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ABSTRACT
Reconstruction of sibling relationships from genetic data

is an important component of many biological applications.
In particular, the growing application of molecular markers
(microsatellites) to study wild populations of plant and animals
has created the need for new computational methods of
establishing pedigree relationships, such as sibgroups, among
individuals in these populations. Most current methods for
sibship reconstruction from microsatellite data use statistical
and heuristic techniques that rely on a priori knowledge about
various parameter distributions. Moreover, these methods are
designed for data with large number of sampled loci and
small family groups, both of which typically do not hold for
wild populations. We present a deterministic technique that
parsimoniously reconstructs sibling groups using only Mendelian
laws of inheritance. We validate our approach using both
simulated and real biological data and compare it to other
methods. Our method is highly accurate on real data and
compares favorably with other methods on simulated data with
few loci and large family groups. It is the only method that does
not rely on a priori knowledge about the population under study.
Thus, our method is particularly appropriate for reconstructing
sibling groups in wild populations.

1 INTRODUCTION
For wild populations, the growing development and application
of molecular markers provides new possibilities for establishing
kinship and reconstructing pedigrees in species where such
information cannot be obtained from field observations alone.
Knowledge of kinship in wild or experimental populations
of non-model organisms allows the investigation of many
fundamental biological phenomena, including mating systems,
selection and adaptation, kin selection, and dispersal patterns.
The power and potential of the genotypic information obtained
in these studies often rests in our ability to reconstruct
genealogical relationships among individuals (Garant and
Kruuk, 2005). These relationships include parentage, full and
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half-sibships, and higher order aspects of pedigrees (Blouin,
2003; Butleret al., 2004; Jones and Ardren, 2003). In this paper
we are only concerned with full sibling relationships.

While there are several potential molecular markers that
could be applied to pedigree reconstruction, microsatellites
(also known as SSRs, STRs, SSLPs, and VNTRs) are the
most widely used marker and offer several advantages. Unlike
dominant markers such as AFLPs and ISSRs, microsatellite
alleles are codominant, so inference of genotypes and allele
frequencies at each locus are straightforward. Development
of SNPs is more difficult and expensive than microsatellite
development for species not subject to large-scale genome
projects. More importantly, the power to identify related
individuals depends mainly on the number of alleles per
locus and their heterozygosity, and microsatellites are clearly
superior to other markers in both regards, with 5-20 alleles and
heterozygosities of> 0.700 being typical, as reported in many
wild populations. Finally, many field studies wish to estimate
population parameters as well as individual relationships, so
development and application of microsatellites is the best
investment of resources for accomplishing such multiple goals.
Because of these advantages of microsatellite over other
markers, together with their current widespread use, we focus
our development of sibship reconstruction methods to unlinked,
multi-allelic, codominantly-inherited markers, as these features
describe microsatellite markers. Generally, phase or haplotype
information is not available for microsatellite loci in non-model
organisms.

While several methods for sibling reconstruction from mutli-
allelic microsatellite data have been proposed (Almudevar
and Field, 1999; Almudevar, 2003; Beyer and May, 2003;
Konovalov et al., 2004; Painter, 1997; Smithet al., 2001;
Thomas and Hill, 2002; Wang, 2004), most have not been
’ground-truthed’ (but see Butleret al., 2004) and have
received relatively limited application. The majority of the
kinship and pedigree reconstruction methods rely on the
knowledge about typical allele distribution and frequency,
family sizes, etc. and use statistical likelihood models to
infer genealogical relationships (Blouin, 2003). We build on
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our earlier work (Berger-Wolfet al., 2005; Chaovalitwongse
et al., 2006) and propose a new algorithm for sibship
reconstruction using combinatorial optimization. There have
been no truly combinatorial methods for kinship reconstruction
problems (Almudevar and Field, 1999; Beyer and May,
2003). Combinatorial methods have been very successful in
closely related molecular genetics questions, such as haplotype
reconstruction (Eskinet al., 2003; Li and Jiang, 2003).
Our approach uses the simple Mendelian inheritance rules
to impose constraints on the genetic content possibilities of
a sibling group. We formulate the inferred combinatorial
constraints and, under the parsimony assumption, use a
provably correct algorithm to construct the smallest number of
groups of individuals that satisfy these constraints. We test our
approach on both simulated and real biological data.

