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While full sibling group reconstruction from microsatellite data is a well studied prob-
lem, reconstruction of half sibling groups is much less studied, theoretically challenging,
and a computationally demanding problem. In this paper, we present a formulation of

the half-sibling reconstruction problem and prove it APX-hardness. We also present ex-
act solutions for this formulation and develop heuristics. Using biological and synthetic
datasets we present experimental results and compare them with the leading alterna-
tive software COLONY. We show that our results are competitive and allow half-sibling

group reconstruction in the presence of polygamy, which is prevalent in nature.

1. INTRODUCTION

Kinship analysis is an important and necessary component of understanding an

organism’s biology and ecology. Biologists want to find out more about how or-

ganisms survive, acquire mates, reproduce, and disperse to new populations. Such

information is difficult or impossible to infer from visual observation, and the estab-

lishment of kinship patterns (parentage or sibling relationships, for example) can

be extremely useful. Genetic information has been used for decades by biologists to
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make ecological and biological observations 7, 16. While a number of genetic markers

have been introduced over the years, microsatellites (also known as STRs or SSRs)

are most commonly used for wild species. Recent advances in technology have made

it significantly cheaper to genotype individuals, creating a need for the techniques

to process this data.

Several studies 1, 2, 6, 17, 23, 24 including ours 4, 5, 10, 11, 18, 19, have recently devel-

oped computational approaches to reconstruct full-sibling groups in wild popula-

tions using genetic markers such as microsatellites.

Knowledge of the relatedness of individuals can be used to assess fecundity and

mating systems, study kin selection, detect inbreeding, and to infer heritability

using quantitative genetics 9. While full sibling relatedness is difficult to infer, half-

sibling relatedness constitutes a looser constraint on individual groupings which

carries a weaker information signal and, thus, is even more difficult to reconstruct.

Furthermore, monogamy, which produces only full-sibling groups, is relatively rare

in nature. More common are polygamous and promiscuous mating systems where

most offspring will be half-siblings (sharing only one parent), or a combination of

half-sibling and full-sibling (sharing both parents) groups. Because of the ubiquity

of half-sibling groups in nature, biologists need robust approaches for inferring half-

sibling relationships from molecular marker data. For example, plants have flowers

pollinated from many different plants, so seeds from a single plant are primarily half-

siblings. Identifying these half-siblings among seedlings would allow researchers to

study variation in female reproductive success among plants.

Few methods focus on half-sibling relationships, and most tend to make assump-

tions, e.g. monogamy 24, which may not hold in practice. In Ref. 4 we formulated

a parsimony-based approach aimed at minimizing the number of full-sibling groups

necessary to explain the given population. In Refs. 19, 5 we presented the 2-Allele

Min Set Cover algorithm for achieving this objective and showed that it worked

extremely well, even when the allelic information was low and outperformed other

algorithms when the number of loci, or alleles per locus was low. In Ref. 18 we pre-

sented a consensus-based approach which aimed at minimizing the number of sibling

groups and also exploited any available genetic information. Our approaches were

designed for studies of wild populations where number of loci and alleles per locus

is low (e.g. 3 loci for 1000 individuals with 10 alleles per locus) and no assumptions

can be made about the underlying mating system.

In this paper, we focus on the half-sibling reconstruction problem using genetic

data from cohorts of offspring rather than the breeders, since they are usually easier

to sample in wild populations. The problem is not only harder to analyze theoret-

ically, it is also more difficult to solve computationally. Our main contributions

in this paper are as follows: 1) we formally define the half-sibling reconstruction

problem and analyze its combinatorial properties; 2) we present a new parsimony-

based formulation for the half-sibling reconstruction problem and show that it is

APX-hard; 3) we develop exact algorithms for solving this hard combinatorial for-
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mulation; 4) we test these algorithms using both biological and simulated datasets

and compare our reconstruction results to those obtained by the leading alternative

approach COLONY24.

2. HALF-SIBLING RECONSTRUCTION

We first define some biological concepts for the benefit of the reader not familiar

with these concepts. Readers familiar with these concepts may safely skip to Section

2.3.

2.1. Biological Preliminaries

Full- and half-siblings: a group of individuals that share both parents is referred to

as full siblings, and when they share one of the parents they are referred to as half

siblings. In the rest of the paper, we use full-sibs and half-sibs terms to refer to

these groups, respectively.

