = 1 and dα = 0,

otherwise pue = 0 and dα = 1. In both cases, the constraint dα ≥ pβ − pξ is satisfied. The

case of a cycle-arc is similar.

• The constraint
∑

ue∈V pue = κ is trivially satisfied since |Ẽ| = κ by our assumption.

Note that cut(S,V \ S) does not contain any edge-cycle-arcs. Thus, the objective value of this

solution is

∑
a∈E

da =
∑

a∈cut(S,V\S)

da = |{ue |ue /∈ S}|+ |{uFj |uFj ∈ S}| = (|Ẽ| − |Ê|) + ∆̂ ≤ Γ

where the last inequality follows by (Equation 7.2) since C2
d(G \ Ê) ≥ γ. q

Given a polynomial-time obtainable optimal solution values
{
d∗α, p

∗
β |α ∈ E , β ∈ V

}
of the

variables in (Equation 7.4), consider the following simple rounding procedure, the corresponding

cut (S,V \ S) of G, and the corresponding solution E1 ⊆ Ẽ of EadpC2
d
(G, Ẽ, γ):

p̂β =


1, if p∗β ≥ 1/2

0, otherwise

S = {β ∈ V | p̂β = 1} E1 = {e |ue ∈ S} (7.5)

Note that in inequalities ps−pt ≥ 1, 0 ≤ ps ≤ 1 and 0 ≤ pt ≤ 1 ensures that p∗s = 1 and p∗t = 0.
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Lemma 18. |E1| ≤ 2κ.

Proof. |E1| = |{ue | p∗ue ≥ 1/2}| ≤ 2
∑

ue∈V p
∗
ue = 2κ. q

Lemma 19. cap(cut(S,V \ S)) ≤ 2OPT(Equation 7.4) ≤ 2 Γ.

Proof. Since cap(α) = ∞ and OPT(Equation 7.4) ≤ Γ < ∞, d∗α = 0 for any edge-cycle-arc

α = (ue, uFj ), and thus p∗ue ≤ p∗uFj for such an edge. It therefore follows that

p∗ue ≥ 1/2 ⇒ p∗uFj ≥ 1/2 ≡ p̂ue = 1 ⇒ p̂uFj = 1

Thus, no edge-cycle-arc belongs to cut(S,V \ S). Thus using Lemma 17 it follows that

cap(cut(S,V \ S)) = |{(s, ue) | p̂ue = 0}|+ |{(uFj , t) | p̂uFj = 1}|

= |{(s, ue) | p∗ue < 1/2}|+ |{(uFj , t) | p∗uFj ≥ 1/2}| ≤ 2
∑

p∗ue<
1/2

(p∗s − p∗ue) + 2
∑

p∗Fj
≥1/2

(p∗Fj − p∗t )

≤ 2
∑

p∗ue<
1/2

d∗s,pue + 2
∑

p∗Fj
≥1/2

d∗s,pFj < 2
∑
α∈E

cap(α)d∗α ≤ 2 Γ

q

Since no edge-cycle-arc belongs to cut(S,V \ S), if an edge e ∈ E1 is involved in a cycle

Fj ∈ C′(G) then it must be the case that (ue, uFj ) /∈ cut(S,V \ S). Thus, letting m1 = |E1|
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and ∆1 = | {Fj ∈ C′(G) |uFj ∈ S} |, the claimed bound on C2
d(G \ E1) can be shown as follows

using Lemma 19:

cap(cut(S,V \ S)) = (m−m1) + ∆1 ≤ 2 Γ = 2C2
d(G)− 2 γ + 2 |Ẽ|

⇒ C2
d(G \ E1) = C2

d(G) +m1 −∆1 ≥ 2 γ − C2
d(G)− (2 |Ẽ| −m), by (Equation 7.1)

⇒ C2
d(G \ E1)− C2

d(G)

γ − C2
d(G)

≥ 2− 2 |Ẽ| −m
γ − C2

d(G)
≥ 2− 1

1
2 + ε

=
4ε

1 + 2ε

(a2-1) The decision version of computing OPTEadp
C2
d

(G, Ẽ, γ) is as follows: “given an instance

EadpC2
d
(G, Ẽ, γ) and an integer κ > 0, is there a solution Ê ⊆ Ẽ satisfying |Ê| ≤ κ ?”. We

first consider the case of d = 3. We will reduce from the decision version of the DkS3 problem

which is defined as follows: given an undirected graph G1 = (V1, E1) where the degree of every

node is either 2 or 3 and two integers k and t, is there a (node-induced) subgraph of G1 that has

k nodes and at least t edges? Assuming that their reduction is done from the clique problem

on a (n − 4)-regular n-node graph (which is NP-hard (19)), the proof of Feige and Seltser

in (31) shows that DkS3 is NP-complete for the following parameter values (for some integer

