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Abstract

We compare different gate functions in terms of the approximation power of their circuits. Eval-

uation criteria are circuit size s, circuit depth d and the approximation error e(s, d). Informally,

gate functions γ1 and γ2 are called equivalent if {γ1}-circuits of size s and depth d can be ap-

proximated by {γ2}-circuits (and vice versa) of size poly(s), depth O(d) with approximation error

e(s, d) = 2−s. Our goal is to determine those gate functions that are equivalent to splines relative

to this error model.

The class of equivalent gate functions contains, among others, the exponential function, the

natural logarithm, (non-polynomial) rational functions and (non-polynomial) roots. Newman’s

result, i.e., approximating | x | by rational functions, is obtained as a corollary of this equivalence

result. Provably not equivalent are polynomials, the sine-function and linear splines.
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1 Introduction

We consider efficient approximations of a given multivariate function f : [−1, 1]n → R by feedfor-

ward neural networks. We first introduce the notion of a feedforward net (or in our terminology,

the notion of a Γ-circuit).

Definition 1.1 (a) Let Γ be a class of real-valued functions, where each function is defined on

some subset of R. A Γ-circuit C is an unbounded fan-in circuit whose edges and vertices are

labeled by rational numbers. We assume that C has a unique sink t. The rational number assigned

to an edge (resp. vertex) is called its weight (resp. its threshold). Moreover, to each vertex v, a

gate function γv ∈ Γ is assigned.

(b) The circuit C computes a function FC : [−1, 1]n → R as follows. The components of the input

vector x = (x1, . . . , xn) ∈ [−1, 1]n are assigned to the sources of C. Let v1, . . . , vr be the immediate

predecessors of a vertex v. The input for v is then sv(x) =
∑r

i=1 wiyi − tv, where wi is the weight of

the edge (vi, v), tv is the threshold of v and yi is the value assigned to vi. If v is not the sink (i.e.,

v �= t), then assign the value γv(sv(x)) to v; otherwise assign st(x) to t. Finally, FC , the function

computed by C, is defined by FC = st.

(c) The depth of C is the length of the longest path from a source to the sink of C, the size of C is

the number of vertices of C which are not sources of C.

Since the sink computes a weighted sum, it becomes possible to approximate arbitrary functions,

although the gate functions in Γ may have a restricted image.

A great deal of work has been done showing that circuits of depth 2 can approximate (in

various norms) large function classes (including continuous functions) arbitrarily well (Arai, 1989;

Carrol and Dickinson, 1989; Cybenko, 1989; Funahashi, 1989; Gallant and White, 1988; Hornik

et al. 1989; Irie,1988; Lapades and Farber, 1987; Nielson, 1989; Poggio and Girosi, 1989; Wei et

al., 1991). Research on efficient approximations has only started recently (Williamson and Paice,

1991).

Various gate functions have been used, among others, the cosine squasher, the standard sigmoid,

radial basis functions, generalized radial basis functions, polynomials, trigonometric polynomials

and binary thresholds. Still, as we will see, these functions differ significantly in terms of their

approximation power.

Our goal is to compare gate functions in terms of efficiency and quality of approximation. We

measure efficiency by the size of the circuit and by its depth. Another resource of interest is the
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Lipschitz-bound of the circuit, which is a measure of the numerical stability of the circuit.

Definition 1.2 (a) Let r = p
q be a rational number with (p, q) = 1. Then we say that r has

logarithmic size at most s, provided |p|, |q| ≤ 2s.

(b) A Γ-circuit C has Lipschitz-bound L over a domain D if and only if

• all weights and thresholds of C are rational numbers of logarithmic size at most log2 L,

• for each vertex v of C,

– γv(sv(D)) ⊆ [−L, L] and

– the gate function γv has Lipschitz-bound at most L for all inputs from

⋃
y∈sv(D)

[y − 1, y + 1].

(Thus we do not demand that gate function γv has Lipschitz-bound L, but only that γv has

Lipschitz-bound L for the inputs it receives. Moreover, the actually received inputs have to be

bounded away from regions with higher Lipschitz-bounds.) We measure the quality of an approxi-

mation of function f by function g by the Chebychev norm:

Definition 1.3 Let f, g : D → R be real-valued functions over the domain D ⊆ Rn. We set

||f − g||D = sup{|f(x)− g(x)| : x ∈ D}.

Let Γ be a class of gate functions. We are mainly interested in the following question.

Given two classes Γ1 and Γ2 of gate functions, when do Γ1-circuits and Γ2-circuits have

essentially the same “approximation power” with respect to error 2−s?

We formalize the notion of having essentially the same approximation power as follows.

Definition 1.4 Let Γ1 and Γ2 be classes of gate functions.

(a) We say that Γ2 simulates Γ1 (denoted by Γ1 ≤ Γ2) if and only if there is a constant k ≥ 1 such

that

for all Γ1-circuits C1 of size at most s, depth at most d and Lipschitz-bound 2s over [−1, 1]n

there is a Γ2-circuit C2 of size at most (s +1)k, depth at most k · (d+ 1) and Lipschitz-bound

2(s+1)k
over [−1, 1]n with

||FC1 − FC2 ||[−1,1]n ≤ 2−s.
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(b) We say that Γ1 and Γ2 are equivalent (denoted by Γ1 ≡ Γ2) if and only if Γ1 ≤ Γ2 and Γ2 ≤ Γ1.

In other words, when simulating classes of gate functions, we allow depth to increase by a con-

stant factor, size and the logarithm of the Lipschitz-bound to increase polynomially. The relatively

large Lipschitz-bounds should not come as a surprise, since the negative exponential error 2−s

requires correspondingly large weights for the simulating circuit.

Proposition 1.1 ≡ is an equivalence relation on classes of gate functions.

Proof. We observe first that ≡ is symmetric and reflexive. It remains to verify that ≡ is also

transitive. So assume that Γ1 ≡ Γ2 and Γ2 ≡ Γ3.

In particular, let C1 be a Γ1-circuit of size at most s, depth at most d and Lipschitz-bound

at most 2s over [−1, 1]n. Since Γ1 ≤ Γ2, there is a constant k1 ≥ 1 (independent of C1) and a

Γ2-circuit C2 (of size at most s′ = (s + 2)k1, depth at most d′ = k1 · (d+ 1) and Lipschitz-bound at

most 2s′ over [−1, 1]n) such that

||FC1 − FC2 || ≤ 2−(s+1) =
1
2
· 2−s.

Moreover, since Γ2 ≤ Γ3, there is a constant k2 ≥ 1 (independent of C2) and a Γ3-circuit C3 (of

size at most s′′ = (s′ + 1)k2, depth at most d′′ = k2 · (d′ + 1) and Lipschitz-bound at most 2s′′ over

[−1, 1]n) such that

||FC2 − FC3 || ≤ 2−s′ ≤ 2−(s+2)k1 ≤ 1
2
· 2−s.

