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Abstract. We consider the problem of efficientapproximate learning by multi-
layered feedforward circuits subject to two objective functions.
First, we consider the objective tomaximize the ratio of correctly classified points
compared to the training set size (e.g., see [3, 5]). We show that for single hidden
layer threshold circuits withn hiddennodesand varying input dimension, approx-
imation of this ratio within a relative errorc/n3, for some positive constantc, is
NP-hardeven if the number of examples islimited with respect ton. For architec-
tures with two hidden nodes (e.g., as in [6]), approximating the objective within
some fixed factor is NP-hardeven if any sigmoid-like activation function in the
hidden layer andε-separation of the output [19] is considered, or if the semilinear
activation function substitutes the threshold function.
Next, we consider the objective tominimize thefailure ratio [2]. We show that it
is NP-hard to approximate the failure ratio within everyconstant larger than 1 for
a multilayered threshold circuit provided the input biases are zero. Furthermore,
evenweak approximation of this objective isalmost NP-hard.

1 Introduction

Feedforward circuits are a well established learning mechanism which offer a simple
and successful method of learning an unknown hypothesis given some examples. How-
ever, the inherent complexity of training the circuits is till now an open problem for most
practically relevant situations. Starting with the work of Judd [15, 16] it turned out that
training is NP-hard in general. However, most work in this area deals either with only
very restricted architectures, activation functions not used in practice, or a training prob-
lem which is too strict compared to practical problems. In this paper we want to consider
situations which are closer to the training problems as they occur in practice.

A feedforward circuit consists of nodes which are connected in a directed acyclic
graph. The overall behavior of the circuit is determined by thearchitecture A and the
circuitparameters w. Given apattern or example setP consisting of points(xi; yi), we
want to learn the regularity with a feedforward circuit. Frequently, this is performed by
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first chosing an architectureA which computes a functionβA(w, x) and then chosing
the parametersw such thatβA(w, xi) = yi holds for every pattern(xi; yi). Theload-
ing problem (or thetraining problem) is the problem to find weightsw such that these
equalities hold. Thedecision version of the loading problem is to decide (rather than to
find the weights) whether such weights exist that loadM ontoA.

Some previous results consider specific situations. For example, for every fixed ar-
chitecture with thresholdactivation functionor architectures withappropriately restricted
connection graph loading is polynomial [8, 10, 15, 20]. For some strange activation func-
tions or a setting where the number of examples coincides with the number of hidden
nodes loadability becomes trivial [25]. However, Blum and Rivest [6] show that a vary-
ing input dimension yields the NP-hardness of training threshold circuits with only two
hidden nodes. Hammer [10] generalizes this result to multilayered threshold circuits.
References [8, 11, 12, 14, 23, 27] constitute generalizations to circuits with the sigmoidal
activation function or other continuous activations. Hence finding an optimum weight
setting in a concrete learning task may require a large amount of time.

Naturally, the constraint that all the examples must be correctly classified is too strict.
In a practical situation, one would be satisfied if a large fraction (but not necessarily all)
of the examples can be satisfied. Moreover, it may be possible that there are no choices
for the weights which load a given set of examples. From these motivations, researchers
have considered an approximate version of the learning problem where the number of
correctly classified points is to be maximized. References [1, 2, 13] consider the com-
plexity of training single threshold nodes with some error bounds. Bartlett and Ben-
David [3] mostly deal with threshold architectures, whereas Ben-David et. al. [5] deals
with other concept classes such as monomials, axis-aligned hyper-rectangles, monotone
monomials and closed balls. We obtainNP-hardness results for the task of approximately
minimizing the relative error of the success ratio for a correlated architecture and train-
ing set size, various more realistic activation functions, and training sets without mul-
tiple points. Another objective function is to approximately minimize the failure ratio.
The work in [1, 2] considers inapproximabilityof minimizing the failure ratio for a single
threshold gate. We show that approximating this failure ratio for multilayered threshold
circuits within every constant is NP-hard and even weak approximation of this objective
function is almost NP-hard. Several proofs are omitted due to space limitations. They
can be found in the long version of this paper.

2 The Basic Model and Notations

The architecture of a feedforward circuitC is described by a directed interconnection
graph and the activation functions ofC. A nodev of C computes a function

γv

(
k∑

i=1

wvi,vuvi + bv

)

of its inputsuv1 , . . . , uvk.
∑k

i=1 wvi,vuvi +bv is called theactivation of the nodev. The
inputs are either external, representing the input data, or internal, representing the out-
puts of the immediate predecessors ofv. The coefficientswvi,v (resp.bv) are theweights



(resp.threshold) of nodev, andγv is theactivation function of v. No cycles are allowed
in the interconnection graph ofC and the output of a designated node provides the out-
put of the circuit. Anarchitecture specifies the interconnection structure and theγv ’s,
but not the actual numerical values of the weights or thresholds. Thedepth of a feed-
forward circuit is the length of the longest path of the interconnection graph. Alayered
feedforward circuit is one in which nodes at depthd are connected only to nodes at depth
d + 1, and all inputs are provided to nodes at depth1 only. A layered(n0, n1, . . . , nh)
circuit is a layered circuit withni nodes at depthi ≥ 1 wheren0 is the number of inputs.
We assumenh = 1. Nodes at depthj, for 1 ≤ j < h, are calledhidden nodes, and all
nodes at depthj, for a particularj, constitute thejth hidden layer.

