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Abstract

In this paper, we investigate the test set problem and its variations that appear in a variety
of applications. In general, we are given a universe of objects to be “distinguished” by a family
of “tests”, and we want to find the smallest sufficient collection of tests. In the simplest version,
a test is a subset of the universe and two objects are distinguished by our collection if one test
contains exactly one of them. Variations allow tests to be multi-valued functions or unions of
“basic” tests, and different notions of the term distinguished. An important version of this problem
that has applications in DNA sequence analysis has the universe consisting of strings over a small
alphabet and tests that are detecting presence (or absence) of a substring. For most versions of
the problem, including the latter, we establish matching lower and upper bounds on approximation
ratio. When tests can be formed as unions of basic tests, we show that the problem is as hard as
the graph coloring problem. We conclude by reporting preliminary computational results on the
implementations of our algorithmic approaches for the minimum cost probe set problems on a data
set used by Borneman et al.

1 Introduction and Motivation

One of the test set problems was on the classic list of NP-complete problems given by Garey
and Johnson [6]; these problems arise naturally in many other applications. Below we provide an
informal description of the basic problem with its motivating applications in various settings; precise
descriptions and definitions appear in Section 1.1. In every version of the test set problem, we are
given a universe of objects, family of subsets (tests) of the universe and a notion of distinguishability
of pairs of elements of the universe by a collection of these tests. Our goal is to select a subset
of these tests of minimum size that distinguishes every pair of elements of the universe. This
framework captures problems in several areas in bioinformatics and biological modeling.
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Minimum Test Collection Problem: This problem has applications in diagnostic testing. Here
a collection of tests distinguishes two objects if a test from the collection contains exactly
one of them. Garey and Johnson [6, pp. 71] showed a proof of NP-hardness of this problem
via a reduction from the 3-dimensional matching problem. Moret and Shairo [12] discussed
some heuristics and experimental results for this problem. Finally, very recently the authors
in [2, 8] established a (1 − ε) lnn lower bound for approximation for any polynomial-time
algorithm under standard complexity-theoretic assumptions where n is the number of objects
and ε > 0 is an arbitrary constant.

Condition Cover Problem: Karp et al. [10] considered a problem of verifying a multi-output
feedforward Boolean circuit as a model of biological pathways. This problem can be phrased
like the Minimum Test Collection Problem, except that two elements are distinguished by
a collection of tests if one test contains exactly one of them, and another contains both or
neither of them.

String Barcoding Problem: In this problem, discussed by Rash and Gusfield [13], the universe
U consists of sequences (strings), and for every possible string v we can form a test Tv as a
collection of strings from U in which v appears. The name “string barcoding” derives from
the fact that the Boolean vector indicating the occurrence (as a substring) of the tests from
an arbitrary collection of tests in a given input sequence is referred to as the “barcode” of
the given sequence with respect to this collection of tests. Motivations for investigating these
problems come from several sources such as: (a) database compression and fast database
search for DNA sequences and (b) DNA microarray designs for efficient virus identification
in which the immobilized DNA sequences at an array element are from a set of barcodes.
In [13], Rash and Gusfield left open the exact complexity and approximability of String
Barcoding. We also consider a version in which a test can be defined by a set T of strings,
with some limit on the set size, and u ∈ U passes test T if one of strings in T is a substring
of u; such tests are as feasible in practice as the one-string tests.

Minimum Cost Probe Set Problem with a Threshold: This problem is very similar to String
Barcoding and it was considered by Borneman et al. [3]. They used this in [3] for minimizing
the number of oligonucleotide probes needed for analyzing populations of ribosomal RNA
gene (rDNA) clones by hybridization experiments on DNA microarrays. Borneman et al. [3]
noted that this problem was NP-complete assuming that the lengths of the sequences in the
prespecified set were unrestricted, but no other nontrivial theoretical results are known.

1.1 Notation and Definitions

Each problem discussed in this paper is obtained by fixing parameters in our general test set problem
TSΓ(k). The following notation and terminology is used throughout this paper:

• [i, j] denotes the set of integers {i, i + 1, . . . , j − 1, j}.
• P(S) = {A : A ⊆ S} denotes the power set of S.
• |X| denote the cardinality (resp. length) of X if X is a set (resp. sequence).
• For two sequences (strings) u and v over an alphabet Σ, v is a substring of x (denoted by

v ≺ x) if x = uvw for some u, w ∈ Σ∗.
• For two sets of numbers A and B and a number a, a × A denotes the set {ai| i ∈ A} and

A + B denotes the set {a + b| a ∈ A&b ∈ B}.