√
n < α ≤ n− 4):

|V1| = n2 + (αn+ 1)

(
n (n− 4)

2

)
, |E1| = |V1|+

n (n− 4)

2

k = αn+

(
α

2

)
(αn+ 1), t = αn+

(
α

2

)
(αn+ 2)

We briefly review the reduction of Feige and Seltser in (31) as needed from our purpose. Their

reduction is from the α-CLIQUE problem which is defined as follows: “given a graph of n nodes,
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does there exist a clique (complete subgraph) of size α?”. Given an instance of α-CLIQUE,

they create an instance G1 = (V1, E1) of DkS3 (with the parameter values shown above) in

which every node is replaced by a cycle of n edges and an edge between two nodes is replaces

by a path of length αn + 3 between two unique nodes of the two cycles corresponding to the

two nodes (see Fig. Figure 10 (a)–(b) for an illustration). Given such an instance of DkS3

with V1 = {u1, . . . , u|V1|} and E1 = {a1, . . . , a|E1|}, we create an instance of EadpC2
3
(G, Ẽ, γ) as

follows:

• We associate each node ui ∈ V1 with a triangle (the “node triangle”) Li of 3 nodes in

V such that every edge {ui, uj} ∈ E1 is mapped to a unique edge (the “shared edge”)

eui,uj ∈ E that is shared by Li and Lj (see Fig. Figure 10 (c)). Since in the reduction of

Feige and Seltser (31) all nodes have degree 2 or 3 and two degree 3 nodes do not share

more than one edge such a node-triangle association is possible. We set Ẽ to be the set

of all shared edges; note that |Ẽ| = |E1|. Let L = {v1, v2, . . . . . . } be the set of all nodes

in the that appear in any node triangle; note that |L| < 3 |V1|.

• To maintain connectivity after all edges in Ẽ are deleted, we introduce 3|L|+1 new nodes

{w0} ∪
{
wi,j | i ∈ {1, 2, . . . , |L|}, j ∈ {1, 2, 3}

}
and 4 |L| new edges

{
{w0, wj,1}, {wj,1, wj,2}, {wj,2, wj,3}, {wj,3, vj} | j ∈ {1, 2, . . . , |L|}

}

• We set γ = C2
3(G) + (t− k) = C2

3(G) +
(
α
2

)
.
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First, we show that EadpC2
3
(G, Ẽ, γ) indeed has a trivial feasible solution, namely a solution

that contains all the edges from Ẽ. The number of triangles ∆′ that include one or more edges

from Ẽ is precisely |V1| and thus using (Equation 7.1) we get:

C2
3(G \ Ẽ) = C2

3(G) + |Ẽ| − |∆′| = C2
3(G) + |E1| − |V1| = C2

3(G) +
n(n− 4)

2
> C2

3(G) +

(
α

2

)
= γ

where the last inequality follows since α ≤ n− 4. The following lemma completes our proof.

Lemma 20. G1 has a subgraph of k nodes and at least t edges if and only if the instance of

EadpC2
3
(G, Ẽ, γ) constructed above has a solution Ê ⊆ Ẽ satisfying |Ê| ≤ t.

Proof. Suppose that G1 has k nodes u1, u2, . . . , uk such that the subgraph H1 induced by these

nodes has t′ ≥ t edges. Remove an arbitrary set of t′ − t edges from H1 to obtain a subgraph

H ′1 = (V ′1 , E
′
1), and let Ê = {eui,uj | i, j ∈ {1, 2, . . . , k}, {ui, uj} ∈ E′1}. Obviously, |Ê| = t.