A Γ -circuitC is a feedforward circuit in which only functions in some setΓ are as-
signed to nodes. Hence each architectureA of a Γ -circuit defines a behavior function
βA that maps from ther real weights and then inputs into an output value. We denote
such a behavior as the functionβA : Rr+n �→ R . Some popular choices of the activa-

tion functions are the perceptron activation functionH(x) =
{

1 if x ≥ 0
0 otherwise

and the

standard sigmoid sgd(x) = 1/(1 + e−x).
Theloading problem L is defined as follows (e.g., see [6, 8]): Given an architecture

A and a set of examplesP = {(x; y) | x ∈ Rn, y ∈ R}, find weightsw so that for all
(x; y) ∈ M : βA(w, x) = y . In this paper we will deal with those classification tasks
wherey ∈ {0, 1}. Clearly, the hardness results obtained with this restriction will be valid
in the unrestricted case also. An example(x; y) is apositive example if y = 1, otherwise
it is a negative example. An example ismisclassified by the circuit ifβA(w, x) �= y,
otherwise it isclassified correctly.

An optimization problemC is characterized by a non-negative objective function
mC(x, y), wherex is an input instance of the problem,y is a solution forx, andmC(x, y)
is the cost of the solutiony; the goal of the problem is to either maximize or minimize
mC(x, y) for any particularx, depending on the problem. Denote by optC(x) (or shortly
opt(x) if C is clear from the context) the optimum value ofmC (x, y). For maximiza-
tion,(optC(x)−mC(x, y))/optC(x) is therelative error of a solutiony. The objective
functions that are of relevance to this paper are as follows:

Success ratio function: mL(x, y) =| {x | βA(w, x) = y} | / |P | is the fraction of
the correctly classified examples compared to the training set size (e.g., see [3]).

Failure ratio function: mC (x, y) =| {x | βA(w, x) �= y} |. If optC(x) > 0,
mf (x, y) = mC(x, y)/optC(x) is the ratio of the number of misclassified examples
to the minimum possible number of misclassifications when at least one missclas-
sification is unavoidable (e.g., see [2]).

3 Approximating the Success Ratio Function mL

We want to show that in several situations it is difficult to approximatemL for a loading
problemL. These results would extend the results of [3] to more complex situations.
For this purpose, the L-reduction from the so-called MAX-k-cut problem to a loading
problem which is constructed in [3] is generalized such that it can be applied to several



further situations as well. Since approximating the MAX-k-cut problem is NP-hard, the
NP-hardness of approximability of the latter problems follows.

Definition 1. Given an undirected graph G = (V, E) and k ≥ 2 in N, the MAX-k-cut
problem is to find a function ψ : V �→ {1, 2, . . ., k}, such that |{(u, v) ∈ E |ψ(u) �=
ψ(v)}| / |E| is maximized. The set of nodes in V which are mapped to i in this setting
is called the ith cut. The edges (vi, vj) in the graph for which vi and vj are contained
in the same cut are called monochromatic; all other edges are called bichromatic.

Theorem 1. [17] It is NP-hard to approximate the MAX-k-cut problem within relative
error smaller than 1/(34(k−1)) for k ≥ 2, and within error smaller than c/k3, c being
some constant, k ≥ 3, even if solutions without monochromatic edges exist.

The concept of anL-reduction was defined in [21]. The definition stated below is a
slightly modified version of [21] that will be useful for our purposes.

Definition 2. An L-reduction from a maximization problem C1 to a maximization prob-
lem C2 consists of two polynomial time computable functions T1 and T2, two constants
α, β > 0, and a parameter 0 ≤ a ≤ 1 with the following properties:

(a) For each instance I1 of C1, algorithm T1 produces an instance I2 of C2.
(b) The maxima of I1 and I2, opt(I1) resp. opt(I2), satisfy opt(I2) ≤ α opt(I1).
(c) Given any solution of the instance I2 of C2 with cost c2 such that the relative error

of c2 is at most a, algorithm T2 produces a solution I1 of C1 with cost c1 satisfying
(opt(I1) − c1) ≤ β (opt(I2) − c2).

If C1 is hard to approximate within relative error a/(αβ) then C2 is hard to approximate
within relative error a.

Consider anL-reduction from the MAX-k-cut problem to the loading problemL
with objective functionmL where the reductions performed byT1 andT2 have the fol-
lowingadditionalproperties. Given an instanceI1 = (V, E) of the MAX-k-cut problem,
assume thatT1 produces in polynomial time an instanceI2, a specific architecture and
an example set inRn × {0, 1} of the loading problemL with training set:

– 2|E| copies of each of some set of special pointsP0 (e.g. the origin),
– for each nodevi ∈ V , di copies of one pointei, wheredi is the degree ofvi,
– for each edge(vi, vj) ∈ E, one pointeij.

Furthermore, assume that the following properties are satisfied:

(i) For an optimum solution forI1 the algorithmT1 finds an optimum solution of the
instanceI2 of the corresponding loading problemL in which all special pointsP0

and all pointsei are correct classified and exactly those pointseij are misclassified
which correspond to a monochromatic edge(vi, vj) in an optimal solution ofI1.

(ii) For any approximate solution of the instanceI2 of the loading problemL which
classifies all special points inP0 correctly,T2 computes an approximate solution of
the instanceI1 of the MAX-k-cut problem such that for every monochromatic edge
(vi, vj) in this solution, eitherei, ej, or eij is missclassified.



