Computer Science Department
University of Minnesota
Twin Cities
4-192 EE/CSci Building
200 Union Street S.E.
Minneapolis, MN 55455

On the Greedy Algorithm for a
Covering Problem
by
Bhaskar Dasgupta, Ravi
Janardan, and Naveed
Sherwani

TR 93-13
February, 1993
Technical Report

'On the Greedy Algorithm for a Covering
Problem

Bhaskar Dasgupta® " Ravi Janardan! Naveed Sherwani
February 11, 1993

 Abstract

The following problem, called the k-set cover problem, is considered: Given
a family of sets consisting of non-negatively weighted elements and an integer
k, find a subfamily of & sets such that the sum of the weights of the elements in
the union of the k sets is maximum, The k-set-cover problem is an abstraction
of many commonly-arising combinatorial problems, such as, for instance, cer-
tain problems in facilities location and task assignment; however, it is NP-hard.
Lower and upper bounds are established here on the quality of the approxima-
tion delivered by the greedy algorithm. Using the lower bound result, a simple
proof is given of a well-known rtesult concerning the performance of the greedy -
algorithm for the related minimum-set-cover problem. Also discussed is a spe-
cific example of the k-set-cover problem, namely, covering points in the plane
with k axes-parallel rectangles.

Keywords: facilities location, greedy algorithm, rectangle cover, set cover.

*Dept. of Computer Science, University of Minnesota, Minneapolis, MN 55455. E-mail:
dasguptadcs.unn.edu. Research supported in part by NSF grant CCR-82-08913.

tDept. of Computer Science, University of Minnesota, Minneapolis, MN 55455. E-mail:
janardan@cs.umn.edu. Research supported in part by NSF grant CCR~92-00270.

{Dept. of Computer Science, Western Michigan University, Kalamazoo, MI 49008. B-mail:
sherwani®cs.wnmich.edu. Research supported in part by NSF grant USE-9(-52346.

1

1 Introduction

We consider the following problem, which we call the k-set-cover problem: Let & =
{u1,u2,...,us} be a set of n elements and let w(u;) > 0 be a weight associated with
each u; € U. Let F = {F, F,,...,Fy,} be a family of m subsets of . Given an
integer k, where 1 < k < m, we wish to find a subfamily A = {A;, As,..., Ax} of
F such that w(A) = ¥, j4; w(u) is maximized. (Note that F need not be known
explicitly; it could be defined implicitly by specifying a property on U, as in the
example below.) |

The k-set-cover problem can be viewed as an abstraction of the following problem
in geometric location theory: Suppose that we are given a set of n sites (points) in
R?, d > 1. We wish to locate k facilities (points) such that we maximize the number
of sites that are within a specified distance, r, from at least one facility. (Here, r
is measured in the L;-metric for some ¢ > 1.') In other words, we wish to locate k
points in R? such that we maximize the number of distinct sites that are covered by
(i.e., contained in) the L,-balls of radius r centered at these points.? We can cast this
location problem as a k-set-cover problem by taking U to be the set of sites, setting
w(u;) = 1 for each u; € U, and defining F to be the collection of those subsets F: of
U such that the sites in F; are all coverable by an L¢-ball of radius r centered at some
point in R¢. (Thus F is specified implicitly.) Then each subset A; € A represents
the sites that are covered by some L;-ball in the optimal placement of the k facilities.
(Usually, the process of computing the A;’s will also yield the actual placement of
the facilities.) More generally, each site could have a weight associated with it (e.g.,
a population count) and the goal could be to locate the k facilities so as to maximize
the total weight of the sites covered, rather than the number of sites covered.

In fact, by defining F suitably, we can extend the above interpretation to (i)
covering by k copies of an arbitrary shape (i.e, not just an L.-ball), (ii) covering by
k copies drawn from a set of more than one shape (e.g., circles of different radii,

1f p = (p1,p2,- - -,pa) and ¢ = (q1,43, - ..,¢q) are points in RY, then the L,-distance between p
and ¢ is (Ef=l |Pi = @il*)}/* if 1 <t < 00. The Loo-distance between p and g is max;<i<d [pi — gil-

?In RY, the Ly-ball of radius r centered at a point p is the set of all points ¢ such that the L,-
-distance between p and ¢ is at most r. For example, in R2, such a ball is a circle of radius r and
center p if t = 2, a square of side v/2r centered at p and tilted 45° if = 1, and an axes-parallel
square of side 2r centered at p if £ = co.