Thus

||FC1 − FC3 || ≤ 2−s,

where C3 has size

s′′ = (s′ + 1)k2 = ((s + 2)k1 + 1)k2 ≤ ((3 · s)k1 + (3 · s)k1)k2 = (2 · (3 · s)k1)k2 ≤ (s + 1)κ+k1·k2,

if κ is chosen sufficiently large. Moreover, the depth of C3 is bounded by

k2 · (d′ + 1) = k2 · (k1 · (d + 1) + 1) ≤ 2k2 · k1 · (d + 1).

Thus, for k = max{κ + k1 · k2, 2k2 · k1}, C3 has size at most (s + 1)k, depth at most k · (d + 1),

Lipschitz-bound at most 2s′′ ≤ 2(s+1)k
over [−1, 1]n. Moreover C3 approximates C1 with error at

most 2−s. Thus we have obtained that Γ1 ≤ Γ3. The claim follows, since Γ3 ≤e Γ1 can be shown

analogously. �

We are particularly interested in the approximation power of spline circuits.
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Definition 1.5 (a) A continuous function f : R → R is called a k-spline of degree δ if and only

if there are knots −∞ = x0 < x1 < . . . < xk < xk+1 = ∞ and polynomials p1, . . . , pk+1 of degree at

most δ such that f(x) = pr(x) for all x with x ∈ [xr−1, xr].

(b) A spline circuit (resp. polynomial circuit) C of size s and weight w over a domain D ⊆ R is

an unbounded fan-in circuit with s vertices. The gate functions of C are 1-splines (resp. univariate

polynomials)) of degree at most s. Moreover C has Lipschitz-bound at most 2w over D and the

coefficients of all involved polynomials, as well as the weights and thresholds of C are rational

numbers of logarithmic size at most w.

(c) We use the notation

Γ ≤ splines

to express that there is a constant c such that any Γ-circuit of size at most s, depth at most d and

Lipschitz-bound at most 2s over [−1, 1]n can be approximated by a spline circuit of size at most

(s + 1)c, depth at most c · (d + 1) and weight at most (s + 1)c. The notation

splines ≤ Γ and splines ≡ Γ

is introduced analogously.

We can now introduce our main result.

Theorem 1.1 The following gate functions are equivalent to splines.

(a) the exponential function,

(b) the natural logarithm,

(c) any rational function which is not a polynomial,

(d) any root xα, provided α is not a natural number,

(e) the standard sigmoid σ(x) = 1
1+e−x .

This result is the consequence of identifying a large class of gate functions (i.e., powerful gate

functions, see Definition 3.1), which have at least the approximation power of splines (see The-

orem 3.1). Any powerful gate function γ has to satisfy two properties. Firstly, γ has to have

a convergent Taylor-series in some small interval; in this case, polynomials can be approximated

tightly (Proposition 2.4). Secondly, {γ}-circuits have to be capable of approximating the binary
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threshold t(x) =




1 x ≥ 0

0 otherwise
(over the interval [−1, 1]− [−2−s, 2−s]) with size polynomial

in s, constant depth and error 2−s.

In Definition 3.1, we describe a Lipschitz-type property that guarantees a tight approximation

of the binary threshold. This property can be checked quite easily (Lemma 3.1) and Theorem 1.1

becomes a corollary of Theorem 3.1. As a second consequence of Theorem 3.1, we obtain Newman’s

approximation result of | x | by rational functions (Newman, 1964) (see Remark 3.1).

Notable exceptions from the list of functions equivalent to splines are polynomials, trigonometric

polynomials and linear splines. Linear splines and polynomials are properly weaker than splines

(Proposition 3.1). In Proposition 3.2 we show that spline circuits of depth d require size s = AΩ(1/d)

to approximate sine(Ax) with error of at most 1/2. Thus sine and splines are not equivalent.

On the other hand, spline circuits of constant depth and size polynomial in logA are capable of

approximating sine(Ax) tightly, provided the input x is given in binary (Reif, 1987). Therefore,

the complexity of extracting bits from the given analog input is high as well.

A related question is the computing power of gate functions for binary input. In (DasGupta

and Schnitger, 1995) we show that the language family

Ln = {(x1, . . . , xn, y1, . . . , yn2) : (
n∑

i=1

xi)2 ≥
n2∑
i=1

yi }

can be recognized by {γ}-circuits with two gates, whereas threshold circuits require size Ω(log2 n).

(γ has to be three times continuously differentiable in some small neighborhood of 0 and γ(2)(0) �=
0.) Hence real-valued gate functions can be considerably more powerful.

We begin the next section by showing that it suffices to tightly approximate single gate functions

in Γ1 by small Γ2-circuits of constant depth in order to establish Γ1 ≤ Γ2. In section 2.1 we review

the approximation power of spline-circuits and verify that each function mentioned in Theorem 1.1

can be efficiently simulated by spline circuits. Section 2.2 shows how to approximately compute

polynomials assuming a sufficiently smooth gate function. Approximations of the binary threshold

are described in the section 3. Finally, a summary is given in section 4. A preliminary version of

this paper appears in (DasGupta and Schnitger, 1993).

2 Simulating gate functions

We first observe that an approximation of individual gate functions establishes an approximation

of the entire circuit.
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Definition 2.1 (a) For a subset D ⊆ R we set

D =
⋃

y∈D

[y − 1, y + 1].

(b) Let γ be a gate function and let Γ be a class of gate functions. For a natural number k we say

that Γ k-simulates γ, if and only if

for each integer s ≥ k and any subset D(γ) ⊆ [−23s, 23s] such that γ has Lipschitz-bound at

most 2s over D(γ)

there is

a Γ-circuit C(γ, s) of size at most (s+1)k and depth at most k which approximates γ over D(γ)

with approximation error at most 2−s. Moreover we demand that C(γ, s) has Lipschitz-bound

at most 2(s+1)k
over D(γ).

Proposition 2.1 Let Γ1 and Γ2 be classes of gate functions and let k be a natural number. Assume

that each function γ ∈ Γ1 can be k-simulated by Γ2. Then

Γ1 ≤ Γ2.

Proof. Let C1 be an arbitrary Γ1-circuit with n inputs and assume that C1 has depth at most d,

size at most s and Lipschitz-bound at most 2s over [−1, 1]n.

Let sv(x1, . . . , xn) be the input received by a vertex v of C1 for circuit input (x1, . . . , xn) (see

Definition 1.1). Assume that sv(x1, . . . , xn) =
∑m

i=1 wv,i · yi − tv, with gate inputs y1, . . . , ym. We

set D(γv) = sv([−1, 1]n) for the gate function γv of vertex v. Since C1 has Lipschitz-bound 2s over

[−1, 1]n, the gate function γv of v has Lipschitz-bound 2s over the domain D(γv). Moreover each

gate of C1 outputs a result of absolute value at most 2s. Hence |sv(x1, . . .xn)| ≤ ∑m
i=1 |wv,i| · |yi|+

|tv| ≤ s · 2s · 2s + 2s ≤ 23s and D(γv) = sv([−1, 1]n) is contained in the interval [−23s, 23s].