An analogous proof to [3] yields the following result:

Theorem 2. Approximation of the above loading problem within relative error smaller
than ((k − 1)ε)/(k(2|P0|+ 3)) is NP-hard since the above reduction is an L-reduction
with α = k/(k − 1), β = 2|P0| + 3, and a = (k − 1)/(k2 (2|P0| + 3)).

3.1 Application to Multi-layered Feedforward Circuits

First we considerH-circuits,H(x) being the perceptron activation function. This type
of architecture is common in theoretical study of neural networks (e.g., see [22, 24]) as
well as in their practical applications (e.g., see [28]). Assume that the first layer contains
the input nodes1, ..., n, h + 1 denotes the depth of theH-circuit, andni denotes the
number of nodes at depthi. An instance of the loading problem will be represented by a
tuple(n, n1, n2, . . . , nh, 1) and by an example set with rational numbers. The following
fact is an immediate consequence of Theorem2 in [3]:

For anyh ≥ 1, constantn1 ≥ 2 and anyn2, ...,nh ∈ N, it is NP-hard to approximate
the success ratio functionmL with instances(N, P ), whereN is the architecture of a
layered{(n, n1, . . . , nh, 1) | n ∈ N} H-circuit andP is a set of examples fromQn ×
{0, 1}, with relative error at most(68n12n1 + 136n3

1 + 136n2
1 + 170n1)−1.

Correlated Architecture and Training Set Size The above training setting may be un-
realistic in practical applications where one would allow larger architectures if a large
amount of data is to be trained. One strategie would be to choose the size of the archi-
tecture such that valid generalization can be expected using well known bounds in the
PAC setting [26]. Naturally the question arises about what happens to the complexity of
training if one is restricted to situations where the number of examples is limited with re-
spect to the number of hidden nodes. One extreme positionwould be to allow the number
of training examples to be at most equal to the number of hidden nodes. Although this
may not yield valid generalization, the decision version of the loading problem becomes
trivial because of [25], or, more precisely:

If the number of hidden nodes in the first hidden layer is at least equal to the num-
ber of training examples and the threshold activation function, the standard sigmoidal
function, or the semilinear activation function (or any functionσ such that the class of
σ-circuits possesses the universal approximation capability as defined in[25]) is used
then the error of an optimum solution of the loading problem is determined by the num-
ber of contradictory training examples (i.e.(x; y1) and(x; y2) with y1 �= y2.)

However, the following theorem yields an inapproximability result even if we re-
strict to situations where the number of examples and hidden nodes are correlated.

Theorem 3. Approximtion of the success ratio function mL with relative error smaller
than c/k3 (c is a constant, k is the number of hidden nodes) is NP-hard for the loading
problem with instances (A, P ) where A is a layered (n, k, 1)-H-architecture (n and k
may vary) and P ⊂ Qn × {0, 1} is an example set with k3.5 ≤ |P | ≤ k4 which can be
loaded without errors.

Proof. The proof is via L-reduction from the MAX-3-cut problem witha andβ depend-
ing onk. The algorithmsT1 andT2, respectively, will be defined in two steps: mapping



an instance of the MAX-3-cut problem to an instance of the MAX-k-cut problem with
appropriatek and size of the problem and to an instance of the loading problem, after-
wards, or mapping a solution for the loading problem to a solution of the MAX-k-cut
problem and then to a solution of the MAX-3-cut problem afterwards, respectively.

We first defineT1: given a graph(V, E) definek = |V | · |E| (w.l.o.g.k ≥ 3) and
(V ′, E′) with V ′ = V ∪ {v|V |+1, . . . , v|V |+k−3}, E′ = E ∪ {(vi, vj) | i ∈ {|V | +
1, . . . , |V | + k − 3}, j ∈ {1, . . . , |V | + k − 3}\{i}} where the new edges inE′ have
the multiplicity2|E|. Reduce(V ′, E′) to a loading problem for the architecture with
n = |V ′| + 3, k as above, and examples

(I) 2|E′| copies of the origin(0n; 1),
(II) di copies of the pointei, i.e.(0, . . . , 0, 1, 0, . . ., 0; 0) (the1 is at theith position from

left) for each nodevi ∈ V ′ wheredi is the degree ofvi,
(III) a vectoreij for each edge(vi, vj) ∈ E′: (0, . . . , 0, 1, 0 . . . , 0, 1, 0, . . ., 0; 1) (the

numbers1 are at theith andjth positions from left),
(IV) 2|E′| copies of each of the points(0|V

′|, pij, 1; 1), (0|V
′|, nij, 1; 0), wherepij and

nij are constructed as follows: define the pointsxij = (4(i−1)+j, j(i−1)+4((i−
2) + . . . + 1)) for i ∈ {1, . . . , k}, j ∈ {1, 2, 3}. These3k points have the property
that if three of them lie on one line then we can find ani such that the three points
coincide withxi1, xi2, andxi3. Now we divide each point into a pairpij andnij

of points which are obtained by a slight shift ofxij in a direction that is orthogonal
to the line[xi1, xi3]. Formally,pij = xij + εN i andnij = xij − εN i, whereN i

is a normal vector of the line[xi1, xi3] with a positive second coefficient andε is a
small positive value.ε can be chosen such that the following holds:

Assume one line separates three pairs(ni1j1 , pi1j1), (ni2j2 , pi2j2), and(ni3j3 , pi3j3),
then necessarilyi1 = i2 = i3.