Locus: the location of a gene on a chromosome.

Allele: one of the different versions of the same gene found at the same locus but

on homologous chromosomes or in different individuals.

Genetic marker: a segment of DNA that can be scored to identify individual geno-

types and track inheritance.

Diploid individual is one having two alleles (not necessarily different) at each locus.

Allele frequency: the fraction of all the alleles for a gene in a population that are of

a particular type.

Genotype: the actual alleles present in an individual; the genetic makeup of an

organism.

2.2. Microsatellite Markers

While there are several molecular markers used in population genetics, microsatel-

lites (also known as SSRs, STRs, SSLPs, and VNTRs) are the most commonly used

markers in population biology for non-model organisms. Microsatellites are repeats

of short DNA sequences distributed throughout the genome. These are co-dominant,

unlinked, multi-allelic markers that offer numerous advantages for population stud-

ies. Generally, phase or haplotype information is not available for microsatellite loci

in non-model organisms.

2.3. Problem Statement

The main focus of our paper is to design a method that accurately reconstructs

half-sibling groups from microsatellite data. Table 1 shows an example cohort with

five individuals sampled at two loci. We now formally define the problem of half-

sibling reconstruction. Let U = {X1, . . . Xn}, where U is a population of n diploid

individuals of the same generation, and where each individual is represented by
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Table 1: Example of a cohort of five individuals sampled at two microsatellite loci

with a unique full-sibling and multiple half-sibling solutions.

(a) Parental genotypes (F1)

Id Locus 1 Locus 2

1 7 8 19 20

2 7 10 20 46

3 5 6 19 23

4 4 5 15 19

5 2 10 15 19

(b) Full-sibling groups in children (F2)

Father Mother Offspring ids

P1 P2 1, 2

P1 P4 4, 5

P3 P2 7, 8

P3 P4 10, 11

P5 P6 13, 14

P5 P8 15, 16

P7 P6 17, 18

P7 P8 19, 20

(c) Biologically consistent half-sibling reconstructions shown as sets
of ids of offspring

{{1, 2, 4, 5}, {7, 8, 10, 11}{13, 14, 15, 16}{17, 18, 19, 20}}
{{1, 2, 7, 8}, {4, 5, 10, 11}{13, 14, 17, 18}{15, 16, 19, 20}}
{{1, 2, 7, 8}, {4, 5, 10, 11}{13, 14, 15, 16}{17, 18, 19, 20}}
{{1, 2, 4, 5}, {7, 8, 10, 11}{13, 14, 17, 18}{15, 16, 19, 20}}

a genetic (microsatellite) sample at l loci. That is, Xi = (⟨ai1, bi1⟩, . . . , ⟨ail, bil⟩)
and ail and bil are the two alleles of the individual i at locus l represented as

some identifying sequence. The goal is to reconstruct half-sibling groups which is

formulated as a covera of individuals by sets P1, . . . Pm where individuals in the same

set Pi share at least one parent. We assume no knowledge of parental information.

What complicates the half-sibling reconstruction problem is the existence of

multiple half-sibling reconstructions for a given cohort. Consider the cohort of in-

dividuals in Table 1(b). The full-sibling reconstruction is clear and there is only

one correct answer. However, for the same cohort, there are four different possible

half-sibling reconstructions, as shown in Table 1(c). Each of these reconstructions

is biologically plausible, i.e. individuals placed in a half-sibling group share exactly

one parent. Every individual, and the full-sibling group it belongs to, is always in

the intersection of two half-sibling groups.

aa collection of not necessarily disjoint groupings
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2.4. Related Work

COLONY 24 is a widely used software for both full- and half-sibling groups recon-

struction. However, it assumes that one gender mates monogamously, an assump-

tion that may greatly limit the software’s utility. In a recent paper25 the problem

of monogamy has been resolved, however the work is still based on simulated an-

nealing, and therefore take days to run. Moreover, COLONY24, 25, Queller et al.
17, Konovalov et al. 15, Almudevar et al. 1, 2, Herbinger el al. 13, Wilson et al. 26,

Thomas et al. 22 all use likelihood-based approaches to reconstructing both full-

and half-sibling groups. All of these approaches assume knowledge or availability of

population allele frequencies or mating patterns in the given species.

