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ABSTRACT

Reconstruction of sibling relationships from genetic data
is an important component of many biological applications.
In particular, the growing application of molecular markers
(microsatellites) to study wild populations of plant and animals
has created the need for new computational methods of
establishing pedigree relationships, such as sibgroups, among
individuals in these populations. Most current methods for
sibship reconstruction from microsatellite data use statistical
and heuristic techniques that rely on a priori knowledge about
various parameter distributions. Moreover, these methods are
designed for data with large number of sampled loci and
small family groups, both of which typically do not hold for
wild populations. We present a deterministic technique that
parsimoniously reconstructs sibling groups using only Mendelian
laws of inheritance. We validate our approach using both
simulated and real biological data and compare it to other
methods. Our method is highly accurate on real data and
compares favorably with other methods on simulated data with
few loci and large family groups. It is the only method that does
not rely on a priori knowledge about the population under study.
Thus, our method is particularly appropriate for reconstructing
sibling groups in wild populations.

1 INTRODUCTION

half-sibships, and higher order aspects of pedigrees (Blouin,
2003; Butleret al., 2004; Jones and Ardren, 2003). In this paper
we are only concerned with full sibling relationships.

While there are several potential molecular markers that
could be applied to pedigree reconstruction, microsatellites
(also known as SSRs, STRs, SSLPs, and VNTRs) are the
most widely used marker and offer several advantages. Unlike
dominant markers such as AFLPs and ISSRs, microsatellite
alleles are codominant, so inference of genotypes and allele
frequencies at each locus are straightforward. Development
of SNPs is more difficult and expensive than microsatellite
development for species not subject to large-scale genome
projects. More importantly, the power to identify related
individuals depends mainly on the number of alleles per
locus and their heterozygosity, and microsatellites are clearly
superior to other markers in both regards, with 5-20 alleles and
heterozygosities of 0.700 being typical, as reported in many
wild populations. Finally, many field studies wish to estimate
population parameters as well as individual relationships, so
development and application of microsatellites is the best
investment of resources for accomplishing such multiple goals.
Because of these advantages of microsatellite over other
markers, together with their current widespread use, we focus
our development of sibship reconstruction methods to unlinked,
multi-allelic, codominantly-inherited markers, as these features

For wild populations, the growing development and applicationdescribe microsatellite markers. Generally, phase or haplotype
of molecular markers provides new possibilities for establishing‘”format'on is not available for microsatellite loci in non-model
kinship and reconstructing pedigrees in species where sucff9anisms. . _ _
information cannot be obtained from field observations alone. While several methods for sibling reconstruction from mutli-
Knowledge of kinship in wild or experimental populations aIIellc.mlcrosatelllte data have been proposed (Almudevar
of non-model organisms allows the investigation of manyand Field, 1999; Almudevar, 2003; Beyer and May, 2003;
fundamental biological phenomena, including mating systemsKonovalov et al, 2004; Painter, 1997; Smitet al, 2001;
selection and adaptation, kin selection, and dispersal patterndnomas and Hill, 2002; Wang, 2004), most have not been
The power and potential of the genotypic information obtained 9round-truthed” (but see Butleet al, 2004) and have

in these studies often rests in our ability to reconstruct’®céived relatively limited application. The majority of the
genealogical relationships among individuals (Garant and<inship and pedigree reconstruction methods rely on the

Kruuk, 2005). These relationships include parentage, full and"owledge about typical allele distribution and frequency,
family sizes, etc. and use statistical likelihood models to

infer genealogical relationships (Blouin, 2003). We build on
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our earlier work (Berger-Wolgt al,, 2005; Chaovalitwongse The goal is to find a partition of individualB;, ... P, such

et al, 2006) and propose a new algorithm for sibship that

reconstruction using combinatorial optimization. There have

been no truly combinatorial methods for kinship reconstructionV1l < k < m,VX,, X, € Py, : Parents(X,) = Parents(X,)
problems (Almudevar and Field, 1999; Beyer and May,

2003). Combinatorial methods have been very successful in Notice, here that we have not defined the function
closely related molecular genetics questions, such as haplotyparents(z). This is a biological objective. We will discuss
reconstruction (Eskinet al, 2003; Li and Jiang, 2003). computational approaches to achieve a good estimate of the
Our approach uses the simple Mendelian inheritance rule®iological sibling relationship.

