
An Integrated Optimization Framework for Inferring Two
Generation Kinships and Parental Genotypes from

Microsatellite Samples

Daehan Won
Chun-An Chou

∗

W. Art Chaovalitwongse
†

Departments of Industrial &
Systems Engineering and
Radiology, University of

Washington
Seattle,WA 98195

wondae@uw.edu
joechou@uw.edu
artchao@uw.edu

Tanya Y. Berger-Wolf
Bhaskar Dasgupta
Ashfaq A. Khokhar

Marco Maggioni
Department of Computer

Science, University of Illinois
at Chicago

Chicago, IL 60607
tanyabw@cs.uic.edu

dasgupta@bert.cs.uic.edu
ashfaq@cs.uic.edu
mmaggi3@uic.edu

Mary V. Ashley
Jason Palagi

Department of Biology,
University of Illinois at Chicago

Chicago, IL 60607
ashley@uic.edu
jpalag2@uic.edu

Saad Sheikh
Department of Computer &

Information Science &
Engineering, University of

Florida
Gainesville, FL 32611

ufl@saadshekh.com

ABSTRACT
With the growing development and application of genetic
data availability, it provides new possibilities in establish-
ing the genealogical relationships of individual organisms
such as sibling reconstruction, parentage inference, and in-
heritance investigation. We propose a new integrated opti-
mization framework for parental reconstruction of a single-
generation population using microsatellite data. Without
prior information about the population, our optimization
framework uses the combinatorial concepts of Mendel’s laws
of inheritance to reconstruct sibling groups and in turn iden-
tifies the associated parental genotypes. The effectiveness
and robustness of our proposed approach were evaluated by
both real biological and simulated data sets, covering dif-
ferent mating systems: monogamy, semi-monogamy, and
polygamy. Additionally, we compared the results of the
proposed approach with other state-of-the-art sibship re-
construction and parentage inference methods. The results
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demonstrate efficient and accurate inference for parental geno-
types, and potentially suggest that our framework can pro-
vide an insightful roadmap for investigators to navigate fun-
damental ecological and evolutionary studies.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization–Integer
programming
; G.2.1 [Mathematics of Computing]: Discrete mathematics–
Combinatorics
; J.3 [Computer Applications]: Life and Medical Science–
Biology and genetics

General Terms
Algorithms, Performance

Keywords
Computational biology, microsatellites, population biology,
optimization algorithm, parentage inference

1. INTRODUCTION
Emerging technologies of molecular markers have enabled

biologists to investigate the genealogical relationships among
individuals and pedigree in wild populations. However, in-
ferring such genetic information (e.g. kinship and pedigree)
is still extremely hard to do from observations alone [2].
Microsatellite biomarkers provide new possibilities to de-
velop more advanced computational methodologies of defin-
ing pedigree relationships that they are very vital in various



research fields, for example, mating systems, social behavior
or organizations, and isolation by distance and spatial ge-
netic structure in wild populations [9, 12, 19, 22]. As part
of pedigree relationships investigation, sibling group iden-
tification provides inference of many meaningful and useful
biological parameters, including the number of reproducing
adults, their fecundity, and the average size of litters [6].
For studies of evolutionary genetics, kinship inference can
be used for assessing the inheritance of adaptive attributes
and how they will behave in natural selection [6]. While
real life applications of genetic markers are showing progress,
in parallel, many statistical approaches which are based on
Mendel’s law of inheritance have been studied to analyze
genetic marker data [2, 15, 22].

However, the above mentioned statistical methods have
shown limited availabilities for practical problems [4]. Most
methods infer a single generation relationship [15], either
parentage or full sibships [2] with overlooking any other re-
lationships and uncovered information [22]. Moreover, those
methods require some prior knowledge of typical allele distri-
bution and frequency, population size, and other information
about the species [2]. To compensate these shortcomings,
combinatorial approaches for sibship inference that do not
require any prior genetic information have been proposed [6,
20]. Even though these approaches have been able to pro-
vide more practical and applicable solutions, the solutions of
these approaches are not sufficient to define pedigree infor-
mation because of the lack of parentage inference. Besides,
these approaches solve for full or half sibship relationships
independently, and they cannot construct such general pedi-
gree structure at the same time.