2 METHODS

2.1 Microsatellite Genetic Markers
Microsatellites, also known as Short Tandem Repeats (STR),
Simple Tandem Repeats (STR), Simple Sequence Repeats
(SSR), Simple Sequence Length Polymorphisms (SSLP), or
Variable Number of Tandem Repeats (VNTR), are short
sequences of repeated DNA (typically two to four base-pairs).
Different individual organisms can have microsatellites with
different number of repeats at the samelocus(part of DNA). In
fact, this variability is what makes the microsatellites so useful
for genetic analysis. In diploid organisms an individual will
have two copies of each microsatellite sequence, one from the
mother, one from the father, calledalleles. The two copies may
differ in the number of repeats of the same segment, depending
on the parental DNA. For example, if the mother has “CA”
repeated 8 times and 12 times, and the father has 10 and 13
repeats, then the offspring may have 12 and 10 “CA” repeats at
that locus.

Finding each new microsatellite locus is time and resource
consuming. Thus, microsatellite markers for non-model
species typically consist of very few, 2 – 20, loci. Yet,
once a locus is identified and the specific PCR primers are
designed, screening each individual is relatively quick and
cheap. Together with the high variability (high number of
alleles per locus) this makes microsatellites the marker of
choice for genetic research of wild populations.

2.2 Sibling Reconstruction Problem Statement
The main focus of our paper is to design a method that
accurately reconstructs sibling groups from microsatellite data
of a single generation. We now define the sibling reconstruction
problem more formally. Given a genetic (microsatellite) sample
at l loci from a population ofn diploid individuals of the same
generation,U , the goal is to reconstruct the full sibling groups
(groups of individuals with the same parents). We assume no
knowledge of parental information.

U = {X1, ...Xn}, whereXi = (< ai1, bi1 >, ..., < ail, bil >)

andaij andbij are the two alleles of the individuali at locusj.

The goal is to find a partition of individualsP1, ...Pm such
that

∀1 ≤ k ≤ m, ∀Xu, Xv ∈ Pk : Parents(Xu) = Parents(Xv)

Notice, here that we have not defined the function
Parents(x). This is a biological objective. We will discuss
computational approaches to achieve a good estimate of the
biological sibling relationship.

2.3 2-Allele and 4-Allele Properties
Mendelian genetics lay down a very simple rule for inheritance
in diploid organisms:an offspring inherits one allele from each
of its parents for each locus. This introduces two overlapping
necessary (but not sufficient) constraints on full siblings
groups: 4-allele property and 2-allele property (Berger-Wolf
et al., 2005).

4-Allele Property: The total number of distinct alleles
occurring at any locus may not exceed 4.

Formally, a setS ⊆ U has the 4-allele property if

∀1 ≤ j ≤ l :

˛

˛

˛

˛

˛

[

i∈S

{aij , bij}

˛

˛

˛

˛

˛

≤ 4.

Clearly, the 4-allele property is necessary since a group
of siblings can inherit only combinations of the 4 alleles
of their common parents. The 4-allele property is effective
for identifying sibling groups where the data are mostly
heterozygous and the parent individuals share few common
alleles. Generally, as in Table 1, a set consisting of any two
individuals satisfies the 4-allele property. The set of individuals
1, 3 and 4 from Table 1 satisfies the 4-allele property. However,
the set of individuals 2, 3 and 5 fails to satisfy it as the alleles
occurring at the first locus are{12, 31, 56, 44, 51}.

2-Allele Property:There exist an assignment of individual
alleles within a locus to maternal and paternal such that the
number of distinct alleles assigned to each parent at this locus
does not exceed 2.

Formally, a setS ⊆ U has the 2-allele property if for each
Xi in each locus there exists an assignment ofaij = cij or
bij = cij (and the other allele assigned toc̄ij) such that
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2-Allele property is clearly stricter than 4-allele property.
Looking at the Table 1, our previous 4-allele set of individuals
1, 3 and 4 fails to satisfy the stricter 2-allele property as the
alleles appearing on the left side at locus 1{ 44, 31, 13} are
more than two. Moreover, there is no swapping of alleles that
will bring down the number of alleles on each side to two: the
1st and 4th individuals with alleles 44/44 and 13/13 already fill
the capacity.

