A Polynomial-Time Algorithm for an Equivalence

Problem which Arises in Hybrid Systems Theory!

Bhaskar DasGupta
Department of Computer Science
Rutgers University
Camden, NJ 08102, USA

Email: bhaskar@crab.rutgers.edu

Eduardo D. Sontag
Department of Mathematics
Rutgers University
New Brunswick, NJ 08903, USA

Email: sontag@control.rutgers.edu

Abstract

Piecewise linear (PL) systems provide one system-
atic approach to discrete-time hybrid systems. They
blend switching mechanisms with classical linear com-
ponents, and model arbitrary interconnections of finite
automata and linear systems. Tools from automata
theory, logic, and related areas of computer science and
finite mathematics are used in the study of PL systems,
in conjunction with linear algebra techniques, all in the
context of a “PL algebra” formalism. PL systems are of
interest as controllers as well as identification models.

Basic questions for any class of systems are those
of equivalence, and, in particular, if state spaces are
equivalent under a change of variables. This paper
studies this state-space equivalence problem for PL sys-
tems. The problem was known to be decidable, but its
computational complexity was potentially exponential;
here it is shown to be solvable in polynomial-time.

1 Introduction

Hybrid systems theory has recently become the fo-
cus of increased research, as evidenced for instance by
the many papers in the volume [1]. In [7], the sec-
ond author introduced an approach to discrete-time
hybrid systems modeling. The proposed class of piece-
wise linear (PL) systems allows the blending of switch-
ing mechanisms with classical linear components, and
models arbitrary interconnections of finite automata
and linear systems. Tools from automata theory, logic,
and related areas of computer science and finite math-

LThis research was supported in part by US Air Force Grant
AFOSR-97-0159

ematics are used in the study of PL systems, in con-
junction with linear algebra techniques. These tools get
combined into the logic formalism of the “PL algebra”
introduced and developed to some extent in [8].

The paper [7] went on to establish the theoretical pos-
sibility of stabilizing rather arbitrary systems using PL
controllers (by means of sample-and-hold, since PL sys-
tems are only defined in discrete-time). These theo-
rems, though very far from leading to practical stabi-
lization methods, show the potential power of PL sys-
tems for control applications. On the other hand, PL
systems may also be useful as identification models of
the plant itself (by piecewise linear, e.g. linear spline,
approximations).

Among the most basic questions which can be asked
about any class of systems are those regarding equiv-
alence, such as: given two systems, do they represent
the same dynamics under a change of variables? As
a preliminary step in answering such a question, one
must determine if the state spaces of both systems
are isomorphic in an appropriate sense. That is, one
needs to know if an invertible change of variables is at
all possible. Only later can one ask if the equations
are the same. For classical, finite dimensional linear
systems, this question is trivial, since only dimensions
must match. For finite automata, similarly, the ques-
tion is also trivial, because the cardinality of the state
set 18 the only property that determines the existence
of a relabeling of variables. For other classes of sys-
tems, however, the question is not as trivial, and single
numbers such as dimensions or cardinalities may not
suffice to settle the equivalence problem. For exam-
ple, if one is dealing with continuous time systems de-
fined by smooth vector fields on manifolds, the natural

changes of variables are smooth transformations, and
thus a system whose state space is a unit circle cannot
be equivalent to a system whose state space is the real
line, even though both systems have “dimension” one.
Another illustration, more relevant to the present pa-
per, is provided by systems whose variables are required
to remain bounded, for instance, because of saturation
effects; a state-space like the unit interval [—1, 1] looks
very different from the unbounded state-space R, even
though both have dimension one.

In this paper, we study this state-space equivalence
problem for the PL systems studied in [7], under PL
changes of variables. The main result provides a
polynomial-time algorithm for the checking of PL iso-
morphism, assuming that the state space is represented
in the specific normal form (“labels”) introduced in [8].
Briefly, the paper [8] showed the decidability (recur-
sive computability) of the equivalence problem, but
the algorithm that would result from the discussion
given there has in principle exponential time complex-
ity. Obviously, having a polynomial time algorithm
should have a major impact on future studies of PL
systems.