to impose constraints on the genetic content possibilities 0b 3 5_a||deand 4-Allele Properties

a sibling group. We formulate the inferred combinatorial . . . . .
constraints and, under the parsimony assumption, use endelian genetics lay down a very simple rule for inheritance

provably correct algorithm to construct the smallest number ijnfc_ilplmd orgafnlsmsarr]l r’ffs?;_g |_nher(|jts one allele frolm egch
groups of individuals that satisfy these constraints. We test oup'! 1tS parents for each locushis iniroduces two overlapping

approach on both simulated and real biological data. necessary (but not sufficient) constraints on full siblings
groups: 4-allele property and 2-allele property (Berger-Wolf

et al, 2005).
2 METHODS ) ) 4-Allele Property: The total number of distinct alleles
21 Microsatellite Genetic Markers occurring at any locus may not exceed 4.

Microsatellites also known as Short Tandem Repeats (STR), Formally, asetS C U has the 4-allele property if
Simple Tandem Repeats (STR), Simple Sequence Repeats
(SSR), Simple Sequence Length Polymorphisms (SSLP), or
Variable Number of Tandem Repeats (VNTR), are short
sequences of repeated DNA (typically two to four base-pairs).
Different individual organisms can have microsatellites with Clearly, the 4-allele property is necessary since a group
different number of repeats at the salmeus(part of DNA). In of siblings can inherit only combinations of the 4 alleles
fact, this variability is what makes the microsatellites so usefulof their common parents. The 4-allele property is effective
for genetic analysis. In diploid organisms an individual will for identifying sibling groups where the data are mostly
have two copies of each microsatellite sequence, one from thReterozygous and the parent individuals share few common
mother, one from the father, calledleles The two copies may alleles. Generally, as in Table 1, a set consisting of any two
differ in the number of repeats of the same segment, dependingdividuals satisfies the 4-allele property. The set of individuals
on the parental DNA. For example, if the mother has “CA” 1, 3 and 4 from Table 1 satisfies the 4-allele property. However,
repeated 8 times and 12 times, and the father has 10 and }Be set of individuals 2, 3 and 5 fails to satisfy it as the alleles
repeats, then the offspring may have 12 and 10 “CA’ repeats agccurring at the first locus afd 2, 31, 56, 44, 51
that locus. 2-Allele Property: There exist an assignment of individual

Finding each new microsatellite locus is time and resourcealleles within a locus to maternal and paternal such that the
consuming. Thus, microsatellite markers for non-modelnumber of distinct alleles assigned to each parent at this locus
species typically consist of very few, 2 — 20, loci. Yet, does not exceed 2.
once a locus is identified and the specific PCR primers are Formally, a setS C U has the 2-allele property if for each
designed, screening each individual is relatively quick andx; in each locus there exists an assignment.gf = c;; or
cheap. Together with the high variability (high number of 4,; = ¢;; (and the other allele assignedag) such that
alleles per locus) this makes microsatellites the marker of
choice for genetic research of wild populations.

U{esd U{es}

i€S i€S

V1<j<li: < 4.

U {ai, i}
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Vi<j<li: <2and <2

2.2 Sibling Reconstruction Problem Statement

The main focus of our paper is to design a method that
accurately reconstructs sibling groups from microsatellite dat
of a single generation. We now define the sibling reconstructioﬂ’
problem more formally. Given a genetic (microsatellite) sample
at! loci from a population of: diploid individuals of the same
generation[J, the goal is to reconstruct the full sibling groups
(groups of individuals with the same parents). We assume n
knowledge of parental information.

2-Allele property is clearly stricter than 4-allele property.
ooking at the Table 1, our previous 4-allele set of individuals
1, 3 and 4 fails to satisfy the stricter 2-allele property as the
alleles appearing on the left side at locu$ 44, 31, 13} are
more than two. Moreover, there is no swapping of alleles that
ill bring down the number of alleles on each side to two: the
1st and 4th individuals with alleles 44/44 and 13/13 already fill
the capacity.
U={X1,..X,}, whereX; = (< ai1,bi >, ..., < ai, by >) The 2-allele property takes into account the fact that the
parents can contribute only two alleleachto their offspring.
anda;; andb,; are the two alleles of the individuakt locus;. Note, that the 2-allele property is, again, a necessary but not