By assumption, γv can be k-simulated by a Γ2-circuit C(γv, 5·s2). C(γv, 5·s2) has depth at most

k, size at most (5 ·s2+1)k ≤ (s+1)4k and Lipschitz-bound at most 2(s+1)4k
over D(γv). We replace

gate γv by γ∗
v , the function computed by C(γv, 5 · s2) and keep the weights wv,i and the threshold

tv. We obtain a Γ2-circuit C2 of depth at most k · d and size at most s · (s +1)4k ≤ (s + 1)4k+1. We

have to verify that C2 meets the approximation and Lipschitz requirements.

If the gate inputs y1, . . . , ym are approximated by y∗1, . . . , y
∗
m with respective error at most ε,

then we obtain

|(
m∑

i=1

wv,i · yi − t) − (
m∑

i=1

wv,i · y∗i − t)| ≤
m∑

i=1

|wv,i| · ε ≤ s · 2s · ε ≤ 22s · ε.
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In particular,
∑m

i=1 wv,i · y∗i − t ∈ D(γv), provided ε ≤ 2−2s. Remember that γv(x) is approximated

by γ∗
v(x) with error at most 2−5s2

for x ∈ D(γv) and hence

|γv(
m∑

i=1

wv,i · y∗i − t) − γ∗
v(

m∑
i=1

wv,i · y∗i − t)| ≤ 2−5s2
.

Thus, assuming ε ≤ 2−2s and utilizing that γv has Lipschitz-bound 2s over D(γv), γv(
∑m

i=1 wv,i ·
yi − tv) is approximated with error at most

|γv(
m∑

i=1

wv,i · yi − t) − γ∗
v(

m∑
i=1

wv,i · y∗i − t)|

≤ |γv(
m∑

i=1

wv,i · yi − t) − γv(
m∑

i=1

wv,i · y∗i − t)| + |γv(
m∑

i=1

wv,i · y∗i − t) − γ∗
v(

m∑
i=1

wv,i · y∗i − t)|

≤ 2s · |(
m∑

i=1

wv,i · yi − t) − (
m∑

i=1

wv,i · y∗i − t)| + 2−5s2

≤ 2s · 22s · ε + 2−5s2
.

Hence, if εi is an upper bound for the approximation error of gates of depth i, we obtain the

recurrence

ε0 = 0 and εi+1 = 23s · εi + 2−5s2
.

Thus the overall approximation error of C2 is bounded by

εd ≤ εs = 2−5s2 · (
s−1∑
i=0

23si) ≤ 2−5s2 · 23s2 ≤ 2−2s2 ≤ 2−2s

and εi ≤ 2−2s holds throughout.

The claim follows, once we have shown that C2 has Lipschitz-bound 2(s+1)4k
over [−1, 1]n.

By construction, all weights and thresholds of C2 are upper-bounded by 2(s+1)4k
. Each inserted

subcircuit C(γv, 5 · s2) receives only inputs from D(γv) and it has Lipschitz-bound 2(s+1)4k
over

D(γv). Hence the Lipschitz-bound 2(s+1)4k
follows for C2 as well. �

2.1 Approximating with Splines

In Definition 1.5 we have introduced splines and spline-circuits. Remember that a spline circuit of

size s is built from s 1-splines of degree at most s; the unique sink computes the weighted sum of

its inputs.
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Remark 2.1 Let C be a spline circuit of size s, depth d and weight at most w over a subset D ⊆ R.

An inductive argument shows that C computes a sd−1-spline FC of degree at most sd−1. Moreover,

all coefficients have logarithmic size at most w′ = O(w · sd).

Now assume that FC is represented by the polynomials p1, . . . , pc+1 and the knots x1, . . . , xc,

where c = sd−1. We introduce the 1-splines f1, . . . , fc and the polynomial fc+1 = pc+1, where

fi(x) = pi(x) − pi+1(x) for x ≤ xi and fi(x) = 0 for x > xi. Then obviously FC =
∑c+1

i=1 fi.

The absolute value of a denominator (appearing in fi) can grow by at most a square (compared

to pi), the absolute value of a numerator can additionally double. Thus 2 ·w′ + 1 = O(w · sd) is an

upper bound on the weight of the circuit.

Hence FC , the function computed by C, can be computed by a spline circuit of depth 2, size

sd−1 + 2 and weight at most O(w · sd) over domain D.

Splines are quite powerful. In particular they achieve tight approximations whenever the domain

can be partitioned into not “too many” intervals where the function in question has a sufficiently

fast converging Taylor series:

Proposition 2.2 For each of the following functions and domains D an integer S exists such that

for any s ≥ S

spline circuits of depth 2, size and weight polynomial in s approximate with error at most 2−s

over the domain D,

(a) the exponential function over the domain D = [−∞, s],

(b) the natural logarithm over the domain D = [2−s, 2s],

(c) any rational function r over the domain D = [−2s, 2s], except for intervals of length 1 around

the poles of r,

(d) any root xα over the domain D = [0, 2s],

(e) the standard sigmoid σ over the domain D = [−∞,∞].

Proof. We begin with two initial remarks. Firstly, a spline circuit of depth 2 and size polynomial

in s has weight polynomial in s, provided the coefficients of all involved polynomials and the weights

and thresholds of the circuit are rational numbers of logarithmic size at most w.

Secondly assume that, for an interval I with a ∈ I , the function f : I → R has the convergent

Taylor series f(x) =
∑∞

k=0
(x−a)k

k! f (k)(a). Then Ts(x) =
∑s

k=0
(x−a)k

k! f (k)(a) is the Taylor polynomial
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of f of degree s. We obtain, as a consequence of the Lagrange error estimate,

|f(x) − Ts(x)| =
|x− a|s+1

(s + 1)!
f (s+1)(ξx) for some ξx ∈ I.

(a) We approximate exp(x) over the domain [−s, s] by its Taylor polynomial Ts2(x) =
∑s2

k=0
xk

k! .

The resulting approximation error will be at most ss2+1 · exp(s)/(s2 + 1)! ≤ 2−2s, provided s is

sufficiently large.

Over the domain [−∞,−s], we approximate by the constant y = Ts2(−s). This time the

approximation error is bounded by exp(−s) + 2−2s ≤ 2−s (for s ≥ 2). Hence, we can approximate

exp(s) by a 1-spline of degree at most s2.

(b) Let a be a positive real number and set D(a) = [a
2 , 3·a

2 ]. For x ∈ D(a) we obtain the represen-

tation

ln(x) = ln(a) +
∞∑

k=0

(−1)k 1
k + 1

(
x− a

a
)k+1.

The Taylor polynomial Tr,a(x) = ln(a) +
∑r−1

k=0(−1)k 1
k+1(x−a

a )k+1 approximates ln(x) with error at

most 2−r over the domain D(a), since

| ln(x)− Tr,a(x)| = |
∞∑

k=r

(−1)k 1
k + 1

(
x − a

a
)k+1| ≤

∞∑
k=r

1
k + 1

(
|x − a|
|a| )k+1 ≤

∞∑
k=r+1

1
2k

= 2−r .