Definition 1 (Problem TSΓ(k) with parameters Γ ⊆ P([0, 2]) and a positive integer k)
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Instance: (n,S) where S ⊂ P([0, n − 1]).

Terminologies:

• A k-test is a union of at most k sets from S.
• For a γ ∈ Γ and two distinct elements x, y ∈ [0, n−1], a k-test T γ-distinguishes

x and y if |{x, y} ∩ T | ∈ γ.

Valid solutions: A collection T of k-tests such that
(∀x, y ∈ [0, n−1] ∀γ ∈ Γ) x �= y =⇒ ∃T ∈ T such that T γ-distinguishes x and y.

Objective: minimize |T |.

An example to illustrate Definition 1: Let n = 3, k = 1, S = { {0}, {1}, {0, 1} } and Γ = { {1} }.
Then, T = { {0}, {0, 1} } is a valid solution since the 1-test {0, 1} {1}-distinguishes 0 from 2 as well as
1 from 2 while the 1-test {0} {1}-distinguishes 0 from 1.

Now we precisely state the relationship of the TSΓ(k) problem to several other problems in
bioinformatics and biological modeling that we discussed before:

Minimum Test Collection Problem (Garey and Johnson [6]): This is precisely TS{1}(1).

Condition Cover Problem (Karp et al. [10]): Assuming that the allowed perturbations are
given as part of the input, this problem is identical to TS{1},{0,2}(1).

String Barcoding Problem: Define a k-sequence as a collection of at most k distinct sequences.
In this problem, considered by Rash and Gusfield [13] for the case when k = 1, we are given a
set S of sequences over some alphabet Σ. For a fixed set of m k-sequences �t = (t0, . . . , tm−1),
the barcode code(s,�t) for each s ∈ S is defined to be the Boolean vector (c0, c1, . . . , cm−1)

where ci is 1 iff there exists a t ∈ ti such that t ≺ s. We say that �t defines a valid barcode
if for any two distinct strings s, s ′ ∈ S, code(s,�t) is different from code(s ′,�t). The string
barcoding problem over alphabet Σ, denoted by SBΣ(k), has a parameter k ∈ N and is defined
as follows:

Instance: (n,S) where S ⊂ Σ∗ and 1 ≤ k ≤ n = |S |.

Valid solutions: a set of k-sequences �t defining a valid barcode.

Objective: minimize |�t|.

As an example, let Σ = {A, C, T, G}, n = 5, k = 1 and S consist of the set of sequences
{AAC, ACC, GGGG, GTGTGG, TTTT } over Σ. Then, the set of four 1-sequences�t = {A, CC, TTT, GT }

defines the following set of valid barcodes for the input sequences in S:

A CC TTT GT
AAC 1 0 0 0

ACC 1 1 0 0

GGGG 0 0 0 0

GTGTGG 0 0 0 1

TTTT 0 0 1 0

SBΣ(k) is a special case of TS{1}(k) in which U = S and for each substring p of each sequence
in S there is a test {s ∈ S : p ≺ s}; valid barcodes can be identified with valid sets of k-tests.
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Minimum Cost Probe Set Problem with Threshold r (Borneman et al. [3]): The prob-
lem, denoted by MCPΣ(r), is a variation of TS{1}(1). Denote by oc(x, y) the number of
occurrences of x in y as a substring, For a fixed set of m sequences �t = (t0, t1, . . . , tm−1), an
r-barcode code(s,�t) for any sequence s is defined to be the vector (c0, c1, . . . , cm−1) where
ci = min{r, oc(ti, s)}. Given a set S of sequences over some alphabet Σ, �t defines a valid
r-barcode if for any two distinct strings s, s ′ ∈ S, code(s,�t) is different from code(s ′,�t).
MCPΣ(r) is now defined as follows:

Instance: (n, r,S,P) where S,P ⊂ Σ∗ and |S | = n.

Valid solutions: a set of sequences �t ∈ P∗ defining a valid r-barcode.

Objective: minimize |�t|.

If P is the set of all substrings of sequences in S, MCPΣ(1) is precisely SBΣ(1). All our results
on SBΣ(1) apply to MCPΣ(r) with appropriate modifications.

2 Summary of Our Results

We provide matching upper and lower bounds on approximation ratios of polynomial-time algo-
rithms for TS{1}(1), TS{1},{0,2}(1), SBΣ(1) and MCPΣ(r) and strong lower bounds on approximation
ratios of polynomial-time algorithms for TS{1}(k), TS{1},{0,2}(k) and SBΣ(k) for large k; these results
are summarized in Table 1. In Section 7 we conclude by reporting some preliminary computational
results.