. rectangles of different dimensions, or even combinations of circles, rectangles etc.),
and (iii) covering objects other than points (e.g., line segments). Other interpretations
of the k-set-cover problem, for example as a task-assignment problem (see [CLR90]),
are also possible. Thus, due to its many applications, efficient algorithms for the
k-set-cover problem are of considerable interest.

Unfortunately, however, the k-set-cover problem is NP-hard. This follows from
the NP-completeness of the well-known minimum-set-cover problem [CLR90, GJ79]:

“Given a set U = {u;, u2,...,Un}, a family F = {F1, F;,..., Fn} of subsets of U
such that each v, is in at least one Fj;, and an integer ¢, is there a subfamily F’ of F
consisting of at most ¢ sets such that each u; € U is in at least one F; € F'?”

Clearly, the answer to the set-cover problem is ‘yes’ if and only if w(A) = n for
the corresponding g-set-cover problem in which w(u;) = 1 for all u; € U. In fact, even
the problem of covering n points in R? with k axes-paralle] rectangles is NP-hard, if
k is part of the input [FPT81].

A natural approach for the k-set-cover problem is the greedy algorithm, which
iteratively picks subsets Gy, Gy, . .., G of F (in that order) as follows: For any subset
U of U, let the weight of U be w(U) = ¥ e w(u). Then, for 1 < i < k, G; is the
subset of F for which w(G; — U2} G;) is maximum. That is, Gy is a maximum
weight subset of F and, for i > 1, G is a subset of F for which the total weight of the
elements that have not yet been covered is maximum. If T'(n,m) is the time to pick a
maximurmn-weight subset of 7, then the greedy algorithm runs in time Q(kT'(n, m)).

As an example, consider the problem of covering the maximum number of sites in
R? by k axes-parallel rectangles. In the greedy algorithm, we would find the rectangle
which covers the maximum number of sites, delete the covered sites, and repeat the
process k — 1 times. Since a rectangle which covers the maximum number of sites
can be found in time T(n,m) = T(n) = O(nlogn) [[A83], the greedy algorithm runs
in O(knlogn) time. Similarly, for the problem of covering with circles, the greedy
algorithm takes O(kn?) time, since a circle covering the maximum number of sites
can be found in time O(n?) [CL86].

How good is the solution delivered by the greedy algorithm? In this paper, we
give lower and upper bounds on the performance of the greedy algorithm, as stated
in the following theorem:

Theorem 1 Let U = {uy,u3,...,ua} be a set of n elements and let w(u;) > 0
be the weight of u; € U. Let F = {F\, F;,...,Fn} be a family of m subsets of
U. For any integer k > 1, let A = {Ay, Az,..., A} be a subfamily of F such
that w(A) = L,g)a, w(u) is mazimum. Let G = {Gy,Gy,...,Gi} be the solution
produced by the greedy algorithm and let w(G) = LuelJa: w(u). Let pp = w(G)/w(A).
Then

(a) pr > max{3 T2 2+ 3} for any problem instance. Thus, for ezample, p; = 0.75,
p3 = 0.6, py = 0.57 elc., and p; approaches 0.5 for large k.

(b) for each k, there exists a problem instance for which pr = 1 — (1 — 1)*. Thus,
Jor ezample, p2 = 0.75, ps = 0.7, po = 0.68 etc., and for large k, p approaches
1 — 12 0.63, where e = 2.718... is the base of natural logarithms. O

We will give a proof of this result in Sections 2 and 3. Using part (a) of Theorem 1,
we also give, in Section 4, an alternative proof of the well-known result [Chv79,
CLR90] that the greedy algorithm for the optimization version of the minimum-set-
cover problem has a performance ratio of O(logn). (In the optimization version of
the minimum-set-cover problem, we wish to find the smallest number of subsets of
F that cover all the elements of &. The greedy algorithm for this problem works by
repeatedly finding a subset of F which covers the maximum number of elements not
yet covered.) In Section 5, we discuss the problem of covering points in the plane
with k axes-parallel rectangles. We conclude in Section 6 with some open problems.