To obtain the required spline circuit, divide the interval [2−s, 2s] into the intervals

[2−s, 2−(s−1)], [2−(s−1), 2−(s−2)], . . . , [2s−2, 2s−1], [2s−1, 2s]

and approximate ln(x) by the Taylor polynomial T3s,2i(x) over the interval [2i−1, 2i] ⊆ [ 12 · 2i, 3
2 · 2i].

The final approximation error will be bounded by 2−3s.

But the resulting spline is not continuous, since in general T3s,2i(2i) �= T3s,2i+1(2i). This is easily

corrected by creating the new knots 2i−2−s2
, 2i +2−s2

and approximating with T3s,2i(2i) (over the

interval [2i−1 + 2−3s, 2i − 2−3s]) followed by a linear spline (over the interval [2i − 2−3s, 2i + 2−3s]).

Observe that ln(x + y) − ln(x) ≤ y
x for x, y > 0. Since the logarithm is an increasing function

and since T3s,2i and T3s,2i+1 approximate with error at most 2−3s, the linear spline will approximate

with error at most

ln(2i + 2−3s) − ln(2i − 2−3s) + 2−3s ≤ 2 · 2−3s

2i − 2−3s
+ 2−3s ≤ 2 · 2−3s

2−s − 2−3s
+ 2−3s ≤ 2−s,

for sufficiently large s. Thus we have approximated ln(x) by an O(s)-spline of degree O(s). Hence,

with Remark 2.1, we can therefore approximate ln(x) by a spline circuit of depth 2, size and weight
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polynomial in s and error at most 2−s. (Observe that our splines have real-valued coefficients,

weights and thresholds of small absolute value. But since we only consider the domain [2−s, 2s], a

transition to rational coefficients, weights and thresholds of small logarithmic size is immediate.)

(c) Let r(x) = p(x)
q(x) be a rational function. Choose S sufficiently large such that for all s ≥ S,

• the degree of p and the degree of q is at most S,

• all coefficients of r have size at most 2S and

• 2−s2 ≤ |q(x)| ≤ 2s2
, whenever x has distance at least 1 from a zero of q.

• |p(x)| ≤ 2s2
for x ∈ [−2s, 2s]

Observe that 1
q(x) = sign(q(x)) · exp(− ln(|q(x)|) ). Let exp∗ be the spline-approximation of exp

(with approximation error at most 2−s3
over the domain [−s2, s2]) obtained in part (a) and let ln∗ be

the spline-approximation of ln (with approximation error at most 2−s3
over the domain [2−s2

, 2s2
])

obtained in part (b). Observe that both spline approximations require only size polynomial in s

and depth 2. We approximate r(x) as follows.

(i) Compute |q(x)| exactly by computing either q(x) or −q(x) (as required) between successive real

zeroes of q(x). Thus |q| can be computed by a S-spline of degree S.

(ii) Approximate 1
q(x) by sign(q(x)) · exp∗( − ln∗(|q(x)|) ) between successive real zeroes of q(x)

and connect successive polynomials by linear splines.

(iii) Compute the final approximation p(x) · sign(q(x)) · exp∗( − ln∗(|q(x)|) ).

Observing 2−s2 ≤ |q(x)| ≤ 2s2
, we obtain for the approximation error in steps (i) and (ii),

| exp(− ln(|q(x)|) ) − exp∗(− ln∗(|q(x)|) )| ≤ | exp(− ln(|q(x)|) ) − exp(− ln∗(|q(x)|) )|+ 2−s3

≤ | exp(− ln(|q(x)|) ) − exp(− ln(|q(x)|) + ε)|+ 2−s3

with |ε| ≤ 2−s3
. Since |1− exp(x)| ≤ |x| · exp(1) for x ∈ [0, 1], we obtain,

| exp(− ln(|q(x)|) ) − exp∗(− ln∗(|q(x)|) )| ≤ exp(− ln(|q(x)|) ) · |1− exp(ε))|+ 2−s3

≤ 2s2 · ε · exp(1) + 2−s3 ≤ 2 · exp(1) · 2s2−s3
.

Hence the overall approximation error is bounded by 2 · exp(1) · 22s2−s3
, since |p(x)| ≤ 2s2

. By

Remark 2.1 we obtain a spline circuit of depth 2, polynomial size and weight, since the circuit

constructed so far has bounded depth.
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(d) To approximate xα, we approximate exp(α ln(x)) for x ∈ [exp(−s/α), 2s] using a construction

similar to part (c). Observe that 0 ≤ xα < exp(−s) for x < exp(−s/α) and it suffices to continue

the approximation by a constant over [0, exp(−s/α].

(e) For x ∈ [−2s, 2s], approximate the standard sigmoid σ(x) = 1
1+exp(−x) using part (a) and (c).

Obviously, an overall approximation error of at most 2−(s+1) can be reached by a spline circuit of

depth 2 and size polynomial in s. Let a−2s (resp. a2s) be the value of the approximating function

x = −2s (resp. x = 2s).

Approximate σ(x) over the domain ] − ∞,−2s] (resp. [2s,∞[) by y = a−2s (resp. y = a2s).

Observe that for x ≤ −2s,

|σ(x)− a−2s| ≤ |σ(x)− σ(−2s)|+ |σ(−2s)− a−2s|

≤ σ(−2s) + 2−(s+1) < exp(−2s) + 2−(s+1) < 2−s

and for x ≥ 2s,

|σ(x)− a2s| ≤ |σ(x)− σ(2s)|+ |σ(2s)− a2s|

≤ |1− σ(2s)|+ 2−(s+1) =
exp(−2s)

1 + exp(−2s)
+ 2−(s+1) ≤ exp(−2s) + 2−(s+1) < 2−s.

�

We can now combine Propositions 2.1 and 2.2 to formally verify the approximation power of splines

in our setting.

Lemma 2.1 For each of the gate functions γ mentioned below we have {γ} ≤ splines.

(a) γ(x) = exp(x),

(b) γ(x) = ln(x),

(c) γ(x) = r(x), where r is a rational function,

(d) γ(x) = xα,

(e) γ(x) = 1
1+exp(−x) ,

Proof. Proposition 2.2 constructs approximations with error at most 2−s for all involved functions.

However the domain of approximation differs. To apply Proposition 2.1 we have to show in each

case that the domain D of approximation is sufficiently large. In particular Proposition 2.1 applies

the restriction that the gate function γ has Lipschitz-bound at most 2s over D =
⋃

y∈D[y−1, y+1]

and hence it suffices to show that |γ ′(x)| > 2s for x /∈ [−23s, 23s] − D.
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Proposition 2.2 provides sufficiently large domains of for all functions with the exceptions of

γ(x) = xα, since we only approximate over D = [0, 2s]. But, if (−1)α is a real number, then we can

easily extend the domain of approximation to [−23s, 23s]. �

2.2 Approximating Polynomials

We show next that circuits composed of sufficiently smooth gate functions are capable of approxi-

mating polynomials within any degree of accuracy.