In this paper, we present an integrated optimization frame-
work for the sibling reconstruction and parental inference
using microsatellite data acquired from a single generation.
Similar to previous studies by our group [5, 6, 20], we as-
sume that there is no prior knowledge about the popula-
tion. Specifically, our framework can be divided into two
sequential stages: half sibling reconstruction and full sibling
reconstruction subsequently. Our approach employs math-
ematical programming methods that have been developed
previously by our group [6, 20]. After the reconstruction
steps, the parentage information is inferred by using the de-
rived information from the proposed sibling reconstruction
steps. Through our framework, we can acquire two genealog-
ical information such as sibship reconstruction and parental
inference simultaneously. Consequently, we can derive the
meaningful information of genealogical relationship such as
sibship and pedigree, using the solutions obtained from our
framework.

The organization of the paper is as follows. In Section
2, we describe the background of the two generation sib-
ship problem and genetic data representation. In Section
3, we present the proposed framework. In Section 4, we
demonstrate the computational experiments for both real
and simulated data sets, and compare our approach with
other existing methods. We conclude our work in Section 5.

2. BACKGROUND
Microsatellites are among the most commonly used ge-

netic markers in sibship and population studies. Microsatel-
lites are short tandem repeats of DNA sequences that vary
in length. In the genome, microsatellites occur at specific
locations (i.e., loci) on a chromosome. An allele is a distinct

pattern of variable DNA sequences in microsatellites [6]. In
this study, we present microsatellites data mathematically
as a sequence of integer {0, 1, 2} showing allele and locus
information for each individual. To transform microsatellite
data into such a mathematical representation, we define the
following sets which will be used throughout the paper: I is
a set of individuals, J is a set of reconstructed sibling groups,
K is a set of alleles and L is a set of loci. A multi-dimensional
data matrix is defined as alik ∈ {0, 1, 2} of individual i ∈ I
at locus l ∈ L. This matrix represents the indication of het-
erozygous alleles (alik = 1) at a locus as well as homozygous
alleles (alik = 2) and (alik = 0) represents allele k is not
present.

In biology, Mendel’s law of inheritance is the rule that de-
scribes the constraints of genetic inheritance: an offspring
inherits one allele from each of its parents at each locus,
and the inheritance pattern of alleles at one locus is inde-
pendent of other loci [3, 18]. Based on the rule, the 2-allele
constraints have been proposed as a sufficient condition for
establishing sibling relationships [1, 5, 6]. The 2-allele con-
straints are defined: (1) the number of distinct alleles plus
the number of homozygous alleles at each locus is less than
four and (2) each allele cannot appear together with more
than two other alleles at each locus. A full sibling group
is defined as a group that all members have to satisfy the
2-allele constraints and have both parents in common. In
addition, half sibling relationships have also been investi-
gated. A half sibling group can be defined as a group that
all members have one of parents in common [20]. Further-
more, full sibling groups belong to a half sibling relationship
if one of shared parents appears to be the same across the full
sibling groups. Both of half sibling groups and full sibling
groups can be reconstructed by the mathematical optimiza-
tion models developed in [6, 20].

3. METHOD
In this section, we present a new integrated optimization

framework for the sibship reconstruction and parentage in-
ference as described in the following steps.

First, we reconstruct half sibling groups such that each
group member is a half sibling of each other. In a population,
there exist a number of half sibling groups [20], and every
individual is assigned to at least one half sibling group. Let
Hj is the j-th half sibling group; I =

⋃
∀j∈J Hj , where J is

the set of half sibling groups and I is the set of individuals in
the population. After individuals in a half sibling group are
assigned, the shared parent is identified and its associated
genotypes are inferred. The detail is explained in Section
3.1.

Second, we reconstruct full sibling groups from the half-
sibling solutions. In each half sibling group, we attempt
to find subgroups whose members have both of parents in
common, which in turn considered to be full sibling groups.
Each individual can also be assigned to at least one full
sibling group. We can represent a half sibling group Hj =⋃
∀k∈K Fk, where Fk is k-th full sibling group belonging to

half sibling group Hj . The procedure of the above two steps
is repeated |J | times for each half sibling group [6, 20].

Third, according to Mendel’s law of inheritance, any indi-
vidual who belongs to a full sibling group inherits its geno-
types from parents. Since we determine individual assign-
ments to single full sibling group and one of the parents from
the previous two steps, we can infer the other one of par-



Figure 1: Flowchart of the proposed integrated
framework for inferring two generation kinships and
parental genotypes from microsatellite data.

ents using these predetermined information conversely (See
Section 3.3).