Approximation Ratio
Problem Upper Bound Lower Bound Theorem(s)

Time the bound the bound Assumptions
TS{1}(1) O(n2|S |) 1 + lnn (1 − ε) lnn NP�⊂DTIME(nlog log n) 2 and 7
TS{1},{0,2}(1) O(n2|S |) 1 + ln 2 + lnn (1 − ε) lnn NP�⊂DTIME(nlog log n) 2 and 7

SBΣ(1) O(n3�2) 1 + lnn (1 − ε) lnn NP�⊂DTIME(nlog log n) 2 and 7
|Σ| > 1

MCPΣ(r) O(n2|P |+ [1 + o(1)] lnn (1 − ε) lnn NP�⊂DTIME(nlog log n) 2 and 7
L|P |) |Σ| > 1

TS{1}(nδ) nε NP�=co-RP 12
0 < ε < δ < 1

TS{1},{0,2}(nδ) nε NP�=co-RP 12
0 < ε < δ < 1

SBΣ(nδ) nε NP�=co-RP 12
0 < ε < δ < 1

2

Table 1: Summary of our approximability results: (n,S) is an input instance of TSΓ(k) and SBΣ(k),
(n,S,P) is an input instance of MCPΣ(r), � is the maximum length of any sequence in S, L is the
total length of all sequences in S and ε and δ are constants. The column “Assumptions” contains
sufficient condition(s) for the respective lower bound.

Techniques Used

(a) Our algorithm to achieve the tight approximation bound in Theorem 2 for TS{1}(1), TS{1},{0,2}(1)

and MCPΣ(r) is a greedy algorithm that selects tests based on information content defined in terms
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of the change in the partition of the universe when the test is applied. This notion is directly related
to the Shannon information complexity [1, 14]. A careful analysis yields an upper bound on the
approximation ratio that matches the lower bound in Theorem 7 within a small additive term. We
believe the analysis will be useful in the context of analyzing other problems involving recursive
partitioning of a given universe as well.

(b) The inapproximability results of Theorem 7 are proved by approximation preserving reductions
from the set cover problem. To handle the barcode problem for Σ = {0, 1} we introduce an artificial
intermediate problem (the “test set with order” problem) in which some tests are provided almost
for free but they help very little in constructing a good set of tests. This roughly corresponds to
the fact that we cannot avoid tests that do not correspond to sets in the original set cover instance,
but we can make them cheap.

(c) The inapproximability results in Theorem 12 are obtained by approximation preserving reduc-
tions from the graph coloring problem.

Comparison of our results with those in [2, 8]: The authors in [2, 8] proved a (1−ε) lnn lower
bound for approximation for TS1(1). In this paper, we prove a lower bound of (1−ε) lnn for SB{0,1},
an extemely restricted special case of TS1(1) that is of utmost importance to the bioinformatics
community in detecting unknown virus sequences and designing probes for DNA microarrays. The
proof in [2, 8] from set-cover to TS1(1) does not seem to be easily transformable to provide a
lower bound for SB{0,1} with a similar quality of non-approximability because of the special nature
of SB{0,1}. We therefore needed to introduce an artificial intermediate problem (the “test set with
order” problem, denoted by TSOk) which we could then translate to SB{0,1} in a non-trivial manner.
It should be noted that, for general k, TSOk is neither equivalent to or nor a special case of TS1(1).

Notational simplifications: We will skip (1) in TS{1}(1), TS{1},{0,2}(1) and SB{0,1}(1), write “{1}-
distinguishes” simply as “distinguishes” or “separates”, and 1-tests simply as tests. Also, unless
otherwise stated, all “computations”, “transformations” or “reductions” take polynomial time.

Roadmap. Proofs of some of the claims in Theorems 2 , 7 and 12 appear in Sections 3 , 5 ,and 6,
respectively.

3 Approximation Algorithms for Test Set and Minimum Cost
Probe Problems

The Set Cover (SC) Problem is defined on an input instance (U,S) such that S ⊂ P(U) with
the goal of finding a C ⊆ S such that

⋃
A∈C A = U and |C| is minimized. We can translate the

TS{1} problem to SC as follows. Given instance (n,S) of TS{1}, we define instance (U, τ(S)) where
U = {e ⊂ [0, n − 1] : |e| = 2}, τ(T) = {e ∈ U : |e ∩ T | = 1}, and τ(S ′) = {τ(T) : T ∈ S}. The
best proven approximation ratio for SC is achieved by a greedy heuristic [9] that, starting from
the empty partial set cover, keeps adding new sets to the solution that maximize the number of
elements that are not covered as yet. This heuristic for set cover runs in O(

