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Abstract

We further investigate and generalize the approximate privacy model recently
introduced by Feigenbaum et al. [8]. We explore the privacy properties of
a natural class of communication protocols that we refer to as “dissection
protocols”. Informally, in a dissection protocol the communicating parties
are restricted to answering questions of the form “Is your input between the
values a and  (under a pre-defined order over the possible inputs)?”. We
prove that for a large class of functions, called tiling functions, there always
exists a dissection protocol that provides a constant average-case privacy ap-
prozimation ratio for uniform or “almost uniform” probability distributions
over inputs. To establish this result we present an interesting connection
between the approximate privacy framework and basic concepts in compu-
tational geometry. We show that such a good privacy approximation ratio
for tiling functions does not, in general, exist in the worst case. We also dis-
cuss extensions of the basic setup to more than two parties and to non-tiling
functions, and provide calculations of privacy approximation ratios for two
functions of interest.
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1. Introduction

Consider the following interaction between two parties, Alice and Bob.
Each of the two parties, Alice and Bob, holds a private input, xy., and Yaice
respectively, not known to the other party. The two parties aim to compute
a function f of the two private inputs. Alice and Bob alternately query each
other to make available a small amount of information about their private
inputs, e.g., an answer to a range query on their private inputs or a few bits
of their private inputs. This process ends when each of them has seen enough
information to be able to compute the value of f(Zpob, Yalice). The central
question that is the focus of this paper is:

Can we design a communication protocol whose execution reveals,
to both Alice and Bob, as well as to any eavesdropper, as little in-
formation as possible about the other’s private input beyond what
s mecessary to compute the function value?

Note that there are two conflicting constraints: Alice and Bob need to com-
municate sufficient information for computing the function value, but would
prefer not to communicate too much information about their private in-
puts. This setting can be generalized in an obvious manner to d > 1 par-
ties party,, partys, . .., party, computing a d-ary f by querying the parties in
round-robin order, allowing each party to broadcast information about its
private input (via a public communication channel).

Privacy preserving computational models such as the one described above
have become an important research area due to the increasingly widespread
usage of sensitive data in networked environments, as evidenced by dis-
tributed computing applications, game-theoretic settings (e.g., auctions) and
more. Over the years computer scientists have explored many quantifications
of privacy in computation. Much of this research focused on designing per-
fectly privacy-preserving protocols, i.e., protocols whose execution reveals no
information about the parties’ private inputs beyond that implied by the out-
come of the computation. Unfortunately, perfect privacy is often either im-
possible, or infeasibly costly to achieve (e.g., requiring impractically extensive



communication steps). To overcome this, researchers have also investigated
various notions of approzimate privacy [7, 8.

In this paper, we adopt the approximate privacy framework of [8] that
quantifies approximate privacy via the privacy approzimation ratios (PARs)
of protocols for computing a deterministic function of two private inputs.
Informally, PAR captures the objective that an observer of the transcript
of the entire protocol will not be able to distinguish the real inputs of the
two communicating parties from as large a set as possible of other inputs.
To capture this intuition, [8] makes use of the machinery of communication-
complexity theory to provide a geometric and combinatorial interpretation
of protocols. [8] formulates both the worst-case and the average-case version
of PARs and studies the tradeoff between privacy preservation and commu-
nication complexity for several functions of interest.

1.1. Motivations from Mechanism Designs

An original motivation of this line of research, as explained in details in [§],
comes from privacy concerns in auction theory in Economics. A traditionally
desired goal of designing auction mechanisms is to ensure that it is incentive
compatible, i.e., bidders fare best by letting their truthful bids known. How-
ever, more recently, another complementary goal that has gained significant
attention, specially in the context of online auctions, is to preserve privacy of
the bidders, i.e., bidders reveal as little information as necessary to auction-
eers for optimal outcomes. To give an example, consider a 2"-price Vickrey
auction of an item via a straightforward protocol in which the price of the
item is incrementally increased until the winner is determined. However, the
protocol reveals more information than what is absolutely necessary, namely
the information about the identity of the winner (with revealing his/her bid)
together with the bid of the second-highest bidder, and revealing such ad-
ditional information could put the winner at a disadvantage in the bidding
process of a similar item in the future since the auctioneer could set a lower
reserve price. In this paper, we consider a generalized version of the setting
that captures applications of the above type as well as other applications in
multi-party computation.

2. Summary of Our Contributions

Any investigation of approximate privacy for multi-party computation
starts by defining how we quantify approximate privacy. In this paper, we use



the combinatorial framework of [8] for quantification of approximate privacy
for two parties via PARs and present its natural extension to three or more
parties. Often, parties’ inputs have a natural ordering, e.g., the private
input of a party belongs to some range of integers {L, L +1,..., M} (as is
the case when computing, say, the maximum or minimum of two inputs).
When designing protocols for such environments, a natural restriction is to
only allow the protocol to ask each party questions of the form “Is your input
between the values o and [3 (under this natural order over possible inputs)?’. We
refer to this type of protocols as dissection protocols and study the privacy
properties of this natural class of protocols. We note that the bisection and
c-bisection protocols for the millionaires problem and other problems in [§],
as well as the bisection auction in [9, 10], all fall within this category of
protocols. Our findings are summarized below.

Average- and worst-case PARs for tiling functions for two party
computation. We first consider a broad class of functions, referred to as
the tiling functions in the sequel, that encompasses several well-studied func-
tions (e.g., Vickrey’s second-price auctions). Informally, a two-variable tiling
function is a function whose output space can be viewed as a collection of
disjoint combinatorial rectangles in the two-dimensional plane, where the
function has the same value within each rectangle. A first natural question
for investigation is to classify those tiling functions for which there exists a
perfectly privacy-preserving dissection protocol. We observe that for every
Boolean tiling functions (i.e., tiling functions which output binary values)
this is indeed the case. In contrast, for tiling functions with a range of just
three values, perfectly privacy-preserving computation is no longer necessar-
ily possible (even when not restricted to dissection protocols).