3.1 Half Sibling Model
We describe the reconstruction of half sibling relation-

ships. We define binary variables used in the mathematical
model as follows: xij indicates if individual i is assigned to
be a member of half sibling group j, zj indicates if group j is
selected or not, wl

jk indicates if allele k appears in half sib-

ling group j at locus l, and alik is the number of times allele
k appears in individual i at locus l. The optimization model
for the half sibling reconstruction is formulated as follows.

min
∑
j∈J

zj (1)

s.t. xij ≤ zj ∀i ∈ I, ∀j ∈ J (2)∑
j∈J

xij ≥ 1 ∀i ∈ I (3)

∑
k∈K

alikw
l
jk ≥ xij ∀i ∈ I, ∀j ∈ J,∀l ∈ L (4)

∑
k∈K

wl
jk ≤ 2 ∀j ∈ J, l ∈ L. (5)

Equation (1) is the objective function to minimize the
number of half sibling groups. Equations (2) and (3) present
the logical constraints to ensure that any individual i is to
assigned to at least one of half sibling groups in J . Equations
(4) and (5) ensure that half sibling groups contain no more
than two alleles at each locus.

If binary decision variable wl
jk is activated (e.g., wl

jk =
1), then it represents that every individual assigned to half

sibling group j commonly shares allele k at locus l. In other
words, every individual in half sibling group j has an allele
k at locus l in common. Hence, we can conclude that all of
these common alleles represent the genotypes of the shared
parents of half sibling groups.

3.2 Full Sibling Model
In this section, we present full sibling reconstruction. Full

sibling reconstruction is formulated around the 2-allele con-
straints [6].

We define binary decision variables zj and xij which indi-
cate similar representation in that of the half sibling model,
where J represents the set of full sibling group instead. Inte-
ger variable yljk indicates if any members in full sibling group

j has heterozygous (yljk = 1) or homozygous (yljk = 2) allele

k at locus l and binary variable vljkk′ indicates if allele k
appears in the current full sibling group j at locus l. The
optimization model for the full sibling reconstruction is for-
mulated as follows.

min
∑
j∈J

zj (6)

s.t. xij ≤ zj ∀i ∈ I, ∀j ∈ J (7)∑
i∈I

xij ≥ 1 ∀j ∈ J (8)

∑
i∈I

alikxij ≤ yljk ∀k ∈ K,∀j ∈ J, ∀l ∈ L (9)

∑
k∈K

yljk ≤ 4 ∀j ∈ J, ∀l ∈ L (10)

∑
i∈I

alika
l
jk′xij ≤Mvljkk′ (11)

∀k ∈ K, ∀k′ ∈ K \ k, ∀j ∈ J, ∀l ∈ L∑
k′∈K\k

vljkk′ ≤ 2 ∀j ∈ J, ∀k ∈ K,∀l ∈ L. (12)

Equation (6) is the objective function that minimizes the
number of full sibling groups. Equations (7) and (8) de-
scribe the logical constraints similar to Equations (2) and
(3). Equation (9) ensures that allele indication variable yljk
is activated if individual i is assigned to full sibling group j.
Equation (10) constrains that the numbers of heterozygous
alleles and homozygous alleles are less than or equal to 4.
Equation (11) is the restriction of the binary variable vljkk′ ,
which must be activated for any assignment of individual i
to full sibling group j. M is a positive large number, where
M = |I|+1. Equation (12) ensures that every allele in full
sibling group j cannot exist with more than two other alleles
at each locus.

3.3 Parental Inference
The genotypes of the shared parents can be inferred by

identifying a pair of alleles, for which every individual is
inherited from at least one of the parents. The genotypes
of the unknown parents are then determined by examining
the combination of alleles from the known parents across
loci. When the offspring population is known to contain half
and full sibling relationships, we can construct the parental
genotypes from the offspring genotypes [7, 8, 13].

From Mendel’s law of inheritance [3, 18], if one of the
parents is known, then the alleles of the other parent can
be decided by subtracting the known parent’s alleles from



the offsprings. In other words, in order to infer the unknown
parent, we need the genotypes of the known parent and their
offsprings. Population with no known parents, the parentage
reconstruction problem is not far more complicated than the
populations with known parents [16].