This property is fulfilled forε ≤ 1/(24 · k(k− 1)+6) due to Proposition6 of [20],
N being a vector of length1. Consequently, the representation of the pointsnij and
pij is polynomial inn andk.

Note that the number of points isk3.5 ≤ 5|E′|+12k|E′| ≤ k4 for large|V |. An optimum
solutionof the instance of the MAX-3-cut problem gives rise to a solutionof the instance
of the MAX-k-cut problem with the same number of monochromatic edges via mapping
the nodes inV ∩V ′ to the same three cuts as before and defining theith cut by{v|V |+i}
for i ∈ {1, . . . , k − 3}. This solution can be used to define a solution of the instance of
the loading problem as follows: Thejth weight of nodei in the hidden layer is chosen as{
−1 if vj is in theith cut
2 otherwise,

and the bias is chosen as0.5. The weights(|V ′|+1, |V ′|+

2, |V ′|+3) of theith node are chosen as(−i+1, 1,−0.5+2·i(i−1)) which corresponds
to the line through the pointsxi1, xi2, andxi3. The output unit has the bias−k+0.5 and
weights1, i.e. it computes an AND. With this choice of weights one can compute that
all examples except the pointseij corresponding to monochromatic edges are mapped
correctly.

Conversely, an optimum solution of the loading problem classifies all points in(I),
(II), and(IV) and all pointseij corresponding to edges inE ′\E correct because of the
multiplicitiesof the respective points. We can assume that the activations of the nodes do
not exactly coincide with0 when the outputs onP are computed. Consider the restriction



of the circuit mapping to the plane{(0, . . . , 0, xn+1, xn+2, 1) | xn+1, xn+2 ∈ R}. The
pointspij andnij are contained in this plane. Because of the different outputs each pair
(pij, nij) is to be separated by at least one line defined by the hidden nodes. A number
3k of such pairs exists. Therefore, each of the lines defined by the hidden nodes neces-
sarily separates three pairs(pij, nij) with j ∈ {1, 2, 3} and nearly coincides with the
line defined by[xi1, xi3]. Denote the outputweights of the circuit byw1, . . . , wk and the
output bias byθ. We can assume that theith node nearly coincides with theith line and
that the pointspij are mapped by the node to the value0. Otherwise we change all signs
of the weights and the bias in nodei, we change the sign of the weightwi, and increase
θ by wi. But then the pointspi2 are mapped to0 by all hidden nodes, the pointsni2 are
mapped to0 by all but one hidden node. This means thatθ > 0, θ +wi < 0 for all i and
thereforeθ+wi1 + . . .+wil < 0 for all i1, . . . , il ∈ {1, . . . , k} with l ≥ 1. This means
that the output unit computes the function NAND: (x1, . . . , xn) �→ ¬x1 ∧ . . . ∧ ¬xn

on binary values.
Define a solution of the instance of the MAX-k-cut problem by setting theith cutci

as{vj | thei th hidden node mapsej to1}\(c1∪ . . .∪ci−1). Assume some edge(vi, vj)
is monochromatic. Thenei andej are mapped to1 by the same hidden node. Therefore
eij is classified wrong. Note that alleij corresponding to edges inE\E ′ are correct,
hence the nodesv|V |+1, . . . , v|V |+k−3 each form one cut and the remaining nodes are
contained in the remaining three cuts. Hence these three cuts define a solution of the in-
stance of the MAX-3-cut problem such that almost edges corresponding to misclassified
eij are monochromatic.

Denote by opt1 the value of an optimum solution of the MAX-3-cut problem and by
opt2 the optimum value of the loading problem. We have shown that

opt2 =
|E|opt1 + (|E′| − |E|) + 4|E′| + 12|E′|k

5|E′| + 12|E′|k ≤ 3
2

opt1 .

Next we constructT2. Assume that a solution of the loading problem with relative
error smaller thanc/k3 is given. Then the points(I) and(IV) are correct due to their mul-
tiplicities. Otherwise the relative error of the problem would be at least|E ′|/(5|E′| +
12|E′|k) ≥ c/k3 for appropriately smallc and largek. As before we can assume that
the output node computes the functionx �→ ¬x1 ∧ . . . ∧ ¬xk. Define opt2 to be the
value of an optimum solution of the loading problem andI2 the value of the given solu-
tion. Assume some pointeij corresponding to an edge inE ′\E is misclassified. ThenT2

yields an arbitrary solutionof the MAX-3-cut problem. For the qualityI1 of this solution
compared to an optimum opt1 we can compute

opt1 − I1 ≤ 1 ≤ 5|E′|+ 12|E′|k
|E| (opt2 − I2) .

This holds because an optimum solution of the loading problem classifies at least a num-
ber of|E| points more correct than in the solution considered here.

If all eij corresponding to edges inE ′\E are correct then we define a solution of the
MAX- 3-cut problem via the activation of the hidden nodes as above. Remaining nodes
become members of the first cut. An argument as above shows that each monochromatic



edge comes from a misclassification of eitherei, ej , or eij . Hence

opt1 − I1 ≤ 5|E′|+ 12|E′|k
|E| (opt2 − I2) .