The paper is organized as follows. The class of PL
systems is defined in the next section, and general re-
marks are made there; this section contains no new
material, and is included merely for motivational rea-
sons. The following mathematical problem of equiva-
lence is formulated next, and we explain why it is the
precise problem that needs to be solved in order to
solve a state-space equivalence problem: Consider two-
variable polynomials with non-negative integer coeffi-
cients, and given two such polynomials, decide if they
are equivalent to each other modulo the three equali-
tiesz=224+1,1° =2y +yandy=z+y+ 1. OQur
main contribution is to show that this problem can be
solved in polynomial time, in both the unit-cost and
the logarithmic-cost model.

2 PL Systems

Piecewise linear (or more precisely, piecewise-affine)
systems in the sense defined in [7] are discrete-time
systems described by equations z(t+1) = P(z(%), u(t))
(we write simply “z™ = P(z,u)”) for which the tran-
sition mapping P is a PL map, that is, there is a de-
composition of the state space X and the input value
set U into finitely many pieces, such that, in each of
these pieces, the mapping P is given by an affine func-
tion. The decomposition is required to be polyhedral,
meaning that each piece is described by a set of linear
equalities and inequalities.

For example, linear systems arise in the particular case
in which there is just one region. But the PL sys-

tem paradigm includes many more situations of in-
terest, such as, to take just a few examples, linear
systems z7 = Az + Bsat (u) (sat (ui,...,uy) is the
vector whose ith component is w; if |u;| < 1 and
sign (u;) otherwise) whose actuators are subject to sat-
uration, switched systems zt = A;z + B;u, where the
choice of matrix pair (A, B;) depends on a set of lin-
ear constraints on current inputs and states, or systems
T = sat (Az + Bu) for which underflows and over-
flows in state variables must be taken into account.

As part of the specification of a PL system, one includes
explicit constraints on controls and states. Thus, the
state space and control-value sets are taken to be sub-
sets X and U of R™ and R™ respectively, which indi-
cate @ priori restrictions on the allowed ranges of vari-
ables. To make the theory stay “piecewise linear”, we
ask that these sets be definable in terms of a finite num-
ber of linear equalities and inequalities. Finite sets are
included (n independent linear equalities specify each
point), and in this way all finite automata are included
as well.

Arbitrary interconnections of linear systems and finite
automata can be modeled by PL systems. More pre-
cisely, given any finite automaton with state space
Q, input-value space T, and transition function & :
Q xT — (@, we allow the state ¢ of the automaton
to control switching among |@| possible linear dynam-
ics:

T = Agz 4+ Byu + ¢

q+ = 6(g, Mz, u))
where Ajp,...,A4)q are matrices of size n x n,
By, ..., Bjg| are matrices of size n x m, and ¢y, ..., g

are n-vectors, and where h : R" xR™ — T is a PL map
(representing quantized observations of the linear sys-
tems). For a sketch of this reduction to PL systems, as
well as for precise definitions of PL systems and more
discussion and examples, see the second author’s paper

in [1].

A more mathematically elegant definition of PL sets
and maps can be given, as follows. The PL subsets of
R™ are those belonging to the smallest Boolean algebra
that contains all the open halfspaces of R™. A map
f: X — Y between two PL subsets X and Y of R¢
and R? respectively, is a PL map if its graph is a PL
subset of R® x R?. By a PL set one means a PL subset
of some R™. Finally, a PL system is a discrete-time
system T = P(z,u) with PL state and input value
sets and PL transition P.

Two PL sets X and Y are PL isomorphic if there are
aPLmaps f: X Y and ¢ : Y — X such that fog
and g o f both equal the identity, that is, y = f(z) is a
bijective piecewise linear map.

A PL isomorphism is nothing else than an operation of
the following type: make a finite number of cuts along
a set of lines (or segments), apply an affine (linear plus
translation) transformation to each piece (not dropping
any lower-dimensional pieces), and finally paste it all
together. As an example, let us take the interior of
the triangle in R? obtained as oc {(0,0),(1,1),(2,0)},
where we are using “oc” to indicate the interior of the
convex hull of the corresponding points. (We can also
define this set, of course, as the intersection of the three
hyperplanes zz > 0, 1 — 2z > 0, and 21 + 22 < 2.)
We now show that this triangle is PL isomorphic to
the interior of the open square with vertices (0,0),
(1,1), (0,1), and (1,0). First we cut along the seg-
ment S; = oc{(1,0),(1,1)}, obtaining the union of
S1, Sa, and Sz, where S2 = 0c{(0,0),(1,0),(1,1)} and
S3 =oc{(1,1),(1,0),(2,0)}. Next, we apply the affine

transformation
0 1 0
= (31) ()
to change S3 into S5 = oc {(1,1),(0,0),(0,1)}. Finally,
we apply the affine transformation
1
0

11
Ty = <0 1>:B—

to change S; into the missing diagonal S; =

0c{(0,0),(1,1)}, and we glue it all back. See Figure 1.