Definition 2.2 Let γ : R → R be a function. We call γ non-trivially smooth with parameter k

if and only if there exists rational numbers α, β (α > 0) and an integer k such that α and β have

logarithmic size at most k and

(a) γ can be represented by the power series
∑∞

i=0 ai(x − β)i for all x ∈ [β − α, β + α]. For each

i > 1, ai is a rational number of logarithmic size at most ik.

(b) For each i > 1 there exists j with i ≤ j ≤ ik and aj �= 0.

(c) For each i > 1, ||γ(i)||[−α,α] ≤ 2ik .

The following result follows from the fact that the monomials xk1 , xk2,. . . ,xkn form a Chebycheff

system over [0,∞] for n pairwise distinct positive integers k1, k2, . . .kn(see page 9 in (Karlin and

Studden, 1966)).

Fact 2.1 The n × n matrix X = ( x
kj

i ) is non-singular for any collection of pairwise distinct

positive reals x1, x2, . . . , xn and n pairwise distinct positive integers k1, k2, . . . , kn.

We also need the following result.

Proposition 2.3 (a) Let Ax = b be a linear system with a non-singular n×n matrix A. Assume

that all entries of A (resp. all components of b) are rational numbers with logarithmic size at most

l1 ≥ 1 (resp. l2 ≥ 1).

Then the system has a solution vector x = (x1, x2, . . . , xn), where each xi is a rational number

of logarithmic size at most l2 + l1 · poly(n).

(b) The polynomials (x + 1)n, . . . , (x + n)n, (x + n + 1)n are linearly independent.

(c) Let p(x) be a degree n polynomial whose coefficients are rational numbers of logarithmic size at

most max. Then there are rational numbers α1, . . . , αn+1, of logarithmic size at most max+poly(n),

such that

p(x) =
n+1∑
i=1

αi(x + i)n.
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Proof. (a) is an immediate consequence of Cramer’s rule.

(b) Consider the equality
∑n

j=0 αj(x + 1 + j)n = 0. Since (x + 1 + j)n =
∑n

i=0

(n
i

)
(1 + j)n−i · xi,

we obtain the equations
∑n

j=0 αj
(n

i

)
(1 + j)n−i = 0 after equating coefficients. Therefore the above

equality leads to the linear system Aα = 0, where α = (α0, α1, . . . , αn)T and A is the (n+1)×(n+1)

matrix with A[i, j] =
(n

i

)
(1 + j)n−i (for 0 ≤ i, j ≤ n). We have to show that A is non-singular.

We divide row i by
(n

i

)
and interchange rows i and n − i. The resulting matrix B satisfies

B[i, j] = (1 + j)i and its non-singularity follows with Fact 2.1.

(c) Using part (b), we find a vector α = (α1, · · · , αn+1) with

p(x) =
n+1∑
i=1

αi(x + i)n.

Moreover, α is determined by the linear system

A · α = β,

where the matrix A was introduced in part (b) and β is the vector of coefficients of the polynomial

p. The claim follows now with part (a). �

Proposition 2.4 Assume that γ is non-trivially smooth with parameter k. Let p(x) be a degree n

polynomial whose coefficients are rational numbers of logarithmic size at most max.

Then p(x) can be ε-approximated (over the domain [−D, D] with [β − α, β + α] ⊆ [−D, D]) by

a {γ}-circuit Cp. Cp has depth 2 and size O(n2k). The Lipschitz-bound of Cp (over [−D, D]n) is

at most

cγ · [2max · (2 + D) · 1
ε
)]poly(n).

The constant cγ depends only on γ and not on p.

Proof. We assume, without loss of generality, that β = 0 and hence that γ(x) =
∑∞

i=0 aix
i for all

x ∈ [−α, α]. Let p be a polynomial of degree n. By assumption on γ, there exists an N such that

aN �= 0 and n ≤ N ≤ nk. We show first that xN can be approximately computed over the interval

[−α, α] and extend this approximation to an approximation over the interval [−D, D]. Once this

is done, we apply Proposition 2.3 (c) to approximate p(x).

Let TN(x) =
∑N

i=0 aix
i denote the N ’th degree Taylor polynomial of γ. Assume that TN has s

non-zero coefficients, say ak1, . . . , aks (with ks = N ).

Consider the matrix A = (akj(1/i)kj). After dividing column j by akj , we apply Fact 2.1

and obtain that A is non-singular (and hence the polynomials TN(x/i) (1 ≤ i ≤ s) are linearly
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independent). We apply Proposition 2.3 (a) to the system A · c = (0, . . . , 0, 1) and obtain that the

components of c are rational numbers of logarithmic size at most poly(N ). Obviously

s∑
i=1

ciTN(x/i) = xN .

But we have to compute xN from γ (instead of TN). Let L > 1 be an integer and compute

γN(x) = LN
s∑

i=1

ciγ(
x

i ·L). (1)

Observe that for −α ≤ x ≤ α,

γN(x) = LN ·
s∑

i=1

ciTN(
x

i ·L) + LN
s∑

i=1

ci · (γ(
x

i · L)− TN(
x

i · L))

= xN + LN
s∑

i=1

ci · (γ(
x

i · L)− TN(
x

i · L)).

We claim that γN approximates xN over the interval [−α, α], where the approximation quality will

increase with increasing L. Thus we have to determine the approximation error

e = sup{|LN
s∑

i=1

ci · (γ(
x

i · L) − TN(
x

i · L))| : x ∈ [−α, α]}.

Set cmax = max{|ci| : 1 ≤ i ≤ s}. To bound the error, we apply the Lagrange error estimate to

each term γ( x
i·L) − TN( x

i·L) and obtain that

e ≤ N ·LN · cmax ·
||γ(N+1)||[−α,α]

(N + 1)!
· ( |x|

L
)N+1.

Since D ≥ α,

e ≤ cmax||γ(N+1)||[−α,α]
|x|N+1

L
≤ cmax||γ(N+1)||[−α,α]

DN+1

L
≤ (2 + D)poly(N)

L
||γ(N+1)||[−α,α].

Let δ be a positive real number. Then, for

L = (2 + D)poly(n) · ||γ(N+1)||[−α,α] ·
1

δ · ε

and x ∈ [−α, α], we can approximate xN with error δ · ε. Hence we can also approximate xN over

the interval [−(D + N + 1), D + N + 1] by computing

D + N + 1
α

)NγN(
α

D + N + 1
x).

The approximation error will be at most D+N+1
α )N · δ · ε.
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Thus, we obtain also approximations of (x + 1)N , . . . , (x+ N )N , (x + N + 1)N over the interval

[−D, D] with the same approximation error. But, according to Proposition 2.3, there are rational

numbers α1, . . . , αN+1 such that p(x) =
∑N+1

i=1 αi(x + i)N . Moreover, αi has logarithmic size at

most max + poly(N ).

Therefore we achieve an approximation of p(x) over the interval [−D, D] by computing the

function

N+1∑
i=1

αi
D + N + 1

α
)NγN(

α

D + N + 1
(x + i)). (2)

The approximation error will be at most

(N + 1) · 2max+poly(n) · (D + N + 1
α

)N · δ · ε

and will be decreased to at most ε, if we set δ = 1/((N + 1) · 2max+poly(n) · (D+N+1
α )N ).