2.5. Half-Sibs Property

In order to present a combinatorial approach based purely on parsimony we first

need to translate the Mendelian genetic laws into combinatorial constraints that all

half-sibling groups must obey. In Ref. 5 we presented two necessary combinatorial

properties that a full-sibling group must satisfy: the 2-ALLELE property and the 4-

ALLELE property. We now present a combinatorial property based on Mendelian

laws that a half-sibling group must obey. This is a necessary, yet not sufficient,

property for any group individuals to be a feasible half-sibling group.

Half-Sibs Property: For any given half-sibling group, at every locus there

exists a pair of alleles xj , yj such that every individual in the group contains (at

least) one of the two alleles. Formally, a set S ⊆ U has the Half-Sibs Property

if

∀1 ≤ j ≤ l : ∃ Aj = {xj , yj}
s.t. ∀i ∈ S aij ∈ Aj ∨ bij ∈ Aj

Proof.

By Mendelian law, two parents with loci {p, q} and {r, s} produces an offspring

{a, b} if and only if |{a, b} ∩ {p, q}| = 1 and |{a, b} ∩ {r, s}| = 1. The claim follows

since a half-sibling group has at least one parent in common.

This property is illustrated in Table 1: the first four individuals can be members

of a half-sibling group because the alleles {5, 7} at the first locus and {19, 20} at

the second locus satisfy the Half-Sibs Property. Individual 5 cannot be added

to this half-sibling group because there will be no set of two alleles at the first locus

which will cover all five individuals.

Notice that there is no limit on the actual number of different alleles in a half-

sibling group (other than the trivial 2 + n). The Half-Sibs Property constraint

is mathematically weak: for any half-sibling group that obeys this property a viable

parent genotype can be constructed by using the two alleles at every locus. Fur-

thermore, any two individuals can potentially be half-siblings. In practice, we may
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also require that any individual or full-sibling group may be part of at most two

half-sibling groups (one for each parent).

3. PARSIMONY-BASED HALF-SIBS RECONSTRUCTION

In formulating the computational problem of reconstructing half-sibling group, we

choose the objective of maximum parsimony, rather than the statistical model fit-

ting of the majority of other kinship reconstruction approaches. Our approach avoids

making unnecessary assumptions about the sampled population and the genetic dis-

tributions within. The fundamental assumption we do make is that of the Mendelian

genetic laws.

3.1. Min-Half-Sibs Problem Definition

Given the assumption of Mendelian genetic laws, we find the most parsimonious

collection of half-sibling groups that explain the genetics of a sampled cohort of

individuals. While there are many ways to interpret the parsimony objective, in ab-

sence of other information about the population we start with the simplest: finding

the minimum number of half-sibling groups (that obey the Half-Sibs Property)

to explain the genetics of the sample.

Input: A set U of n individuals, each with ℓ sampled loci.

Notation: Let hi ⊆ U denote a set of individuals which obey the Half-Sibs

Property.

Valid Solutions: H = {h0, . . . , hm} s.t. ∪hi∈Hhi = U .

Objective: minimize |H|.

3.2. Min-Half-Sibs Integer Linear Programming Formulation

We now present an ILP formulation of optimization model to directly solve the

Min-Half-Sibs formulation. This model is also based on Half-Sibs Property.

We first define the following decision variables:

• xij ∈ {0, 1}: indicates if individual i is selected to be a member of the

current half-sibling group j;

• zj ∈ {0, 1}: indicates if the group j is non-empty;

• wl
jk ∈ {0, 1}: indicates if allele k appears in the current half-sibling group

j at locus l.

• alik ∈ {0, 1, 2}: counts the number of times allele k appears in individual i

at locus l.

The optimization model for the half-sibling problem is formulated as follows:
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Half-Sibs Model:

min
∑
j∈J

zj (1)

s.t. xij ≤ zj ∀ i ∈ I, j ∈ J (2)∑
j∈J

xij ≥ 1 ∀ i ∈ I (3)

∑
k∈K

alikw
l
jk ≥ xij ∀ i ∈ I, j ∈ J, l ∈ L (4)∑

k∈K

wl
jk ≤ 2 ∀ j ∈ J, l ∈ L. (5)

Equation (1) is the objective to minimize the number of maximal feasible half-

sibling groups. Equations (2) and (3) are the logical constraints that any individual

i has to be assigned to at least one half-sibling set j. The Equations (4) and (5)

are the half-siblings constraints that for any half-sibling group there is no more

than two alleles appearing at each locus.