∑
T∈S |τ(T)|) time and

has an approximation ratio of 1 + ln (maxT∈S |τ(T)|). Since maxT∈S |τ(T)| = |T | (n − |T |) ≤ n2

4 , the
above translation offers a O(n2|S |) time greedy heuristic for TS{1} with an approximation ratio of
(2 lnn) − ln 4. A similar reduction for the TS{1},{0,2} (resp. MCPΣ(r)) to the SC problem can also
be given providing a greedy heuristic with an approximation ratio of (2 lnn) − ln 4

3 (resp. 2 lnn).
The main result of this section improves upon that simple heuristic as follows.
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Theorem 2 There is an O(n2|S |) time approximation algorithm for TSΓ with approximation ratio
1 + lnn for Γ = {{1}} and 1 + ln 2 + lnn for Γ = {{1}, ]{0, 2}}. There is an O(n2|P| + L|P|) time
approximation algorithm for MCPΣ(r) with approximation ratio 1 + lnn + ln log2(r

′ + 1), where
r ′ = min{r, n} and L is the total length of the sequences in S.

3.1 Proof of Theorem 2 for TS{1}

In this section we provide a greedy heuristic for TS{1} running in time O(n2|S |) time with an
improved approximation ratio of 1 + lnn. Notice that the upper bound almost matches the lower
bound in Theorem 7 for SB{0,1}, a special case of TS{1}.

First, we consider the problem TS{1}. In the definition below and throughout the rest of this
section we use T + T to denote T ∪ {T }.

Definition 3 A set of tests T ⊂ S defines the following:

• an equivalence relation
T≡ on [0, n − 1] given by i

T≡ j if and only if ∀T ∈ T (i ∈ T ≡ j ∈ T),

• a set of permutations ΠT = {π ∈ (permutations of [0, n − 1]) : ∀i ∈ [0, n − 1] i
T≡ π(i)},

• entropy HT = log2 |ΠT |.
• information content of a T ∈ S with respect to T , IC(T, T ) = HT − HT +T = log2

|ΠT |
|ΠT +T |.

As an example, consider T = {{1, 2, 3, 4}, {1, 5, 6}} with n = 8. Then, the equivalence classes of
T≡ are

{1}, {2, 3, 4}, {5, 6}, {7, 8} and HT = log2((3!)(2!)(2!)) ≈ 4.585. Our definition of entropy is somewhat

similar (but not the same) to the one suggested in [12]. Suppose that the equivalence relation
T≡ on

[0, n − 1] produces q equivalence classes of size s1, s2, . . . , sq. Then, the entropy suggested in [12]
is 1

n log2(Π
q
i=1s

si
i ) whereas our entropy HT is log2(Π

q
i=1si!).

The information content heuristic (ICH for short) is the following simple greedy heuristic:

T = ∅
while HT �= 0 do

select a T ∈ S − T that maximizes IC(T, T )

T = T + T

endwhile

The correctness of ICH follows from the fact that HT = 0 implies the equivalence classes of
T≡ are

n singleton sets {0}, {1}, . . . , {n − 1} and the fact that if HT �= 0 then there exists a T ∈ S − T with
IC(T, T ) > 0 (otherwise our problem instance has no feasible solution). It is also not very difficult
to implement this algorithm efficiently within our claimed time bounds.

To implement ICH, we iteratively maintain the equivalence classes of
T≡ as sorted lists. We also

precompute and store log2(i!) for each i ∈ [1, n]. Given a specific T ∈ S − T , it is easy to compute

in O(n) time the equivalence classes of
T +T≡ from the equivalence classes of

T≡ since an equivalence

class E of
T≡ is either an equivalence class of

T +T≡ or it is partitioned into two equivalence classes

E1 = E ∩ T and E2 = E − E1 of
T +T≡ ; the first case contributes nothing to IC(T, T ) while the second

case adds log2

( |E|
|E1 |

)
to IC(T, T ). Finally, notice that the while loop is executed at most n times.

Now we analyze the approximation ratio of ICH. We will use the convention x = |X| for a set X.

Lemma 4 If T0 ⊂ T1 then IC(T, T0) ≥ IC(T, T1).
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Proof. By induction, it suffices to consider a case when for some test S we have T1 = T0 + S. In
this case our claim is

HT0
− HT0+T ≥ HT0+S − HT0+S+T ≡ |ΠT0

|

|ΠT0+T |
≥ |ΠT0+S|

|ΠT0+S+T |
.