Oune of the main results in the paper [8] provided a clas-
sification of PL sets under isomorphism. The critical
step in this classification is to associate to each PL set
X a “label” with the property that two spaces X and Y
are isomorphic if and only if their labels are related in
a certain manner. (By analogy, two finite-dimensional
real vector spaces are linearly isomorphic if and only if
their dimensions are the same, i.e., letting the “label”
be the dimension, if their labels coincide. But in the
PL case, single integers do not suffice as “labels”.)

Labels are, by definition, polynomials in two variables
z,y with non-negative integer coeflicients. We let S =
N[z, y] denote the collection of all such polynomials.
Examples of labels are 1, z, v, 23, 1 + zy + 22, etc.
We interpret the sum in & as union of disjoint sets and
the product as Cartesian product of sets, the unit 1 as
a one-element set, the variable z as the open interval
(0,1), and the variable y as the half-line (0, +00). Thus,
z> is an open cube, and 1 + zy + 22 is the union of a
point, a disjoint set (0, 1) x (0, +00), and a unit square
disjoint from both. One may decompose any PL set
into a finite union (algebraically, a sum) of objects each
of which is linearly isomorphic to a monomial in z and
y. (Simplicial decompositions provide a way to do this.)
In this manner, a label (nonunique) can be associated
to each PL set.

Certain formal equalities are easy to establish. Split-

ting the interval z as

(0.1) = (0,1/2) [J{1/2y J (1/2,1),

and then using affine maps (¢ — 2t and ¢t — 2t — 1
respectively) to map the first and last interval to z, we
obtain “z = 2z + 1”7. On the other hand, the split y =
(0, 4+00) = (0, 1) {1}t U(1, +o0) (and ¢ — t—1 applied
to the last set) gives us the identity “y = z + 1+ ¢”.
Drawing a bisecting line through the first quadrant in
R2 gives “y? = y? + y + y*” (using, e.g., the linear
transformation (¢1,%2) — (t1 — t2,t2) to send the lower
triangle {(t1,t2)[t1 > 0,%1 > t2} to y?). It was shown
in [8] that these three identities are enough, in the sense
that two sets are isomorphic if and only if their labels
can be obtained from each other by using repeatedly
these elementary identities. In this paper, we take this
result as a starting point.

3 Basic Definitions

Let & = N[z,y] denote the collection of all polyno-
mials of two variables with non-negative integer coeffi-
cients. This set can be seen as a semiring, that is, sums
and products obey all the usual rules, except that el-
ements do not have additive inverses, i.e. one cannot
“substract” (see e.g. [6] for a survey of several applica-
tions of semirings in control theory).

Let 0 = {01,02,03} denote the following set of three
equalities:

oy r=2x+1
o2 1 Y =27ty
o3 @ y=z+y+l

Let «; and B; denote the left-side and right-side, re-
spectively, of the equality o; € o (i.e., a1 is z, (1 is
2z + 1, etc.). We let =, be the semiring congruence
generated by these equalities. Explicitly, this is defined
as follows.

Definition 3.1 Given two polynomials P(z,y) and
Q(z,y) in 8, of same degree n, we say that P(z,y)
is equivalent to Q(z,y) modulo the equalities in o, or
just that P is equivalent to @ modulo o, provided that
there is some sequence of polynomials

P(z,y) = Ro(z,y), Ri(z,y), Ra(z,y), ...,
Ri(z,y) = Q(z,y),

with each Ri(z,y) € S, such that for every i > 0, there
are decompositions R;(z,y) = A(z,y)C(z,y)+T(z,y)
and R;_1(z,y) = B(z,y)C(z,y) + T(z,y), where
C(z,y), T(z,y) € 8, with the property that B(z,y) is
obtained from A(z,y) by applying one of the equali-
ties in o in either direction (i.e., either B(z,y) =
and A(z,y) = Bi for some i, or B(z,y) = B; and
Az, y) = oy for some i).