Note that because the half-sibling groups J is not defined yet in Half-Sibs

Model, an initial number of half-sibling groups is required before implementation.

It is necessary to define a reasonable initial number for the half-sibling groups.

Given a larger number, although it is guaranteed to solve to obtain feasible, even

optimal, half-sibling groups to explain an input population, the implementation in

CPLEX will be very expensive in terms of computational time. On the other hand,

the smaller number may lead to infeasibility. That is, the resulting half-sibling sets

cannot be enough to explain an input population.

3.3. Computational Complexity

We first recall some standard definitions. A (1+ε)-approximate solution (or simply

an (1 + ε)-approximation) of a minimization problem is a solution with an objec-

tive value no larger than 1 + ε times the value of the optimum, and an algorithm

achieving such a solution is said to have an approximation ratio of at most 1 + ε.

A problem is APX-hard if, for some constant ε > 0, the problem has no (1 + ε)-

approximation under a standard complexity-theoretic assumption such as P̸=NP

or RP̸=NP. Note that APX-hardness is a stronger notion than NP-hardness since

it rules our arbitrarily good approximation of the problem.

Theorem 1. Min-Half-Sibs is APX-hard under the assumption of RP̸=NP.

Proof. We first need the triangle-packing (TP) problem which is defined as fol-

lows. We are given an undirected graph G. A triangle is a cycle of 3 nodes. The goal

is to find (pack) a maximum number of node-disjoint triangles in G. The following

result was shown in Ref. 3.

Theorem 2. Assuming RP̸=NP, given an instance G of TP with 228n vertices

there is no polynomial time algorithm that can decide, for any sufficiently small
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constant ε > 0, if there is a solution of size at least (76− ε)n of if all solutions are

of size at least (75 + ε)n.3

The above theorem there shows that TP has no (1 + δ)-approximation for δ =

(76/75)− ε under the assumption of RP̸=NP.

We now reduce an instance of TP to an instance of Min-Half-Sibs. For nota-

tional convenience, let the vertex set of G be V = {1, 2, . . . , 228n}. For every vertex

j ∈ V , there is a “corresponding” individual j′ in Min-Half-Sibs. We will now

add appropriate loci to ensure that:

(1) three individuals corresponding to a triangle of G are a possible half-sibling,

and

(2) three or more individuals that do not correspond to a triangle of G cannot be

half-siblings.

Obviously any pair of individuals can be a half-sibling group. Thus, the above

properties ensure that TP has a maximal solution with t triangles if and only if

the instance of Min-Half-Sibs has t +
228n− 3t

2
=

228n− t

2
half-sibling groups.

Using Theorem 2, it follows that given an instance of Min-Half-Sibs with 228n

individuals, there is no polynomial-time algorithm that can decide if the instance

has a solution with at most
228n− 75n− ε

2
=

86.5n− ε

2
half-sibling groups or if

all solutions must have at least
228n− 76n+ ε

2
=

86n+ ε

2
half-sibling groups. This

shows that Min-Half-Sibs has no (1 + δ)-approximation with δ = 86.5
86 − ε.

We now show how to add loci to satisfy Properties (1) and (2). For each case,

it is straightforward to use the Half-Sibs Property discussed in the previous

section to ensure that the construction is correct.

Ruling out half-sibling groups of size 4 or more: We ensure that no set of

four or more individuals can be half-siblings. Note that it suffices to rule

our all sets of four individuals only. There are
(
n
4

)
= Θ(n4) such loci,

each representing each set of four individuals. Consider a set of four in-

dividuals i′, j′, k′, ℓ′ corresponding to the vertices i, j, k, ℓ of G. We will

introduce a new loci that will disallow the individuals {i′, j′, k′, ℓ′} to be

half-siblings, but will not disallow any other combinations. We insert a

new locus t with six new alleles ⟨x1, x2, x3, x4, x5, x6⟩ for these individu-

als: i′t = {x1, x2}, k′t = {x3, x4}, k′t = {x5, x2}, ℓ′t = {x5, x6}, and y′t =

{x1, x5} ∀y ∈ V \ {i, j, k, ℓ}.
Ruling out non-triangles: We next ensure that only triplets corresponding to

