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Abstract. We consider the problem of efficieapproximate learning by multi-
layered feedforward circuits subject to two objective functions.

First, we consider the objective maximizethe ratio of correctly classified points
compared to the training set size (e.g., see [3, 5]). We show that for single hidden
layer threshold circuits with hidden nodes and varying input dimension, approx-
imation of this ratio within a relative errar/»?, for some positive constant is
NP-hardevenif the number of exampleslisnited with respect ta:. For architec-
tures with two hidden nodes (e.g., as in [6]), approximating the objective within
some fixed factor is NP-harelen if any sigmoid-like activation function in the
hidden layer and-separation of the output [19] is considered, or if the semilinear
activation function substitutes the threshold function.

Next, we consider the objective minimize thefailureratio [2]. We show that it

is NP-hard to approximate the failure ratio within eveopstant larger than 1 for

a multilayered threshold circuit provided the input biases are zero. Furthermore,
evenweak approximation of this objective @most NP-hard.

1 Introduction

Feedforward circuits are a well established learning mechanism which offer a simple
and successful method of learning an unknown hypothesis given some examples. How-
ever, the inherent complexity of training the circuits is tillnow an open problem for most
practically relevant situations. Starting with the work of Judd [15, 16] it turned out that
training is NP-hard in general. However, most work in this area deals either with only
very restricted architectures, activation functions not used in practice, or a training prob-
lem which is too strict compared to practical problems. In this paper we wantto consider
situations which are closer to the training problems as they occur in practice.

A feedforward circuit consists of nodes which are connected in a directed acyclic
graph. The overall behavior of the circuit is determined byalehitecture 4 and the
circuit parameters w. Given apattern or example setP consisting of point$x;; y;), we
want to learn the regularity with a feedforward circuit. Frequently, this is performed by
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first chosing an architectutd which computes a functiofi4 (w, ) and then chosing
the parameterss such thatd4 (w, ;) = y; holds for every patterfw;; ;). Theload-

ing problem (or thetraining problem) is the problem to find weighta such that these
equalities hold. Thelecision version of the loading problem is to decide (rather than to
find the weights) whether such weights exist that Idadnto A.

Some previous results consider specific situations. For example, for every fixed ar-
chitecture with threshold activation function or architectures with appropriately restricted
connection graphloading is polynomial[8, 10, 15, 20]. For some strange activation func-
tions or a setting where the number of examples coincides with the number of hidden
nodes loadability becomes trivial [25]. However, Blum and Rivest [6] show that a vary-
ing input dimension yields the NP-hardness of training threshold circuits with only two
hidden nodes. Hammer [10] generalizes this result to multilayered threshold circuits.
References[8, 11,12, 14, 23, 27] constitute generalizations to circuits with the sigmoidal
activation function or other continuous activations. Hence finding an optimum weight
setting in a concrete learning task may require a large amount of time.

Naturally, the constraintthat all the examples must be correctly classified is too strict.
In a practical situation, one would be satisfied if a large fraction (but not necessarily all)
of the examples can be satisfied. Moreover, it may be possible that there are no choices
for the weights which load a given set of examples. From these motivations, researchers
have considered an approximate version of the learning problem where the number of
correctly classified points is to be maximized. References [1, 2, 13] consider the com-
plexity of training single threshold nodes with some error bounds. Bartlett and Ben-
David [3] mostly deal with threshold architectures, whereas Ben-David et. al. [5] deals
with other concept classes such as monomials, axis-aligned hyper-rectangles, monotone
monomials and closed balls. We obtain NP-hardness results for the task of approximately
minimizing the relative error of the success ratio for a correlated architecture and train-
ing set size, various more realistic activation functions, and training sets without mul-
tiple points. Another objective function is to approximately minimize the failure ratio.
The workin[1, 2] considers inapproximability of minimizing the failure ratio for a single
threshold gate. We show that approximating this failure ratio for multilayered threshold
circuits within every constantis NP-hard and even weak approximation of this objective
function is almost NP-hard. Several proofs are omitted due to space limitations. They
can be found in the long version of this paper.

2 TheBasic Model and Notations

The architecture of a feedforward circditis described by a directed interconnection
graph and the activation functions®f A nodev of C computes a function

k
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ofits inputSu.y, , - . ., Uy, - Zle Wy, Uy, + b, IS called theactivation of the nodev. The
inputs are either external, representing the input data, or internal, representing the out-
puts of the immediate predecessors.cfhe coefficientsy,, ., (resp.b,) are theweights



(resp.threshold) of nodev, andy,, is theactivation function of v. No cycles are allowed
in the interconnection graph 6fand the output of a designated node provides the out-
put of the circuit. Anarchitecture specifies the interconnection structure and-h’s,
but not the actual numerical values of the weights or thresholdsd@fte of a feed-
forward circuit is the length of the longest path of the interconnection grapéyehed
feedforward circuitis one in which nodes at degtire connected only to nodes at depth
d + 1, and all inputs are provided to nodes at debtinly. A layered(ng, n1, .. .,nn)
circuitis a layered circuit with; nodes at depth> 1 whereng is the number of inputs.
We assumey;, = 1. Nodes at depth, for 1 < j < h, are callechidden nodes, and all
nodes at deptlj, for a particularj, constitute theth hidden layer.