The 2-allele property takes into account the fact that the
parents can contribute only two alleleseachto their offspring.
Note, that the 2-allele property is, again, a necessary but not
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Table 1. An example of input data for the sibling reconstruction
problem. The five individuals have been sampled at two genetic
loci. Each allele is represented by a number. Same numbers
represent the same alleles.

Individual Alleles (a/b) at locus1 Alleles (a/b) at locus2
Radish 1 44/44 55/23
Radish 2 12/56 14/31
Radish 3 31/44 55/14
Radish 4 13/13 31/23
Radish 5 31/51 14/31

a sufficient constraint for a group of individuals to be siblings.
Notice, also, thatany two individuals necessarily satisfy the 2-
allele property as well since by default the number of alleles on
each side of any locus is at most two.

The 2-allele property reduces the possible combinations of
alleles at a locus in a group of siblings down to a few canonical
options (modulo the numbering of the alleles). Assuming the
alleles are numbered 1 through 4, Table 2 lists all different types
of sibling groups possible with the 2-allele property. We do this
by listing all possible pairs of parents whose alleles are among
1,2,3, and 4 and all the offspring they can produce. However,
in any sibling group with a given set of parents only a subset of
the offspring possibilities from the table may be present.

It is important to note that Table 2 gives an exhaustive list of
canonical possibilities of allele combinations at a given locus
in a group of siblings without violating the 2-allele property.
Without the loss of generality, we assume that the alleles at
each locus are numbered 1 through 4. This is sufficient since
according to the 4-allele property the number of alleles in any
sibling group cannot exceed four. Further, there are4! =
24 possible mappings of any four alleles onto numbers 1–4.
However, we list only the canonical minimal options (parents’
alleles being numbered sequentially). It is not hard to check
that the list of parents is exhaustive. Hence, Table 2 presents an
exhaustive canonical list of possible sibling groups. It is also
easy to verify that the resulting sibling groups indeed confirm
to the 2-allele property.

2.4 Minimum 2-Allele Set Cover
As we have mentioned, the biological functionParents(x)
cannot be defined mathematically. We model the objective
of reconstructing the sibling relationships mathematically by
assigning individuals parsimoniously into the smallest number
of (possibly overlapping) groups that satisfy the necessary 2-
allele constraint. Formally, recall that we are given a population
U of n diploid individuals sampled atl loci

U = {X1, ...Xn}, whereXi = (< ai1, bi1 >, ..., < ail, bil >)

andaij andbij are the two alleles of the individuali at locusj.
The goal of theMINIMUM 2-ALLELE SET COVERproblem is

to find the smallest number of subsetsS1, ..., Sm such that each
Si ⊆ U and satisfies the 2-allele constraint and

S

Si = U .

Table 2. Canonical possible combinations of
parent alleles and all resulting offspring allele
combinations at a single locus

Parents Offspring
allelea alleleb

Set parents (1 / 2) (3/ 4)
1 3
2 4
1 4
2 3
3 1
4 2
4 1
3 2

Set parents (1 / 2) (1 / 3)
1 1
2 3
1 3
2 1
3 2
3 1
1 2

Set parents (1 / 2) (1 / 2)
1 1
1 2
2 1
2 2

Set parents (1 / 1) (1 / 1)
1 1

Set parents (1 / 1) (1 / 2)
1 1
1 2
2 1

Set parents (1 / 1) (2 / 3)
1 2
1 3
2 1
3 1

Set parents (1 / 1) (2 / 2)
1 2
2 1

We conjecture that theMINIMUM 2-ALLELE SET COVER

is NP-complete. A simple corollary of the following theorem
from Berger-Wolfet al., 2005 shows that it is in NP.

THEOREM 1 (Berger-Wolf et al., 2005). Let R be the
number of alleles that are homozygous or appear with 3 other
distinct alleles in a given locus andA be the total number of
distinct alleles at a locus. Then a set of individuals satisfies the
2-allele property if and only if for every locus it satisfies the
constraint

A + R ≤ 4

It is easy to see that given a set of individuals we can verify
that it satisfies the 2-allele property inO(nl) time using the
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constraint above. Thus,MINIMUM 2-ALLELE SET COVER is in
NP.