triangles in G can be half-siblings. We introduce
(
n
3

)
− t = O(n3) new

loci, each representing a set of three elements i′, j′, k′ such that i, j, k is

not a triangle in G. The loci for this set of individuals will prohibit the

corresponding individuals {i′, j′, k′} to be half-siblings, but all other com-

binations of individuals will not be affected. We insert a new locus t with six
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new alleles ⟨x1, x2, x3, x4, x5, x6⟩ for these individuals: i′t = {x1, x2}, j′t =

{x3, x4}, k′t = {x5, x6}, and y′t = {x1, x5} ∀y ∈ V \ {i, j, k}. This allows

any set of three individuals, other than {i, j, k}, to be half-siblings.

We note that all individuals are distinct, i.e., for every two individuals i′ and j′ there

is a locus in which they differ. This is because there exists a set of four individuals

in which in which i′ belongs but j′ does not and the first set of loci introduced

above ensures that they have non-identical loci.

It is clear from the construction of gadgets that Properties (1) and (2) are

satisfied. This completes the proof.

Since the problem is hard to approximate, providing an exact algorithm would

be intractable too, and may not be meaningful biologically. Therefore, in spite of

the apparent complexity problems, we proceed to present exact algorithms for this

ILP formulation.

3.4. Half-Sibs Min Set Cover Algorithm

We now present an exact algorithm to solve the Min Half-Sibs problem. This

algorithm is similar to the 2-Allele Min Set Cover algorithm we presented in

Ref. 5. It consists of two stages:

(1) Enumerate all maximal feasible half-sibling sets S in the cohort U that obey

the Half-Sibs Property.

(2) Find the minimum number of maximal feasible sets C ⊆ S necessary to cover

the entire cohort U using the Minimum Set Cover14.

3.4.1. Step 1: Half-Sibling groups Enumeration Algorithm.

In order to generate all maximal half-sibling groups we exploit the fact that a set of

any two alleles at a locus represents a potential parent. We first generate all maximal

feasible half-sibling groups at each locus, and then intersect them to find groups that

are common across loci. In order to generate maximal feasible half-sibling groups we

treat every pair of alleles present in a locus as the parental genotype (for that locus)

and then check which individuals inherit at least one allele. We refer to Figure 1

for details.

Lemma 1. Algorithm Half-Siblings Enumeration generates all maximal half-

sibling groups.

The proof is straightforward and we omit it for brevity.

This algorithm implies a straightforward upper bound on the number of half-

sibling groups in a given cohort: O(
(
2n
2

)k
) = O(n2k) where k is the number of

loci is assumed to be a given constant. Compared to the full-sibling reconstruction

problem, this tremendously increases the size of the set cover problem. However,

we are able to execute this algorithm on most of the test data sets. For larger
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input : U : individuals

output: H: Set of Maximal Half-sibling groups

HalfSibs← {U} ;
foreach locus l do

HalfSibs[l]← ∅ ;
Alleles[l]← {a|allele a appears at locus l} ;
foreach a ∈ Alleles[l] do

AlleleSets[l][a]← {Ix| Individual with allele a at locus l} ;
end

foreach a1, a2 ∈ Alleles[l] do
halfsiba1,a2 ← AlleleSets[l][a1] ∪AlleleSets[l][a2];

HalfSibs[l]← HalfSibs[l] ∪ {halfsiba1,a2
} ;

end

HalfSibs← IntersectGroups(Halfsibs,Halfsibs[l]);

end

Fig. 1: Algorithm for generating all maximal feasible half-sibling groups.

input : U : set of individuals, F : set of full-sib groups

output: H set of feasible half-sibling groups

H ← F ;

merging ← true;

while merging do
merging ← false;

foreach Si ∈ H do

foreach Sj ∈ F do
Si,j ← Si ∪ Sj ;

if Si,j obeys Half-Sibs Property ∧Si,j ̸∈ H then
merging ← true ;

H ← H ∪ {Si,j} ;
end

end

end

end

Fig. 2: Min Full-/Half-Sibling Algorithm

data sets it is possible to prune the sets of individuals at each locus by discarding

non-maximal sets.
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3.4.2. Step 2: Min Set Cover.