A I'-circuitC is a feedforward circuit in which only functions in some geare as-
signed to nodes. Hence each architectdref a I"'-circuit defines a behavior function
B4 that maps from the real weights and the inputs into an output value. We denote
such a behavior as the functién : R — R . Some popular choices of the activa-

1 ifz>0
0 otherwise and the

tion functions are the perceptron activation functii) = {
standard sigmoid sgd) = 1/(1 + e™%).

Theloading problem L is defined as follows (e.g., see [6, 8]): Given an architecture
A and a set of exampleB = {(x;y) | = € R”,y € R}, find weightsw so that for all
(x;y) € M: Ba(w,x) =y . In this paper we will deal with those classification tasks
wherey € {0, 1}. Clearly, the hardness results obtained with this restriction will be valid
inthe unrestricted case also. An examftey) is apositiveexampleif y = 1, otherwise
it is a negative example. An example isnisclassified by the circuit if 4 (w, ) # y,
otherwise it isclassified correctly.

An optimization problemC' is characterized by a non-negative objective function
me(x, y), wherer is an inputinstance of the problegis a solution fore, andme (x, y)
is the cost of the solutiog; the goal of the problem is to either maximize or minimize
me(z, y) forany particular:, depending on the problem. Denote by oft) (or shortly
optx) if C is clear from the context) the optimum valuerat: (z, y). For maximiza-
tion, (opt.(z) — mc(z,y))/opt-(z) is therelative error of a solutiorny. The objective
functions that are of relevance to this paper are as follows:

Success ratio function: my(z,y) =| {x | Ba(w,x) = y} | /|P|is the fraction of
the correctly classified examples compared to the training set size (e.g., see [3]).
Failureratio function: me(z,y) =| {& | Balw,z) # y} |. If opto(z) > 0,
my(x,y) = mc(x,y)/opt. () is the ratio of the number of misclassified examples
to the minimum possible number of misclassifications when at least one missclas-
sification is unavoidable (e.qg., see [2]).

3 Approximating the Success Ratio Function m,

We want to show that in several situations it is difficult to approximaigfor a loading
problemL. These results would extend the results of [3] to more complex situations.
For this purpose, the L-reduction from the so-called MA>ut problem to a loading
problem which is constructed in [3] is generalized such that it can be applied to several



further situations as well. Since approximating the MA>Gut problem is NP-hard, the
NP-hardness of approximability of the latter problems follows.

Definition 1. Given an undirected graph G = (V, E) and k > 2 in N, the MAX-k-cut
problemisto find a function : V — {1,2,...,k}, such that [{(u,v) € E|¢(u) #
P(v)}| /| E| is maximized. The set of nodesin V' which are mapped to i in this setting
is called the ith cut The edges (v;, v;) in the graph for which v; and v; are contained
in the same cut are called monochromatic; all other edges are called bichromatic.

Theorem 1. [17] ItisNP-hard to approximate the MAX-k-cut problem withinrelative
error smaller than1/(34(k —1)) for k > 2, andwithinerror smaller thanc/k3, ¢ being
some constant, £ > 3, even if solutions without monochromatic edges exist.

The concept of ar.-reduction was defined in [21]. The definition stated below is a
slightly modified version of [21] that will be useful for our purposes.

Definition 2. An L-reduction from a maximization problem C; to a maximization prob-
lem C5 consists of two polynomial time computablefunctions7’; and 7%, two constants
a, > 0,and a parameter 0 < a < 1 with the following properties:

(a) For eachinstance I; of Cy, algorithm T produces an instance I of Cs.

(b) The maximaof I; and I, opt(I ) resp. opt(I>), satisfy opt(12) < « opt(1y).

(c) Given any solution of the instance I, of C with cost ¢o such that the relative error
of ¢ isat most a, algorithm T’ produces a solution I; of C; with cost ¢; satisfying

(opt(l1) —c1) < B(0opt(lz) — c2).

If Cy ishardto approximatewithinrelativeerror a/(a3) then Cs ishard to approximate
withinrelative error a.

Consider anL-reduction from the MAX#k-cut problem to the loading probleti
with objective functionn ;, where the reductions performed By andT, have the fol-
lowing additional properties. Given an instadge= (V, E) of the MAX-k-cut problem,
assume that; produces in polynomial time an instangg a specific architecture and
an example set iR x {0, 1} of the loading problend with training set:

— 2|E| copies of each of some set of special poiifge.g. the origin),
— for each nodey; € V, d; copies of one poirg;, whered; is the degree of;,
— for each edgév;, v;) € E, one pointe;;.

Furthermore, assume that the following properties are satisfied:

(i) For an optimum solution fof; the algorithm’ finds an optimum solution of the
instancel; of the corresponding loading problemmin which all special point$,
and all points; are correct classified and exactly those poigjsire misclassified
which correspond to a monochromatic edgg v;) in an optimal solution of ; .