Table1l. Anexample of input data for the sibling reconstruction Table 2. Canonical possible combinations of

problem. The five individuals have been sampled at two genetic parent alleles and all resulting offspring allele
loci. Each allele is represented by a number. Same numbers combinations at a single locus
represent the same alleles.
Parents Offspring
Individual | Alleles (a/b) at locus1| Alleles (a/b) at locus2 allelea alleled
Radish 1 44/44 55/23 Set parents (1/2) (3/ 4)
Radish 2 12/56 14/31 1 3
Radish 3 31/44 55/14 2 4
Radish 4 13/13 31/23 1 4
Radish 5 31/51 14/31 2 3
3 1
4 2
4 1
3 2

a sufficient constraint for a group of individuals to be siblings.
Notice, also, thaanytwo individuals necessarily satisfy the 2-

Setparents (1/2) (1/3)

allele property as well since by default the number of alleles on ; é
each side of any locus is at most two. 1 3
The 2-allele property reduces the possible combinations of 2 1
alleles at a locus in a group of siblings down to a few canonical 3 2
options (modulo the numbering of the alleles). Assuming the 3 1
alleles are numbered 1 through 4, Table 2 lists all different types 1 2
of sibling groups possible with the 2-allele property. We do this Set parents (1/2) (1/2)
by listing all possible pairs of parents whose alleles are among 1 1
1,2,3, and 4 and all the offspring they can produce. However, 1 2
in any sibling group with a given set of parents only a subset of 2 ;
the (.)fffsprlng possibilities from the tab!e may be prese_nt. _ Set parents (171) (171
It is important to note that Table 2 gives an exhaustive list of 1 1
_canonlcal poss_lbl!ltles of allele f:om_blnatlons at a given locus Set parents (1/1) (172)
in a group of siblings without violating the 2-allele property. 1 1
Without the loss of generality, we assume that the alleles at 1 2
each locus are numbered 1 through 4. This is sufficient since 2 1
according to the 4-allele property the number of alleles in any Set parents (1/1) (2/3)
sibling group cannot exceed four. Further, there &re= 1 2
24 possible mappings of any four alleles onto numbers 1-4. 1 3
However, we list only the canonical minimal options (parents’ 2 1
alleles being numbered sequentially). It is not hard to check 3 1
that the list of parents is exhaustive. Hence, Table 2 presents an Setparents (1/1) (2/2)
exhaustive canonical list of possible sibling groups. It is also ; i

easy to verify that the resulting sibling groups indeed confirm
to the 2-allele property.

2.4 Minimum 2-Allele Set Cover

As we have mentioned, the biological functidturents(x)

t be defined th tically, Wi del the obiecti We conjecture that th&INIMUM 2-ALLELE SET COVER
cannot be detined mathematically. Ve model the objectiveg NP-complete. A simple corollary of the following theorem

of reconstructing the sibling relationships mathematically byfrom Berger-Wolfet al, 2005 shows that it is in NP.

assigning individuals parsimoniously into the smallest number '

of (possibly overlapping) groups that satisfy the necessary 2- THEOREM 1 (Berger-Wolf et al, 2005). Let R be the

allele constraint. Formally, recall that we are given a populationnumber of alleles that are homozygous or appear with 3 other

U of n diploid individuals sampled dtloci distinct alleles in a given locus and be the total number of
distinct alleles at a locus. Then a set of individuals satisfies the

U={X1,..Xn}, whereX; = (< ai1,ba >,...,<ay,by >) 2-allele property if and only if for every locus it satisfies the

constraint
anda;; andb;; are the two alleles of the individuaht locus;. A+R<4
The goal of theviNIMUM 2-ALLELE SET COVERproblem is
to find the smallest number of subséts ..., S, such that each It is easy to see that given a set of individuals we can verify
Si C U and satisfies the 2-allele constraint djd; = U. that it satisfies the 2-allele property @(n!l) time using the



constraint above. Thusj{INIMUM 2-ALLELE SET COVERIS in However, adding an individual to a potential sibling set may

NP. reduce the set of the matching canonical patterns. For example,
Since theMINIMUM 2-ALLELE SET COVERIs likely to be  adding an individual with alleles 3/1 to a set of two individuals