We next turn our attention to PArRs. We prove that for every tiling
function there exists a dissection protocol that achieves a constant PAR in
the average case (that is, when the parties’ private values are drawn from an
uniform or almost uniform probability distribution). To establish this result,
we make use of results on the binary space partitioning problems studied in
the computational geometry literature. We complement this positive result
for dissection protocols with the following negative result: there exist tiling
functions for which no dissection protocol can achieve a constant PAR in the
worst-case.

Extensions to non-tiling functions and three-party communication.
We discuss two extensions of the above results. We explain how our constant
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average-case PAR result for tiling functions can be extended to a family of
“almost” tiling functions. In addition, we consider the case of more than two
parties. We show that in this setting it is no longer true that for every tiling
function there exists a dissection protocol that achieves a constant PAR in
the average case. Namely, we exhibit a three-dimensional tiling function for
which every dissection protocol exhibits exponential average- and worst-case
PARs, even when an unlimited number of communication steps is allowed.

PARs for the set covering and equality functions. [8] presents bounds
on the average-case and the worst-case PARs of the bisection protocol — a
special case of dissection protocols — for several functions (Yao’s millionaires’
problem, Vickrey’s second-price auction, and others). We analyze the PARs
of the bisection protocol for two well-studied Boolean functions: the set-
covering and equality functions; the equality function provides a useful testbed
for evaluating privacy preserving protocols [3] [11, Example 1.21] and set-
covering type of functions are useful for studying the differences between
deterministic and non-deterministic communication complexities [11, Section
10.4]. We show that, for both functions, the bisection protocol fails to achieve
good PARs in both the average-case and the worst-case.

3. Summary of Prior Related Works

3.1. Privacy-preserving Computation

Privacy-preserving computation has been the subject of extensive re-
search and has been approached from information-theoretic [3], cryptographic [5],
statistical [12], communication complexity [13, 17], statistical database query [7]
and other perspectives [11]. Among these, most relevant to our work is the
approximate privacy framework of Feigenbaum et al. [8] that presents a met-
ric for quantifying privacy preservation building on the work of Chor and
Kushilevitz [6] on characterizing perfectly privately computable computa-
tion and on the work of Kushilevitz [13] on the communication complexity of
perfectly private computation. The bisection, c-bisection and bounded bisec-
tion protocols of [8] fall within our category of dissection protocol since we
allow the input space of each party to be divided into two subsets of arbitrary
size. There are also some other formulations of perfectly and approximately
privacy-preserving computation in the literature, but they are inapplicable in
our context. For example, the differential privacy model (see [7]) approaches
privacy in a different context via adding noise to the result of a database



query in such a way as to preserve the privacy of the individual database
records but still have the result convey nontrivial information,

3.2. Binary space partition (Bsp)

BsPs present a way to implement a geometric divide-and-conquer strat-
egy and is an extremely popular approach in numerous applications such as
hidden surface removal, ray-tracing, visibility problems, solid geometry, mo-
tion planning and spatial databases (e.g., see [16]). However, to the best of
our knowledge, a connection between Bsps bounds such as in [14, 15, 2, 4]
and approximate privacy has not been explored before.

4. The Model and Basic Definitions

4.1. Two-party Approzimate Privacy Model of [8]

We have two parties party; and )
party,, each a binary string, z; and z (maximal)
. . . monochromatic
respectively, which represents a private rectangle
value in some set U™. The common

goal of the two parties is to compute oo |3
the value f(x1,2z5) of a given public- 9 3
knowledge two-variable function f. Be- 5 1
fore a communication protocol P starts, 9 3
each party,; initializes its “set of main- 52255

tained inputs” U™ to U™. In one step 117 | maximal

SJoala NN
SJa o | oo

of communication, one party transmits Tmpnochromatic
a bit indicating in which of two parts of region
its input space its private input lies. The gure 1 An illustration of some

other party then Updates its set of main- communication-complexity definitions.
tained inputs accordingly. The very last
information transmitted in the protocol
P contains the value of f(z1,x2). The final transcript of the protocol (i.e.,
the entire information exchanged) is denoted by s(xy, z3).

Denoting the domain of outputs by &%, any function f : U™ x U™
U can be visualized as [t/ ™ | x |/ ™| matrix with entries from ¢/ " in which
the first dimension represents the possible values of party,, ordered by some
permutation II;, while the second dimension represents the possible values of
party,, ordered by some permutation II,, and each entry contains the value



of f associated with a particular set of inputs from the two parties. This
matrix will be denoted by A, 11,(f), or sometimes simply by A.

We now present the following definitions from [11, 8]; see Fig. 1 for a
geometric illustration.

Definition 1 (Regions, partitions). A region of A is any subset of entries
i A. A partition of A is a collection of disjoint regions in A whose union
equals to A

Definition 2 (Rectangles, tilings, refinements). A rectangle in A is a sub-
matriz of A. A tiling of A is a partition of A into rectangles. A tiling T} of A
s a refinement of another tiling Ty of A if every rectangle in T is contained
in some rectangle in Ts.

Definition 3 (Monochromatic, maximal monochromatic and ideal monochro-
matic partitions). A region R of A is monochromatic if all entries in R are
of the same value. A monochromatic partition of A is a partition all of
whose regions are monochromatic. A monochromatic region of A is a mazx-
imal monochromatic region if no monochromatic region in A properly con-
tains it. The ideal monochromatic partition of A is made up of the mazximal
monochromatic regions.

Definition 4 (Perfect privacy). Protocol P achieves perfect privacy if, for
every two sets of inputs (x1,x) and (x), x%) such that f(xy,z9) = f(a), xh),
it holds that s(xy, =) = s(a’y, 2'3). FEquivalently, a protocol P for f
achieves perfectly privacy if the monochromatic tiling induced by P is the
ideal monochromatic partition of A(f).