(ii) For any approximate solution of the instantzeof the loading probleni. which
classifies all special points i}y correctly, 7> computes an approximate solution of
the instancd; of the MAX-k-cut problem such that for every monochromatic edge
(vs,v5) in this solution, eithee;, e;, or e;; is missclassified.



An analogous proof to [3] yields the following result:

Theorem 2. Approximation of the above loading problemwithin relative error smaller
than ((k — 1)e)/(k(2|Po| + 3)) isNP-hard since the above reduction isan L-reduction
witha = k/(k — 1), 3=2|P| +3,anda = (k — 1)/(k? (2| Py| + 3)).

3.1 Application to Multi-layered Feedforward Circuits

First we conside -circuits, H (x) being the perceptron activation function. This type
of architecture is common in theoretical study of neural networks (e.g., see [22,24]) as
well as in their practical applications (e.g., see [28]). Assume that the first layer contains
the input nodes, ..., n, h + 1 denotes the depth of th-circuit, andn; denotes the
number of nodes at depthAn instance of the loading problem will be represented by a
tuple(n, nq, na, . .., ny, 1) and by an example set with rational numbers. The following
fact is an immediate consequence of Theogeim [3]:

Foranyh > 1, constant; > 2and anyhs, ...,n, € N, itis NP-hard to approximate
the success ratio function;, with instanceq NV, P), whereN is the architecture of a
layered{(n,n1,...,np, 1) | n € N} H-circuitandP is a set of examples fro@" x
{0, 1}, with relative error at mo68n,2™ + 136n3 + 13612 + 170n,) L.

Correlated Architecture and Training Set Size The above training setting may be un-
realistic in practical applications where one would allow larger architectures if a large
amount of data is to be trained. One strategie would be to choose the size of the archi-
tecture such that valid generalization can be expected using well known bounds in the
PAC setting [26]. Naturally the question arises about what happens to the complexity of
trainingif one is restricted to situations where the number of examples is limited with re-
spect to the number of hidden nodes. One extreme position would be to allow the number
of training examples to be at most equal to the number of hidden nodes. Although this
may not yield valid generalization, the decision version of the loading problem becomes
trivial because of [25], or, more precisely:

If the number of hidden nodes in the first hidden layer is at least equal to the num-
ber of training examples and the threshold activation function, the standard sigmoidal
function, or the semilinear activation function (or any functiosuch that the class of
o-Circuits possesses the universal approximation capability as defifigf]jnis used
then the error of an optimum solution of the loading problem is determined by the num-
ber of contradictory training examples (i(&; y1) and(x; y2) with y1 # y2.)

However, the following theorem yields an inapproximability result even if we re-
strict to situations where the number of examples and hidden nodes are correlated.

Theorem 3. Approximtion of the success ratio functionm, with relative error smaller
than ¢/k3 (c isa constant, & isthe number of hidden nodes) is NP-hard for the loading
problemwith instances (A, P) where A isa layered (n, k, 1)- H-architecture (n and k
may vary) and P C Q" x {0, 1} isan example set with k3-5> < |P| < k* which can be
loaded without errors.

Proof. The proofis via L-reduction from the MAX-cut problem withw and depend-
ing onk. The algorithmd; andT5;, respectively, will be defined in two steps: mapping



an instance of the MAX-cut problem to an instance of the MAM-cut problem with
appropriaté: and size of the problem and to an instance of the loading problem, after-
wards, or mapping a solution for the loading problem to a solution of the MAC(+
problem and then to a solution of the MAXeut problem afterwards, respectively.

We first definel’: given a grapHV, E) definek = |V| - |E| (w.l.o.g.k > 3) and
(V/, E/) withV/ = VU {U|V|+1, .. -7U|V|+k—3}r E = FEU {(vq;,vj) | S {|V| +
L,..,|VIl+k—=3}j7e{l,...,|V]+ k —3}\{i}} where the new edges i have
the multiplicity 2| E|. Reduce(V’, E’) to a loading problem for the architecture with
n = |V’'| + 3, k as above, and examples

(1) 2|E’'| copies of the origiff{0™; 1),
(1) d; copies of the poir¢;, i.e.(0,...,0,1,0,...,0;0) (thel is at theith position from
left) for each node; € V' whered; is the degree of;,
(111) a vectore;; for each edgév;,v;) € E’: (0,...,0,1,0...,0,1,0,...,0;1) (the
numbersl are at theth andjth positions from left),
(IV) 2|E'| copies of each of the points!"'l, p/, 1; 1), (01V'l, n¥/, 1;0), wherep” and
n'/ are constructed as follows: define the poiets= (4(i—1)+7, j(i—1)+4((i—
2)+...+1)forie{1,...,k}, j€{1,2,3}. These3k points have the property
that if three of them lie on one line then we can findiauch that the three points
coincide withz®!, 2, andx*>. Now we divide each point into a pgi/ andn/
of points which are obtained by a slight shiftof in a direction that is orthogonal
to the line[xz !, z3]. Formally,p” = 2 + ¢IN; andn®/ = z¥/ — ¢ N;, whereN;
is a normal vector of the linge?!, 3] with a positive second coefficient ands a
small positive values can be chosen such that the following holds:
Assume one line separates three paifs’:, p'1i1), (n'2/2 pi2J2), and(nisiz pisis),
then necessarily = iy = i3.