NP-hard, one approach is to design approximation algorithmsvith alleles 1/2 and 2/1 changes the potential set of parents

or heuristics that will produce suboptimal solutions. Instead,from {(1,1)(2,2); (1,1)(2,2); (1,2)(1,2); (1,1)(2,3); (1,2)8)%

we use commercial MIP solver CPLEXo solve the problem  (1,2)(3,4) to just {(1,1)(2,3); (1,2)(1,3); (1,2)(3,4) Thus,

to optimality. when adding a new individual to a set, we check if a new
o ) valid set can be created to accommodate all of the individuals
25 Minimum 2-Allele Set Cover Algorithm already assigned to the set as well as the new individual. The

We now present our algorithm for solving the sibling validity of the newset is determined by the 4-allele property
reconstruction problem abstracted astheiMuM 2-ALLELE and the extended Table 2. The alleles at every locus of the new
SET COVER Our algorithm uses the 2-allele and 4-allele individual must match at least one of the canonical patterns
properties (specifically, Table 2) to generate all maximalthat collectively satisfy all the previous individuals assigned to
potential sibling sets. We then restate the problem as dhe set. Once we determine that the can be expanded (and
MINIMUM SET COVER to find the minimum number of sibling its set of possible matching parents reduced) to accommodate
sets containing all the individuals. Thus, the algorithm has twothe new individual in a valid way, we create a modified copy
steps: of the set. The individual is then checked against this new
set for all the remaining loci. After we have verified that the
1. Create potential sibling sets based on the 2-allele propertyiew individual does not violate the 2-allele property of the
for each locus and maximally assign individuals to eachpew set at every locus, as explained above, and verifying that
set without violating the 2-allele property in any locus  the set doesn't already exist, we add e to the collection
2. Use minimum set cover to find the minimum number of of potential sibling sets. However, for the remainder of the
the 2-allele sets from step 1 whose union contains all thgteration cycle all the individuals are checked only against the
individuals. sets that had been present at the beginning of the cycle. This
ordering ensures that each individual is checked against each
We now explain the algorithm in more detail. In step 1, we set exactly once.
build on the approach presented in Berger-W\lfal., 2005; We repeat this process, cycling through all the individuals in
Chaovalitwongseet al, 2006 by generating sets that satisfy the population. Once a set present at the beginning of the cycle
the 2-allele property. In the implementation of the algorithm has been inspected against all the individuals, the set is marked
we use the complete version of Table 2, with all 24 possibleasdoneand is not revisited. This ensures that all sibling pairs
mappings of alleles to numbers 1-4, to generate all maximathat could possibly occur are evaluated, and that no sibling sets
possible sets. Since the listis exhaustive, if a set does not matciye generated that never occur in data.
one of the patterns in Table 2 under some mapping of its alleles The cycles of iterations over the individuals continues until
onto numbers 1-4, it cannot possibly be a sibling group. Duringa|| sets are marked akone As the last step a singletasrt for
both steps of our algorithm we maintain an index or lookup of each of the elements is added containing just that element to
all sets to ensure there are no duplications. ensure that a family group containing one offspring is possible.

2.5.1 Algorithm 2-allele. Recall that any pair of individuals Afte_r _aII the potential S|pl|ng sets_ are generated we_apply
the minimum set cover to find the minimum number of sibling

necessarily satisfies the 2-allele property. Thus, initially we use . . S
” . L : groups whose union contains all the individuals.

all (2) pairs ofn individuals to generate the candidate’s.

Eachset is generated using the initial possible canonical sets2 5.2 Proof of Correctness and TerminatiorfFirst, we note

from Table 2 for each locug Each allele is assigned a number that the algorithm terminates since the sets newly added in each

between 1 and 4 based on the order of its occurrence. Thefkeration cycle are always bigger than the sets present at the

for each pair of individual alleles we search for all matching beginning of the iteration cycle and each individual can occur

canonical sets in Table 2 to determine the set of possibilitiesat most once in a set.