The final approximation, combining (1) and (2), has the form

N+1∑
i=1

αi(
D + N + 1

α
)NLN

s∑
j=1

cjγ(
1

j · L · α

D + N + 1
(x + i)) =

N+1∑
i=1

s∑
j=1

αi,jγ(βj · (x + i))

for appropriate coefficients αi,j and βj. Thus we approximate p(x) by a neural network with at

most O(N 2) = O(n2k) gates, depth 2 and approximation error at most ε. The Lipschitz-bound

over [−D, D] follows by inspection, since γ has Lipschitz-bound O(1) over [−α, α]. �

3 Equivalence of gate functions

The following gate functions will be able to simulate spline circuits.

Definition 3.1 Let Γ be a class of gate functions and let g : [1,∞] → R be a function.

(a) We say that g : [1,∞[→R is fast converging if and only if

| g(x)− g(x + ε) |= O(ε/x2) for x ≥ 1, ε ≥ 0,

0 <
∫ ∞

0
g(1 + u2)du < ∞ and |

∫ ∞

x
g(1 + u2)du |= O(

1
1 + ln(1 + x)

) for all x ≥ 0.

(b) We say that Γ is powerful if and only if at least one function in Γ is non-trivially smooth and

there is a fast converging function g which can be approximated for all s (over the domain [1, 2s])

with error 2−s by a Γ-circuit of constant depth, size s′ = poly(s) and Lipschitz-bound 2s′ over [1, 2s].
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The Lipschitz-type property of fast convergence can be checked easily for differentiable functions

by applying the mean value theorem, i.e., if g′(x) = O( 1
x2 ) for x ≥ 1, then |g(x)−g(x+ε)|= O(ε/x2)

for x ≥ 1. The integral property is verified, once |g(x)| = O( 1
x) for x ≥ 1. The function x−α, for

α ≥ 1, is a first example of a fast converging function. The next result provides examples of

powerful gate functions,

Lemma 3.1 The set {γ} is powerful for any of the following gate functions:

(a) γ(x) = exp(x),

(b) γ(x) = ln(x),

(c) γ(x) = r(x), where r(x) is a rational function which is not a polynomial,

(d) γ(x) = xα, provided α is not a natural number,

(e) γ(x) = 1
1+e−x ,

Proof. First observe that all mentioned gate functions are non-trivially smooth, since all of them

possess a convergent power series with the required properties over some open interval. Thus it

suffices to show that {γ}-circuits are capable of tightly approximating a fast converging function.

(a) Let γ(x) = exp(x). Observe that exp(−x) is fast converging.

(b) Let γ(x) = ln(x). Observe that ln′(x) = 1
x and hence the fast-converging function 1

x can be

approximated by the {ln}-circuit ln(x+ε)−ln(x)
ε for sufficiently small ε.

(c) Let γ(x) = p(x)
q(x) be a rational function and assume that q(x) �= 0 for x > L. Then r(x + L) =

p1(x + L) + p2(x+L)
q(x+L) , where the degree of p2 is less than the degree of q. We apply Proposition 2.4,

to (approximately) compute p1(x + L) by a {r(x)}-circuit and then to subtract the approximation

of p1(x + L) from r(x + L). Hence, it suffices to show that γ∗(x) = p2(x+L)
q(x+L) is fast converging.

But |p2(x+L)
q(x+L) | = O( 1

x+L) and hence γ∗(x) satisfies the integral property of fast convergence. The

Lipschitz-type property is satisfied as well, since ( p2
q )′ = p′2·q−p2·q′

q2 = O( 1
x2 ). Hence γ∗(x) is fast

converging and {r} is powerful.

(d) Let γ(x) = xα. Observe that γ is fast converging once α ≤ −1. We approximate γ ′(x) = α·xα−1

by the differential quotient γ(x+ε)−γ(x)
ε . Hence, by iterating this process k + 1 times (for k = 	α
),

we approximate a fast converging function tightly.

(e) Let γ(x) = σ(x). Then {σ} is powerful, since σ(−x) is fast converging. �

We now show that powerful gate functions have the approximation power of splines,

Theorem 3.1 Assume that Γ is powerful. Then splines ≤ Γ.
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Observe that Theorem 1.1 is an immediate consequence of Lemma 2.1 (establishing {γ} ≤ splines

and the combination of Lemma 3.1 and Theorem 3.1.

Proof of Theorem 3.1. Let π(x) be a 1-spline of degree s with π(x) =




p(x) if x < 0

q(x) otherwise,
where the coefficients of p and q are rational numbers of logarithmic size at most s. According to

Proposition 2.1, it suffices to find a Γ-circuit of depth k′, size (s+1)k′
and Lipschitz-bound 2(s+1)k′

over [−23s+1, 23s+1] which approximates π over the domain [−23s+1, 23s+1] with error at most 2−s.

Now assume that the following holds,

Claim 1 There is a constant k such that for each s ∈ N a Γ-circuit Cs of

depth k, size (s + 1)k and Lipschitz-bound 2(s+1)k
over [−1, 1]n

computes a function ts : [−1, 1] → R which approximates the binary threshold over the domain

[−1, 1]− [−2−s3
, 2−s3

] with error at most 2−s. Moreover, |ts(x)| ≤ 2O(s2) for x ∈ [−2−s3
, 2−s3

].

Observe that Γ-circuits contain a non-trivially smooth gate function and hence polynomials can be

approximated with negative exponential accuracy (Proposition 2.4). Therefore Γ-circuits are also

capable of approximately multiplying with negative exponential accuracy, since x · y = ((x + y)2 −
x2 − y2)/2.

By assumption on p and q, |p(x) − p(0)|, |q(x)− p(0)| ≤ s · 2s · 23s2+s ≤ 2s+s+3s2+s ≤ 26s2
for

x ∈ [−23s+1, 23s+1]. We approximate π by the Γ-circuit C(π, s) computing the function

πs(x) = p(0) + (q(x)− p(0)) ◦ ts3(
x

23s+1
) + (p(x)− p(0)) ◦ ts3(− x

23s+1
),

where ◦ approximates multiplication over [−2O(s2), 2O(s2)]2 with error at most 2−s2
. The depth of

C(π, s) will be bounded, its size will be polynomial in s and its Lipschitz-bound (over [−23s+1, 23s+1])

will be upper-bounded by 2poly(s). How good is the approximation of π by πs?