Assume that E0, . . . , Ek are the equivalence classes of
T0≡, and let Ai = Ei ∩ S ∩ T , Bi = Ei ∩ S − T ,

Ci = Ei ∩ T − S, Di = Ei − S − T . Observe that

|ΠT0
| =

k∏
i=0

(ai + bi + ci + di)!

|ΠT0+S| =

k∏
i=0

(ai + bi)!(ci + di)!

|ΠT0+T | =

k∏
i=0

(ai + ci)!(bi + di)!

|ΠT0+S+T | =

k∏
i=0

(ai!)(ci!)(bi!)(di!)

and thus it suffices to show that

k∏
i=0

(ai + bi + ci + di)!

(ai + ci)!(bi + di)!
≥

k∏
i=0

(ai + bi)!(ci + di)!

ai!ci!bi!di!
≡

k∏
i=0

(
ai + bi + ci + di

ai + ci

)
≥

k∏
i=0

(
ai + bi

ai

)(
ci + di

ci

)

It is easy to see that each term li =
(
ai+bi+ci+di

ai+ci

)
on the last left-hand-side is at least as large as

the corresponding term ri =
(
ai+bi

ai

)(
ci+di

ci

)
on the right-hand-side because li counts subsets of Ei

with ai + bi elements, while ri counts the subsets of Ei that have ai elements in S and bi elements
in Ei − S. ❑

Lemma 5 IC(T, ∅ ) < n for every test T .

Proof. IC(T, ∅ ) = log2
|Π∅ |

|Π{T } |
= log2

n!
t!(n−t)! = log2

(
n

t

)
< log2 2n = n. ❑

Lemma 6 If IC(T, T ) > 0 then IC(T, T ) ≥ 1.

Proof. The claim is equivalent to the obvious implication: if |ΠT | > 1 then |ΠT | ≥ 2. ❑

Now we are ready for an amortized analysis of ICH. Suppose that an optimum solution of
(n,S) is T ∗ = {T∗

1 , . . . , T∗
k}. During the execution of ICH, for a current partial test set T , let

Ti = T + T∗
1 + · · · + T∗

i (accordingly, T0 = T ) and hi = IC(Ti−1, T
∗
i ). Notice that

∑k
i=1 hi =∑k

i=1(HTi−1
− HTi−1+T∗

i
) = HT − HT +T ∗ = HT , since HT +T ∗ = 0. Let h∗

i < n denote the initial
value of hi i.e. the value of hi with T = ∅ .

During the jth iteration of the while loop, ICH selects a test T (with, say, IC(T, T ) = ∆j) and
changes T into T + T . As a result, HT drops by ∆j and hi drops by some δi,j with

∑k
i=1 δi,j = ∆j.

This iteration adds 1 to the solution cost. We distribute this cost among the elements of T ∗

by charging T∗
i with δi,j/∆j. Because hi = IC(Ti−1, T

∗
i ) ≤ IC(T , T∗

i ), we know that ∆j ≥ hi since
otherwise ICH would select T∗

i rather then T . Therefore reducing the current hi by δi,j is associated
with a charge that is at most δi,j/hi. Let m(h) be the supremum of possible sums of charges that
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some T∗
i may receive starting from the time when hi = h. By induction on the number of such

positive charges we will show that m(h) ≤ 1 + lnh. If this number is 1, then h > 0 and hence
lnh ≥ 0 (by Lemma 6), while the charge is at most 1. In the inductive step, we consider a situation
when T∗

i starts with hi = h, receives a single charge δ/h, hi is reduced to h − δ and afterwards,
by inductive assumption, T∗

i receives at most m(h − δ) charges. Because h − δ > 0 we know by
Lemma 6 that h − δ ≥ 1. Therefore

m(h) ≤ m(h − δ) +
δ

h
≤ 1 + ln(h − δ) +

δ

h
< 1 +

∫h−δ

1

dx

x
+

∫h

h−δ

dx

x
= 1 +

∫h

1

dx

x
= 1 + lnh.

By Lemma 5, h < n. This proves our claim on the approximation ratio for TS{1}.

4 Proof of Theorem 2 for TS{1},{0,2}

We show how to reduce an instance of TS{1},{0,2} to an instance of TS{1} at the expense of increasing
the size of the universe by a factor of 2. Such a reduction will obviously prove our claim on
the approximation ratio for this problem. Given an instance (n,S) of TS{1},{0,2}, we create instance
(2n, σ(S)) of TS{1}: n+T = {n+i : i ∈ T }, σ(T) = T∪n+([0, n−1]−T), and σ(S) = {σ(T) : T ∈ S}.
Thus, for all i, j ∈ [0, n − 1] with i �= j, the following are true:

|{i, j} ∩ T | = 1 ≡ |{i, j} ∩ σ(T)| = 1 ≡ |{i + n, j + n} ∩ σ(T)| = 1

|{i, j} ∩ T | ∈ {0, 2} ≡ |{i, j + n} ∩ σ(T)| = 1 ≡ |{i + n, j} ∩ σ(T)| = 1.