Definition 5 (Worst case and average case PAR of a protocol P). Let
R (z1,25) be the monochromatic rectangle containing the cell A(z1,xs) in-
duced by P, R (x1,z3) be the monochromatic region containing the cell A(xy,y,)
in the ideal monochromatic partition of A, and D be a probability distribu-
tion over the space of inputs. Then P has a worst-case PAR of Qtworst and an
average case PAR of oy under distribution D provided*

RI
Qyworst = mMax M and op = Z Pr [z & x9]
(re)eUmxun | R (SL’l,Ig)‘ (m,mz)éuinfuin

‘Rl(iﬁl, 1’2)‘
|RP (1, 29)

!The notation Pr[€] denotes the probability of an event £ under distribution D.
D

7



Definition 6 (PAR for a function). The worst-case (average-case) PAR for
a function f is the minimum, over all protocols P for f, of the worst-case
(average-case) PAR of P.

Ezxtension to Multi-party Computation. In the multi-party setup, we have d >
2 parties party,, party,, ..., party, computing a d-ary function f : (U™)?
U, Now, f can be visualized as | ™| x - - - x [ ™| matrix Ap,, .., (f) (or,
sometimes simply by A) with entries from ¢/ °* in which the i dimension
represents the possible values of party, ordered by some permutation II;, and
each entry of A contains the value of f associated with a particular set of
inputs from the d parties. Then, all the previous definitions can be naturally
adjusted in the obvious manner, 7.e., the input space as a d-dimensional
space, each party maintains the input partitions of all other d — 1 parties,
the transcript of the protocol s is a d-ary function, and rectangles are replaced
by d-dimensional hyper-rectangles (Cartesian product of d intervals).

4.2. Dissection Protocols and Tiling Functions for Two-party Computation

Often in a communication complexity settings the input of each party
has a natural ordering, e.g., the set of input of a party from {O, 1}k can
represent the numbers 0,1,2,...,2% — 1 (as is the case when computing the
maximum/minimum of two inputs, in the millionaires problem, in second-
price auctions, and more). When designing protocols for such environments,
a natural restriction is to only the allow protocols such that each party asks
questions of the form “Is your input between a and b (in this natural order
over possible inputs)?”, where a,b € {0, 1}k. Notice that after applying
an appropriate permutation to the inputs, such a protocol divides the input
space into two (not necessarily equal) halves. Below, we formalize these types
of protocols as “dissection protocols”.

Definition 7 (contiguous subset of inputs). Given a permutation II of {0, 1}*,
let <y denote the total order over {0,1}* that II induces, i.e., Va,b € {0,1}*,
a <y b provided b comes after a in II. Then, I C {0,1}* contiguous with

respect to Il if Va,bel, ‘v’cG{O,l}k: a<pc<pb=cel.

Definition 8 (dissection protocol). Given a function f :{0,1}% x {0, 1}*
{0,1}t and permutations 111,11y of {0,1}*, a protocol for f is a dissection
protocol with respect to (I1y,11y) if, at each communication step, the main-
tained subset of inputs of each party, is contiguous with respect to 11;.



Observe that every protocol P can be regarded as a dissection protocol
with respect to some permutations over inputs by simply constructing the
permutation so that it is consistent with the way P updates the maintained
sets of inputs. However, not every protocol is a dissection protocol with
respect to specific permutations. Consider, for example, the case that both
II; and II; are the permutation over {0,1}* that orders the elements from
lowest to highest binary values. Observe that a protocol that is a dissection
protocol with respect to these permutations cannot ask questions of the form
“Is your input odd or even?”, for these questions partition the space of inputs
into non-contiguous subsets with respect to (I, Ily).

A special case of interest of the dissection protocol is the “bisection type”
protocols that have been investigated in the literature in many contexts |8,
10].

Definition 9 (bisection, c-bisection and bounded-bisection protocols). For
a constant ¢ € [%, 1), a dissection protocol with respect to the permutations
(IT1, T13) is called a c-bisection protocol provided at each communication step
each party; partitions its input space of size z into two halves of size c z and
(1—c) z. A bisection protocol is simply a %—bisection protocol. For an integer
valued function g(k) such that 0 < g(k) < k, bounded-bisectionyu, is the
protocol that runs a bisection protocol with g(k) bisection operations followed
by a protocol (if necessary) in which each party, repeatedly partitions its input
space into two halves one of which is of size exactly one.

We next introduce the concept of tiling functions.

Definition 10 (tiling and non-tiling functions). A function f : {0,1}* x
{0,1}* +— {0,1} is called a tiling function with respect to two permuta-
tions (I1y,11y) of {0, 1}* if the monochromatic regions in Ay, m,(f) form a
tiling, and the number of monochromatic regions in this tiling is denote by
rr (111, Ily). Conversely, f is a non-tiling function if f is not a tiling function
with respect to every pair of permutations (I1y,11,) of {0, 1}F.

For example, f(z1, ..., Tk, Y1, -, k) = Sory (zi + ;) (mod 2) is a tiling
function with respect to (IIy,II5) with rs (I, II;) = 4, where each II; or-
ders its inputs (z1, ..., z) in increasing order of Zle z; (mod 2). Note that
a function f that is tiling function with respect to permutations (Ily,IIs)
may not be a tiling function with respect to a different set of permutations
(IT7, I1}); see Fig. 3. Also, a function f can be a tiling function with respect
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Figure 2: A tiling function with respect

to different permutation pairs (IIy,11s) m I

and (117, 114) inducing different numbers of Figure 3: Tilability depends on IIy

monochromatic rectangles. and Il,.

to two distinct permutation pairs (I1;,I1y) and (117}, I1}), and the number of
monochromatic regions in the two cases differ; see Fig. 2. Thus, indeed we
need II; and Il in the definition of tiling functions and ry.