If 2−s9+3s+1 ≤ |x| ≤ 23s+1, then ts3( x
23s+1 ) as well as ts3(− x

23s+1 ) approximate the binary

threshold with error at most 2−s3
. Hence, if 2−s9+3s+1 ≤ x ≤ 23s+1, taking into account the error

of approximate multiplication and observing p(0) = q(0),

|π(x)− πs(x)| = |q(x)− πs(x)|

= |q(x)− p(0)− (q(x)− p(0)) ◦ (1 + ts3(
x

23s+1
)− 1)

−(p(x)− p(0)) ◦ ts3 (− x

23s+1
)|
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≤ |q(x)− p(0)− (q(x)− p(0)) · (1 + ts3(
x

23s+1
)− 1)

−(p(x)− p(0)) · ts3 (− x

23s+1
)| + 2 · 2−s2

≤ |(q(x)− p(0)) · (1− ts3(
x

23s+1
))|+ |(p(x)− p(0)) · ts3(− x

23s+1
)| + 2 · 2−s2

≤ 2 · 26s2−s3
+ 2 · 2−s2 ≤ 2−s,

provided s is sufficiently large. If 0 ≤ x ≤ 2−s9+3s+1, then |p(x) − p(0)|, |q(x)− q(0)| ≤ s · 2s ·
2−s9+3s+1 = 2−Ω(s9) and hence

|π(x)− πs(x)| ≤ |q(x)− p(0)|+ |q(x)− p(0)| · 2O(s6) + |p(x)− p(0)| · 2O(s6) + 2 · 2−s2

≤ 2−Ω(s9) + 2−Ω(s9) · 2O(s6) + 2−Ω(s9) · 2O(s6) + 2 · 2−s2 ≤ 2−s,

provided s is sufficiently large. Hence approximation error 2−s is reached for domain [0, 23s+1] (as

well as for [−23s+1, 0] with an analogous argument). Thus it suffices to prove Claim 1.

Since Γ is powerful, a fast converging function g can be approximated with negative exponential

accuracy. We set h(x) = g(1 + x2). The construction of ts(x) (for x ∈ [−1, 1]) proceeds as follows.

(1) First x is scaled down by computing y(x) = x
2s . Then the sum

zs(x) =
s10∑
i=0

(ui+1 − ui) · h(ui)

is determined, where ui = y(x)ai and a = (1 + 1/s6). h(x) can be approximated, since we

can approximately square.

Thus we try to approximately compute the integral α =
∫ ∞
0 h(u)du with the help of the

geometrically distributed knots ui. Observe that, assuming a good approximation, zs(x)

tends towards α for positive x, whereas z(y) tends towards −α for negative y. Hence we have

implemented a first form of thresholding! But the geometrical distribution helps to achieve

only a moderate approximation of α which has to be further tightened:

(2) The approximation of α is improved by first approximately computing

t∗s(x) = (
α − zs(x)

2α
)s,

(using a non-trivially smooth gate function in Γ to approximate xs)

(3) and then by approximately computing

ts(x) = (1 − t∗s(x))s.
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We claim that ts(x) has the desired properties. We first verify that zs(x) approximates α for

positive x. First we observe that h is continuous, since g is continuous. Therefore,
∫ ui+1

ui

h(u)du = (ui+1 − ui))h(w), for some w with ui ≤ w ≤ ui+1.

Next we utilize that g is fast converging. In particular,

|h(w)− h(ui)| = |g(1 + w2)− g(1 + u2
i )| = O(

w2 − u2
i

(1 + u2
i )2

) = O(
u2

i+1 − u2
i

(1 + u2
i )2

).

But u2
i+1 − u2

i = (ui+1 − ui) · (ui+1 + ui) and ui+1 + ui = ui · (a + 1) ≤ 3 · ui ≤ 3 · (1 + u2
i ). Hence,

|h(w)− h(ui)| = O(
ui+1 − ui

1 + u2
i

).

Consequently

|
∫ ui+1

ui

h(u)du − (ui+1 − ui)h(ui) |= O(
(ui+1 − ui)2

1 + u2
i

).

This leads to the estimate

| zs(x) −
∫ ∞

0
h(u)du | = |

∫ u0

0
h(u)du|+ O(

s10∑
i=0

(ui+1 − ui)2

1 + u2
i

) + |
∫ ∞

us10+1

h(u)du|

≤ |
∫ u0

0
h(u)du|+ O(s−2) + |

∫ ∞

us10+1

h(u)du|. (3)

This follows, since ui+1 − ui = ui(a− 1) and therefore

s10∑
i=0

(ui+1 − ui)2

1 + u2
i

= O((a− 1)2
s10∑
i=0

u2
i

1 + u2
i

) = (a − 1)2 · O(
s10∑
i=0

1) = (a − 1)2 · O(s10) = O(s−2).

Furthermore, since g is fast converging,

|
∫ ∞

us10+1

h(u)du| = O(
1

1 + ln(us10+1 + 1)
= O(

1
1 + ln(us10+1)

. (4)

But h is continuous and therefore

|
∫ u0

0
h(u)du| ≤ max

x∈[0,1]
|h(x)| · u0 = O(u0) = O(2−s). (5)

In summary, applying (3), (4) and (5)

| zs(x)−
∫ ∞

0
h(u)du |= O(

1
1 + ln(us10+1)

+ s−2).

Thus |zs(x) − α| = O( 1
s2 ), provided us10 ≥ 2s2

.
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Now, utilizing that (1 + 1/m)m ≥ 2, we obtain for i = js6,

ui = y(x) · ai = y(x) · (1 +
1
s6

)i ≥ y(x) · 2j =
x

2s
· 2j.

Thus, whenever x ≥ 2−s3
, us10 ≥ x

2s · 2s4 ≥ 2−s3−s · 2s4 ≥ 2s2
and zs(x) approximates α within

O( 1
s2 ). For 0 ≤ x < 2−s3

, we have

| zs(x) −
∫ ∞

0
h(u)du |= O(

1
1 + ln(us10+1) + 1

+ s−2) = O(1).

If the argument x is negative, we obtain zs(x) = −zs(−x) and hence −α is approximated with the

above error bounds.

So far we disregarded that h(x) = g(1+x2) can only be approximated. But a sufficiently small

negative exponential error is obviously achievable by bounded depth circuits of size polynomial in

s.

Let us consider the final two operations, namely t∗s(x) = (α−zs(x)
2α )s and ts(x) = (1 − t∗s(x))s.

First t∗s maps an approximation of α into a neighborhood of 0 and an approximation of −α into

a neighborhood of 1. The powering decreases the distance to 0 “exponentially” and increases the

distance to 1 polynomially (by a factor of O(s)). In particular, for 2−s3 ≤ x ≤ 1, |α−zs(x)| = O(s−2)

and

|t∗s(x)| = O((
s−2

2α
)s) = O(

1
s2

)s.

For −1 ≤ x ≤ −2−s3
we obtain α−zs(x)

2α = 1+ ε, where |ε| = O(s−2). Since |(1+ ε)s| = O(1+ |ε| · s)
for |ε| = O(s−2),

|1− t∗s(x)| = |1− (1 + ε)s| = O(|ε| · s) = O(
1
s
).

ts on the other hand interchanges 0 and 1. Consequently, the previously poor approximation of 1 is

turned into a tight approximation of 0, whereas the previously tight approximation of 0 deteriorates,

but only polynomially. In particular we get, with the same reasoning as above,

|1− ts(x)| = s · O( 1
s2 )s if 2−s3 ≤ x ≤ 1

|ts(x)| = O(1
s)

s if −1 ≤ x ≤ −2−s3
.

Thus the result, for |x| ≥ 2−s3
, is an approximation error of at most 2−s for sufficiently large s.