Since theMINIMUM 2-ALLELE SET COVER is likely to be
NP-hard, one approach is to design approximation algorithms
or heuristics that will produce suboptimal solutions. Instead,
we use commercial MIP solver CPLEX1 to solve the problem
to optimality.

2.5 Minimum 2-Allele Set Cover Algorithm
We now present our algorithm for solving the sibling
reconstruction problem abstracted as theMINIMUM 2-ALLELE

SET COVER. Our algorithm uses the 2-allele and 4-allele
properties (specifically, Table 2) to generate all maximal
potential sibling sets. We then restate the problem as a
MINIMUM SET COVER to find the minimum number of sibling
sets containing all the individuals. Thus, the algorithm has two
steps:

1. Create potential sibling sets based on the 2-allele property
for each locus and maximally assign individuals to each
set without violating the 2-allele property in any locus

2. Use minimum set cover to find the minimum number of
the 2-allele sets from step 1 whose union contains all the
individuals.

We now explain the algorithm in more detail. In step 1, we
build on the approach presented in Berger-Wolfet al., 2005;
Chaovalitwongseet al., 2006 by generating sets that satisfy
the 2-allele property. In the implementation of the algorithm
we use the complete version of Table 2, with all 24 possible
mappings of alleles to numbers 1–4, to generate all maximal
possible sets. Since the list is exhaustive, if a set does not match
one of the patterns in Table 2 under some mapping of its alleles
onto numbers 1–4, it cannot possibly be a sibling group. During
both steps of our algorithm we maintain an index or lookup of
all sets to ensure there are no duplications.

2.5.1 Algorithm 2-allele. Recall that any pair of individuals
necessarily satisfies the 2-allele property. Thus, initially we use
all

`

n

2

´

pairs ofn individuals to generate the candidatesets.
Eachset is generated using the initial possible canonical sets
from Table 2 for each locusj. Each allele is assigned a number
between 1 and 4 based on the order of its occurrence. Then,
for each pair of individual alleles we search for all matching
canonical sets in Table 2 to determine the set of possibilities,
PossibilitiesSet.

After generating these initial sets based on pairs of
individuals, the algorithm repeatedly iterates through all the
individuals, testing each set for a possible assignment of the
individual to the set. In each cycle of the iterations, only
the sets that were present at the beginning of the cycle are
considered for each individual. An individual is assigned to a
set if its alleles match the possibilities of the set as defined by
the extended Table 2.

1 CPLEX is a registered trademark of ILOG

However, adding an individual to a potential sibling set may
reduce the set of the matching canonical patterns. For example,
adding an individual with alleles 3/1 to a set of two individuals
with alleles 1/2 and 2/1 changes the potential set of parents
from {(1,1)(2,2); (1,1)(2,2); (1,2)(1,2); (1,1)(2,3); (1,2)(1,3);
(1,2)(3,4)} to just {(1,1)(2,3); (1,2)(1,3); (1,2)(3,4)}. Thus,
when adding a new individual to a set, we check if a new
valid set can be created to accommodate all of the individuals
already assigned to the set as well as the new individual. The
validity of the newset is determined by the 4-allele property
and the extended Table 2. The alleles at every locus of the new
individual must match at least one of the canonical patterns
that collectively satisfy all the previous individuals assigned to
the set. Once we determine that theset can be expanded (and
its set of possible matching parents reduced) to accommodate
the new individual in a valid way, we create a modified copy
of the set. The individual is then checked against this new
set for all the remaining loci. After we have verified that the
new individual does not violate the 2-allele property of the
newset at every locus, as explained above, and verifying that
the set doesn’t already exist, we add theset to the collection
of potential sibling sets. However, for the remainder of the
iteration cycle all the individuals are checked only against the
sets that had been present at the beginning of the cycle. This
ordering ensures that each individual is checked against each
set exactly once.

We repeat this process, cycling through all the individuals in
the population. Once a set present at the beginning of the cycle
has been inspected against all the individuals, the set is marked
asdoneand is not revisited. This ensures that all sibling pairs
that could possibly occur are evaluated, and that no sibling sets
are generated that never occur in data.