This property is fulfilled fore < 1/(24 - k(k — 1) + 6) due to Propositiofi of [20],

N being a vector of length. Consequently, the representation of the pairitsand

p' is polynomial inn andk.

Note that the number of pointsis® < 5| E’|+12k|E’| < k* for large|V|. An optimum
solution of the instance of the MAX-cut problem gives rise to a solution of the instance
of the MAX-k-cut problem with the same number of monochromatic edges via mapping
the nodes i’ N V"’ to the same three cuts as before and definingttheut by{ vy}
fori € {1,...,k — 3}. This solution can be used to define a solution of the instance of
the loading problem as follows: Thigh weight of node in the hidden layer is chosen as

2_1 gtﬁés\lzgethezth cut and the bias is chosen@$. The weightg|V’|+1, |[V'|+
2, |V’|+3) of theith node are chosen &si+1, 1, —0.5+2-i(i—1)) which corresponds
tothe line through the points’!, 2, andz*®. The output unit has the bias:+0.5 and
weightsl, i.e. it computes an AND. With this choice of weights one can compute that
all examples except the poirgs; corresponding to monochromatic edges are mapped
correctly.

Conversely, an optimum solution of the loading problem classifies all poit(t}, in

(1), and(1V) and all pointsz;; corresponding to edges i\ E correct because of the
multiplicities of the respective points. We can assume thatthe activations of the nodes do
not exactly coincide with when the outputs oR are computed. Consider the restriction



of the circuit mapping to the plang0, ...,0, Zn11, Tnt2, 1) | nt1, Tnt2 € R}. The
pointsp® andn/ are contained in this plane. Because of the different outputs each pair
(p¥,n¥) is to be separated by at least one line defined by the hidden nodes. A number
3k of such pairs exists. Therefore, each of the lines defined by the hidden nodes neces-
sarily separates three paifsi/, n'/) with j € {1, 2,3} and nearly coincides with the
line defined byjz!, x*3]. Denote the outputweights of the circuitlby, . . ., wy and the
output bias by. We can assume that tlig node nearly coincides with thith line and
that the pointp?’ are mapped by the node to the valu®©therwise we change all signs
of the weights and the bias in nodleve change the sign of the weight, and increase
6 by w;. But then the pointp?? are mapped t6 by all hidden nodes, the points? are
mapped t@) by all but one hidden node. This means that 0, § +w; < 0 for all 7 and
therefored + w;, +...+w;, < O0foralliy,..., i € {1,...,k}withl > 1. This means
that the output unit computes the function NANDz ¢, ..., x,) — —x1 A ... A~z
on binary values.

Define a solution of the instance of the MAeut problem by setting thih cutc;
as{v; | theith hidden node maps; to1}\(c1U...Uc;—1). Assume some edde;, v;)
is monochromatic. Thee; ande; are mapped td by the same hidden node. Therefore
e;; Is classified wrong. Note that ad};; corresponding to edges i\ E’ are correct,
hence the node§y |, ..., vv|+r—3 €ach form one cut and the remaining nodes are
contained in the remaining three cuts. Hence these three cuts define a solution of the in-
stance of the MAX3-cut problem such that almost edges corresponding to misclassified
e;; are monochromatic.

Denote by optthe value of an optimum solution of the MAX-cut problem and by
opt, the optimum value of the loading problem. We have shown that

_ |Elopt + ([E'| - |E|) +4[E'| + 12| E'|k
B 5|B'| + 12| E'|k

opt,

3
< 5 0PY .

Next we construcfz. Assume that a solution of the loading problem with relative
error smaller than/ k3 is given. Then the point$) and(I V) are correct due to their mul-
tiplicities. Otherwise the relative error of the problem would be at IE&8Y/ (5| E’| +
12|E'|k) > ¢/k? for appropriately smalt and largek. As before we can assume that
the output node computes the functien— —z; A ... A —z. Define opf to be the
value of an optimum solution of the loading problem dadhe value of the given solu-
tion. Assume some poiat; correspondingto an edgeB1\ £ is misclassified. Thef;
yields an arbitrary solution of the MAX-cut problem. For the qualit§; of this solution
compared to an optimum gpive can compute

5| B’ 12|E' |k
opt, —I; <1< %(OPE —1I).

This holds because an optimum solution of the loading problem classifies at least a num-
ber of | E| points more correct than in the solution considered here.

If all e;; corresponding to edges &Y \ E are correct then we define a solution of the
MAX- 3-cut problem via the activation of the hidden nodes as above. Remaining nodes
become members of the first cut. An argument as above shows that each monochromatic



edge comes from a misclassification of eitbgre;, or e;;. Hence

5|E'| + 12|E’ |k
opt — 11 < %(OPE — ).