2 Proof of Theorem 1(a)

Let G} = G; — Uiz} G; and let g; = w(G}), for 1 € i < k. Let A} = A; ~ U} A; and
let a; = w(Aj}), for 1 <7 < k. That is, g; is the total weight of the elements covered
by G: but not covered by any of G1, Gy, ...,Gi.;. Similarly, a; is the total weight of
the elements covered by A; but not covered by any of 4,, Az,...,4;.,.

We note the following: (i) ¢1 2 g2 > ... 2 gx by definition of the greedy method.
Moreover, the sets in A can always be indexed such that a; > a; > ... > a;; thus
we can assume without loss of generality that this is the case. (ii) Any two of the
G}’s are disjoint and so w(G{)...UGi) =g +- -+ g, for 1 <1< k. Likewise, any

4

two of the A}’s are disjoint and so w(AjU...UA}) = a1+ +a;, for1 <j <k
(i) U, Gi = U'e, G) and U, A; = Ujey A, for 1 < 1 < k; thus, in particular,
w(G) =g+ +gr and w(A) = a1+ - + G

We now prove a useful lemma.

Lemma 1 Let ay,...,ar and gi,...,gx be as defined above. Then, for 1 < ¢ Lok,
g1+92+---+§¢_1Za1+a2+...+ak—kg;.

Proof Consider the time at which G is selected. We claim that GjU...UG;_,
covers elements of A’ of total weight at least a; —gi, i.e., w((GyU...UGi.)NAj) 2
a;—giforall j,1 <7< k.

Suppose for a contradiction that the claim is false. Thus, there exists a set Ap,
where 1 < h < k, such that w((G{U...UG!_;)NA}) < as — gi. Then, by selecting
Ay, as our G;, we have g; = w(Ar —UiZ] Gi) 2 w(4} — -1 Gh) = w(AL —UiZi GY) >
ar — (an — gi) = gi, a contradiction. '

Since any two sets A} and Aj, where p # ¢, are disjoint, (GiU...UGi_;)NA})
and (G, U...UG!_;)NA;) are also disjoint. This and the above claim imply that
w(GU...UG\y) 2 (a1 —gi)+--+(ar—g). Thus g1 + g2+ ...+ gi-1 2 @1 taz +
.t ar—kg;.. O

3
Proof of pr 2> 15

By definition ‘of the greedy method, we have g; > a;. Let a > 1 be a real-valued
parameter whose value will be fixed later. We divide the analysis into two parts:
Case 1: g; > a;ifa,for 2 <1 < k.

We then have

I

Pk (gr+---+9g)/(ar 4+ +ax)

> (ot (et +an)/(a+)

a;l(az+---+ak)/(a1+---a,,,)

a k (1)

-

v
et
|

The last step follows from the fact that a; > -}:-(al + .-+ + ay), since it is the
maximum of the a;; thus az + -+ +ax < (1= 3)(a1 + -+ + ax).
Case 2: g; > a;/a, for 2 <i < j, and g; < aj/a, where 2 < j < k. (We do not care
about the g; for i > j.)

By Lemma 1, applied to the selection of G;, we have gy + -+ gj-1 2 a1+ -+ +
ar—kgj. Thus g1+ -+ g 2 g1 +---gi-1+g; 2 a1 +--- +ar — (k- 1)g;.

We now have:

(14 -+ +ax = (k= 1)g;)/(a1 + -~ a)
1—(k—1)g;/(a1+---+ax)
1— (k= 1)Z /(a1 + - +ay)

1= (k=12 /(a4 +a)

v

Pk

v Vv

> 1—(k—1)%/ja_f because a; > a2+ > a;
= 1-(k-1)/ja
> 1-(k—1)/2a (2)

Equating (1) and (2) we get o = £ + 1. Thus p; > 35 +2

1 1
Proof of Pk 2 3 +m

For k > 4, we can strengthen the lower bound on p; from = k 5 to 3 + =5 as follows.