PossibilitiesSet. We already showed that Table 2 exhaustively lists all the
After generating these initial sets based on pairs ofcanonical possibilities of sibling groups (modulo the mapping

individuals, the algorithm repeatedly iterates through all theof alleles to the numbers 1-4). We show that our algorithm

individuals, testing each set for a possible assignment of theyroduces all the sibling groups that confirm to the listings in

individual to the set. In each cycle of the iterations, only this table, and no sibling group is generated that does not satisfy

the sets that were present at the beginning of the cycle argne of the canonical possibilities.

considered for each individual. An individual is assigned to a

set if its alleles match the possibilities of the set as defined by THEOREM 2. Algorithm 2-allele produces all and only the

the extended Table 2. possible 2-allele groups that are supported by the data.

Proof. As we have stated before, all possible pairs of
1 CPLEX s a registered trademark of ILOG individuals create minimal (non singleton) valid sibling groups




and must correspond to at least one of the entries in Table 3 EVALUATION AND RESULTS

by default. The algorithm then exhaustively compares everyrg yalidate and assess the accuracy of our approach we use
individual against every such possible sibling set and generategaiasets with known genetics and genealogy. However, such
new sets as necessary if the 2-allele property is not violatedys|ogical datasets containing no errors are rare. In addition,
Thus, every combination of individuals that can be siblings,ye create simulated sets using a large number of parameters
will be generated. Suppose, to the contrary, there exists a valigyer 5 wide range of values. In each instance we compare our
maximal sibling groupS' that has never been generated and 4qorithm to other methods for sibship reconstruction.

consider the smallest such group. LEt be the individual We measure the error by comparing the known sibling sets
with the highest index in this group. When we remove the ity those generated by our algorithm, and calculating the
individual X; from the population all the individuals that could  inimum partition distance (Gusfield, 2002). The error is the
be siblings before can still be siblings. Thus,— X; is still  percentage of individuals that would need to be removed to
a valid sibling group and, by inductive hypothesis, it must nake the reconstructed sibling sets equal to the true sibling
have been generated by the algorithm. We examinagainst  sets. Note, we are computing the error in terms of individuals,
the groupS — X;. Adding X; does not violate the 2-allele ot in terms of the number of sibling groups reconstructed
property (since it is a sibling group) and therefore there exist§ncorrectly. Thus, the accuracy is the percent of individuals
a corresponding canonical set in Table 2 that contéiriBhus, correctly assigned to sibling groups.

we would add the corresponding possible set if it was not The experiments were run on a combination of a cluster of
already among thects. 64 mixed AMD and Intel Xeon nodes of 2.8 GHz and 3.0GHz

Since we check every sibling group at all loci before adding processors and a single Intel Pentium D Dual Core 3.2 GHz
it to the collection of potential sets, we ensure that we nevelnte| processor with 4 GB RAM memory.

generate arset that doesn'’t satisfy the 2-allele property at
every locus.O

After all possible sibling groups are generated we use the3.1 Sibship Reconstruction M ethods

minimum set cover approach to T'nd the sr_nal_le_st number_ Of\Ne compare the performance of our algorithm to three other
sibling groups whose union contains all the individuals. While sibship reconstruction methods. The methods span a variety of

the minimum set cover problem is NP-complete, modern mixed, 1,2 ches and have different behavior on different parameters
integer program solvers can solve it to optimally in most We now describe the methods

instances. Thus, it is not meaningful to discuss the theoretical
computational complexity of the algorithm.

2.5.3 Minimum Set Cover.Minimum set cover problem is  Almudevar and Field. Our algorithm is based on a very
a classical NP-complete (Karp, 1972) problem. Minimum Set  similar idea proposed by Almudevar and Field, 1999 which is

Cover is defined as follows: given a univerSeof elements a completely combinatorial approach. Here, potential sibling
X1, ..., X, and a collection of subsets of U, the goal is to sets are too constructed using the 2-allele property (although

find the minimum collection of subses C S whose union is the authors do not explicitly state the property). However,
the entire universé#. these sets are constructed by enumerating exhaustively

Formally, given: U = {Xi,Xs,...,X,} and § = all combinations of individuals and testing those for the

{51,852, ...8m} find compliance with the 2-allele property. At the end, a maximal,

not necessarily optimal, collection of sibling sets is returned

min|C|st.C CSand | ] Si=U as a solution.
Si€C Beyer and May. The approach proposed in Beyer and May,

Set cover cannot be approximated in polynomial time 2003 is a mixture of likelihood and combinatorial techniques.