Extensions to Multi-party Computation. For the multi-party computation
model involving d > 2 parties, the d-ary tiling function f has a permutation
I1; of {0,1}* for each i*® argument of f (or, equivalently for each party,).
A dissection protocol is generalized to a “round robin” dissection protocol
in the following manner. In one “mega” round of communications, parties
communicate in a fixed order, say party,, party,,...,party,;, and the mega
round is repeated if necessary. Any communication by any party is made
available to all the other parties. Thus, each communication of the dissection
protocol partitions a d-dimensional space by an appropriate set of (d — 1)-
dimensional hyperplanes, where the missing dimension in the hyperplane
correspond to the index of the party communicating.

5. Two-party Dissection Protocol for Tiling Functions

5.1. Boolean Tiling Functions

Lemma 1. Any Boolean tiling function f: {0,1}* x {0,1}* — {0,1} with
respect to some two permutations (I1y,11y) can be computed in a perfectly
privacy-preserving manner by a dissection protocol with respect to the same
permutations (111, 115).
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Proof. For any m x n Boolean matrix A with rows 1 q q+1
and columns indexed by 1,2,....,mand 1,2,...,n, :
respectively, let the notation Aliq,is, j1, j2] denote
the submatrix of A consisting of rows iy,i; +
1,...,iy and columns jy,j; + 1,...,jo. Assume ¢+1
m,n > 2 and suppose that the zeroes and ones t
in the matrix A form a tiling. We claim that 1
there must exist an 'index i € {1,2,...,m — 1} Figure 4: This con ﬁgumtio.;L
such that the partition of A into the two sub- om0t happen in Case 2.
matrices A[l,4,1,n] and Ali + 1,m, 1,n] does not
split any tile, or that there must exist an index
j € {1,2,...,n — 1} such that the partition of A
into the two sub-matrices A[l,m,1,j] and A[l,m,j + 1,n] does not split
any tile. This claim, applied recursively on each submatrix of A, will prove
Lemma 1.

We prove our claim by induction on n. The basis case of n = 2 follows
trivially. Suppose that our claim is true for all n € {2,...,¢} and consider
the case of n = ¢+ 1.

Case 1: there exists an index j € {1,2,...,q— 1} such that the partition of
A[l,m, 1, q] into the two sub-matrices A[1,m, 1, 7] and A[l,m,j + 1,q| does
not split any tile. Then, the same index j works for A[l,m, 1, ¢ + 1] also.

Case 2: there is no such index j as in Case 1 above, but there exists an
index i € {1,2,...,m—1} such that the partition of A[1,m, 1, q] into the two
submatrices A[l,4,1,q] and Ali + 1,m, 1, q] does not split any tile. Suppose
that the index i does split a tile in the partition A[l,4,1,q + 1] and A[i +
1,m,1,q+1] of A[1,m,1,q+ 1]. Then, we must have the situation as shown
in Fig. 4, which shows that the zeroes and ones of A[l,m,1,q + 1] do not
form a tiling. 0

Remark 1. As Fig. 4 shows, the claim of Lemma 1 is false if f outputs three
values.

5.2. Average and Worst Case PAR for Non-Boolean Tiling Functions

Let f:{0,1}* x {0,1}* — {0,1}! be a given tiling function with respect
to permutations (II;, II,). Neither the c-bisection nor the bounded-bisection
protocol performs well in terms of average PAR on arbitrary tiling functions;
see Fig. 5 for an illustration. In this section, we show that any tiling function
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ok—g(k)—1 |
1 -
ok _gk—g(k) f2
number of average case
protocol steps of PAR for
communication distribution D,
c-bisection on f) k/log, < k
(ce(1/2,1))
bounded-bisectionyy on fo | g(k) +2579®) — 1| g(k) + 2891 1

(1<g(k)<k)

Figure 5: Functions fi1 and fo with ry, (II1,Is) = rg, (111, I2) = 2. The bisection-type
protocols fail to achieve a good average-case PAR on them.

f admits a dissection protocol that has a small constant average case PAR.
Moreover, we show that this result cannot be extended to the case of worst-
case PARs.

5.2.1. Constant Average-case PAR for Non-Boolean Functions
Let D, denote the uniform distribution over all input pairs. We define the
notion of a c-approximate uniform distribution D} ¢; note that D = D,.

Definition 11 (c-approximate uniform distribution). A c-approzimate uni-
form distribution D} ¢ is a distribution in which the probabilities of the input
pairs are close to that for the uniform distribution as a linear function of c,
namely

max Pr[x&y|— Pr[x &y'l| < c272F
(x,y), (x',y")€{0,1}* x {0,1}* D;C[ Y] DZC[ Y] =~
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Theorem 1.

(a) A tiling function f with respect to permutations (I1y,1ly) admits a dis-
section protocol P with respect to the same permutations (I1y,11y) using at
most 4 rp(I1;, Ily) communication steps such that apze <4+ 4c.

(b) For all 0 < ¢ < 1, there exists a tiling function f: {0,1}* x {0,1}?
{0,1}* such that, for any two permutations (11, 1Ly) of {0,1}2, every dis-
section protocol with respect to (Ily,Ily) using any number of communication
steps has ap~e > %.