Each G covers some elements (possibly none) of each of A}, A, ..., A that are
not covered by any of G}, G5, ...,G;_,. Denote the total weights of these elements by
Wiy, Wiz, . - - , Wik, respectlvely. Additionally, G may cover elements that are not in any
of the A”s. Denote the total weight of these elements by z;. Hence, ¢; = z;+ 2;__1 Wi
and

k k
2 (@i + Y wij)

w(G) =
=1 y=1
k k
= X+22w.-_,—,
i=1 j=1

where X = 5%, 2;. Also, each A’ may cover elements that are not covered by any
of the G. Denote the total weight of these elements by y;. Hence, ¢; = y; + 5., w;;
and

k

MME=Zm+Z%)

=1 i=1
Tk Ok

= 2o > wij,

1=1li=1

where Y =):le y;. Thus,

o= 2O w(G) 1
FTwA) T w@-X+Y 1+ X

Consider the time at which G, is selected, 1 £ ¢ < k. The total weight of the
elements of A}, 1 < j < k, that are not covered by G1U...UG!_, is P wi; + ¥
By definition of the greedy method, we have

k
yi+ wi; <gip, forl<j<k. (3)

i=1

Summing up (3) over all j we have

k &

Y+Ez:w;j _S kg;

i=li=

k k _
e., Y+ZZw;j < kg

I=i 7=1

k -
lLe, Y+ E(g; —z;) < kg

I=i

k
ey Y-Ya < (k-lgi— 3

B I_=i I=t41
ie, Y—X < (k-1)g, for1 i<k, (4)

" Summing up (4) over all i, we have

&

BY = X) < (k=1)Y g = (k - Lw(G).

i=1
Thus, ¥ w(g) < "—k— and we get

1 k 1 1

= =+

> = =
eI ELT2k—1 2" k-2

_ Combining this with the previous bound we have

[EEATE N
P M T T ak—2)°

which concludes the proof of Theorem 1(a).

3 Proof of Theorem 1(b)

For any k > 1, we will construct an instance of the k-set-cover problem such that
pr =1 — (1 — 1)k (We omit discussion of the case k = 1 since, by definition of the
greedy method, py = 1 for any problem instance.)

Consider the following matrix U = (u;;), where 0 € : < kand 1 < j < k. In what
follows, 8 > 1 is a parameter to be fixed later.

to =1 ugj = 2 2<j<k
uyy =0 ulj=le1 2$j5k
= 1! 2<i<kl1<i<k

The desired k-set-cover instance is as follows: Let U = {u;; |0 <1 <k, 1 <5 < k}
and let w(u;j) = Uyy. Let F = {R], ey R;,,Cl, ‘e ,Ck}, where R, = {u,'j | 1 Sj S k}
is the ith row of U and C; = {u;; | 0 < i < k} is the jth column.

The optimal cover is A = {Cy,...,Ck}, which covers all the elements of &/ and
has total weight w(A) =1+ (k—2)+1+ 25,87 = (k- 1) + =¥ 5. We claim
that 5 can be chosen such that the greedy algorithm selects the sets By, Re—y,..., Ry
(in that order). The total weight of G = {Rs,..., R} is w(G) = %1 #°. Thus,

) 1 1 -
o= WA) T 1+2 oﬁ,_’1+ S)

8

We now demonstrate the existence of a suitable 8. Consider the instant just
before Ry_i41 is selected, where i = 1,2,...,k. Since the Ry’s are all disjoint, the
total weight of the elements covered by Ri_;;; but not by any previously-chosen R
is just w(R—i4+1). Let Cj; C C; be the elements of C; that have not been covered by
the R’s chosen so far, where 1 < j < k. For the selection of Ry,...,R; to be greedy,
we must have: (i) w(Rk—i+1) > w(R-i41), wherel1 <i<k—1and: <<k and
(ii) w(Rr-is+1) 2 w(C};), where 1 <i < kand 1 <5< k.

Consider condition (i). We have w(Ri—i41) = k3B~ = B*~*. Likewise, we have
w(Rg-14+1) = B* (this formula holds for I = k also since w(R;) = (k — 1)L = 1).
Since # > 1 and I > i, we have w(Rg—i4+1) > w(Ri—i4+1) and so (i) holds.