Settinga = 3/2, 3 = ¢-k* > (5|E’| + 12| E’|k) /| E| for some constaritand using
Theorem 1 yields the result as stated above. O

The (n,2,1)-{sgd H.}-net The above result deals with realistic circuit structures.
However, usually a continuous and differentiable activation function is used in prac-
tice. A very common activation function is the standard sigmoid activatiofugge

1/(1 4 e *). Here we consider the loading problem with a feedforward architecture of
the form(n, 2, 1) where the input dimension is allowed to vary. The sigmoidal acti-
vation functionis used in the two hidden nodes. The output is the function

0 if x < —e,
H.(z) = < undefined if—e<uxz<e,
1 otherwise.

The purpose of this definition is to enforce that any classification is performed with a
minimum separation accuraeyFurthermore, we restrict to solutions with output weights
whose absolute values are bounded by some positive coiist@ihts setting is captured

by the notion of so-calleetseparation (for example, see [19]). Formally, the circuitcom-
putes the functio 4 (w, z) = H.(asgda'z + ag) + Bsgdb’x + by) + ) where

w = (o, 8,7, a,ap, b, by) are the weights and thresholds, respectively, of the output
node and the two hidden nodes dndl, | 5| < B for some positive constar.

Theorem 4. ItisNP-hardtoapproximatethem, withrelativeerror smaller than1,/2244
for the architecture of a {(n,2,1) | n € N}-circuit with sigmoidal activation function
for the hidden nodes, output activation function H . with0 < ¢ < 0.5, weight restriction
B > 2 of the output weights, and examples fromQ™ x {0, 1}.

The proof consists in an application of Theorem 2 and a careful examination of the ge-
ometric form of the classification boundary defined by those types of networks. It turns
out that some argumentation can be transferred from the standard perceptron case since
some geometrical situations merely correspond to the respective cases for perceptron
networks. However, additional geometric situations may take place which are excluded
in our setting with appropriate points in the set of special paité near optimum so-

lutions. Due to the situation @fseparation it turns out that the result transfers to more
general activation functions:

Definition 3. Two functions f, g : R — R are e-approximates of each other if | f(z) —
g(x)| < e holdsfor all z € R.

Corollary 1. It is NP-hard to approximate the success ratio function m , with relative
error smaller than 1/2244 for {(n,2,1) | n € N}-circuit architectures with activation
function o in the hidden layer and H. in theoutput, e < 1/3, weight restriction B > 2,
and examples from Q™ x {0, 1}, provided o(z) ise/(4B)-approximate to sgdx).



The (n,2,1)-{lin, H}-net In this section, we prove the NP-hardness of the approx-
imability of the success ratio function with the semilinear activation function commonly
used in the neural net literature [7, 8]:

0 ifz<0
lin(z)=<¢a fo<z<1 .
1 otherwise

This function captures the linearity of the sigmoidal activatiomas well as the asymp-
totic behaviour. Note that the following result does not reqeriseparation.

Theorem 5. It isNP-hard to approximate m, with relative error smaller than 1/2380
for thearchitecture of {(n, 2, 1) | n € N}-circuit with the semilinear activation function
inthe hidden layer and the threshold activation function in the output.

Again the proof consists in an application of Theorem 2 and an investigation of the ge-
ometrical form of the classification boundaries which enables us to define appropriate
algorithmsTy andTs.

Avoiding Muultiplicities In the reductions of previous sections, examples with multi-
plicities were contained in the training sets. In the practical relevant case of neural net-
work training, patterns are often subject to noise. Hence the points do not come from a
probability distribution with singletons, i.e. points with nonzero probability. As a con-
sequence the question arises as to whether training sets where each point is contained at
most once yield NP-hardness results for approximate training as well.

The reduction of the MAXk-cut problem to a loading problem can be modified as
follows: T yields themutually different points:

— a setP, of pointsp, j = 1,...,3| E| for eachi,
— for each node;, pointse?, j = 1, ..., 2d;, whered; is the degree ofj;,
— for each edgév;, v;), two pointse;; ando; ;.

Assume,T} andT; satisfy the following properties:

(i) For an optimum solution of the MAX~cut problem one can find an optimum so-
lution of the instance of the corresponding loading problem which the special
points P, and alle! points are correctly classified and exactly the monochromatic
edges(v;, v;) lead to misclassified points; or o;;.

(i) If for eachi at least ong; is correct,T; computes in polynomial time an approx-
imate solution where, for each monochromatic efigev,), one of the pointg;
or o;; or all pointse! (I = 1,...,3|E|) or all pointse’; (I = 1,..., 3| E|) are mis-
classified.

An analogous proof to [3] shows the following:
Theorem 6. Under the assumptions stated above, an L-reduction with constants o =
k/(k—1),8=3|P|+6,anda = (k —1)/(k*(3|Po| + 6)) arises.

Corollary 2. The reductions for general perceptron circuits and in Theorems 4 and 5
can be modified such that (i) and (ii") hold. Hence minimizing the relative error within
some constant is NP-hard even for training sets without multiple pointsin these situa-
tions.