For |x| < 2−s3
, we have |zs(x)| = O(1) and hence |ts(x)| = 2O(s2) as claimed. �

Remark 3.1 Obviously, 1/x is powerful. Therefore Theorem 3.1 implies that {1/x}-circuits of

constant depth and size polynomial in s approximate the linear spline spline | x | over the domain
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[−1, 1] with error at most 2−s. Therefore Theorem 3.1 generalizes Newman’s approximation of | x |
by rational functions (Newman, 1964), since the degree of the resulting rational function will be

polynomial in s. (But our approximation requires a polynomially larger degree, when compared with

Newman’s approximation.)

Next we consider the consequences of Theorem 3.1 for binary input. In particular we would

like to compare the computing power of threshold-circuits with the computing power of {σ}-circuits

(for σ(x) = 1
1+e−x ).

Remark 3.2 (a) Of course, the equivalence of spline circuits and {σ}-circuits also holds for binary

input. Thus, since threshold circuits can efficiently approximate polynomials and splines (Reif,

1987), we obtain that {σ}-circuits of depth d, size s and Lipschitz-bound 2s over [−1, 1]n can be

simulated by circuits of binary thresholds. The depth of the simulating threshold circuit will increase

by a constant factor and its size will increase by a polynomial in (s + n), where n is the number

of input bits. (The inclusion of n accounts for the additional increase in size when approximately

computing a weighted sum by a threshold circuit.)

In (DasGupta and Schnitger, 1995) it is shown that the inclusion of n is also required: a certain

family of n-bit languages can be computed by {σ}-circuits with two gates, whereas threshold circuits

of size Ω(log2 n) are required.

(b) If we allow size to increase by a polynomial in s + n, then threshold circuits and {σ}-circuits
have equivalent computing power. This follows from (a), since a threshold gate can be approximately

implemented by a sigmoidal gate (Maass et al., 1991).

(c) The equivalence of {σ}-circuits and threshold circuits does not hold for analog input, as we will

see when considering linear splines.

Our next goal is to verify that neither degree-bounded polynomials, the sine-function nor linear

splines are equivalent to σ. We start with polynomials and linear splines.

Proposition 3.1 (a) If a polynomial circuit of size s and depth d approximates | x | over the

interval [−1, 1], then the approximation error will be at least s−O(d).

(b) If a circuit of linear 1-splines (of size s and depth d) approximates x2 over the interval [−1, 1],

then its approximation error will be at least s−O(d).

Proof. (a) Let C be a polynomial circuit (see Definition 1.5) of depth d and size s. Then, assuming

that C computes a univariate function, C will compute a polynomial of degree at most sd−1. But
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a polynomial of degree δ approximates | x | with error at least O(1/δ) (page 59 in (Feinerman and

Newman, 1974)).

(b) Let C be a circuit of linear 1-splines. Assume that C has size s and depth d. Obviously, C

computes a linear spline with at most sd−1 knots. Thus there will be an interval I = [x, x + 2ε] of

length 2ε ≥ s−(d−1) such that C computes a linear function l : I → R. But observe that

l(x)− 2l(x + ε) + l(x + 2 · ε) = 0

whereas

x2 − 2(x + ε)2 + (x + 2 · ε)2 = 2ε2.

And hence C approximates x2 with error at least 1
2 · ε2 = s−O(d). �

Since both x2 and | x | can be computed exactly by degree 2 splines, linear 1-splines and degree-

bounded polynomials are weaker than spline circuits. Moreover, linear splines and degree-bounded

polynomials are incomparable with respect to error 2−s. Finally, we consider the sine-function.

Definition 3.2 Let f : [a, b] → R be a function and let ε be a positive real number. We say that f

ε-oscillates t times if and only if there are real numbers a ≤ x1 < . . . < xt+1 ≤ b such that

(a) f(x1) = f(x2) = . . . = f(xt+1),

(b) |xi+1 − xi| ≥ ε for all i and

(c) there are real numbers y1, . . . , yt such that xi ≤ yi ≤ xi+1 and |f(xi) − f(yi)| ≥ ε for all i.

Part (b) of the next proposition establishes that {σ}- and {sine}-circuits are not equivalent.

Proposition 3.2 Assume that Γ ≤ splines.

(a) Let f : [−1, 1] → R be a function that ε-oscillates t times and let C be a Γ-circuit of depth

d, size s and Lipschitz-bound 2s over [−1, 1]. If C approximates f with error at most ε
4 , then

s ≥ tα/d.

(The positive constant α depends only on Γ.)

(b) A Γ-circuit of depth d, which approximates sine(Ax) with error at most 1
2 , has to have size at

least AΩ(1/d).

(c) (Bit extraction.) Let fA : [−1, 1] → R be any function such that for each integer i (1 ≤ i ≤ A)

fA(i/A) = the least significant bit of i.

Then the result of part (b) also applies to fA.
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Proof.

(a) By assumption, C can be approximated (with error 2−s) by a spline-circuit S of size (s + 1)k,

depth k(d + 1), degree s and Lipschitz-bound 2sk
over [−1, 1]. With Remark 2.1, S will compute a

spline of degree at most sk(d+1) and with at most (s + 1)k2(d+1)−1 knots. Therefore, S oscillates at

most sO(d) times. To achieve t oscillations, its size has to satisfy s ≥ tΩ(1/d). The claim follows by

observing that less than t oscillations lead to an error larger than ε/4.

(b) is an immediate consequence of part (a).

(c) Again, the lower bound is an immediate consequence of part (a). �

Remark 3.3 The lower bound of Proposition 3.2 is “tight” for any class Γ which is equivalent

to splines. We give an almost matching upper bound: In depth O(d) and size AO(1/d) compute a

binary approximation of the argument x with error at most A−d. Then utilize that Γ-circuits can

approximate the binary threshold tightly and determine i = �A·x
2π 
 (Reif, 1987). Finally approximate

sine(A ·x− i ·2π) by tightly approximating the Taylor polynomial. The overall error will be bounded

by A−Ω(d).

4 Conclusions and Open Problems

Our results show that good approximation performance (for error 2−s) depends on efficient approx-

imations of degree s polynomials and on efficient approximations of the binary threshold. Efficient

approximations of polynomials succeed for the large class of non-trivially smooth functions. We

defined the class of powerful functions which achieve efficient approximations of the binary thresh-

old.

Since (non-polynomial) rational functions are powerful, we were able to generalize Newman’s

approximation of | x | by rational functions.

Moreover the standard sigmoid is a powerful function and this frequently utilized gate function

reaches an approximation power comparable to or better than classes of more established functions

investigated in approximation theory (i.e. splines and polynomials). Additionally, the standard

sigmoid is actually more powerful than linear splines, since the standard sigmoid is able to take

advantage of its (non-trivial) smoothness to allow more efficient circuits.

The following problems remain open.

• Does sine possess the approximation power of the standard sigmoid? Are sine and the

standard sigmoid incomparable relative to the reducibility ≤?
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• Does the considerable approximation power of the standard sigmoid translate into a good

learning performance?
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