to within a factor of (I — ¢)lnn unless NP C The algorithm constructs a graph with individuals as nodes
DTIME(n'°%'°9™) (Feige, 1998). Johnson introduced a and the edges weighted by the pairwise likelihood ratio that
In n approximation in 1974 (Johnson, 1974). the individuals are siblings versus being unrelated. Very light

In order to solve set cover we use standard integer edges are ignored. Potential families are identified by the

programming solvers. The integer program formulation of the .connected components in this graph. .
set cover problem is as follows: given a matrix KinGroup. Konovalovet al,, 2004 have proposed an algorithm

based entirely on likelihood estimates of partitions of

1 ifies; individuals into sibling groups. The individuals are
@ij = considered one at a time. For each individual, the likelihood
of it being part of any existing sibling group, as well as

0 otherwise

the set cover problem is starting its own group, is calculated. The individual is placed
into the group it is most likely to belong. Unfortunately,
miny>", 2 st Az >1 the outcome heavily depends on the order in which the
zi €{0,1} individuals are considered.



3.2 Biological Data We compare our results to the actual known sibling groups

We have identified four biological datasets of microsatellite N the data to assess accuracy. We measure the error rates
data where sibling groups are known. These are not wilgof algorithm using the Gusfield Partition Distance (Gusfield,
populations since in wild populations we typically do not know 2002). In addition, we compare the accuracy of our 2-allele
the true sibling groups, which is precisely why we need the@lgorithm to the two reference sibling reconstruction methods,
sibling reconstruction method. Beyer and May, 2003 and Konoval@t al, 2004, described
above. We repeat the entire process for each fixed combination
Radishes. The wild radish Raphanus raphanistrundataset  of parameter values 1000 times. We omit the comparison of
(Conner, 2006) consists of samples from 150 radishes fromhe results to the algorithm of Almudevar and Field, 1999
two families with 17 sampled loci. There are missing allelessince the current version of provided software requires user

among all the loci. The parent genotypes are available. interaction and therefore it is infeasible to use it in the
Salmon. The Atlantic SalmorBalmo saladataset comes from  aytomated simulation pipeline of 1000 iterations of over a

the genetic improvement program of the Atlantic Salmon hundred combinations of parameter values.

Federation (Herbingeet al, 1999). We use a truncated  First, we generate the parent generationMéfmales and

sample of microsatellite genotypes of 351 individuals from £ females with parents with loci and a specified number

6 families with 4 loci per individual. The data does not have of alleles per locus:. We create popu|ations with uniform

missing alleles at any locus. This dataset is a subset of ongis well as non-uniform allele distributions. After the parents

of the samples of genotyped individuals used by Almudevarare created, their offsprings are generated by selegtipairs

and Field, 1999 to illustrate their technique. of parents. A male and a female are chosen independently,
Shrimp. The tiger shrimpPenaeus monododataset (Jerry  randomly and uniformly from the parent population. For these

et al., 2006) consists of 59 individuals from 13 families with parents a Specified number of Oﬂspring's generated. Here,

7 loci. There are 16 missing alleles. The parentage is knownoo, we create populations with a uniform as well as a skewed
Flies. Scaptodrosophila hibiscilataset (Wilsoret al, 2002)  family size distribution. Each offspring randomly receives one

consists of 190 same generation individuals (flies) fromajlele each from its mother and father at each locus. This

6 families sampled at various number of loci with up to js a rather simplistic approach, however, it's consistent with

8 alleles per locus. Parent genotypes were known. Allthe genetics of known parents and provides a baseline for the

individuals shared 2 sampled loci which were chosen foraccuracy of the algorithm since biological data are generally

our study. Some of the alleles were missing for some of thenot random and uniform.

individuals. The parameter ranges for the study are as follows:

Table 3 summarizes the results of the four algorithms on the

. . e The number of adult female& and the number of adult
biological datasets.

malesM were equal and setto 5, 10 or 15.
e The number of loci sampleld= 2,4, 6

Table 3. Accuracy (percent) of our algorithm and the three e The number of alleles per locus (for the uniform allele

reference algorithms on biological datasets. Hasethe number

of loci in a dataset and “Inds” column gives the number of
individuals in the dataset. The three reference algorithres a
Almudevar and Field, 1999 (A&F), Beyer and May, 2003

frequency distribution) = 5, 10, 15.