The cycles of iterations over the individuals continues until
all sets are marked asdone. As the last step a singletonset for
each of the elements is added containing just that element to
ensure that a family group containing one offspring is possible.

After all the potential sibling sets are generated we apply
the minimum set cover to find the minimum number of sibling
groups whose union contains all the individuals.

2.5.2 Proof of Correctness and Termination.First, we note
that the algorithm terminates since the sets newly added in each
iteration cycle are always bigger than the sets present at the
beginning of the iteration cycle and each individual can occur
at most once in a set.

We already showed that Table 2 exhaustively lists all the
canonical possibilities of sibling groups (modulo the mapping
of alleles to the numbers 1–4). We show that our algorithm
produces all the sibling groups that confirm to the listings in
this table, and no sibling group is generated that does not satisfy
one of the canonical possibilities.

THEOREM 2. Algorithm 2-allele produces all and only the
possible 2-allele groups that are supported by the data.

Proof. As we have stated before, all possible pairs of
individuals create minimal (non singleton) valid sibling groups
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and must correspond to at least one of the entries in Table 2
by default. The algorithm then exhaustively compares every
individual against every such possible sibling set and generates
new sets as necessary if the 2-allele property is not violated.
Thus, every combination of individuals that can be siblings
will be generated. Suppose, to the contrary, there exists a valid
maximal sibling groupS that has never been generated and
consider the smallest such group. LetXi be the individual
with the highest indexi in this group. When we remove the
individualXi from the population all the individuals that could
be siblings before can still be siblings. Thus,S − Xi is still
a valid sibling group and, by inductive hypothesis, it must
have been generated by the algorithm. We examineXi against
the groupS − Xi. Adding Xi does not violate the 2-allele
property (since it is a sibling group) and therefore there exists
a corresponding canonical set in Table 2 that containsS. Thus,
we would add the corresponding possible set if it was not
already among thesets.

Since we check every sibling group at all loci before adding
it to the collection of potential sets, we ensure that we never
generate anset that doesn’t satisfy the 2-allele property at
every locus.

After all possible sibling groups are generated we use the
minimum set cover approach to find the smallest number of
sibling groups whose union contains all the individuals. While
the minimum set cover problem is NP-complete, modern mixed
integer program solvers can solve it to optimally in most
instances. Thus, it is not meaningful to discuss the theoretical
computational complexity of the algorithm.

2.5.3 Minimum Set Cover.Minimum set cover problem is
a classical NP-complete (Karp, 1972) problem. Minimum Set
Cover is defined as follows: given a universeU of elements
X1, ..., Xn and a collection of subsetsS of U , the goal is to
find the minimum collection of subsetsC ⊆ S whose union is
the entire universeU .

Formally, given: U = {X1, X2, ..., Xn} and S =
{S1, S2, ...Sm} find

min |C| s.t.C ⊆ S and
[

Si∈C

Si = U

Set cover cannot be approximated in polynomial time
to within a factor of (1 − ε) ln n unless NP ⊆
DTIME(nloglogn) (Feige, 1998). Johnson introduced a1 +
ln n approximation in 1974 (Johnson, 1974).

In order to solve set cover we use standard integer
programming solvers. The integer program formulation of the
set cover problem is as follows: given a matrixA

aij =

(

1 if i ∈ Sj

0 otherwise

the set cover problem is

min
Pm

i=1
xi s.t. Ax ≥ 1

xi ∈ {0, 1}

3 EVALUATION AND RESULTS
To validate and assess the accuracy of our approach we use
datasets with known genetics and genealogy. However, such
biological datasets containing no errors are rare. In addition,
we create simulated sets using a large number of parameters
over a wide range of values. In each instance we compare our
algorithm to other methods for sibship reconstruction.

We measure the error by comparing the known sibling sets
with those generated by our algorithm, and calculating the
minimum partition distance (Gusfield, 2002). The error is the
percentage of individuals that would need to be removed to
make the reconstructed sibling sets equal to the true sibling
sets. Note, we are computing the error in terms of individuals,
not in terms of the number of sibling groups reconstructed
incorrectly. Thus, the accuracy is the percent of individuals
correctly assigned to sibling groups.