S

51

esssenseses M
i S S3 < ‘ :/
\/}MMV

Figure 1: Example: triangle is PL isomorphic to square

We use the notation P(z,y) =, Q(z,y) to denote two
polynomials equivalent as per Definition 3.1, and let
#, denote the negation of the relation =, .

Our goal is to develop an efficient algorithm for decid-
ing following question: Given P and Q, is P =, Q7

Example: 222 + 2y +y =, 5z% + 4z + y + 1, since

262 4+ 27 +y = 2+ 22+ 297+ y
= 2+ 2c+1) 427 +y
=, bxl44dz+y+1

whereas y? + y £, 2.

Notice that P(z,y) =, Q(z,y) if and only if
Q(z,y) = P(z,y), since each equality in o can
be applied in either direction, and hence =, is an
equivalence relation on S.

It was shown in [8] that the decision procedure is de-
cidable. Two alternative proofs were sketched there,
which were based, respectively, on the algorithms
discussed for related semiring problems in the pa-
pers [3, 5]. However, no eflicient algorithm was known
for this procedure, nor was there a proof that the prob-
lem is intrinsically hard, i.e. NP-hard. The purpose of
this paper is to give a polynomial-time algorithm to de-
cide if P(z,y) =» Q(z,y). Regarding the precise mean-
ing of polynomial-time computation, there are at least
two models of complexity possible. The first, the unit
cost model of computation, is intended to capture the
algebraic complexity of the problem [2]; in that model,
each arithmetic and comparison operation on two real
numbers is assumed to take unit time.
tive, the logarithmic cost model, is closer to the notion
of computation in the usual Turing machine sense (e.g,
see [4]); in this case one assumes that each coefficient of
the two gives polynomials is an integer with at most B

An alterna-

bits, each arithmetic and comparison operation on two
B bit integers takes O(B) time, and the time involved
in the decision procedure is required to be polynomial
on B as well. For convenience, we will just write O(«)
time to denote a running time of O(«) in the unit-cost
model or a running time of O(aB) in the logarithmic-
cost model.

The main theorem of this paper is the following.

Main Theorem. Given any two polynomials P, Q €
S, each of degree at most n, whether P =, @ or not
can be decided in O(n?) time. Moreover, if P =, @,
then a sequence of valid operations transforming P to
Q can be computed in O(n?) time.

The proof of the main theorem is quite lengthy and
complicated, and hence omitted from this paper due to
space limitations (the full paper can be obtained from
the authors by request). Notice that the time taken by
our algorithm for the unit-cost model is optimal within
a constant factor in the worst case, since the polynomi-
als have O(n?) coefficients. Similarly, the time for the
logarithmic-cost model is also optimal within a con-
stant factor in the worst case.

In the rest of the paper, we provide a glimpse of the
proof for the much simpler case when P and @ are
polynomials of one variable z. We assume that both
the given polynomials have the same degree, since ap-
plication of any equality in o preserves the degree of
the polynomial.

4 A Preliminary Result

Let R = Er,’7j:viyj be an intermediate polynomial in
a transformation from P to @ (initially, R = P).

Definition 4.1 A valid operation on the coefficients
of a polynomial R € 8 is one of the following opera-
tions:

o For some r; ; > 0, do one of the following:

Move I(a): ifi > 0, increase both r; j and r;_1 ;
by an arbitrary integer ¢ > 0.

Move I(b): if j > 1, increase both v;; and
ri5—1 by an arbitrary integer ¢ > 0.

Move I(c): if 7 > 0, increase both r; j_1 and
Tiy1,j—1 by an arbitrary integer ¢ > 0.

Move I(d): if j > 0, 7;j_1,7i41,j—1 > ¢ for
some arbitrary integer ¢ > 0, decrease both

rij—1 ond 4151 by c.

o For some r; ; > ¢ > 0, do one of the following:

Move II(a): if i > 0 and r;_1; > ¢, decrease
both r; j and r;_1; by c.

Move II(b): if j > 1 and 7;;_1 > ¢, decrease
both r; j and r; ;_1 by c.