According to our framework, a single half sibling group is
in fact decomposed into several full sibling groups. From the
definition of half sibling relationships, the decomposed group
is referred as the group of full siblings that share common
parents. Recall the half sibling model in Section 3.1, the bi-
nary decision variable wl

jk is used to represent the genotypes
of the shared parent of half sibling group j. Thus, one of
the parents for each full sibling group can be consequently
defined by wl

jk. Using Mendel’s law, the unknown parent for
each full sibling group can be identified by the genotypes of
individuals in the full sibling group and one of the parents
from half sibling reconstruction stage.

Suppose that one shared parent of single full sibling group
Fj is p(Fj) = {f l, bl}, where f l represents front allele and bl

represents back allele at locus l, respectively. We can define
that one shared parent p(Fj) can be expressed by

p(Fj) = {f l, bl} = {k | wl
jk = 1} ∀j ∈ J, ∀l ∈ L.

Additionally, we present the i-th individual in full sibling
group Fj as xi = {f l

i , b
l
i} ∀l ∈ L. Similar to the above

definition, f l
i and bli indicate the front and back allele of

individual i at locus l. Unknown parent p̂(Fj) can be defined
by

p̂(Fj) = {f̂ l, b̂l}

s.t. {f̂ l, b̂l} ∪ {f l, bl} =
⋃
∀i∈Fj

{f l
i , b

l
i}, ∀l ∈ L.

4. EXPERIMENTAL RESULTS
In this section, we present the experimental results of the

proposed approach for both real and simulated data sets.
We implemented our approach in C# synchronized with the
optimization solver ILOG CPLEX 12.2. All tests were run
on Intel Xeon 2.33 GHz×8 processors workstation with 24
GB RAM memory.

4.1 Evaluation
To evaluate the effectiveness of the proposed framework,

we employ group assignment accuracy and individual pair-
wise accuracy concurrently, which are addressed as follows.

4.1.1 Group Assignment Accuracy
The correctness of group assignment is obtained from a

minimum partition distance, which is defined as the smallest
number of individuals that need to be removed from the
population to make two partitions equivalent [10, 20]. From
our previous work [6], the minimum partition distance can
be transformed into a maximum linear assignment problem
(MLAP).

However, this evaluation may overestimate sibling assign-
ment because these sibling groups are obtained by solving
a set covering model. Since our mathematical models are
based on a set-covering structure, using MLAP for calcu-
lating accuracy may not be a proper way to evaluate the
effectiveness because it causes an overestimation. For in-
stance, there are two original groups {1, 2, 3} and {4, 5,
6} (The number means an index of each individual). If re-
constructed groups are {1, 2, 3} and {1, 2, 4, 5, 6}, then

the calculated accuracy by MLAP would be 100%. In or-
der to calculate accuracy precisely, we propose a modified
model (MLAP-m) of MLAP. To prevent “overestimate” the
reconstructed results, we propose a new way to quantify the
accuracy. We combine “presence” with “absence” of individ-
uals between actual and reconstructed groups. Note that
“presence” is somewhat similar to, but not, the cost as in-
put in the general mathematical model. We define a binary
variable ui

a indicating if individual i appears in actual group
a correctly and a binary variable ui

r indicating if individual
i appears in reconstructed group correctly. For each pair
of actual and reconstructed groups, we can identify “match”
and “mismatch” as follows. car =

∑
i∈I c

i
ar for ui

a = ui
r = 1

and dar =
∑

i∈I d
i
ar for ui

a = ui
r = 0.

By taking summation over all individuals, we can obtain
“presence” and “absence” information for all pairs. Here, car
and dar are sensitivity and specificity essentially. We then
redefine the mathematical model with these two inputs as
follows.

max α
∑
a∈A

∑
r∈R

carxar + β
∑
a∈A

∑
r∈R

darxar (13)

s.t.
∑
a∈A

xar ≤ 1 ∀ r ∈ R (14)

∑
r∈R

xar ≤ 1 ∀ a ∈ A (15)

xar ∈ {0, 1}. (16)

The objective in Equation (14) is to maximize the sum
of sensitivity and specificity, while the constraints ensure
that each reconstructed group is assigned to as most one
actual group. α and β are the weights (between 0 and 1) of
sensitivity and specificity in the objective function.