Settingα = 3/2, β = c̃ ·k3 ≥ (5|E′|+12|E′|k)/|E| for some constant̃c and using
Theorem 1 yields the result as stated above. �

The (n,2, 1)-{sgd, Hε}-net The above result deals with realistic circuit structures.
However, usually a continuous and differentiable activation function is used in prac-
tice. A very common activation function is the standard sigmoid activation sgd(x) =
1/(1 + e−x). Here we consider the loading problem with a feedforward architecture of
the form(n, 2, 1) where the input dimensionn is allowed to vary. The sigmoidal acti-
vation function is used in the two hidden nodes. The output is the function

Hε(x) =




0 if x < −ε ,
undefined if− ε ≤ x ≤ ε ,
1 otherwise .

The purpose of this definition is to enforce that any classification is performed with a
minimum separation accuracyε. Furthermore, we restrict to solutionswithoutputweights
whose absolute values are bounded by some positive constantB. This setting is captured
by the notion of so-calledε-separation (for example, see [19]). Formally, the circuit com-
putes the functionβA(w, x) = Hε(α sgd(atx + a0) + β sgd(btx + b0) + γ) where
w = (α, β, γ, a, a0, b, b0) are the weights and thresholds, respectively, of the output
node and the two hidden nodes and|α|, |β| < B for some positive constantB.

Theorem 4. It is NP-hard to approximate the mL with relative error smaller than1/2244
for the architecture of a {(n, 2, 1) | n ∈ N}-circuit with sigmoidal activation function
for the hidden nodes, output activation function H ε with 0 < ε < 0.5, weight restriction
B ≥ 2 of the output weights, and examples from Qn × {0, 1}.

The proof consists in an application of Theorem 2 and a careful examination of the ge-
ometric form of the classification boundary defined by those types of networks. It turns
out that some argumentation can be transferred from the standard perceptron case since
some geometrical situations merely correspond to the respective cases for perceptron
networks. However, additional geometric situations may take place which are excluded
in our setting with appropriate points in the set of special pointsP 0 in near optimum so-
lutions. Due to the situation ofε-separation it turns out that the result transfers to more
general activation functions:

Definition 3. Two functions f, g : R → R are ε-approximates of each other if |f(x) −
g(x)| ≤ ε holds for all x ∈ R.

Corollary 1. It is NP-hard to approximate the success ratio function mL with relative
error smaller than 1/2244 for {(n, 2, 1) | n ∈ N}-circuit architectures with activation
function σ in the hidden layer and Hε in the output, ε < 1/3, weight restriction B ≥ 2,
and examples from Qn × {0, 1}, provided σ(x) is ε/(4B)-approximate to sgd(x).



The (n,2, 1)-{lin, H}-net In this section, we prove the NP-hardness of the approx-
imability of the success ratio function with the semilinear activation function commonly
used in the neural net literature [7, 8]:

lin(x) =




0 if x ≤ 0
x if 0 < x ≤ 1
1 otherwise

.

This function captures the linearity of the sigmoidal activation at0 as well as the asymp-
totic behaviour. Note that the following result does not requireε-separation.

Theorem 5. It is NP-hard to approximate mL with relative error smaller than 1/2380
for the architecture of {(n, 2, 1) |n ∈ N}-circuit with the semilinear activation function
in the hidden layer and the threshold activation function in the output.

Again the proof consists in an application of Theorem 2 and an investigation of the ge-
ometrical form of the classification boundaries which enables us to define appropriate
algorithmsT1 andT2.

Avoiding Multiplicities In the reductions of previous sections, examples with multi-
plicities were contained in the training sets. In the practical relevant case of neural net-
work training, patterns are often subject to noise. Hence the points do not come from a
probability distribution with singletons, i.e. points with nonzero probability. As a con-
sequence the question arises as to whether training sets where each point is contained at
most once yield NP-hardness results for approximate training as well.

The reduction of the MAX-k-cut problem to a loading problem can be modified as
follows:T1 yields themutually different points:

– a setP0 of pointspj
i , j = 1, . . . , 3|E| for eachi,

– for each nodevi, pointsej
i , j = 1, . . . , 2di, wheredi is the degree ofvi,

– for each edge(vi, vj), two pointseij andoij.

Assume,T1 andT2 satisfy the following properties:

(i’) For an optimum solution of the MAX-k-cut problem one can find an optimum so-
lution of the instance of the corresponding loading problemL in which the special
pointsP0 and allej

i points are correctly classified and exactly the monochromatic
edges(vi, vj) lead to misclassified pointseij or oij .

(ii’) If for eachi at least onepj
l is correct,T2 computes in polynomial time an approx-

imate solution where, for each monochromatic edge(vi, vj), one of the pointseij

or oij or all pointsel
i (l = 1, . . . , 3|E|) or all pointsel

j (l = 1, . . . , 3|E|) are mis-
classified.

An analogous proof to [3] shows the following:

Theorem 6. Under the assumptions stated above, an L-reduction with constants α =
k/(k − 1), β = 3|P0| + 6, and a = (k − 1)/(k2(3|P0| + 6)) arises.

Corollary 2. The reductions for general perceptron circuits and in Theorems 4 and 5
can be modified such that (i’) and (ii’) hold. Hence minimizing the relative error within
some constant is NP-hard even for training sets without multiple points in these situa-
tions.