The experiments were run on a combination of a cluster of
64 mixed AMD and Intel Xeon nodes of 2.8 GHz and 3.0GHz
processors and a single Intel Pentium D Dual Core 3.2 GHz
Intel processor with 4 GB RAM memory.

3.1 Sibship Reconstruction Methods
We compare the performance of our algorithm to three other
sibship reconstruction methods. The methods span a variety of
approaches and have different behavior on different parameters.
We now describe the methods.

Almudevar and Field. Our algorithm is based on a very
similar idea proposed by Almudevar and Field, 1999 which is
a completely combinatorial approach. Here, potential sibling
sets are too constructed using the 2-allele property (although
the authors do not explicitly state the property). However,
these sets are constructed by enumerating exhaustively
all combinations of individuals and testing those for the
compliance with the 2-allele property. At the end, a maximal,
not necessarily optimal, collection of sibling sets is returned
as a solution.

Beyer and May. The approach proposed in Beyer and May,
2003 is a mixture of likelihood and combinatorial techniques.
The algorithm constructs a graph with individuals as nodes
and the edges weighted by the pairwise likelihood ratio that
the individuals are siblings versus being unrelated. Very light
edges are ignored. Potential families are identified by the
connected components in this graph.

KinGroup. Konovalovet al., 2004 have proposed an algorithm
based entirely on likelihood estimates of partitions of
individuals into sibling groups. The individuals are
considered one at a time. For each individual, the likelihood
of it being part of any existing sibling group, as well as
starting its own group, is calculated. The individual is placed
into the group it is most likely to belong. Unfortunately,
the outcome heavily depends on the order in which the
individuals are considered.
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3.2 Biological Data
We have identified four biological datasets of microsatellite
data where sibling groups are known. These are not wild
populations since in wild populations we typically do not know
the true sibling groups, which is precisely why we need the
sibling reconstruction method.

Radishes. The wild radish Raphanus raphanistrumdataset
(Conner, 2006) consists of samples from 150 radishes from
two families with 17 sampled loci. There are missing alleles
among all the loci. The parent genotypes are available.

Salmon. The Atlantic SalmonSalmo salardataset comes from
the genetic improvement program of the Atlantic Salmon
Federation (Herbingeret al., 1999). We use a truncated
sample of microsatellite genotypes of 351 individuals from
6 families with 4 loci per individual. The data does not have
missing alleles at any locus. This dataset is a subset of one
of the samples of genotyped individuals used by Almudevar
and Field, 1999 to illustrate their technique.

Shrimp. The tiger shrimpPenaeus monodondataset (Jerry
et al., 2006) consists of 59 individuals from 13 families with
7 loci. There are 16 missing alleles. The parentage is known.

Flies. Scaptodrosophila hibiscidataset (Wilsonet al., 2002)
consists of 190 same generation individuals (flies) from
6 families sampled at various number of loci with up to
8 alleles per locus. Parent genotypes were known. All
individuals shared 2 sampled loci which were chosen for
our study. Some of the alleles were missing for some of the
individuals.

Table 3 summarizes the results of the four algorithms on the
biological datasets.

Table 3. Accuracy (percent) of our algorithm and the three
reference algorithms on biological datasets. Herel is the number
of loci in a dataset and “Inds” column gives the number of
individuals in the dataset. The three reference algorithms are
Almudevar and Field, 1999 (A&F), Beyer and May, 2003
(B&M), and the KinGroup by Konovalovet al., 2004 (KG).

Dataset l Inds Ours A&F B&M KG

Shrimp 7 59 77.97 67.80 77.97 77.97
Salmon 4 351 98.30 Out of memory 99.71 96.02
Radishes 5 531 75.90 Out of memory 53.30 29.95
Flies 2 190 100.00 31.05 27.89 54.73

Almudevar and Field’s algorithm ran out of 4GB memory on the salmon
and radish datasets.

3.3 Random Simulations
In addition, we validate our approach using random
simulations. We first create random diploid parents and then
generate complete genetic data for offspring varying the
number of males, females, alleles, loci, number of families
and number of offspring per family. We then use the 2-allele
algorithm described above to reconstruct the sibling groups.