4.1.2 Individual Pairwise Accuracy
In this section, we introduce the other measurement for

individual pairwise accuracy. The idea is to assess if a pair
of individuals is in the same reconstructed groups or not
compared to the actual groups. Let suppose sets A and
R are binary, and their elements are denoted by aij and
rij , respectively. These indicate that if individual i and j
are in the same actual and reconstructed groups. |A| =
|R| = n, where n is the total number of individuals. On
the other hand, we can also describe “absence” information
and introduce binary sets Ã and R̃ which satisfy following
condition: ãij + aij = 1 (ãij ∈ Ã, aij ∈ A) and r̃ij + rij = 1

(r̃ij ∈ R̃, rij ∈ R).
Consequently, individual pairwise accuracy is calculated

as follows. Sensitivity represents the “presence” information
of individual pairs and specificity represents the “absence”
information of individual pairs.

Sensitivity =

∑
∀i,j∈I,i<j aijrij∑
∀i,j∈I,i<j aij

Specificity =

∑
∀i,j∈I,i<j ãij r̃ij∑
∀i,j∈I,i<j ãij

4.1.3 Inferred Parental Information Accuracy
Additionally, we define another measurement to calcu-

late an accuracy of inferred parental genotypes. We could
acquire parental inference information through our frame-
work. For calculating inferred parents accuracy, we com-



Figure 2: Group assignment accuracy(MLAP(a), MLAP-m(b)) and parentage inference accuracy (c) for
simulated data sets

pare alleles between actual parents and inferred parents by

a simple counting way: 2|L|−|U|
2|L| , where |L| and |U | represent

the number of sampled loci and the number of uncorrected
match of alleles between actual and inferred parents, respec-
tively.

4.2 Real Biological Data
We conducted experiments for both a real biological data

set and simulated data sets. In this section, we present the
experimental results using a real biological data set which is
considered as benchmark data because its actual full sibling
relationship was predetermined. The data set used in this
paper was containing missing allele information because of
technical errors in acquiring and scoring microsatellite data.
In this study, any missing alleles or detected genotype error
was replaced by a wild card“-1”to indicate the missing infor-
mation. When our approach performs sibling reconstruction
for each individual, a wild card could be transformed to any
allele [6]. We used Ant data set and its specification is as
follows.

Ant: The Leptothorax acervorum data set [11] is hap-
lodiploid species. The data set consists of 377 worker diploid
ants. This data set is a subset of one of the samples used by
Wang [21]. There are 9% missing alleles in the data set.

The result for Ant data set is shown in Table 1. From
the Table 1, our approach shows little short of perfect re-
construction. Especially, Higher values of group assignment
and individual pairwise accuracies support that our frame-
work provides robust reconstruction results with preventing
overestimation.

Table 1: Reconstructed accuracies for the real data
set.

Group assignment Accur. Individual pairwise Accur.
MLAP MLAP-m Sensitivity Specificity

Ant 0.939 0.980 0.902 0.998

4.3 Simulated Data
To verify our framework’s validity, we employed a ran-

dom population generator to create various simulated data
sets [6]. The random population generator requires the fol-

lowing parameters. M is the number of adults males, F is
the number of adults females, l is the number of sampled
loci, a is the number of alleles per locus, g is the number of
groups in the population per one adult female, and o is the
maximum number offsprings (individuals) per parent couple.
The parameters are shown in Table 2. For each configura-
tion, we generated 25 replications to verify our approach’s
stability. We conducted experiments for simulated data sets

Table 2: Input parameters for simulated data sets.
Input values

Parameters Symbol Monogamy Semi- Polygamy
Monogamy

Adult female F 5,10,15 1 5,10,15
Adult male M 5,10,15 5,10,15 5,10,15

Sampled loci l 2,4,6 2,4,6 2,4,6
Allele per loci a 5,10,15 5,10,15 5,10,15

Groups g 5,10,15 5,10,15 5,10,15
Offsprings o 5,10 5,10 5,10

to demonstrate the effectiveness.
Depending on the input data sets, our mathematical model

may require huge running time to solve the problem. In or-
der to conduct reasonable test, we set a stopping criterion
which was set to be either 5 hours (18,000 seconds) run-
ning time or a predetermined solution quality. Test results
contained two effectiveness measurements, “assignment ac-
curacy” and “inferred parental information accuracy”. The
accuracies are reported as averaged accuracies of 25 repli-
cates.

Figures 2 and 3 illustrate the performance trends for our
approach when varying the number of alleles per loci, the
number of sampled loci and the number of parents. In Fig-
ure 2, the accuracy increases as alleles and loci increases for
our approach. In Figure 3, pairwise accuracy shows similar
performance trend with group assignment accuracy. How-
ever, in Figures 2 and 3, we can also observe that the accu-
racy decreases as the number of parents increases. Increas-
ing number of parents means the number of individuals in
a population is increasing and it causes a high computa-
tional complexity to solve the problem. Since we restricted
the running time as 5 hours for each stage, some data sets
might contain relatively lower quality solutions (e.g. not
optimal) than the data sets which were solved in time. In



Figure 3: Individual pairwise accuracy with each
parameter for simulated data sets.