Non-uniform allele frequency distribution (for 4 alleles):
12-4-1-1, asin Almudevar, 2003.

(B&M), and the KinGroup by Konovaloet al, 2004 (KG). e The number of families in the populatigh= 2, 5, 10.

[Dataset [ 1] Inds|| Ours | A&F | B&M | KG | e The number of offspring per couple (for the uniform
family size distributionp = 2, 5, 10.

Shrimp [ 7] 59][ 77.97 67.80[ 77.97[ 77.97 _ T -
Salmon | 4 | 351 || 98.30 | owotmemoy | 99.71] 96.02 e Non-uniform family size distribution (for 5 families): 25 -

Radishes| 5 | 531 || 75.90| ouotmemoy | 53.30 | 29.95 10-10-4-1, asin Almudevar, 2003
Flies 2| 190([ 100.00]  31.05| 27.89| 54.73

All datasets were generated on the 64-node cluster running
AImudeyar and Field’s algorithm ran out of 4GB memory on the salmon RedHat Linux 9.0. The 2-allele algorithm is used on this
and radish datasets. . X

generated population to find the smallest number of 2-allele
sets necessary to explain this juvenile population. We use
. . the commercial MIP solver CPLEX 9.0 for Windows XP on
3.3 Random Simulations a single processor machine to solve the minimum set cover
In addition, we validate our approach using random problem to optimality. The reference algorithms were run on
simulations. We first create random diploid parents and thery single processor machine running Windows XP
generate complete genetic data for offspring varying the
number of males, females, alleles, loci, number of families
and number of offspring per family. We then use the 2-allele2 The difference in platforms and operating systems is dictayettie
algorithm described above to reconstruct the sibling groupsavailable software licenses and provided binary code




We measure the reconstruction accuracy of the 2-allelanodified to address errors from mistyped and misidentified
algorithm as the function of the number of alleles per eachalleles.
locus, family size (number of offspring), number of families It is impossible in the current setting of the experiments
(and polygamy), and the variation in allele frequency andto accurately compare running times of the algorithms.
family size distributions. However, the algorithm of Almudevar and Field, 1999, which
Figure 1 shows representative results for the accuracy of ouuses exhaustive enumeration of all potential sibling sets,
2-allele algorithm and the two reference algorithms on uniformunsurprisingly ran out of memory on datasets greater than
allele frequency and family sizes distributions. Figure 2 shows200 individuals. It took on the order of hours to complete on
results for the datasets with skewed family sizes and allelehe dataset of 190 individuals. Moreover, since the current
frequency distributions. Each bar represents the mean value afnplementation requires user interaction, the performance of
a 1000 random repetitions and the error bars show the standattie algorithm could not be evaluated in the random simulations.
deviation. The likelihood approaches of Beyer and May, 2003 and
Konovalovet al, 2004 are very fast. Both produced answers
in a matter of seconds on datasets of a 100 individuals and
4 DISCUSSION AND CONCLUSIONS in less than 2 minutes on datasets of 500 individuals. For our