The minimum set cover problem is a classical NP-complete 14 problem and is defined

as follows: given a universe U of elements X1, . . . , Xn and a collection of subsets S
of U , the goal is to find the minimum collection of subsets C ⊆ S whose union is

the entire universe U .

We use the standard integer linear program formulation of the Minimum Set

Cover problem to solve it to optimality using commercial ILP solver CPLEXb.

4. VALIDATION METHODOLOGY

In order to set a baseline of results for comparison, we use a trivial approach that

is based on the full sibling reconstruction approach presented in Ref. 5.

4.1. Half-sibling reconstruction from full-sibling reconstruction

Another way to interpret the parsimony objective for the half-sibling reconstruction

problem is to find a reconstruction that minimizes the number of both full- and half-

sibling groups. We implement this approach by first finding the minimum number

of full-sibling groups necessary to explain the population using the 2-Allele Min

Set Cover algorithm 5 and then merging the full-sibling groups to obtain the

minimum half-sibling groups that cover the population and are composed of full-

sibling groups.

In order to determine the minimum number of half-sibling groups based on a

full-sibling reconstruction solution we explore all possible half-sibling groups that

can be generated from the given full-sibling reconstruction. The algorithm works in

three steps in a similar fashion as the algorithm presented above.

Min Full-/Half-Sibling Algorithm

(1) Generate a full-sibling reconstruction F using the 2-Allele Min Set Cover

algorithm 5.

(2) Enumerate all maximal feasible half-sibling sets S in the cohort U that obey the

Half-Sibs Property and can be obtained by merging a subset of the input

full-sibling groups in F . We start generating candidate half-sibling groups by

merging all pairs of full-sibling groups. We then compare each full-sibling group

to these candidate half-sibling groups to determine whether additional merges

can be made conforming to the Half-Sibs Property.

(3) Find the minimum number of maximal feasible sets C ⊆ S necessary to cover

the entire cohort U using the Minimum Set Cover.

Trivially, the number of maximal feasible half-sibling groups is O(n2k), where k

is the number of loci. It seems theoretically that we first create a relatively large

input to an NP-hard problem, thus creating an impossibly large problem. However,

in practice, we are able to solve most datasets in a few hours.

bCPLEX is a registered trademark of ILOG
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4.2. Datasets

To validate and assess the accuracy of our approach, we have used datasets with

known genetics and genealogy that contain half-sibling groups. However, such bio-

logical datasets containing no errors are few and we were able to obtain only two.

Therefore, we test on both biological and simulated datasets.

Biological Datasets

We test our approach on datasets where offspring were collected and genotyped

at several microsatellite loci. Half-sibling groups were known because the offspring

were collected from individual gravid females, and were thus maternally related

half-siblings. As discussed above, there may be multiple correct solutions, but these

datasets typically are based on configurations where the ratio of the number of

fathers to the number of mothers is high, which, as we found, aids tractability of

the problem.

Crickets: The field cricket Grillus bimaculatus dataset comes from a population

of crickets studied in Spain 8. It consists of 112 individuals from 7 wild-caught

gravid females with 6 sampled loci.

Rockfish Larvae: The kelp rockfish Sebastes atrovirens dataset 21 consists of 672

larvae from 7 broods and 7 sampled loci. A subset consisting of 288 larvae from

the first 3 broods was used due to computational inefficiencies.

Simulated Datasets

To validate our approach using simulated data, we follow the same protocol as in

Ref. 4. We first create random diploid parents and then generate complete genetic

data for offspring varying the number of males, females, alleles, loci, number of

offspring and juveniles. For a given number of females, males, loci, and a number

of alleles per locus, we generate a set of diploid parents with independent identical

uniform distribution of alleles in each locus. A male and a female are chosen inde-

pendently, randomly, and uniformly from the parent population. For these parents,

a specified number of offspring is generated. Each offspring randomly receives one

allele each from its mother and father at each locus. While this is a rather simplistic

approach, it is consistent with the genetics of known parents and provides a baseline

for the accuracy of the algorithm since biological data are generally not uniformly

random.