4 Approximating the Failure Ratio Function mf

Given an instancex of the loading problem, denote bymC (x, y) the number of examples
in the training set missclassified by the circuit represented byy. Givenc, we want to
find weights such that optC(x) ≤ mC(x, y) ≤ c · optC(x). The interesting case iswith
errors, i.e. optC(x) > 0. Hence we restrict to the case with errors and investigate if the
failure ratiomf = mC(x, y)/optC(x) can be bounded from above by a constant. We
term this problem asapproximating the minimum failure ratio within c while learning in
the presence of errors [2]. It turns out that the approximation is NP-hard within a bound
which isindependent of the circuit architecture. For this purpose we use a reduction from
the set-covering problem.

Definition 4 (Set Covering Problem [9]). Given a set of pointsS = {s1, . . . , sp} and a
set of subsets C = {C1, . . . , Cm}, find indices I ⊂ {1, . . . , m} such that

⋃
i∈I Ci = S.

In this case the sets Ci, i ∈ I, are called a cover of S. A cover is called exact if the sets
in a cover are mutually disjoint.

For the set-covering problem the following result holds, showing that it is hard to ap-
proximate within every factorc > 1:

Theorem 7. [4] For every c > 1 there is a polynomial time reduction that, given an
instance ϕ of SAT, produces an instance of the set-covering problem and a number K ∈
N with the properties: if ϕ is satisfiable then there exists an exact cover of size K, if ϕ
is not satisfiable then every cover has size at least c · K.

Using Theorem 7 Arora et.al. [2] show that approximating the minimum failure ratio
function within a factor ofc (for any constantc > 1) is NP-hard for a single threshold
node if all the input thresholds are set to zero. We obtain the following result.

Theorem 8. Assume that we are given a layered H-circuit where the thresholds of the
nodes in the first hidden layer are fixed to 0 and let c > 1 be any given constant. Then
the problem of approximating minimum failure ratio mf while learning in the presence
of errors within a factor of c is NP-hard.

Proof. Without loss of generality, assume that the circuit contains at least one hidden
layer. Assume that we are given a formulaϕ. Transform this formula with the given
constantc to an instance(S = {s1, . . . , sp}, C = {C1, . . . , Cm}) of the set-covering
problem and a constantK such that the properties in Theorem 7 hold. Transform this
instance of the set-covering problem to an instance of the loading problem for the given
architecture with input dimensionn = |C|+ 2 + n1 + 1 wheren1 denotes the number
of hidden nodes in the first hidden layer and the following examples fromQn ×{0, 1}:

(I) (ei, 0, 1, 0n1+1; 1), (−ei, 0, 1, 0n1+1; 1), whereei is theith unit vector inR|C|,
(II) c·K copies of each of the points(esi ,−1, 1, 0n1+1; 1), (−esi , 1, 1, 0n1+1; 1), where

esi ∈ {0, 1}|C| is the vector withjth component as1 if and only if si ∈ Cj, i ∈
{1, . . . , p},

(III) c·K copies of each of(0|C|, 1, 0, 0n1+1; 1), (0|C|, 1/(2m), 1, 0n1+1; 1), and(0|C|,−1/(2m), 1, 0n1+1; 0),
where the component|C|+1 is nonzero in all three points and the component|C|+2
is nonzero in the latter two points,m = |C|,



(IV) c·K copies of each of(0|C|+2, pi, 1; 0),(0|C|+2, p0, 1; 1),(0|C|+2, z̃i, 1; 1),(0|C|+2, z̄i, 1; 0),
where the pointspi, z̃i, z̄i are constructed as follows: Choosen1 +1 points in each
setHi = {x = (x1, x2, . . . , xn1) ∈ Rn1 |xi = 0, xj > 0∀j �= i} (denote the points
by z1, z2, ... and the entire set byZ) such that any givenn1 + 1 different points
in Z lie on one hyperplane if and only if they are contained in oneHi. Forzj ∈ Hi

definez̃j ∈ Rn1 by z̃j = (zj1, . . . , zji−1, zji + ε, zji+1, . . . , zjn1), z̄j ∈ Rn1

by z̄j = (zj1, . . . , zji−1, zji − ε, zji+1, . . . , zjn1), for some small valueε which is
chosen such that the following property holds: if one hyperplane inRn1 separates at
leastn1 +1 pairs(z̃i, z̄i), these pairs coincide with then1 +1 pairs corresponding
to then1+1 points in someHi, and the separating hyperplane nearly coincides with
the hyperplane throughHi.

For an exact cover of sizeK, let the corresponding set of indices beI = {i1, . . . , iK}.
Define the weights of a threshold circuit such that theith node in the first hidden layer
has the weights(eI , 1, 1/(4m), ei, 0), where thejth component ofeI ∈ {0, 1}|S| is 1 if
and only ifj ∈ I andei is theith unit vector inRn1 . The remaining nodes in the other
layers compute the functionx �→ x1 ∧ . . . ∧ xl of their inputsxi. Since the cover is
exact, this maps all examples correctly exceptK examples in(I).