We compare our results to the actual known sibling groups
in the data to assess accuracy. We measure the error rates
of algorithm using the Gusfield Partition Distance (Gusfield,
2002). In addition, we compare the accuracy of our 2-allele
algorithm to the two reference sibling reconstruction methods,
Beyer and May, 2003 and Konovalovet al., 2004, described
above. We repeat the entire process for each fixed combination
of parameter values 1000 times. We omit the comparison of
the results to the algorithm of Almudevar and Field, 1999
since the current version of provided software requires user
interaction and therefore it is infeasible to use it in the
automated simulation pipeline of 1000 iterations of over a
hundred combinations of parameter values.

First, we generate the parent generation ofM males and
F females with parents withl loci and a specified number
of alleles per locusa. We create populations with uniform
as well as non-uniform allele distributions. After the parents
are created, their offsprings are generated by selectingf pairs
of parents. A male and a female are chosen independently,
randomly and uniformly from the parent population. For these
parents a specified number of offspringso is generated. Here,
too, we create populations with a uniform as well as a skewed
family size distribution. Each offspring randomly receives one
allele each from its mother and father at each locus. This
is a rather simplistic approach, however, it’s consistent with
the genetics of known parents and provides a baseline for the
accuracy of the algorithm since biological data are generally
not random and uniform.

The parameter ranges for the study are as follows:

• The number of adult femalesF and the number of adult
malesM were equal and set to 5, 10 or 15.

• The number of loci sampledl = 2, 4, 6

• The number of alleles per locus (for the uniform allele
frequency distribution)a = 5, 10, 15.

• Non-uniform allele frequency distribution (for 4 alleles):
12 - 4 - 1 - 1, as in Almudevar, 2003.

• The number of families in the populationf = 2, 5, 10.

• The number of offspring per couple (for the uniform
family size distribution)o = 2, 5, 10.

• Non-uniform family size distribution (for 5 families): 25 -
10 - 10 - 4 - 1, as in Almudevar, 2003

All datasets were generated on the 64-node cluster running
RedHat Linux 9.0. The 2-allele algorithm is used on this
generated population to find the smallest number of 2-allele
sets necessary to explain this juvenile population. We use
the commercial MIP solver CPLEX 9.0 for Windows XP on
a single processor machine to solve the minimum set cover
problem to optimality. The reference algorithms were run on
a single processor machine running Windows XP2.

2 The difference in platforms and operating systems is dictatedby the
available software licenses and provided binary code
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We measure the reconstruction accuracy of the 2-allele
algorithm as the function of the number of alleles per each
locus, family size (number of offspring), number of families
(and polygamy), and the variation in allele frequency and
family size distributions.

Figure 1 shows representative results for the accuracy of our
2-allele algorithm and the two reference algorithms on uniform
allele frequency and family sizes distributions. Figure 2 shows
results for the datasets with skewed family sizes and allele
frequency distributions. Each bar represents the mean value of
a 1000 random repetitions and the error bars show the standard
deviation.

4 DISCUSSION AND CONCLUSIONS
We have proposed a new fully combinatorial algorithm for the
problem of reconstruction of sibling relationships from single
generation microsatellite genetic data. We have implemented
and tested our approach on both real biological and simulated
data.

On biological data our algorithm performed as well or better
than other sibling reconstruction methods. The difference is
particularly striking for the flies dataset with 2 loci. Our
algorithm accurately reconstructed the sibling groups despite
some missing alleles while other methods all have over 45%
error rate. The radish dataset presented a problem for all
methods since it has partial self-reproduction which none of
the methods take into account. Offspring of a selfed individual
are hard to separate from their half-siblings produced by that
and any other individual. Still, even on this dataset our method
performed significantly better than others.

The simulated data provides a base line for the accuracy
estimate of our algorithm, with real biological data likely to
have better reconstruction accuracy, as indicated by the results
on the biological datasets. For the datasets with the uniform
allele frequency and family sizes distributions, for the number
of alleles per locus above 5 and the number of offspring
per family above 5, the accuracy of our algorithm is above
50 percent in most cases, rapidly increasing as the number
of offspring or alleles increases. Our algorithm performs
significantly better than other methods when the number of loci
is very small and there is reasonable diversity of alleles. In fact,
the algorithm of Beyer and May, 2003, has high error rates
specifically for those parameter values. Thus, our algorithm is
particularly well suited for natural populations of plants and
animals, with large family groups and few sampled loci.