The simulated datasets were generated to show the effects of a degree of dispro-

portion between the number of mothers and fathers in the breeding pairs. We used

the following ratios of the number of fathers to the number of mothersc: 1:10, 1:5.

The half-sibling groups based on the sex with the smaller number of breeding adults

cThe genders are symmetric and the results hold for a high ratio of fathers to mothers
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were chosen as the ground truth, i.e. paternal groups. We generated 10 cohorts for

each set of parameters.

4.3. Accuracy

There is no well-accepted measure of comparing half-sibships. Moreover, as dis-

cussed above, the task is complicated by the fact that some half-sibling groups may

overlap multiple times and it is not clear whether the overlap should be penalized.

The absence of parental information in biological datasets implies that we cannot be

sure that some half-sibling groups given by the algorithm are not representative of

the half-sibling groups by other sex. We measure the error rates of algorithms using

a slight modification of the partition distance by Gusfield 12, which is the smallest

number of individuals that need to be removed from the population to make two

partitions equivalent. For the cases where overlap occurs we assume that the right

assignment was made as long as one of the overlapping assignments is correct. For

biological datasets we also report the overlap in addition to this score.

4.4. Half-Sibs Model configuration

We tested theHalf-Sibs Model on cricket and rockfish datasets in MATLAB with

the use of the callable GAMS library with CPLEX version 10.0. The execution time

limit was set to be 7 days maximum. The process was set to terminate in advance

when the solution gap is less than 0.01%. We offered 20 and 10 as the initial numbers

of half-sibling set for crickets and rockfish, respectively.

5. RESULTS

5.1. Half-Sibs Model Computational Limitations

For both datasets the Half-Sibs Model was unable to prove the optimality of the

solution it found in the allocated 7 days. We report the results that were obtained

at the end of the period. This also shows that our Half-Sibs Min Set Cover

approach is very efficient as it was able to solve both of the instances in less than

a day.

5.2. Biological Datasets

Crickets

Our Half-Sibs Min Set Cover approach gives good results, the only difference

with the ground truth is that two of the elements are assigned to more than one

half-sibling groups. The Min Full-/Half-Sibling solution classifies 20 out of

111 individuals incorrectly. COLONY produces an accurate result. See Table 2 for

details. Note that COLONY does not allow overlap between half-sibling groups

because it assumes that one of the sexes is monogamous.
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Table 2: Half sibling groups obtained for Crickets using four different methods

(n = 112).

(a) Original

Set(1) 0 – 15

Set(2) 16 – 31

Set(3) 32 – 47

Set(4) 48 – 63

Set(5) 64 – 79

Set(6) 80 – 95

Set(7) 96 – 111

(b) Half-Sibs Min Set
Cover

Set(1): 0 – 15

Set(2): 16 – 31 110

Set(3): 32 – 47

Set(4): 48 – 63

Set(5): 64 – 79

Set(6): 80 – 95

Set(7): 73 96 – 111

(c) Min Full-/Half-Sibling

Set(1): 0 – 15 33

Set(2): 13 32 34 73 80 96 109

Set(3): 16 – 31 80 81 82 – 85 87 89 90 – 95

Set(4): 35 – 47

Set(5): 48– 63

Set(6): 64 – 72 74 – 79

Set(7): 80 81 86 88 89 96 – 111

(d) COLONY

Set(1): 0 – 15

Set(2): 16 – 31

Set(3): 32 – 47

Set(4): 48 – 63

Set(5): 64 – 79

Set(6): 80 – 95

Set(7): 96 – 111

(e) Half-Sibs Model ILP

Set(1): 0 - 15

Set(2): 16-31 110

Set(3): 32 - 47

Set(4): 48 - 63 44 96

Set(5): 62 - 79 102

Set(6): 97 - 101 103 - 109 111

Set(7): 80 - 95

Rockfish Larvae Subset

Three approaches: Half-Sibs Min Set Cover , Min Full-/Half-Sibling, and

COLONY - produced 100% accurate assignments. See Table 3 for details. Half-

Sibs Min Set Cover solution had an overlap of 4 out of 288 individuals.