Consider condition (ii). If i = k, then w(R;) =1 and w(C};) = £=2 + &5 =1 for
1 < j < k. Thus (ii) holds in this case. Now consider any i < k. For 1<j <k, we
have

o k-—t k—i _
w(c,:',-)=:_f +Z ﬁ‘ 1+E‘6‘3_1 .
t—l

For (ii) to hold, we want

. kw—:_l
k—1 = Eﬂ
]
k—i
- b AR
’ﬁ_ kE B-1
1 ,
hewil -2 Eﬁ yoimon Tl =130
ig., o 2= k_ﬁl

To make pi in (5) as small as possible, we must choose B as small as possible.

Thus, we choose § = ;£-. Substituting this into (5) and simplifying, we get

(-l

Since (1—})* = (1 - }) - Gy and limgosao(1 + 1)* = e = 2.718...—the base
of natural logarithms—it follows that pi approaches 1 — 2 for large k.

4 Performance bound of the greedy algorithm for

the minimume-set-cover problem

As mentioned in the Introduction, it is well-known (see [CLR90, Chv79]) that for
the optimization version of the minimum-set-cover problem, the number of sets used
by the greedy algorithm to cover & is O(log n) times larger than the number of sets
used by the optimal solution. In this section, we show how this result can be derived
easily once Theorem 1(a) (or any result which gives a constant lower bound on p;) is
known.

Suppose that the optimal solution to a given instance of the minimum-set-cover
problem uses ¢ sets. We claim that the first ¢ (or fewer) sets picked by the greedy
algorithm cover at least n/2 elements of . To see this, consider the ¢-set-cover
problem for this instance, with w(u) = 1 for each u € &. Clearly, the optimal solution
to this instance covers n elements of . Thus, by Theorem 1(a), the greedy algorithm
for this instance of the g-set-cover problem covers more than n/2 elements of /. This
proves the claim since the greedy algorithm is the same for the minimum-set-cover
problem and for the g-set-cover problem.

Thus the number of elements of ¢/ that have not been covered by the first ¢ (or
fewer) greedy sets is n’ < n/2. Consider now the instance of the minimum-set-cover
problem obtained by restricting the original instance to the n’ non-covered elements,
i.e., by deleting the covered elements from & and from the sets in F. Clearly, the
optimal solution to this instance uses at most ¢ sets. Arguing as before, we can show
that the next ¢ (or fewer) greedy sets cover at least n'/2 elements of I.

Thus the number of elements of Z/ that are not covered by the first 2¢ (or fewer)
greedy sets is less than n’ — n'/2 = n'/2 < n/2%. Inductively, the number of elements
of /{ that are not covered by the first jg (or fewer) greedy sets is less than n J2. Tt
follows that the first O(logn) greedy sets suffice to cover all the elements of I , which
establishes the desired performance bound for the minimum-set-cover problem.

5 The k-rectangle-cover problem

This problem is a specific example of the k-set-cover problem and is defined as follows:
We are given a set, S, of n nonnegatively-weighted points in the plane aud a set, T,

10

of t different templates of axes-paralle] rectangles. The goal is to maximize the total
weight of the points covered by k rectangles drawn from 7 (the same template can
be used more than once).

We first note that if k is part of the input, then the problem is NP-hard, even if
t = 1 and the points all have unit weight. This follows from the NP-completeness
of the corresponding minimum-rectangle-cover problem [FPT81], where we have to
decide if a set S of n points in the plane can be covered by ¢ or fewer 1dentical, axes-
parallel rectangles, for any specified integer q. Clearly, the answer to this problem is
‘yes’ if and only if for the corresponding ¢-set-cover problem, with all points assigned
unit weight, the total weight of the points covered is n.