Consider the triangle Li corresponding to a node ui ∈ {u1, uk, . . . , uk}, and let I(Li) be the

0-1 indicator variable denoting if Li is eliminated by removing the edges in Ê, i.e., I(Li) = 1

(resp., I(Li) = 0) if and only if Li is eliminated (resp., is not eliminated) by removing the

edges in Ê. Note that the triangle Li gets removed if and only if there exists another node

uj ∈ {u1, uk, . . . , uk} such that {ui, uj} ∈ E1. Thus, the total number of triangles eliminated

by removing the edges in Ê is at most
∑k

i=1 I(Li) ≤ k and consequently

C2
3(G \ E′) = C2

3(G) + |Ê| −
k∑
i=1

I(Li) ≥ C2
3(G) + t− k = γ
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Conversely, suppose that the instance of EadpC2
3
(G, Ẽ, γ) has a solution Ê ⊆ Ẽ satisfying

|Ê| = t̂ ≤ t. Let V ′1 = {uj | Lj is removed by removing one of more edges from Ê}. Us-

ing (Equation 7.1) we get

C2
3(G \ Ê) ≥ γ = C2

3(G) + t− k ⇒ t̂− |V ′1 | ≥ t− k (7.6)

Let H ′1 = (V ′1 , E
′
1) be the subgraph of G1 induced by the nodes in V ′1 . Clearly, |E′1| ≥ t̂. If

|V1| < k then we use the following procedure to add k − |V ′1 | nodes:

V ′′1 ← V ′1

while |V ′′1 | 6= k do

select a node uj /∈ V ′′1 connected to one or more nodes in V ′′1 and add uj to V ′′1

Let H ′′1 = (V ′′1 , E
′′
1 ) be the subgraph of G1 induced by the nodes in V ′′1 . Note that |V ′′1 | = k and

|E′′1 | ≥ |E′1|+ (k − |V ′1 |), and thus using (Equation 7.6) we get

|E′′1 | ≥ |E′1|+ (k − |V ′1 |) ≥ t̂+ (k − |V ′1 |) ≥ t

q

This concludes the proof for d = 3. For the case when d = 3µ for some integer µ > 1, the

same reduction can be used provide we split every edge of G1 into a path of length µ by using

new µ− 1 nodes (see Fig. Figure 10 (d)).
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(b1) and (b2) We will reuse the notations used in the proof of (a). We modify the

proof and the proof technique in (a1) for the proof of (b1). We now observe that the following

sub-cases are easy to solve:

• If γ < n −m + 1 + ∆ −∆′ then we can assert that there is no feasible solution. This is

true because for any E′ ⊆ Ẽ it is true that C2
d(G \E′) is at least n− (m− 1) + (∆−∆′).

• If γ ≥ n−m+ 1 + ∆−∆′ and ∆′ = 0 then there exists a trivial optimal feasible solution

of the following form: select any set of m1 edges from Ẽ where m1 is the largest positive

integer satisfying n−m1 + 1 + ∆ ≤ γ.

Thus, we assume that γ ≥ n − m + 1 + ∆ − ∆′ and ∆′ > 0. (Equation 7.1) still holds, but

(Equation 7.2) is now rewritten as (note that Γ > 0):

C2
d(G \ E1) ≤ γ ≡ m1 −∆1 ≤ γ − C2

d(G) ≡ m1 + (∆′ −∆1) ≤ γ − C2
d(G) + ∆′ def

= Γ

(Equation 7.2)′

The nodes in the di-graph G = (V, E) are same as before, but the directed edges are modified

as follows:

• For every edge e ∈ Ẽ, we have an edge (ue, t) (an “edge-arc”) of capacity cap(ue, t) = 1.

• For every cycle Fi ∈ C′(G), we have an edge (a “cycle-arc”) (s, uFi) of capacity cap(s, uFi) =

1.

• For every cycle Fi ∈ C′(G) and every edge e ∈ Ẽ such that e is an edge of Fi, we have a

directed edge (an “cycle-edge-arc”) (uFi , ue) of capacity cap(uFi , ue) =∞.
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Corresponding to a feasible solution E1 of m1 edges for EadpC2
d
(G, Ẽ, γ) that removes ∆1 cycles,

exactly the same cut (S,V \S) described before includes no cycle-edge-arcs and has a capacity

of

cap(cut(S,V \ S)) = |{(s, uFi) | Fi does not contain one or mores edges from E1 }|+ |{(ue, t) | e ∈ E1}|

= (∆′ −∆1) +m1

Therefore C2
d(G \ E1) ≤ γ implies cap(cut(S,V \ S)) ≤ Γ, as desired. Conversely, given a

minimum s-t cut (S,V \ S) of G of value Φ ≤ Γ, we consider the solution E1 = {e |ue ∈ S} for

EadpC2
d
(G, Ẽ, γ). Let Ψ = {Fj |uFj ∈ S} and let Υ be the cycles from C′(G) that are removed

by deletion of the edges in E1. Since no cycle-edge-arc (of infinite capacity) can be an edge of

the minimum s-t cut (S,V \ S), Ψ is a subset of Υ. We therefore have

Φ = |{uFj |uFj /∈ S}|+ |{ue |ue ∈ S}| = (∆′ − |Ψ|) + |E1| ≤ Γ ⇒ (∆′ − |Υ|) + |E1| ≤ Γ

and the last inequality implies C2
d(G \ E1) ≤ γ.