After some effort, it can be shown that the problem
to decide if P =, @ can be alternatively formulated as
follows.

INSTANCE: Two polynomials P, Q) € S.

QUESTION: Is there a sequence of zero or more
valid operations that changes the coefficients of
P such that at the end p; ; = ¢; ; for all + and 57

5 A Few Necessary Conditions for
Transformability

In this section, we discuss some necessary and sufhi-
cient conditions for transforming the polynomial P to
Q. First, we state an easy necessary condition.

Proposition 5.1 P =, Q implies ;> .pij =

> Ej gi; (mod 2).

Proof: Every valid operation on a polynomial in-
creases or decreases the total sum of all the coefficients
of the polynomial by an even integer. n

Definition 5.1 Let R = Y. r; jz'y’ € Z[z,y] and let
n be the degree of the given polynomial P. Define the
characteristic function A, : R — N to be the fol-
lowing function:

n n—1i

An(R) =)D (-1 iy

i=0 j=0

The idea of the characteristic function is motivated by
the Euler characteristic' function of an abstract sim-
plicial complex on a set (see [10]). Notice that the
sign of every coeflicient of R is exactly the opposite as
that of any of its neighbors. The number A(R) can be
computed trivially in O(n?) time. Note that the Euler
characteristic is intimately related to the definition of
labels of PL sets and the relations o; as a matter of fact,
the paper [8] (page 200, formula (3.28) and following
discussion) explains how the classical theorem on Euler
characteristics of polyhedra is a simple consequence of
PL set theory.

LIf f; is the number of faces of dimension % of an abstract
simplicial complex A, then the Euler characteristic of A is

Yiso(=1)'fi

For notational convenience, we will drop the subscript
n from A, with the understanding that this is always
the degree of P.

Lemma 5.1 A(P) # A(Q) implies P #, Q.

Proof: = We prove by showing that if P is changed
to P’ by a single valid operation, then A(P) = A(P’).
This will prove (by induction on the length of the trans-
formation sequence) that the A(P) must be same as

AQ) i P #, Q.

Consider a valid operation changing P. An inspection
of Definition 4.1 shows that a valid operation either
changes both p; ; and p;_1 ; by the same amount or it
changes both p; ; and p; ;_1 by the same amount, for
some appropriate indices 2 and j. In the former case,
since p; ; and p;_1 ; have opposite signs in the expres-
sion for A(P), the value of A(P) remains unchanged.
In the later case also, since p; ; and p; ;_1 have oppo-
site signs in the expression for A(P), the value of A(P)
remains unchanged. ™

Corollary 5.1 Let P and @ differ in exactly one co-
efficient. Then, P %, Q.

In fact, the condition stated in Lemma 5.1 can be fur-
ther strengthened.

Definition 5.2 For a given polynomial R =
Sorigety € S, define R' = E;'L:o rjo0%! and
R?> = R— R! (notice that R*, R* € S).

As before, let P and @ be the two given polynomi-
als under consideration. Now, we have the following
lemma.

Lemma 5.2 P =, Q if and only if A(P') = A(QY)
and A(P?) = A(Q?).

6 The One-Variable Case

In this section we consider the simpler case when both
P and @ are polynomials in only one variable z (i.e.,
pi,; = ¢i,; = 0for all j > 0). This simpler case is impor-
tant because a technique similar to the one employed
for its solution will be applied repeatedly (with appro-
priate modifications) to solve the original problem. For
notational convenience, let us denote p; o (resp. g¢;.0)
simply by p; (resp. g¢;). Notice that p,,¢, > 0 and
A(P?—-Q@?) =0.

Theorem 6.1 In the one-variable case, P =, Q if and
only if A(PY — Q) = 0. Moreover, if P =, Q, then a
sequence of valid operations transforming P to () can
be computed in O(n) time.

Proof: It turns out that if P =, (), then P can be
transformed to @ by using only the equality o;. The
proof will be constructive and will produce an O(n)
time algorithm to give a sequence of transformations
from P to @ (or, report that P #, Q). The algorithm
works in two steps:

Step 1: Transform P to another polynomial P’ using
the equality oy such that P’ differs from P in at
most one coeflicient.

Step 2: Use Corollary 5.1 and transitivity to conclude
that P =, @ if and only if P’ is the same as Q.