4 Approximating the Failure Ratio Function m

Givenaninstance of the loading problem, denote by (, ) the number of examples

in the training set missclassified by the circuit represented. liyivenc, we want to

find weights such that op{(z) < mc(x,y) < c¢-opt.(x). The interesting case vith
errors, i.e. opt(z) > 0. Hence we restrict to the case with errors and investigate if the
failure ratiom; = mc(x,y)/opt.(z) can be bounded from above by a constant. We
term this problem aapproximating the minimumfailureratiowithin ¢ while learning in

the presence of errors [2]. It turns out that the approximation is NP-hard within a bound
which isindependent of the circuit architecture. For this purpose we use a reduction from
the set-covering problem.

Definition 4 (Set CoveringProblem [9]). Givenaset of points.S = {s1, ..., s, anda
setof subsets C' = {C1, ..., Cy, }, findindicesI C {1,...,m} suchthat|J,.,; C; = S.
Inthiscasethesets C;, i € I, are called a cover of S. A cover iscalled exact if the sets
ina cover are mutually digoint.

For the set-covering problem the following result holds, showing that it is hard to ap-
proximate within every factot > 1:

Theorem 7. [4] For every ¢ > 1 there is a polynomial time reduction that, given an
instance  of SAT, produces an instance of the set-covering problemand anumber K €
N with the properties: if ¢ is satisfiable then there exists an exact cover of size K, if ¢
is not satisfiable then every cover hassize at least ¢ - K.

Using Theorem 7 Arora et.al. [2] show that approximating the minimum failure ratio
function within a factor ot (for any constant > 1) is NP-hard for a single threshold
node if all the input thresholds are set to zero. We obtain the following result.

Theorem 8. Assume that we are given a layered H-circuit where the thresholds of the
nodesin the first hidden layer are fixed to 0 and let ¢ > 1 be any given constant. Then
the problem of approximating minimumfailureratiom ¢ whilelearning in the presence
of errors within a factor of ¢ is NP-hard.

Proof. Without loss of generality, assume that the circuit contains at least one hidden
layer. Assume that we are given a formylaTransform this formula with the given
constant to an instancéS = {s1,...,s,},C = {C4,...,Cp}) of the set-covering
problem and a constaif such that the properties in Theorem 7 hold. Transform this
instance of the set-covering problem to an instance of the loading problem for the given
architecture with input dimension= |C| + 2 + n; + 1 wheren; denotes the number

of hidden nodes in the first hidden layer and the following examples @énx {0, 1}:

(1) (e,0,1,0m+1: 1), (—e;,0,1,0™%1; 1), whereg; is theith unit vector inR €1,
(I1) c-K copies ofeach of the poings,,, —1,1,0™*1; 1), (—e,,, 1, 1,0m71: 1), where
es, € {0,1}/ is the vector withjth component as if and only ifs; € C;, i €
{L....,p},
(1) ¢ K copiesofeach af0l®!, 1,0, 0mF1: 1), (011 1/(2m), 1,0m+1; 1), and(0I€!, —1/(2m), 1,0mF1; 0),
where the componeit’|+1 is nonzero in all three points and the comporiéht-2
is nonzero in the latter two pointsy = |C|,



(IV) ¢ K copies ofeach a0!“I+2, p,. 1;0), (01142, py, 1; 1), (01€1+2 2, 1;1), (01142, 2;, 1, 0),
where the pointp,, z;, z; are constructed as follows: Choose+ 1 pointsin each
setH; = {x = (z1,22,...,Tpn,) € R"|z; =0,z; > 0Vj # i} (denote the points
by z1, zo, ... and the entire set b¥) such that any given; + 1 different points
in Z lie on one hyperplane if and only if they are contained in éheForz; € H;
define,%j e R™ by 2]' = (Zjl, sy Zi—15 250 € Zjitly - ey Zjnl); zZ; € R
by z; = (21, ..., 2ji—1, Zji — € Zjit+1; - - -, Zjny ), fOr SOMe small value which is
chosen such that the following property holds: if one hyperplaf®inseparates at
leastn; + 1 pairs(z;, z;), these pairs coincide with thg + 1 pairs corresponding
to then, +1 pointsin soméd;, and the separating hyperplane nearly coincides with
the hyperplane througH;.

For an exact cover of siz&, let the corresponding set of indices be= {1, ...,ix}.
Define the weights of a threshold circuit such thatdifienode in the first hidden layer
has the weightée;, 1, 1/(4m), e;, 0), where thejth component oé; € {0,1}/5lis 1 if
and only ifj € I ande; is theth unit vector inR™'. The remaining nodes in the other
layers compute the function — z; A ... A x; of their inputsx;. Since the cover is
exact, this maps all examples correctly excBpeéxamples ir(l).