Hence a set of tests T1, T2, . . . , Tk is a solution of the instance (n,S) of TS{1},{0,2} if and only of the
set of tests σ(T1), σ(T2), . . . , σ(Tk) is a solution of the instance (2n, σ(S)) of TS{1}.

4.1 Proof of Theorem 2 for MCPΣ(r)

We use the same greedy algorithm as described in the Section 3. A test set corresponding to a
possible choice of a string t in the barcode now partitions the set of sequences S into at most r + 1

partitions S0,S1, . . . ,Sr where Si = {s ∈ S | i = min{r, oc(t, s)}}. Using linear time algorithm for
finding a pattern in a text (e.g., see [7, page 10]), all the test sets corresponding to the O(n�2)

sequences can be constructed in O(L|P |) time. Hence an overall running time of O((n2 + L)|P |)

follows.
The analysis of the algorithms is very similar to that in the previous section, so we just point

out the differences:

(1) In Lemma 5, IC(T, ∅ ) ≤ n log2(r + 1) for every test T . This is because H∅ = log2 n! and

H{T} ≤ log2

((
n

r+1

)
!
)r+1, hence IC(T, ∅ ) = log2

n!

(( n
r+1 )!)

r+1 ≤ n log2(r + 1).

(2) A test set that partitions S into r + 1 partitions can be thought of as a group r tests each of
which partitions S into two partitions. As a result, the amortized analysis of the previous
section applies if we charge each such group of tests in the analysis since Lemma 4 holds for
the case when T0 and T1 are two such groups of tests.

Note also that even if r > n no test may have information content larger then the initial entropy,
i.e. larger then n log2 n. Hence, we have approximation ratio of 1 + lnn + ln log2 min{r + 1, n}.
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5 Inapproximability Results for Test Set, String Barcoding and
Minimum Cost Probe Set Problems

The NP-hardness of TS{1} follows from the NP-hardness of the minimum test collection problem
in [6] from a reduction from the 3-dimensional matching problem and minor modifications of this
reduction can be used to prove the NP-hardness of TS{1},{0,2} as well. NP-hardness of MCPΣ(r)

from the vertex cover problem was mentioned without a proof in [3]. Our goal is to show that it
is impossible (under reasonable complexity theoretic assumptions) to approximate these problems
any better than mentioned in Theorem 2.

Theorem 7 For any given constant 0 < ρ < 1, it is impossible to approximate SB{0,1} (a restricted
case of TS{1}), TS{1},{0,2} or MCP{0,1}(r) within a factor of (1 − ρ) ln n in polynomial time unless
NP⊂DTIME(nlog log n).

Our proof of Theorem 7 proceed in two stages:

• In Section 5.1 we introduce the Test Set with Order (TSO) problem and provide a reduction
from the set cover problem to the TSO problem preserving apprpximation.

• Our complete reduction from the set cover problem to SB{0,1}, described in Section 5.2, uses a
composition of the abovementioned reduction and another approximation-preserving reduc-
tion from the TSO problem to SB{0,1}.

5.1 Test Set with Order

To make the approximation preserving reduction from set cover to SB{0,1} easier to follow, we
introduce an intermediate problem called Test Set with Order with parameter k ∈ N (denoted by
TSOk):

Instance: (n, k,S) where k is a positive integer, (n,S) is an instance of TS{1} and S
includes the family of “cheap” sets S0 = {{i}| i ∈ [0, n − 1]} ∪ {[0, i] | i ∈ [0, n − 1]}.

Valid solutions: a solution for the instance (n,S) of TS{1}.

Objective: minimize cost(T ) = |T − S0| +
1
k|T ∩ S0|.

Note that TSO1 is in fact a special case of TS{1}; hence any hardness results proved for TSO1

would apply to TS{1} as well. Our claim follows once the following theorem is proved.

Theorem 8 For any integer constant k > 0 and any constant 0 < ρ < 1, it is impossible to
approximate TSOk within a factor of (1−ρ) lnn in polynomial time unless NP⊂DTIME(nlog log n).

In the rest of this section, we prove the above theorem. We need the following straightforward
extension of the hardness result in [4] for a slightly restricted version of SC.