This completes a proof for (b1). We now prove (b2). We use an approach similar to that in

(a2) but with a different polytope for the minimum s-t cut of G. Let P be the set of all possible
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s-t paths in G. Then, an alternate polytope for the minimum s-t cut is as follows (cf. see (20.2)

in (70, p. 168)):

minimize
∑

α∈E cap(α)dα

subject to
∑

α∈p dα ≥ 1 for every s-t path p ∈ P

0 ≤ dα ≤ 1 for every edge α ∈ E

(Equation 7.3)′

An integral solution of (Equation 7.3)′ generates a s-t cut (S,V \ S) by letting cut(S,V \ S) =

{α | dα = 1}. Since the capacity of any cycle-edge-arc in∞, cut(S,V\S) contains only cycle-arcs

or edge-arcs, and the number of edge-arcs in cut(S,V \ S) for an integral solution is precisely

the number of edge-nodes in S. This motivates us to formulate the following polytope for our

problem to ensure that integral solutions constrain the number of edges to be deleted from Ẽ

to be κ:

minimize
∑

α∈E cap(α)dα

subject to
∑

α∈p dα ≥ 1 for every s-t path p ∈ P

0 ≤ dα ≤ 1 for every edge α ∈ E
∑

e∈Ẽ d(ue,t) = κ

(Equation 7.4)′

For our problem, |P| <
(|V|

3

)
and thus (Equation 7.4)′ can be solved in polynomial time. Let

OPT(Equation 7.4)′ denote the optimal objective value of (Equation 7.4)′. It is very easy to see

that OPT(Equation 7.4)′ ≤ Γ: assuming that deletion of the κ edges in the optimal solution Ê
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removes ∆̂ cycles from C′(G), we set dα =


1, α = (uFj , ue), e ∈ Ê

0, otherwise

to construct a feasible

solution of (Equation 7.4)′ of objective value

∑
α∈E

dα = |{uFj | d(s,uFj ) = 1}|+ |{ue | d(ue,t) = 1}| = (∆′ − ∆̂) + |Ẽ| ≤ Γ

where the last inequality follows by (Equation 7.2)′ since C2
d(G\Ê) ≤ γ. Note that the constraint∑

e∈Ẽ d(ue,t) = κ is satisfied since
∑

e∈Ẽ d(ue,t) = |{d(ue,t) | d(ue,t) = 1}| = |{e | e ∈ Ê}| = κ.

Given a polynomial-time obtainable optimal solution values
{
d∗α |α ∈ E

}
of the variables

in (Equation 7.4)′, consider the following simple rounding procedure, the corresponding cut

(S,V \ S) of G, and the corresponding solution E1 ⊆ Ẽ of EadpC2
d
(G, Ẽ, γ):

d̂α =


1, if d∗α ≥ 1/2

0, otherwise

E′ = {α | d̂α = 1} E1 = {e | (ue, t) ∈ E′} (Equation 7.5)′

Lemma 21. E′ is indeed a s-t cut of G and E′ does not contain any cycle-edge-arc.

Proof. Since the capacity of any cycle-edge-arc α in ∞, d∗α = 0 and therefore α /∈ E′. To see

that E′ is indeed a s-t cut, consider any s-t path (s, uFj ), (uFj , ue), (ue, t). Since d∗(uFj ,ue)
=, we

have d(s,uFj ) +d(uFj ,ue)
+d(ue,t) = d(s,uFj ) +d(ue,t) ≥ 1, which implies max{d(s,uFj ), d(ue,t)} ≥ 1/2,

putting at least one edge of the path in E′ for deletion. q
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Note that |E1| = |{e | d∗(ue,t) ≥ 1/2}| ≤ 2
∑

e∈Ẽ d
∗
(ue,t)

= 2κ, as desired. Let (S,V \ S) be the

s-t cut such that cut(S,V \ S) = E′. It thus follows that

cap(cut(S,V \ S)) = |E′| = |{α | d∗α ≥ 1/2}| ≤ 2
∑
α∈E

cap(α)d∗α = 2OPT(Equation 7.4)′ ≤ 2 Γ

(7.7)