Conversely, assume that every cover has size at deakt. Assume some weight
setting misclassifies less than K examples. We can assume that the activation of ev-
ery node is different frond on the training set: for the examples(iy) the weightw,
serves as a threshold, for the pointgiia (1), and(l11) except for(0!¢1, 1,0™1+2; 1) the
weightw|c| 2 serves as athreshold, hence one can slightly change the respective weight
which serves as a threshold without changing the classification of these examples such
that the activation becomes nonzero. Assuming that the activatiénof 1, 0™ *2; 1)
is zero we can slightly increase the weight|,.; such that the sign of the activation
of all other points which are affected does not change. Because of the multiplicity of
the examples the examples(i)-(1V) are correctly classified. We can assume that the
output of the circuit has the forfis (w, ) = fi(x) A ... A fn,(x) wheref; is the
function computed by thi#h hidden node in the first hidden layer, because of the points
in (V). This is due to the fact that the points and z; enforce the respective weights
of the nodes in the first hidden layer to nearly conincide with weights describing the
hyperplane withith coefficient zero. Hence the points are mapped to the entire set
{0,1}™ by the hidden nodes in the first hidden layer and determine the remainder of
the circuit function. Hence all nodes in the first hidden layer classify all positive exam-
ples except less than- K points of(l) correctly and there exists one node in the first
hidden layer which classifies the negative exampl@li) correctly as well. Consider
this last node. Denote by the weights of this node. Because (bfl), w|c+1 > 0.
Definel = {i € {1,...,|C|} | |wi| > w|c|41/(2m)}.

Assume{C;|i € I} forms a cover. Because @11) we findw |41 /(2m)+wc|4+2 >
0and—wc|+1/(2m)+w|c)+2 < 0. Hence one of the exampleg(i is classified wrong
foreveryi € I. Hence at least- K examples are misclassified.

Assume tha{C; | € I} does notform a cover. Then one can find for sarge|.S|
and the poinfe,,, —1,1,0™*!) in (1) an activation< m - wic|41/(2m) — wic41 +
Wic|+2 = W|c|+2 —W|c|+1/2 Which is negative becausew|c| 41/ (2m) +wc|+2 < 0,
wic|41 > 0 (I11). This yields a misclassified example with multiplicity K. O



One can obtain an even stronger result indicating that not only approximation within an
arbitrary factor is NP hard but even approximation within a factor which is exponential
in the input length is not possible unless NFDTIME (nP¥s™)), For this purpose, we

use a reduction from the so called label cover problem:

Definition 5 (Label Cover). Givenahipartitegraph G = (V, W, E)withE C V xW,
labels B, D, andaset IT C E x B x D. Alabelingconsists of functions P : V' — 25
and Q : W — 2P which assign labels to the nodes in the graph. The costof a labeling
isthenumber } . [P(v)|. Anedge e = (v, w) iscoveredfboth, P(v) and Q(w) are
not empty and for all d € Q(w) someb € P(v) existswith (e, b, d) € II. Atotal cover
isalabeling such that each edge is covered.

For the set-covering problem the following result holds, showing that it is almost NP-
hard to obtain weak approximations:

Theorem 9. [2, 18]For every ¢ > 0 there exists a quasi polynomial timereduction from
the satisfiability problemto the label cover problemwhich maps an instance ¢ of sizen
toaninstance (G, IT) of size N < 2r(1°27) with the following properties:

If o issatisfiablethen (G, IT) has a total cover with cost |V].

If  is not satisfiable then every total cover has cost at least 218" V||
Furthermore, (G, IT) has in both cases the property that for each edge e = (v, w) and
be Batmostoned € D existswith (e, b,d) € I1.

Via this Theorem and ideas of Arora et.al. [2] the following can be prooved:

Theorem 10. Assumethat we are given alayered H-circuit where the thresholds of the
nodesin the first hidden layer are fixed to 0 and let e > 0 be any given constant. If the
problem of approximating minimum failure ratio m ¢ while learning in the presence of
errors withina factor of 21°8°°~“ N\ being the size of the respective input, is polyno-
mial time, then NP C DTIME(nv(log ™)),

Proof. Assume that we are given a formula Transform this formula with the given

constant to an instancéG, IT) of the label cover problem with the properties as de-

scribed in Theorem 9. W.l.0.g. does the network contain at least one hidden layer.
First, we delete alle = (v, w), b, d) in IT such that for some edgéincident tov no

d’ exists with(e’,b,d’) € II. Those labels are calledlid. The costs for a total cover

remain|V| if ¢ is satisfiable. Otherwise, this can at most increase the costs. For each

e € Fandb € Bauniquel € D exists such that, b, d) € II. We denote this element

byd(e, b). We can assume that a total cover exists, since this can be polynomially tested.
Now transform this instance to an instance of the loading problem. The input dimen-

sionisn = ng + 2 + ny + 1 wheren; denotes the number of hidden nodes in the first

hidden layerns = |V||B| + |W||D|, E C V x W are the edged3 and D are the la-

bels. The following examples fro@™ x {0, 1} are constructedn¢ = max{|B|,|D|},

K = |B| - |E|, the firstn, components are successively identified with the tupels in

V x BandW x D and denoted via corresponding indices.)

(I) K copies of each of0"22 p,,1;0) (i > 1), (0"2%2 py, 1;1), (0"2F2, 2, 1; 1),
(0m2*2z;,1;0), where the pointp,, z;, z; are the same points as in the proof of
Theorem 8.