Conversely, assume that every cover has size at leastc · K. Assume some weight
setting misclassifies less thanc ·K examples. We can assume that the activation of ev-
ery node is different from0 on the training set: for the examples in(IV) the weightwn

serves as a threshold, for the points in(I), (II), and(III) except for(0|C|, 1, 0n1+2; 1) the
weightw|C|+2 serves as a threshold, hence one can slightlychange the respective weight
which serves as a threshold without changing the classification of these examples such
that the activation becomes nonzero. Assuming that the activation of(0|C|, 1, 0n1+2; 1)
is zero we can slightly increase the weightw|C|+1 such that the sign of the activation
of all other points which are affected does not change. Because of the multiplicity of
the examples the examples in(II)-(IV) are correctly classified. We can assume that the
output of the circuit has the formβA(w, x) = f1(x) ∧ . . . ∧ fn1(x) wherefi is the
function computed by theith hidden node in the first hidden layer, because of the points
in (IV). This is due to the fact that the pointsz̃i andz̄i enforce the respective weights
of the nodes in the first hidden layer to nearly conincide with weights describing the
hyperplane withith coefficient zero. Hence the pointspi are mapped to the entire set
{0, 1}n1 by the hidden nodes in the first hidden layer and determine the remainder of
the circuit function. Hence all nodes in the first hidden layer classify all positive exam-
ples except less thanc · K points of(I) correctly and there exists one node in the first
hidden layer which classifies the negative example in(III) correctly as well. Consider
this last node. Denote byw the weights of this node. Because of(III), w|C|+1 > 0.
DefineI = {i ∈ {1, . . . , |C|} | |wi| ≥ w|C|+1/(2m)}.

Assume{Ci|i ∈ I} forms a cover. Because of(III) we findw|C|+1/(2m)+w|C|+2 >
0and−w|C|+1/(2m)+w|C|+2 < 0. Hence one of the examples in(I) is classified wrong
for everyi ∈ I. Hence at leastc ·K examples are misclassified.

Assume that{Ci | i ∈ I} does not form a cover. Then one can find for somei ≤ |S|
and the point(esi ,−1, 1, 0n1+1) in (II) an activation< m · w|C|+1/(2m) −w|C|+1 +
w|C|+2 = w|C|+2−w|C|+1/2 which is negative because−w|C|+1/(2m)+w|C|+2 < 0,
w|C|+1 > 0 (III). This yields a misclassified example with multiplicityc · K. �



One can obtain an even stronger result indicating that not only approximation within an
arbitrary factor is NP hard but even approximation within a factor which is exponential
in the input length is not possible unless NP⊂ DTIME(npoly(log n)). For this purpose, we
use a reduction from the so called label cover problem:

Definition 5 (Label Cover). Given a bipartite graph G = (V, W, E) withE ⊂ V ×W ,
labels B, D, and a set Π ⊂ E × B × D. A labelingconsists of functions P : V → 2B

and Q : W → 2D which assign labels to the nodes in the graph. The costof a labeling
is the number

∑
v∈V |P (v)|. An edge e = (v, w) is coveredif both, P (v) and Q(w) are

not empty and for all d ∈ Q(w) some b ∈ P (v) exists with (e, b, d) ∈ Π . A total cover
is a labeling such that each edge is covered.

For the set-covering problem the following result holds, showing that it is almost NP-
hard to obtain weak approximations:

Theorem 9. [2, 18]For every ε > 0 there exists a quasipolynomial time reduction from
the satisfiability problem to the label cover problem which maps an instance ϕ of size n
to an instance (G, Π) of size N ≤ 2poly(log n) with the following properties:
If ϕ is satisfiable then (G, Π) has a total cover with cost |V |.
If ϕ is not satisfiable then every total cover has cost at least 2log0.5−ε N |V |.
Furthermore, (G, Π) has in both cases the property that for each edge e = (v, w) and
b ∈ B at most one d ∈ D exists with (e, b, d) ∈ Π .

Via this Theorem and ideas of Arora et.al. [2] the following can be prooved:

Theorem 10. Assume that we are given a layered H-circuit where the thresholds of the
nodes in the first hidden layer are fixed to 0 and let ε > 0 be any given constant. If the
problem of approximating minimum failure ratio mf while learning in the presence of
errors within a factor of 2log0.5−ε N , N being the size of the respective input, is polyno-
mial time, then NP ⊂ DTIME(npoly(log n)).

Proof. Assume that we are given a formulaϕ. Transform this formula with the given
constantε to an instance(G, Π) of the label cover problem with the properties as de-
scribed in Theorem 9. W.l.o.g. does the network contain at least one hidden layer.

First, we delete all(e = (v, w), b, d) in Π such that for some edgee′ incident tov no
d′ exists with(e′, b, d′) ∈ Π. Those labels are calledvalid. The costs for a total cover
remain|V | if ϕ is satisfiable. Otherwise, this can at most increase the costs. For each
e ∈ E andb ∈ B a uniqued ∈ D exists such that(e, b, d) ∈ Π. We denote this element
byd(e, b). We can assume that a total cover exists, since this can be polynomially tested.

Now transform this instance to an instance of the loading problem. The input dimen-
sion isn = n2 + 2 + n1 + 1 wheren1 denotes the number of hidden nodes in the first
hidden layer,n2 = |V ||B| + |W ||D|, E ⊂ V × W are the edges,B andD are the la-
bels. The following examples fromQn ×{0, 1} are constructed: (m = max{|B|, |D|},
K = |B| · |E|, the firstn2 components are successively identified with the tupels in
V × B andW × D and denoted via corresponding indices.)

(I) K copies of each of(0n2+2, pi, 1; 0) (i ≥ 1), (0n2+2, p0, 1; 1), (0n2+2, z̃i, 1; 1),
(0n2+2, z̄i, 1; 0), where the pointspi, z̃i, z̄i are the same points as in the proof of
Theorem 8.