Let Ψ = {Fj |uFj ∈ S} and let Υ be the cycles from C′(G) that are removed by deletion of

the edges in E1. Since no cycle-edge-arc (of infinite capacity) can be an edge of the minimum

s-t cut (S,V \ S), Ψ is a subset of Υ. The claimed bound on C2
d(G \ E1) can now be shown as

follows using (Equation 7.7):

cap(cut(S,V \ S)) = |{uFj |uFj /∈ S}|+ |{ue |ue ∈ S}| = (∆′ − |Ψ|) + |E1| ≤ 2 Γ

⇒ (∆′ − |Υ|) + |E1| ≤ 2 Γ = 2 γ − 2C2
d(G) + 2 ∆′

⇒ C2
d(G \ E1)− C2

d(G) = |E1| − |Υ| ≤ 2 γ − 2C2
d(G) + ∆′

⇒ C2
d(G\E1)−C2

d(G)

γ−C2
d(G)

≤ 2 + ∆′

γ−C2
d(G)
≤ 1− ε



CHAPTER 8

CONCLUSION AND OPEN PROBLEMS

In this thesis we have provided the first known non-trivial bounds on expansions and cut-

sizes for graphs as a function of the hyperbolicity measure δ, and have shown how these bounds

and their related proof techniques lead to improved algorithms for two related combinatorial

problems. We hope that these results will stimulate further research in characterizing the

computational complexities of related combinatorial problems over asymptotic ranges of δ. In

addition to the usual future research of improving our bounds, the following interesting research

questions remain:

• Can one use Lemma 14 or similar results to get a polynomial-time solution of UGC for

some asymptotic ranges of δ An obvious recursive application using the approach in (80)

encounters a hurdle since hyperbolicity is not a hereditary property (cf. Section 2.2), i.e.,

removal of nodes or edges may change δ sharply; however, it is conceivable that a more

clever approach may succeed.

• Can our bounds on expansions and cut-sizes be used to get an improved approximation

for the multicut problem [(112), Problem 18.1] provided δ = o(log n)?

Then we have attempted to formulate and analyze curvature analysis methods to provide

the foundations of systematic approaches to find critical components and anomaly detection in

networks by using geometric network curvatures.

88
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Notions of curvatures of higher-dimensional geometric shapes and topological spaces play

a fundamental role in physics and mathematics in characterizing anomalous behaviors of these

higher dimensional entities. However, using curvature measures to detect anomalies in networks

is not yet very common due to several reasons such as lack of preferred geometric interpretation

of networks and lack of experimental evidences that may lead to specific desired curvature

properties.

This research must not be viewed as uttering the final word on appropriateness and suitabil-

ity of specific curvature measures, but rather should be viewed as a stimulator and motivator of

further theoretical or empirical research on the exciting interplay between notions of curvatures

from network and non-network domains.

There is a plethora of interesting future research questions and directions raised by the

topical discussions and results in this regard. Some of these are stated below.

. For geometric curvatures, we considered the first-order non-trivial measure C2
d. It would be of

interest to investigate computational complexity issues of anomaly detection problems using

Cpd for p > 2. We conjecture that our algorithmic results for extremal anomaly detection

using C2
d (Theorem 15 (a2-2)&(b2)) can be extended to C3

d.

. There are at least two more aspects of geometric curvatures that need further careful investi-

gation. Firstly, the topological association of elementary components to higher-dimensional

objects by no which means the only reasonable topological association possible. But, more

importantly, other suitable notions of geometric curvatures are quite possible. As a very

simple illustration, assuming that smaller dimensional simplexes edges in the discrete net-
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work setting correspond to vectors or directions in the smooth context, an analogue of the

Bochner-Weitzenböck formula developed by Forman for the curvature for a simplex s can be

given by the formula (32; 66):

F(s) = ws

(∑
s≺s′

ws
ws′

+
∑
s′≺s

ws′

ws

)
–
∑
s′‖s

∣∣∣ ∑
s,s′≺g

√
wsws′

wg
+
∑
g≺s,s′

wg√
wsws′

∣∣∣


where a ≺ b means a is a face of b, a ‖ b means a and b have either a common higher-

dimensional face or a common lower-dimensional face but not both, and w is a function

that assigns weights to simplexes. One can then either modify the Euler characteristics

as
∑p

k=0(−1)k F(fkd ) or by combining the individual F(fkd ) values using curvature functions

defined by Bloch (12).
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