(I1) K copies of(0I"2l, 1,0, 0m+1; 1),

(I11) K copies of(0!™2! 1/(16m?), 1,0m+1; 1), (0172, —1/(16m?), 1,0™+1; 0),

(IV) K copies of each of the pointe,,, —1,1,0™+1: 1), (e, —1,1,0™"1; 1), where
e, is 1 precisely at those placés, b) such thab is a valid label for» and0 other-
wise, ande,, is 1 precisely at the placgsv, d) suchthatl € D (v € V, w € W).

(V) K copies of each of the points-e,—.,.4, 1, 1,0™71; 1), where—e, ., 4 is —1
precisely at those placés, b) such thab is a valid label for» andd is not assigned
to (v — w, b) and at the placéw, d) and0 otherwise { — w € E).

(V1) (—eyp,0,1,0m71; 1), where—e, , is —1 precisely at those places, b) such that
bis a valid label for.

Assume that a label cover with cosig| exists. Define the weights for the neurons in
the first computation layer by, ;) = 1 <= bis assigned to, w, ) =1 <= d
is assigned ta, w,, 11 = 1, w,,12 = 1/(32m?). If a hidden layer is contained, the
remaining coefficients of thdD hidden neuron in the first hidden layer are defined by
wn,+2+i = 1, the remaining coefficients afe The neurons in other layers compute
the logical function AND. This maps all points but at mgst points in(VI) to correct
outputs. Note that the points (W) are correct since eachis assigned precisely ore

Conversely, assume that a solution of the loading problem is given. We show that it
has at least a number of misclassified points which equals the costs of a cover, denoted
by C. Assume for the sake of contradiction that less thgwoints are classified wrong.
Since a cover has costs at méStwe can assume that all points with multiplicities are
mapped correctly. Because of the same argumentation as in 8 we can assume that the
activation of every node is different frofnon the training set. Additionally, we can as-
sume that the output of the circuit has the fosm(w, ) = f1 () A. .. A fn, (x) where
fi is the function computed by thigh hidden node in the first hidden layer, because of
the points in(l). Hence all nodes in the first hidden layer classify all positive examples
except less thaty points of(V) correctly and there exists one node in the first hidden
layer which classifies the negative examplélin) correctly as well.

Denote byw the weights of this node. Becausg(ldf), wy,,,|+1 > 0. Label the node
with those valid labels such thatv(, ;) > wy,+1/(4m?). Label the nodev with those
labelsd such thatw ., 4y > wn,+1/(2m). If this labeling forms a total cover, then we
find for all b assigned t@ in (VI) an activation smaller thanw,,, 11 /(4m?) + wy,, 2.
Due to(I11), wp,412 < 1/(16m?) - w,,+1, hence the activation is smaller thaand
leads to a number of misclassified points which is at least equal to the(@osts

Assume conversely that this labeling does not form a total cover. Then sane
w is not labeled, or for some labélfor w and edgey — w nob is assigned te with
(v — w,b,d) € II. Due to(IV) we find >, o Ww,b) — Wnot1 + Wnyt2 > 0,
hence togetherwitti11) >~ . w(y p) > Wnyt1—Wnyt1/(16m?), hence at least one
W(y,p) IS Of size at leasty,,,1/(2m). In the same way we findl , w(y, 4y — Wnyt1 +
wnyt2 > 0, hence at least one,, 4 is of size at leastv,,,1/(2m). Consequently,
each node is assigned some label. Assume that theundglassigned somésuch that
the edgev — w is not covered. Hence,.qy > wn,41/(2m). Due to(V) we find
= D pvaldtoro. (o — w.1) = a W(w,b) ~ Ww,d) F Wyt 1 +Wnyt2 > 0and due tglV) we find
vaalidforv W(,b) = Wnyt1+Wnyt2 > 0, hencezbvalidforv,d(u by = a W(w,b) = Wnot1 —
Wno+2 _vaalidfofv,d(v o w, by 2 a W(v,b) > Wny+1 — Wny+2 +w(w,d) T Wno41 — Wny42 =



Ww,d) — 2Wnyt2 > Wnyt1(1/(2m) — 1/(8m?)) > wp,41/(4m). Hence at least one
weight corresponding to a label which can be used to cover this edge is of size at least
Wnyy1/(4m?). o

5 Conclusion

We have shown the NP-hardness of finding approximate solutions for the loading prob-
lem in several different situations. We have considered the question as to whether ap-
proximating the relative error af:;, within a constant factor is NP-hard. Compared

to [3] we considered threshold circuits with correlated number of patterns and hidden
neurons and thén, 2, 1)-circuit with the sigmoidal (witke-separation) or the semilin-

ear activation function. Furthermore, we discussed how to avoid training using multiple
copies of the example. We considered the case where the number of examples is corre-
lated to the number of hidden nodes. Investigating the problem of minimizing the failure
ratio in the presence of errors yields NP-hardness within every constantdaetbifor
multi-layer threshold circuits with zero input biases, and even weak approximation of
this ratio is hard under standard complexity-theoretic assumptions.
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