However, we have conducted a very limited set of
experiments on datasets with non-uniform parameter distributions.
To obtain conclusive results, we need to explore a wider range
of non-uniform distributions. To fully evaluate the performance
of our algorithm, we need to validate the results on other
biological datasets and more realistic simulated populations.
In addition, we have yet to address the possibilities of errors
in data. The fact that our algorithm accurately reconstructed
sibling groups on biological data with missing alleles is
encouraging. However, our algorithm would need to be

modified to address errors from mistyped and misidentified
alleles.

It is impossible in the current setting of the experiments
to accurately compare running times of the algorithms.
However, the algorithm of Almudevar and Field, 1999, which
uses exhaustive enumeration of all potential sibling sets,
unsurprisingly ran out of memory on datasets greater than
200 individuals. It took on the order of hours to complete on
the dataset of 190 individuals. Moreover, since the current
implementation requires user interaction, the performance of
the algorithm could not be evaluated in the random simulations.
The likelihood approaches of Beyer and May, 2003 and
Konovalovet al., 2004 are very fast. Both produced answers
in a matter of seconds on datasets of a 100 individuals and
in less than 2 minutes on datasets of 500 individuals. For our
algorithm, we first (in matter of seconds) formulate the 2-
allele set cover problem, then this formulation is imported into
CPLEX and solved as a set cover problem. Recall that the set
cover problem is NP-complete and CPLEX is a commercial
software designed specifically to solve such computationally
hard problems to optimality. The entire (automated) process
takes about 2 hours on datasets of 500 individuals. At this point,
our focus has been on evaluating the accuracy and viability of
our approach. Now that our approach has proven viable we
will concentrate on improving the running time and the overall
usability of our method.

The main advantage of the combinatorial approach is
its lack of reliance on a priori knowledge about various
population parameters, such as allele frequency and the
degree of inbreeding. However, Mendelian constraints do not
provide any basis for distinguishing between family groups
when the groups are small, or when individuals share many
common alleles. Additional information, such asrelative
allele frequency within the sample can be easily added to
generate combinatorial constraints on the potential sibling sets.
Unlike likelihood methods, combinatorial approaches use that
information only for comparison purposes, and do not require a
background data model or an accurate estimate value for any of
the parameter. Thus, we believe that combinatorial approaches
are particularly appropriate for analysis of natural animal and
plant populations where background information is difficult to
obtain.

Our technique can be extended to solve a number of related
problems. The first immediate variation is reconstructing
sibship relationships when partial information, such as one of
the parents, is available. We have already implemented and
applied the extended version of our algorithm to identifying
the minimum number of necessary male oak trees that have
pollinated a single female tree to produce the sampled acorns.
Our approach provided additional supporting evidence that oak
pollen disperses much further than previously thought.

Another simple variation of our algorithm produces half-
sibling groups as well as full sibs. In addition, our algorithm
can be used to identify the parsimonious set of parental
genotypes necessary to produce the sibling groups.

7



Fig. 1. Accuracy of the sibling group reconstruction using the 2-allele algorithm on randomly generated data. They-axis shows the accuracy
of reconstruction as a function of various simulation parameters. The accuracy of our algorithm is shown, as well as that ofthe two reference
algorithms: Beyer and May, 2003 and Konovalovet al., 2004 (KingGroup). The title shows the value of the fixed parameters: the number of adult
males/females, number of families, the number of offspring per family, the number of loci, and the number of alleles per locus.

Fig. 2. Accuracy of the sibling group reconstruction using our 2-allele algorithm and the two reference methods on the datasets with skewed family
sizes and allele frequency distributions.
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Finally, from the algorithmic perspective, there are a number
of alternatives that would improve the performance of our
method that we are currently exploring.

To conclude, we have presented a fully combinatorial
approach to reconstructing sibling groups from microsatellite
data. Our method does not rely on any a priori knowledge about
data parameters yet provides results with accuracy comparable
to or better than those of likelihood methods.
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