Proof. Let § = {51, Sy, ..., S;, } be the set of ry = ry(Il;, II3) ideal monochro-
matic rectangles in the tiling of f induced by the permutations (II;, I15) and
consider a protocol P that is a dissection protocol with respect to (IIy, I1y).
Suppose that the ideal monochromatic rectangle S; € S has y; elements, and
P partitions this rectangle into ¢; rectangles S;1,...,S;,, having z;1,..., %4,
elements, respectively. Then, using the definition of ap, it follows that

o ‘Rl(l'l,l’g)}
T B R )
1,x2)EUXU
: yz & J tz Yi
—Zzzpml&@ ZZQ%ZZ 22k
i=1 j= 1(:(;1,952)65’“ =1 j=1 i=1

Similarly, it follows that

e < Zzzl+c

=1 .] 1(%1,(22)651] =1 .]

t;

22k

1+c _rzf(1+c)tiyi
1 i=1

A binary space partition (Bsp) for a collection of disjoint rectangles in
the two-dimensional plane is defined as follows. The plane is divided into two
parts by cutting rectangles with a line if necessary. The two resulting parts of
the plane are divided recursively in a similar manner; the process continues
until at most one fragment of the original rectangles remains in any part of
the plane. This division process can be naturally represented as a binary tree
(Bsp-tree) where a node represents a part of the plane and stores the cut
that splits the plane into two parts that its two children represent and each
leaf of the BSP-tree represents the final partitioning of the plane by storing
at most one fragment of an input rectangle; see Fig. 7 for an illustration.
The size of a BSP is the number of leaves in the Bsp-tree. The following
result is known.

13
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Figure 8: Illustrations of the arguments in the proof of Theorem 2. The dotted lines in
(b) are shown for visual clarities only.

Fact 1. [4] Assume that we have a set S of disjoint axis-parallel rectangles
in the plane. Then, there is a BSP of & such that every rectangle in S is
partitioned into at most 4 rectangles.?

(a) Consider the dissection protocol corresponding to the Bsp in Fact 1.

2The stronger bounds by Berman, DasGupta and Muthukrishnan [2] apply to average
number of fragments only.
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Then, using max;{t;} < 4 we get ap=c < >/, 4(1;;? Yi = 4(1+¢). Also, the
number of communication steps in this protocol is the height of the Bsp-tree,
which is at most 4ry.

(b) Consider the function f whose ideal monochromatic rectangles are shown
in Fig. 6. Any correct protocol for computing f must partition at least one
rectangle of two elements, giving

1 —
aDgczélx( +c) T—c_9+c

16 8 8

5.2.2. Large Worst-case PAR for Non-Boolean Functions

Can one extend the results of the last section to show that every tiling
function admits a dissection protocol that achieves a good PAR even in the
worst case? We answer this question in the negative by presenting a tiling
function for which every dissection protocol has large worst-case PAR.

Theorem 2. Let k > 0 be an even integer. Then, there exists a tiling
function f:{0,1}*x {0, 1}* — {0,1}3 with respect to some two permutations
(I}, Iy) such that, for any two permutations IT; and 1T, of {0,1}%, every
dissection protocol for f with respect to (I}, I15) has cuyors; > 272 — 1.

Proof. Recall the example in Fig. 6 that essentially showed that there ex-
ists functions that cannot be computed in a perfectly private manner. Our
construction of the function f is based on the tiling shown in Fig. 6. We con-
sider the specific permutations II;, IT, over {0,1}* that order the elements
in {0,1}* by binary value (from 0 to 28 — 1). We now use the construc-
tion in Fig. 6 “recursively” to create a tiling of the input space. We first
embed %7_2 = 2F=1 _ 1 instances of the construction in Figure 6 recur-
sively within one another, as shown in Fig. 8(a), leaving a 1 x 1 square
at the center. The vertical level ¢ and the horizontal level ¢ rectangles
have dimension 1 x (2¥ — (2i — 1)) and (2* — (2i — 1)) x 1, respectively, for
i =1,2,...,281 — 1. We then partition each of the level 1 rectangle in
Fig. 8(a) into two “nearly” equal-sized rectangles as shown in Fig. 8(b). Con-
sider the function f such that the monochromatic rectangles of A (Il;,Il,)
are the tilings in Fig. 8(b) (f outputs a different outcome for each (mini-
mal) rectangle in the figure). Clearly, f is a tiling function with respect to

15



(IT;, ITy) and, moreover, since every rectangle shares a side with no more than
8 rectangles, at most 8 output values of f suffice.

Let II}, IT, be any two arbitrary permutations of {0, 1}* and consider any
dissection protocol P with respect to (II7, IT}). Consider the first meaningful
step in the execution of P and suppose that this step was executed by party,
(the case that the step was executed by party, is analogous). This step
partitions the total input space & = {0, 1,2,...,2F - 1} into two nonempty
subsets, say I C S and I’ = S\ I such that 0 € I. Let 0 < i < 2¥ — 1 be the
least integer such that ¢ € I but ¢ + 1 € I; such an ¢ must exist since both
the sets are non-empty. Consider the rectangles A, B,C' and D in Fig. 8(b).
We have the following cases.

Case 1: i < 21 — 2K/2 Observe that, for every such i, there exists a
level i + 1 vertical rectangle of size 2 — 2i — 1 that is partitioned into two

rectangles, one of which is of size exactly 1. Thus, oworst > 28 — 20 +1 >
2(k/2)+1 1> 2k/2 —1.

Case 2: 2F-1 - 2k/2 < < 2k=1 _ 1. Observe that, for every such value of i,
rectangle A, which is of size 2¥~!, is partitioned into two rectangles, of which
one is of size at most 2¥/2. Thus, in this case ouworst > 2 > ok/2 _ 1.

Case 3: 21 —1 < < 2F1 4+ 1. In this case, at least one of the rectangles
B, C or D is partitioned into two parts one of which is of size at most 2 and
thus Qe > 25— > 2872 - 15 9k/2 1,

Case 4: 21 41 < j < 28 — 2k/2 Similar to Case 2.

Case 5: i > 2F — 2K/2 Similar to Case 1. O

6. Extensions of the Basic Two-party Setup

6.1. Non-tiling Functions
A natural extension of the class of tiling functions involves relaxing the
constraint that each monochromatic region must be a rectangle.

Definition 12 (4-tiling function). A function f:{0,1}* x {0,1}* — {0,1}!
is a called a -tiling function with respect to permutations (I1y, I1y) of {0, 1}*

if each mazimal monochromatic region of Am, 1,(f) is an union of at most o
disjoint rectangles.