For fixed k > 1, however, the k-set-cover problem can be solved in O(#*n?*-1 log n)
time, as follows: First, note that for k = 1 the problem is solvable in O(in log n) time,
since we can determine the optimal solution for each template in 7 in O(nlogn)
time [IA83]. Now consider the case k = 2. Observe that there is always an optimal
solution in which the left side and the bottom side of one of the rectangles contains
a point of S (the two points could be the same, i.e., they could coincide with the
southwest corner of the rectangle). This is so because given any optimal solution we
can always translate rightwards one of the rectangles until its left side encounters a
point of § and then translate it upwards until its bottom side encounters a point of
S; clearly, this does not affect the total weight of the points covered. Thus, there
are O(in?) choices for one of the rectangles in an optimal solution. For each such
choice, we solve the 1-rectangle-cover problem on the points not covered. Thus the
total time is O(t2n3logn). Inductively, for £ > 2, we can solve the k-rectangle-cover
problem by trying each of the possible O(tn?) choices for one of the rectangles in
an optimal solution and then solving recursively, in O(t*-'n?*-1-1iog n) time, the
(k — 1)-rectangle-cover problem for the points not covered. The total time is thus
O(t*n%*!logn).

The above algorithm is expensive even for small k. However, by using the greedy
algorithm to repeatedly solve (for each template) the 1-rectangle-cover problem on
the points not yet covered, we get a simple algorithm whose running time is just
O(ktnlogn) and whose performance is guaranteed by Theorem 1(a).

For t = 2, the upper bound on p; given by Theorem 1(b) can be translated directly
to the k-rectangle-cover problem by positioning n = k?+ & points on a (k+1) x k grid

11

and letting the rectangle templates be a (k + 1) x 1 rectangle and a 1 x k rectangle.

The upper bound of Theorem 1(b} does not hold for t = 1 (i.e., when we are
covering with k identical, axes-parallel rectangles). For this case, we can establish
upper bounds for any k as follows: For k& = 2, the example in Figure 1(a) provides an
upper bound of &< = 2 + ¢ on i, where ¢ > 0 and € > 0 are vanishingly small. For
k = 3, the example in Figure 1(b) provides an upper bound of Z* = I 4+ ¢ on p;.

- .
® @
1 11 1 i
@ © © © - le ¢ eo! &' ----
e ' E t®
e © © ©o ‘- o1
1 1 1 1 _
(a) ® @l @l

Figure 1: Examples realizing the upper bound when only one rectangle template
{shown dashed) is allowed. The weight of each point is shown beside it. (a) k = 2;
pr=3+¢ (b)k=3; ps=3I+¢. Here e >0 and € > 0 are vanishingly small.

k copies of the example in

F]
Figure 1(a), all sufficiently far apart. This gives an upper bound of (6_;‘;.).5. =324¢
2
k=3

on px. If ¥ > 3 is an odd number, then we simply use %52 copies of the example in

Figure 1{a) and one copy of the example in Figure 1(b), all far apart. This gives an

k=3
upper bound on p; of {S—‘H)k—Tﬂ =34 mTl—ﬁ +¢.

855+

If ¥ > 2 is an even number, then we can simply use

6 Conclusion

We have given almost-matching lower and upper bounds on the- performance of
the greedy algorithm for the k-set-cover problem, which is an abstraction of many
commonly-arising combinatorial problems but is NP-hard.

Several interesting open problems remain: (i) Can the gap between the lower and
upper bounds in Theorem 1 be narrowed further? (ii) Is there an efficient approxima-
tion algorithm (perhaps a polynomial-time approximation scheme) which performs

12

better than the greedy algorithm? (iii) Can fast, exact algorithms be derived for
special cases, such as, for instance, covering points in the plane with k& > 1 identical,
axes-parallel rectangles (or circles), for fixed k7 And (iv) can sharper bounds be es-
tablished on the performance of the greedy algorithm for covering points in the plane-
with & > 1 identical, axes-parallel rectangles?

References

[Chv79] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics
of Operations Research, 4:233-235, 1979.

[CL86] B.M. Chazelle and D.T. Lee. On a circle placement problem. Computing,
36:1-16, 1986.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
MIT Press and McGraw-Hill, 1990.

[FPT81] R.J. Fowler, M.S. Paterson, and 5.L. Tanimoto. Optimal packing and cover-
ing in the plane are NP-complete. Information Processing Letters, 12:133~
137, 1981.

[GJT9] M.R. Garey and D.S. Johnson. Computers and Intractability—A ~guide to
the theory of NP-Completeness. W.H. Freeman, 1979.

_[IA83] "H. Imai and T. Asano. Finding the connected components and a maxi-
mum clique of an intersection graph of rectangles in the plane. Journal of
Algorithms, 4:310-323, 1983.

13