Table 3: Performance comparison with existing ap-
proaches.

GERUD2.0 COLONY Our approach
MLAP 0.900 0.650 0.950
MLAP-m 0.825 0.825 0.925
Sensitivity 0.820 0.489 0.911
Specificity 0.760 0.999 0.800
Parentage accuracy 0.969 0.531 1.000
CPU time (second) 12 41 ≤ 1

Figure 2, parental inference accuracy was shown to be unaf-
fected by the changing of parameters. Although it has been
shown to be slightly difference with alleles increasing, most
results were not changed drastically along with parameters
changing.

4.4 Comparison with Existing Approaches
In this section, we evaluated our approach compared to

other existing approaches such as COLONY [17] and GERUD
2.0 [14]. Although there exist several applications for sib-
ship reconstruction and parentage inference, COLONY and
GERUD 2.0 seem to be appropriate applications for the per-
formance comparison considering their availabilities and ob-
jectives. Even though all approaches were based on different
algorithm, all of these algorithms could generate sibling re-
construction assignment result.

We set performance measurements which were group as-
signment accuracy (MLAP, MLAP-m), pairwise accuracy
(sensitivity, specificity), and parental inference accuracy. Since
GERUD 2.0 had several restrictions to process, we used a
simple data set which could be properly solved in all of meth-
ods. We set input data as following: The number of females:
1, the number of males: 2, the number of alleles per loci: 15,
the number of loci: 4, the number of groups: 2, and the num-
ber of offsprings per each group: 10. Basically, GERUD 2.0
supported only semi-monogamy mating system so we used
semi-monogamy simulated data sets made by random pop-
ulation generator. Test results are shown at Table 3.

From Table 3, we observed that our approach showed rel-

atively higher performance than others. Especially our ap-
proach provided 100% match for parental inference accu-
racy and showed fastest running time. The main reason was
that our model was focused on showing effectiveness and
optimality about those measurement performance unlikely
other algorithms which were focused on feasibility. Actu-
ally, GERUD 2.0 was based on a brute - force algorithm.
It may be easier to implement but less effective. When we
compared with COLONY, our approach showed comparable
performance result.

Since the GERUD 2.0 supported only monogamous mat-
ing system, we conducted additional tests with COLONY
under three different mating systems for specified compar-
ison. Basically, COLONY has an input parameter setting
module as prior information such as mating type, species,
analysis method, likelihood precision, run specification and
sibship prior [17]. In our test, we set input parameters
for COLONY as default except mating types selection. In
COLONY, we selected different mating systems such as monogamy,
semi-monogamy and polygamy, and conducted comparison
tests using simulated data sets which had three different
mating systems.

Figure 4: Group assignment accuracy (MLAP-m)
for our approach and COLONY with three different
mating systems.

In Figures 4, 5, 6 and 7, “C:Poly”, “C:Semi” and “C:Mono”
indicate that input parameter setting for COLONY is“Polygamy”,
“Semi-monogamy”,and “Monogamy”, respectively. We can
observe the performance trend for our approach and COLONY
when varying the number of alleles per loci and the number
of sampled loci. In semi-monogamy and polygamy mating
systems, our approach has shown relatively accurate solu-
tion than COLONY even COLONY was performed under
correct setting. In monogamy mating system, COLONY
has shown slightly better solution than ours. In Figure 7,
for comparing processing time, our approach was faster than
COLONY.

5. CONCLUSIONS
In this paper, we presented an integrated optimization

framework for inferring sibship and parentage from single



Figure 5: Individual pairwise accuracy (Sensitivity)
for our approach and COLONY with three different
mating systems.

Figure 6: Individual pairwise accuracy (Specificity)
for our approach and COLONY with three different
mating systems.

generation microsatellite samples. Our new framework was
developed and shown to be generalization of the sibship re-
construction and parentage inference. We implemented and
tested our framework on both real biological and simulated
data and compared the performance of our approach with
other state-of-the art method. By analyzing the results, we
confirmed that our approach provided accurate and robust
solutions to sibship reconstruction and parentage inference.
Our approach outperformed other existing methods.
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