For example, the function whose tiling is as shown in Fig. 4 is a 2-tiling
Boolean function.
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Proposition 1. For any 6-tiling function f with respect to (I1y,1ly) with r
mazimal monochromatic regions, there is a dissection protocol P with respect
to (I, Iy) using at most 4ré communication steps such that ap~e < (4+4c) 0.

Proof. We use the algorithm of Theorem 1 on the set of at most ¢ rectangles
obtained by partitioning each monochromatic region into rectangles. Since
each rectangle is partitioned at most 4 times, each maximal monochromatic
region of Af(Ily,II5) will be partitioned at most 49 times. O

6.2. Multi-party Computation

How good is the average PAR for a dissection protocol on a d-dimensional
tiling function? For a general d, it is non-trivial to compute precise bounds
because each party, has her/his own permutation II; of the input, the tiles are
boxes of full dimension and hyperplanes corresponding to each step of the
dissection protocol is of dimension exactly d — 1. Nonetheless, we show that
the average PAR is very high for dissection protocols even for 3 parties and
uniform distribution, thereby suggesting that this quantification of privacy
may not provide good bounds for three or more parties.

y (dimension 2)

2 (dimension 3)
sz (dimension 1)

Figure 9: (not drawn to scale) (a) The tiling function in the proof of Lemma 3. The
non-trivial rectangles for dimensions 1, 2 and 3 are colored by black, dark gray and light
gray, respectively; the trivial rectangles, each having a distinct value, cover the region
colored magenta. (b) Rectangles (in light gray) corresponding to a hypothetically first
meaningful step of the protocol.
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Theorem 3 (large average PAR for dissection protocols with 3 parties).
There exists a tiling function f:{0,1}* x {0,1}* x {0,1}* — {0,1}3* such
that, for any three permutations 11y, 11, Iz of {0,1}*, every dissection pro-
tocol with respect to (111, 1y, Il3) must have oy, = (2’“)

Proof. In the sequel, for convenience we refer to 3-dimensional hyper-rectangles
simply by rectangles and refer to the arguments of function f via deci-

mal equivalent of the corresponding binary numbers. The tiling function

for this theorem is adopted from an example of the paper by Paterson

and Yao [14, 15] with appropriate modifications. The three arguments of

f are referred to as dimensions 1, 2 and 3, respectively. Define the wol-

ume of a rectangle R = [z, ] X [12, 5] X [z3,25] € {0,1,...,2F —1}3 is

Volume(R) = max{0,IT?_, (2} — z; + 1)}. For convenience, let [+] denote the

interval [O, 2k — 1}. We provide the tiling for the function f; see Fig. 9 for a

graphical illustration (note that Fig. 9 is not drawn to scale):

e For each dimension, we have a set of © (2%) rectangles; we refer to
these rectangles as non-trivial rectangles for this dimension.

— For dimension 1, these rectangles are of the form [*] x [2y, 2y] X
[22,22] for every integral value of 0 < 2y, 2z < 2%,

— For dimension 2, these rectangles are of the form [2z, 2z] x [*] X
22 + 1,22 + 1] for every integral value of 0 < 2z,2z + 1 < 2.

— For dimension 3, these rectangles are of the form [2z+ 1,2z 4 1] X
[2y+1, 2y+1] x [*] for every integral value of 0 < 2z+1, 2y+1 < 2F.

e The remaining “trivial” rectangles are each of unit volume such that
they together cover the remaining input space.

Let Spon_trivial be the set of all non-trivial rectangles. Observe that:

e Rectangles in Syon_trivial are mutually disjoint since any two of them do
not intersect in at least one dimension.

e Fach rectangle in Spon_iriviai has a volume of 2¥ and thus the sum of
their volumes is © (2%*).

It now also follows that the number of monochromatic regions is O (23k).
Suppose that a dissection protocol partitions, fori = 1,2, ... |Suon—trivial|, the
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ith non-trivial rectangle R; € Spon_trivial iNt0 t; rectangles, say Ri1,Ria,...,Riy,.

Then,

dof Ly 2] |R!(z,, z)‘>|8“°§maltz’zpr &yl Volume (1)
@, %) Prlrdey \RP(z,y,2)| = ey Vqume(R”)

(2.y.2) € = R,
{0,13#x{0,1}# > {0,1}*
|Snonftrivia1‘ t; 2 |Snonftrivia1‘
_ _ 2k
= L Lm= X W)
=1 7=1 =1

‘Snonftrivia”

Thus, it suffices to show that Zti =0 (23k). Let Q be the set of maximal

monochromatic rectangles pl"Odl;.Céd the partitioning of the entire protocol.
Consider the two entries p,, . = (22 + 1,2y,22 + 1) and p[, , , = (27, 2y, 22)
(see Fig. 10). Note that p,, . belongs to a trivial rectangle since their
third, first and second coordinate does not lie within any non-trivial rect-
angle of dimension 1, 2 and 3, respectively, whereas p/, . belongs to the
non-trivial rectangle [*] 2 x (8y),2 x (8y)] x [2 x (82),2 x (8%)] of di-
mension 1. Thus, p,, . and p;y,z cannot belong to the same rectangle in
Q. Let T = | { {psu.sy.8:> Prosyst |64 < 162,16y,16z < 2F — 64 }. Clearly,
IT| = © (2%). For an entry (1, 22, z3), let its neighborhood be defined by the
ball Nbr(z1, 2o, 23) = { (2}, 4, 2%) | Vi : |;—a}| < 4}, i.e., the neighborhood
of an entry is the set of all entries (2, x}, x4) such that each 2/ lies in the range
[l’i — 4, x; + 4:| for i = 1, 2, 3. Note that Nbr(p8m78y7gz) N Nbr(pgxf,gy/&/) = @
provided (x,y,z) # (2/,y,2"). Next, we show that, to ensure that the two
entries pgy gy, and p’vagyvgz are in two different rectangles in Q, the protocol
must produce an additional fragment of one of the non-trivial rectangles in
the neighborhood Nbr(ps, sy s:); this would directly imply Y, ¢; = Q (2%).