Since Step 2 is trivial, we concentrate on Step 1. We
assume A(P) = A(Q) (since otherwise P #, Q). We
specify how to modify po, p1,p2,...,Pn_2, in that or-
der, using valid operations corresponding to the equal-
ity o1, such that at the end we have pg = qo, p1 =
G1s++yPn_2 = Qn_o. First, since p, > 0, to increase
PnsPn—1,---,P0 by at least 1. This takes O(n) time.
Notice that, after this step, p; > 0 for all indices ¢ and
the value of A(P) remains the same as before.

Inductively, assume that before the #** step of

coefficient-correction (¢ = 0,1,2,...,n — 2), we
have already corrected the coefficients po, p1,...,Pi—1
(i.e., have ensured po = ¢o,P1 = 4q1,---,Pi—1 =
gi—1), possibly by modifying some of the coefficients
Diy -y Pn, but maintaining the following invari-
ant: P, Dit1,...,0n > 0 before, during or after the
correction step. We now show how to correct the cur-
rent value of p; (i.e., to ensure p; = ¢ if p; # @)
and maintain the invariant that p;y1,pi42,...,00 > 0.
There are three cases to consider:

Case 1. p; < ¢;. Then, since p;41 > 0, increase both
pi and pit1 by ¢i — pi.

Case 2. p; > ¢; and p;y1 > (p; — ¢i)- Then, decrease
both p; and p;+1 by pi — ¢i.

Case 3. p; > ¢; and piy1 < (pi — ¢;). Then, (since
Pit+z > 0) first increase both p;41 and p;y2 by
(pi —qi) — pit1 + 1. Then, decrease both p; and
Pi+1 by pi — qi.

Hence, we have changed the coeflicients so that all but
at most the leading two coefficients differ in the two
polynomials. Finally, since A(P) = A(Q), and the
value of A(P) does not change by any sequence of valid

operations, we must have p, — ¢, = Pn_1— ¢n_1. Also,
remember that ¢, > 0 and g,—1 > 0. If p, < gu, we
increase both p,_1 and p, by p, — ¢n, otherwise, if
Pn > Gn, we decrease p,_1 and p, by pn — qn. It is
clear that the total time taken by the above algorithm
is O(n). Notice also P can always be transformed to Q
provided A(P) = A(Q). This completes the proof. m

7 Closing Comments

Looking for efficient algorithms for finding a label rep-
resentation is itself a most interesting problem for fur-
ther research, which is not addressed in this paper.
Similarly, the full equivalence problem: “are the equa-
tions of two given systems the same under some change
of variables?” is an obvious next question to tackle. We
view this paper as merely a first step in the study of a
long list of such questions.

References

[1] R. Alur, T.A. Henzinger, and E.D. Sontag, eds.,
Hybrid Systems III. Verification and Control, Springer
Verlag, Berlin, 1996.

[2] L. Blum, M. Shub and S. Smale, “On a the-
ory of computation and complexity over the real num-
bers”, Bulletin of the American Mathematical Society,

21(1989): 1-46.

[3] S. Eilenberg, and M.P. Schiizenberger, “Rational
sets in commutative monoids,” J. Algebra 13(1969):

173-191.

[4] M. R. Garey and D. S. Johuson, Computers
and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

[6] S. Ginsburg, and E.H. Spanier, “Bounded Algol-
like languages,” Trans. Amer. Math. Soc. 113(1964):
333-368.

[6] J-P. Quadrat, “Max-plus algebra and applica-
tions to system theory and optimal control,” in Pro-
ceedings of the International Congress of Mathemati-
cians, (Zirich, 1994), Birkh&user, Basel, 1995, pp.
1511-1522,

[7] E. D. Sontag, “Nonlinear regulation: The piece-
wise linear approach,” IEEE Trans. Autom. Conirol

AC-26(1981): 346-358.

[8] E.D. Sontag, “Remarks on piecewise-linear alge-
bra,” Pacific J.Math., 98(1982): 183-201.

[9] E.D. Sontag, Mathematical Control Theory: De-
terministic Finite Dimenstonal Systems, Springer, New
York, 1990. (Second Edition, Springer, NY, 1998.)
[10] E. H. Spanier, Algebraic Topology, McGraw-Hill,
New York, 1966.