Fact 9 Assuming NP �⊂DTIME(nlog log n), instances of the SC problem for which the optimal cover
requires at least (log2 n)2 sets cannot be approximated to within a factor of (1 − ε ′) lnn for any
constant ε ′ > 0 in polynomial time.

For notational simplicity, assume that kn is an exact power of 2 and � = log2(kn). The following
lemma gives a reduction from SC to TSOk problem.
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Lemma 10 There exists a polynomial-time computable function τ that maps an instance (n,S) of
SC into instance (2kn, k, τ(S)) of TSOk such that optimal solutions of (n,S) and (2kn, k, τ(S)),
C∗ and T ∗ respectively, satisfy the following:

|C∗| ≤ cost(T ∗) ≤ |C∗| + � + 1.

Moreover, given any solution X of (2kn, k, τ(S)), we can in polynomial time construct a solution Y

of (n,S) such that |Y| ≤ cost(X).

Proof. τ(S) contains the following sets:

cover sets: D(S) = 2 × (k × S + [0, k − 1]) for S ∈ S;
cheap sets: {i} and [0, i] for each i ∈ [0, 2kn − 1];
other sets: Ai = {j ∈ [0, 2kn − 1]| jmod 2i+1 ≥ 2i} for i ∈ [1, �].

First, we show that cost(T ∗) ≤ |C∗| + �. Given a set cover C of (n,S) we define the following test
set that is a solution of (2kn, τ(S)): T = {D(A)| A ∈ C} ∪ {Ai| i ∈ [1, �]}. To see that T is indeed a
valid solution, consider i, j ∈ [0, 2kn− 1]. Suppose that i is even and j is not. Then for some A ∈ C
and a ∈ 2 × [0, k − 1] we have (i − 2a)/2k ∈ A, and thus i ∈ D(A) while j �∈ D(A). On the other
hand, if that i and j have the same parity then they differ on kth bit for some k ∈ [1, �], in which
case i and j are distinguished by test Ak. Hence, cost(T ∗) = |T ∗| ≤ |C∗| + �.

Next, we show that |C∗| ≤ cost(T ∗). Given a set of tests T , consider the partial cover C ′ =

{A| D(A) ∈ T }, and let C =
⋃

S∈C ′ S. Consider i ∈ [0, n − 1] − C. For a ∈ [0, k − 1] we know that
some set of T distinguished 2ki − 2a from 2ki − 2a + 1. This distinguishing set can only be one of
the three sets: {2ki−2a}, {2ki−2a+1} or [0, 2ki−2a]. Note that for each i ∈ [0, n−1]−C and each
a ∈ [0, k−1] we have a choice of different three sets, so in each such case we use a different element
of T . We can conclude that T contains k(n − |C|) such sets, and thus cost(T ) ≥ |C ′| + n − |C|.
Since for each i ∈ [0, n − 1] T must distinguish 2i − 1 from 2i, T must contain one of these three
sets: {2i − 1}, {2i}, [0, 2i − 1]. Note that each i ∈ [0, n − 1] − C has different possibilities, thus for
each of them T contains a different set of choices. We can therefore extend C ′ to a cover C of (n,S)

by adding at most n − |C| sets. Hence |C| ≤ cost(T ).
Hence, cost(T ∗) ≤ |C∗| + � + 1

k. ❑

We can now complete the proof of Theorem 8. Consider an instance of SC as mentioned in
Fact 9, transform it to an instance of TSOk as described in Lemma 10 and let C∗ and T ∗ be optimal
solutions to the instances of SC and TSOk, respectively. Suppose that we can approximate TSOk

within a factor of (1−ρ) ln n and let T ′ be such an approximate solution. Then, by using Lemma 10
we can find a solution C ′ to the instance of SC such that

|C ′| ≤ cost(T ′)
≤ (1 − ρ) lnncost(T ∗)
≤ (1 − ρ) lnn (|C∗| + � + 1)

≤ (1 − ρ + o(1)) lnn |C∗| since |C∗| = Ω(�2) and � = Ω(log n)

which violates Fact 9 by choosing ε ′ = 1 − ρ + o(1).

5.2 Proof of Theorem 7 for SB{0,1}

As before, for notational simplicity, assume that kn is an exact power of 2 and � = log2(kn). First,
using the reduction described in the proof of Lemma 10, we provide a reduction of SC to SB{0,1}.

10



Lemma 11 For any given constant integer k > 0, there exists a polynomial-time computable func-
tion σ that maps an instance (n,S) of SC into an instance (2kn, σ(S)) of SB{0,1}, so that if C∗ and
�t∗ are the optimal solutions for (n,S) and (2kn, σ(S)), respectively, then

|C∗|

1 + 1
k

≤ |�t∗| ≤ |C∗| + �.