Consider the step of the protocol before which pg, g, s. and pf, g, 5, were
contained inside the same rectangle, namely a rectangle () that includes the
rectangle [16x, 162 + 1] x [16y, 16y] x [16z, 162z + 1], but after which they
are in two different rectangles Q1 = [a},b]] X [ah, b] x [a5,b5] and Qo =
[a], b]] x [ay,by] x [a%,b5]. Remember that both )y and (2 must have the
same two dimensions and these two dimensions must be the same as the
corresponding dimensions of (). The following cases arise.

Case 1 (split via the first coordinate): [a),b,] = [a3, 0] D [16y, 16y],
lay, by = [a3,b5] D [162,16z + 1], b} = 162 and af = 162 + 1. Then,
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a new fragment of a non-trivial rectangle of dimension 2 is produced at
(162, 16y, 162] € Nbr(pss sy.s2)-

Case 2 (split via the second coordi-
nate): [a},b]] = [af,0]] D [16z, 16z + 1]
and [a}, bs] = [af, V4] D [16z,16z + 1]. This
case is not possible.

Case 3 (split via the third coordi-

nate): [a},b|] = [a],b]] D [16x, 162 + 1], D 8z,8y,82

[ah, b,] = [ab, by] D [16y, 16y], by = 162z and
a3 = 16z + 1. Then, a new fragment of a pISx,Sy,Sz
non-trivial rectangle of dimension 1 is pro-
duced at [16x, 16y, 162] € Nbr(ps, sys.). O

Figure 10: Separating pss sy,s. from

/
. ) Pgs,8y,82-
Remark 2. A generalized version of the ex-

ample in d dimension can be used to provide

a slightly improved lower bound on oy, for

dissection protocols with more than three parties; the bound asymptotically
approaches Q (2%%) for large d.

7. Analysis of the Bisection Protocol for Two Functions

In Section 5.1 we showed that any Boolean tiling function can be com-
puted with perfect privacy by a dissection protocol. In [8] the authors
provided calculated bounds on s and ap, for the bisection protocol, a
special case of the general dissection protocol (see Definition 9), on a few
functions. In this section, we analyze the bisection protocol [9, 10], for
two Boolean functions that appear in the literature. As before, D, de-
notes the uniform distribution. Letting x = (z1,22,...,2,) € {0,1}* and
y = (Y1,92,--,yn) € {0,1}F, the functions that we consider are the follow-
ing:

set-covering: fav(x,y) = A, (z; Vy;). To interpret this as a set-covering
function, suppose that the universe U consists of n elements ey, e, ..., €,
and the vectors x and y encode membership of the elements in two sets
Sx and Sy, i.e., x; (respectively, y;) is 1 if and only if e; € Sx (respec-
tively, e; € Sy). Then, fu v(x,y) =1 if and only if Sx U Sy, =U.
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. 1 ifVi:a; =y
equality: f-(x,y) = { 0 otherwise
useful testbed for evaluating privacy preserving protocols, e.g., see [3].

" . The equality function provides a

As we already noted in Section 2, both of these functions are studied in
the context of evaluating privacy preserving protocols and communication
complexity settings [3, 11]. A summary of our bounds are as follows.

f/\,\/ ‘ Olyworst Z aDu Z (%)2k

f: ‘ Qp,= 2k —24 21—k Qorst = 22k—1 _ 2k—1

We will use the formula for o, that we derived in the proof of Theorem 1:
letting r denote the number of monochromatic regions in an ideal partition

of the function if, for i = 1,2,...,r, the i monochromatic region contain
y; X 22 elements and the bisection protocol partitions this region into t; > 1
rectangles containing zy, . ..,z elements, respectively, then ap, = Y i ty;.

In the sequel, by “contribution of a rectangle (of the bisection protocol) to
the (average PAR)” we mean the size of the ideal monochromatic region that
the rectangle is a part.

7.1. Set Covering Function
Theorem 4. a,, > (3/2)°".

Proof. We begin by showing the geometry of the tilings for small values of
k which easily generalizes to larger k. The ideal tiling for f.. is shown
in Fig. 11(a) for £ = 3 with the value of the function for each input pair.
The sizes of the ideal monochromatic partition are shown in Fig. 11(b) for
k =1,2,3,4. The contributions to the average PAR of various inputs after
applying the bisection protocol are illustrated in Fig. 12 for k = 1,2, 3,4. We
observe the following:

e The tiles colored light gray for the case when k = 4 are referred to as the
“background tiles”. For k = 1,2, 3,4 each such tile contributes 3,9, 27
and 81, respectively, to the average PAR. In general, this contribution
is given by 3* and all these tiles have size 1.

e The contributions of the tiles in the upper-left region of the matrix are
given by the sum of the first 2% — 1 natural numbers; thus each of these
tiles contribute 22¢—1 — 2k—1,
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e For any k, observe that the matrix can be decomposed into 4 quadrants;
the following observations can be repeated recursively on each resulting
quadrant, except for the first quadrant:

— The first quadrant is a monochromatic region that contributes
22k=1 _ 9k=1 to the average PAR.

— The fourth quadrant has the same structure as the original matrix,
but the contributions for the non-background tiles will be related
to the case of a matrix with j bits instead of k, where the size of
the quadrant is 27. For example, notice that the fourth quadrant
of a matrix with £ = 4 is the same as a whole matrix with k = 3,
except for the “background tiles”, that always contribute for 3%,
with the original value of k.

— The second and third quadrants are similar to the fourth quadrant
case, but in this case the values in the upper-left portion of the
quadrants will remain the same as the original matrix, instead of
going down as with the fourth quadrant case.

120 —’_E

01234567

&
k=1

Figure 11: (a) Ideal monochromatic partition for fy when & = 3. (b) Sizes of ideal
monochromatic partition for fa .