(II) K copies of(0|n2|, 1, 0, 0n1+1; 1),
(III) K copies of(0|n2|, 1/(16m2), 1, 0n1+1; 1), (0|n2|,−1/(16m2), 1, 0n1+1; 0),
(IV) K copies of each of the points(ev,−1, 1, 0n1+1; 1), (ew,−1, 1, 0n1+1; 1), where

ev is 1 precisely at those places(v, b) such thatb is a valid label forv and0 other-
wise, andew is 1 precisely at the places(w, d) such thatd ∈ D (v ∈ V , w ∈ W ).

(V) K copies of each of the points(−ev→w,d, 1, 1, 0n1+1; 1), where−ev→w,d is −1
precisely at those places(v, b) such thatb is a valid label forv andd is not assigned
to (v → w, b) and at the place(w, d) and0 otherwise (v → w ∈ E).

(VI) (−ev,b, 0, 1, 0n1+1; 1), where−ev,b is−1 precisely at those places(v, b) such that
b is a valid label forv.

Assume that a label cover with costs|V | exists. Define the weights for the neurons in
the first computation layer byw(v,b) = 1 ⇐⇒ b is assigned tov, w(w,d) = 1 ⇐⇒ d
is assigned tow, wn2+1 = 1, wn2+2 = 1/(32m2). If a hidden layer is contained, the
remaining coefficients of theith hidden neuron in the first hidden layer are defined by
wn2+2+i = 1, the remaining coefficients are0. The neurons in other layers compute
the logical function AND. This maps all points but at most|V | points in(VI) to correct
outputs. Note that the points in(V) are correct since eachv is assigned precisely oneb.

Conversely, assume that a solution of the loading problem is given. We show that it
has at least a number of misclassified points which equals the costs of a cover, denoted
by C. Assume for the sake of contradiction that less thanC points are classified wrong.
Since a cover has costs at mostK we can assume that all points with multiplicities are
mapped correctly. Because of the same argumentation as in 8 we can assume that the
activation of every node is different from0 on the training set. Additionally, we can as-
sume that the output of the circuit has the formβA(w, x) = f1(x)∧ . . .∧fn1(x) where
fi is the function computed by theith hidden node in the first hidden layer, because of
the points in(I). Hence all nodes in the first hidden layer classify all positive examples
except less thanC points of(V) correctly and there exists one node in the first hidden
layer which classifies the negative example in(III) correctly as well.

Denote byw the weights of this node. Because of(II),w|n2|+1 > 0. Label the nodev
with those valid labelsb such thatw(v,b) > wn2+1/(4m2). Label the nodew with those
labelsd such thatw(w,d) > wn2+1/(2m). If this labeling forms a total cover, then we
find for all b assigned tov in (VI) an activation smaller than−wn2+1/(4m2) + wn2+2.
Due to(III), wn2+2 < 1/(16m2) · wn2+1, hence the activation is smaller than0 and
leads to a number of misclassified points which is at least equal to the costsC.

Assume conversely that this labeling does not form a total cover. Then somev or
w is not labeled, or for some labeld for w and edgev → w nob is assigned tov with
(v → w, b, d) ∈ Π. Due to(IV) we find

∑
b valid for v

w(v,b) − wn2+1 + wn2+2 > 0,
hence together with(III)

∑
b valid for v

w(v,b) > wn2+1−wn2+1/(16m2), hence at least one
w(v,b) is of size at leastwn2+1/(2m). In the same way we find

∑
d w(w,d) − wn2+1 +

wn2+2 > 0, hence at least onew(w,d) is of size at leastwn2+1/(2m). Consequently,
each node is assigned some label. Assume that the nodew is assigned somed such that
the edgev → w is not covered. Hencew(w,d) > wn2+1/(2m). Due to(V) we find
−

∑
b valid for v, d(v → w, b) �= d

w(v,b)−w(w,d) +wn2+1 +wn2+2 > 0 and due to(IV) we find∑
b valid for v

w(v,b)−wn2+1 +wn2+2 > 0, hence
∑

b valid for v, d(v → w, b) = d
w(v,b) > wn2+1−

wn2+2−
∑

b valid for v, d(v → w, b) �= d
w(v,b) > wn2+1−wn2+2 +w(w,d)−wn2+1−wn2+2 =



w(w,d) − 2wn2+2 > wn2+1(1/(2m) − 1/(8m2)) > wn2+1/(4m). Hence at least one
weight corresponding to a label which can be used to cover this edge is of size at least
wn2+1/(4m2). �

5 Conclusion

We have shown the NP-hardness of finding approximate solutions for the loading prob-
lem in several different situations. We have considered the question as to whether ap-
proximating the relative error ofmL within a constant factor is NP-hard. Compared
to [3] we considered threshold circuits with correlated number of patterns and hidden
neurons and the(n, 2, 1)-circuit with the sigmoidal (withε-separation) or the semilin-
ear activation function. Furthermore, we discussed how to avoid training using multiple
copies of the example. We considered the case where the number of examples is corre-
lated to the number of hidden nodes. Investigating the problem of minimizing the failure
ratio in the presence of errors yields NP-hardness within every constant factorc > 1 for
multi-layer threshold circuits with zero input biases, and even weak approximation of
this ratio is hard under standard complexity-theoretic assumptions.
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