We have proposed a new fully combinatorial algorithm for the algorithm, we first (in matter of seconds) formulate the 2-
problem of reconstruction of sibling relationships from single allele set cover problem, then this formulation is imported into
generation microsatellite genetic data. We have implemente€PLEX and solved as a set cover problem. Recall that the set
and tested our approach on both real biological and simulategover problem is NP-complete and CPLEX is a commercial
data. software designed specifically to solve such computationally
On biological data our algorithm performed as well or better hard problems to optimality. The entire (automated) process
than other sibling reconstruction methods. The difference idakes about 2 hours on datasets of 500 individuals. At this point,
particularly striking for the flies dataset with 2 loci. Our our focus has been on evaluating the accuracy and viability of
algorithm accurately reconstructed the sibling groups despit@ur approach. Now that our approach has proven viable we
some missing alleles while other methods all have over 45%ill concentrate on improving the running time and the overall
error rate. The radish dataset presented a problem for amsability of our method.
methods since it has partial self-reproduction which none of The main advantage of the combinatorial approach is
the methods take into account. Offspring of a selfed individualits lack of reliance on a priori knowledge about various
are hard to separate from their half-siblings produced by thapopulation parameters, such as allele frequency and the
and any other individual. Still, even on this dataset our methoddegree of inbreeding. However, Mendelian constraints do not
performed significantly better than others. provide any basis for distinguishing between family groups
The simulated data provides a base line for the accuracyvhen the groups are small, or when individuals share many
estimate of our algorithm, with real biological data likely to common alleles. Additional information, such aslative
have better reconstruction accuracy, as indicated by the resul@glele frequency within the sample can be easily added to
on the biological datasets. For the datasets with the uniforngenerate combinatorial constraints on the potential sibling sets.
allele frequency and family sizes distributions, for the numberUnlike likelihood methods, combinatorial approaches use that
of alleles per locus above 5 and the number of offspringinformation only for comparison purposes, and do not require a
per family above 5, the accuracy of our algorithm is abovebackground data model or an accurate estimate value for any of
50 percent in most cases, rapidly increasing as the numbdhe parameter. Thus, we believe that combinatorial approaches
of offspring or alleles increases. Our algorithm performs are particularly appropriate for analysis of natural animal and
significantly better than other methods when the number of lociplant populations where background information is difficult to
is very small and there is reasonable diversity of alleles. In factobtain.
the algorithm of Beyer and May, 2003, has high error rates Our technique can be extended to solve a number of related
specifically for those parameter values. Thus, our algorithm igoroblems. The first immediate variation is reconstructing
particularly well suited for natural populations of plants and sibship relationships when partial information, such as one of
animals, with large family groups and few sampled loci. the parents, is available. We have already implemented and
However, we have conducted a very limited set of applied the extended version of our algorithm to identifying
experiments on datasets with non-uniform parameter distributidh€. minimum number of necessary male oak trees that have
To obtain conclusive results, we need to explore a wider rangéollinated a single female tree to produce the sampled acorns.
of non-uniform distributions. To fully evaluate the performance Our approach provided additional supporting evidence that oak
of our algorithm, we need to validate the results on otherpollen disperses much further than previously thought.
biological datasets and more realistic simulated populations. Another simple variation of our algorithm produces half-
In addition, we have yet to address the possibilities of errorssibling groups as well as full sibs. In addition, our algorithm
in data. The fact that our algorithm accurately reconstructeccan be used to identify the parsimonious set of parental
sibling groups on biological data with missing alleles is genotypes necessary to produce the sibling groups.
encouraging. However, our algorithm would need to be



males females=10, loci=2, | Our alg malesifemales=10, loci=4, B Our alg
families=10, offspring=10 O Beyer&hay families =10, offspring=10 D Beyer&May
@ KinGroup @ KinGroup
100 == 100
t =
g 80 § 80
2 = = 2w
3 2w
£ g
3 20 3 20
< o . : : : < o
4 10 15 S 10 13
Number of alleles per locus Number of alleles per locus
males/females=5, loci=2, H Our alg males/females=10, loci=2, m Our alg
offspring=10, alleles=5 O Beyer&May families =10, alleles=5 O Beyer&iay
@ KinGroup @ KinGroup
= 1o = 100
§ 80 E Al
2 g w
o )
£ s
S 20 5
o Q
< L=}
qQ 0 " y T T q 0
2 5 10 2 L3 10
Number of families Number of offspring per family

Fig. 1. Accuracy of the sibling group reconstruction using the IBlalalgorithm on randomly generated data. Thaxis shows the accuracy
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Finally, from the algorithmic perspective, there are a number Methods and Software

of alternatives that would improve the performance of ourConner, J. K. (2006). personal communication.
method that we are currently exploring Eskin, E., Haleprin, E., and Karp, R. M. (2003). Efficient reconstruction of

. . haplotype structure via perfect phylogenylournal of Bioinformatics and
To conclude, we have presented a fully combinatorial oy tational Biologyi(1), 1-20.

approach to reconstructing sibling groups from microsatellitereige, U. (1998). A threshold 6f n for approximating set covedournal of the
data. Our method does not rely on any a priori knowledge about ACM, 45, 634-652.
data parameters yet provides results with accuracy comparabFé”"a”t' D. and Kruuk, L. E. B. (2005). How to use molecular marker data to

FRT measure evolutionary parameters in wild populatiohdolecular Ecology
to or better than those of likelihood methods. 14, 1843-1850.
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