5.3. Simulated Datasets

As expected, the ratio of the numbers of fathers to the number of mothers is the

major factor in the accuracy of reconstruction. When the number of fathers and

mothers are comparable, it is possible to pick many alternative parsimony-based

reconstructions, thus the accuracy was low for such scenarios. Table 4 presents the

results of the reconstruction by the three methods.
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Table 3: Half sibling groups (sets) obtained by four different methods from a Rock-

fish Larva Subset (n=288). Bold-face numbers and underlined numbers represent

overlaps and misassignments, respectively.

(a) Original

Set(1) 0 – 95

Set(2) 96 – 191

Set(3) 192 – 287

(b) Half-Sibs Min Set Cover

Set(1) 0 – 95 125

Set(2) 96 – 191

Set(3) 111 147 182 192 – 287

(c) Min Full-/Half-
Sibling

Set(1) 0 – 95

Set(2) 96 – 191

Set(3) 192 – 287

(d) COLONY

Set(1) 0 – 95

Set(2) 96 – 191

Set(3) 192 – 287

(e) Half-Sibs Model

ILP

Set(1): 0 - 95

Set(2): 96 - 191

Set(3): 192 - 287

Table 4: Accuracy results for Min-Half-Sibs, Min Full-/Half-Sibling and

COLONY algorithms for the simulated datasets.

F
a
th

er
s

M
o
th
er
s

L
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ci

A
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el
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F
a
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O
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ri
n
g

Min-Half-Sibs Min Full-/Half-Sibling COLONY
µ σ µ σ µ σ

2 20 6 5 40 2 100 0 66.3 13.99 96.15 10.1
2 20 6 10 40 2 100 0 47.5 7.07 99.8 1.99
2 20 10 10 20 2 100 0 60.45 15.48 99.9 0.99
2 10 6 10 2 10 80 24.49 80 24.49 90 20
2 10 6 15 2 5 70 24.49 70 24.49 75 25

µ: Mean of partition distance

σ: Standard Deviation of partition distance

6. CONCLUSIONS

We have developed new intuitive formulations for reconstructing half-sibling rela-

tionships from microsatellite markers. We make no assumptions about the data or

mating patterns other than parsimony and Mendelian genetics. We have also dis-

cussed the complexity of the proposed formulations and provided exact algorithms

to solve these. Unfortunately, the resulting optimization problems are APX-hard

and the approaches are computationally intense in practice.

We have presented both algorithmic and Integer Linear Programming solutions
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to the problem. We showed that our Half-Sibs Min Set Cover algorithm pro-

vides a solution that is more efficient than the ILP when solved on a state-of-the-art

ILP solver, CPLEX.

The Half-Sibs Min Set Cover method correctly reported all the half-sibling

groups on biological data and on simulated data when the number of mothers or

fathers was much larger than the other. While this approach is not very efficient,

we are currently working on techniques to make this approach more efficient and

scalable. Depending upon the number of alleles per locus and the number of loci,

the Half-Sibs Min Set Cover approach tends to be as efficient as COLONY.

However, the algorithm presented here can be easily parallelized by applying domain

and functional decomposition using the methodology described in Ref. ?. While the

Min Full-/Half-Sibling approach was not very accurate, it is more efficient as

it explores a much smaller space of solutions.

As discussed in Ref. 5, for wild and endangered populations parsimony seems to

be the only assumption we can make since any judgments about allele frequencies,

mating patterns, and family sizes may be invalid. We argue that our methodology is

superior as it gives accurate results without the assumptions made by other meth-

ods. We have avoided the assumption of monogamy and emphasized the problems it

can raise. Our results (Table 4) show that our approach is capable of reconstructing

half sibling groups in populations where neither of the sexes is monogamous.

Clearly, the proposed approaches, including COLONY, are not computation-

ally scalable in practice. However, our work lays the foundation for understanding

the computational structure of the half-sibling problem. We consider our methods

as a starting point for developing viable practical solutions for half-sibship recon-

struction. We have recently introduced the first high-performance approach to full

sibling reconstruction?, which adapted to make the Half-Sibs Min Set Cover

approach more scalable.

In the future, we intend to extend this work to handle data with genotyping

errors using consensus methods, similar to our work for full-sibling groups 18. We

will also try to make detailed comparisons to the recent version of COLONY25. Fur-

thermore, we will investigate whether the half-sibling group information obtained

through the techniques presented in this paper can help understand other kinship

relationships.
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