Based on these observations, we can obtain a recurrence for the total

contribution to the average PAR of all the tiles in a generic matrix. We need
the following parameters:
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28 | 27
28 27 | 27
69 28 28 27| 1 |27
13 6 919 27 | 27 | 27 | 27
33 69|19 28 | 27 6 | 27
(a)k=1 |9]19]9|9 28 27 | 27 6 27 | 27
(b) k=2 28 (27| 1 (27| 6 (27| 1 |27
27 | 27 | 27 | 27 | 27 | 27 | 27 | 27
(c) k=3
120 81
120 81 81
120 120 81 1 81
120 81 81 81 81
120 81 6 81
120 81 81 6 81 81
120 81 1 81 6 81 1 81
81 [ 81 |81 | 81 |81 s1 |81 81
120 81 28 81
120 81 81 28 81 81
120 120 81 1 81 28 28 81 1 81
81 81 81 81 81 81 81 81
120 81 6 81 28 81 6 81
120 81 81 6 81 81 28 81 81 6 81 81
120 81 1 81 6 81 1 81 28 81 1 81 6 81 1 81
81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
(d) k=4

Figure 12: Contribution to PAR for £ =0,1,2,3,4.

e The number of bits in the original matrix, that we denote by k;

e The number of bits corresponding to the size of the matrix, or subma-

trix being considered, that we denote by ¢;

e The number of bits to be used in the calculation of the contribution of
the upper-left portion of the matrix, or submatrix, being considered;
we denote this by j.

The recurrence that computes the total contribution to the PAR of all the

tiles in the matrix is:

g(i,7,k)

|

3k:

23

ifti=0
227t — 271 4 2g(i —1,5,k)+g(i—1,i—1,k), otherwise




The values of ¢ and j are initially set to the value of k. The interpretation
of each term in the above recurrence is as follows:

e 3% is the contribution of each “background tile”;
e 2%-1 _92i=1 i5 the contribution of the first quadrant;

e g(i—1,j,k) is the contribution of each one of the second and third
quadrants and

e g(i—1,i—1,k) is the contribution of the fourth quadrant.

Remember that, for a given k, the recurrence equation is initialized with
1t = j = k. Thus, we have:

Case: k=0: g(k,k, k) = 3" = 3%,

Case: k> 0: g(k,k, k) =g(k—1,k—1,k)+2g(k—1,k, k)+t(k). The second
parameter to the function indicates how to generate the ¢(k) terms; the
value of such terms is proportional to that parameter. Thus, for a > b,
g(k,a,k) > g(k,b,k). For our lower bound, we can neglect the terms
t(k). Thus, we obtain:

> e > 39(1,1,k) = 39(0,0, k)

For each step, the value of the first parameter decreased exactly by one
unit, so after k iterations the value of the first parameter will be zero.
Hence we have g(k, k, k) > 3%g(0,0, k). Since ¢(0,0, k) = 3* we finally
obtain g(k, k, k) > 3% x 3% = 32k,

Thus, ap, = g(k, k, k)/22 > (3/2)*". O

7.2. Equality function

Theorem 5. ap, = 28 — 2 4+ 217F and ayeng = 22671 — 21,

Proof. An illustration of the ideal partition into monochromatic regions for
equality function is shown in Fig. 13(a). After running the bisection protocol,
the induced tiling is (for £ = 3) is shown in Fig. 13(b). Excluding the
diagonal, we have 2 tiles of size 16, 4 tiles of size 4, and 8 tiles of size 1. In
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1[]1+2+3+---+2F-1 111 4 1] = *
1 = 92%k-1_ gk-1 11 16 x| 1 *
1 1]1 1=
1 4 [17]1 * 1
1 11 4 1| % *
1 16 1)1 * x| 1
92k—1 _ gk-1 1 1]1 1%
1 4 [1]1 x | % |1
(a) (b) ()

Figure 13: (a) Ideal tiling for equality function. (b) The induced tiling by the bisection
protocol (shown for k = 3). (c) Contribution of each rectangle in protocol-induced tiling
where * = 226=1 _ 2k=1 The numbers in the figure denote the size of each tile.

general, it is easy to observe that, for each 0 < i < k, we have exactly 2¢~*
tiles of size 2%.

The following accounting scheme can be used to si£nplify calculation. For
Fan)
(7,7) in the matrix divided by the number of total elements 2" in the matrix,
where R!(i,j) and R (i, ) is the size of the ideal and protocol-induced tiling
that contains the cell (7, 7). Consider a rectangle A of size m in the protocol-
induced tiling and suppose that A is contained in a monochromatic region of
the ideal partition of size m’. Then, the sum of contributions of the elements
of Ais >, % = m/. Thus, the total contribution of the rectangle A is
simply the size of region of the ideal partition containing it.

Fig. 13(c) illustrates the contribution of each rectangle in the protocol-
induced tiling to average PAR. We can calculate the total contribution
to the average PAR of all the tiles in the matrix, except the diagonal, by
multiplying 22#=1 — 281 by the number of tiles. The number of tiles is
given by: Ml 2k~ — 2kl _ 9 The total contribution of those tiles is
(21— 2) x (221 — 2k=1) = 23k _ 92k+1 4 9% The contribution of the diag-
onalis 1 +1+------ +1 = 2% Since the average objective PAR ap, is the

2k t‘i,mes
sum of the total contributions divided by the number of cells in the matrix,

we have

over each element
22k

uniform distribution Dy, ap, is the sum of the ratio

=2 24 o7k

B 23k _ 22k+1 + 2k + 2k B 23k _ 22k+1 + 2k+1
&, = 22k - 22k

It can be seen from the ideal and protocol tilings that the worst case for PAR
is the one in which the ideal tile size is 22~! — 2¥=1 and the protocol tile
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size is 1. Thus auyerst = 2271 — 2871, O
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