Moreover, given any solution �x of (2kn, σ(S)), we can in polynomial time construct a solution Y

of (n,S) such that |Y|

1+1
k

≤ |�x|.

Proof. First, we define a family τ(S) of subsets of [0, 2kn−1] using the function τ from Lemma 10.
Let S0 be the family of “special” or “cheap” test sets, and S1 = τ(S)−S0. We number the elements
of S1, so S1 = {B0, . . . , Bm−1} and let Bm = [0, 2kn − 1] ∈ S0. For each i ∈ [0, 2kn − 1] we define
sequence si as a concatenation of alternating groups of 0i+1 and a distinct member from the set
{1k+1 | i ∈ Bk}, begining and ending with 0i+1. This completes the description of the function σ.

As an example, consider the instance (4,S) of SC consisting of the sets {0, 1, 3}, {1, 2} and {1, 2, 3}

and assume k = 1. Then, τ(S) consists of the following sets over [0, 7]:

cover sets: B0 = {0, 2, 6}, B1 = {2, 4}, B2 = {2, 4, 6}

other sets: B3 = A1 = {2, 3, 6, 7}, B4 = A2 = {4, 5, 6, 7}

cheap sets S0: {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4, 5},

{0, 1, 2, 3, 4, 5, 6}, B5 = {0, 1, 2, 3, 4, 5, 6, 7}

and the corresponding strings s0, s1, . . . , s7 as generated by σ are:

s0 = 010160

s1 = 021602

s2 = 031031203130314031603

s3 = 0414041604

s4 = 051205130515051605

s5 = 0615061606

s6 = 071071307140715071607

s7 = 08140815081608

Consider any set cover C of (n,S). As noted in the proof of Lemma 10, we can map it into a
solution for TSOk without using any cheap tests and with at most |C∗| + � test sets. Then, we
replace test Bj with a test sequence 01j+10. Thus |�t∗| ≤ |C∗| + �.

Now consider a solution vector of sequences �t for σ(S). We show how to replace each sequence
t of �t with at most two sets such that the following two statements hold:

(a) if (t ≺ sp) �= (t ≺ sq) for two sequences sp and sq, then the replaced sets {1}-distinguish p

from q;

(b) when we use two sets, one of them is cheap.

By (a), the replacement sets form a solution for the instance (2kn, k, τ(S)) of TSOk. By (b), the
cost of the this solution for (2kn, k, τ(S)) is at most

(
1 + 1

k

)
|�t|. Finally, by Lemma 10, it is possible

to construct from this solution for (2kn, k, τ(S)) a solution for the set cover instance (n,S) with no
more than

(
1 + 1

k

)
|�t| sets. Hence, it only remains to show the replacement. We have the following

cases:
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Case 1: t contains a substring 10a1 for some a > 0. Then t can be a substring of only sa−1, so
we can replace t with a cheap test {a − 1}.

Case 2: Otherwise, t is of the form 0∗1∗0∗.

Case 2.1: t = 0a for some a > 0. Then t is a substring of all si’s with i ≥ a − 1, and
therefore we can replace it with a cheap test [0, i − 2].

Case 2.2: t = 0a1b for some a, b > 0. If b > m + 1, t is not a substring of any si, so we
can discard it. If b ≤ m + 1, then this test is equivalent to 0a because every si contains
1m+1.

Case 2.3: t = 1a0b for some a, b > 0. Similar to Case 2.2.

Case 2.4: t = 0a1b0c where a, b, c > 0. Let d = max{a, c}; one can see that we can replace
t with Bb−1 and [0, d − 2]. ❑

We can now complete the proof of our claim in a manner similar to that in the proof of Lemma 10.
Consider an instance of SC as mentioned in Fact 9, transform it to an instance of SB{0,1} as described
in Lemma 11 and let C∗ and �t∗ be optimal solutions to the instances of SC and SB{0,1}, respectively.
Suppose that we can approximate SB{0,1} within a factor of (1 − ρ) ln n and let �t ′ be such an
approximate solution. Then, by using Lemma 11 we can find a solution C ′ to the instance of SC
such that

|C ′| ≤
(
1 + 1

k

)
cost(�t ′)

≤
(
1 + 1

k

)
(1 − ρ) lnncost(�t∗)

≤
(
1 + 1

k

)
(1 − ρ) lnn (|C∗| + � + 1)

≤ (1 − ρ + o(1)) lnn |C∗| since |C∗| = Ω(�2) and � = Ω(log n)

which violates Fact 9 by choosing ε ′ = 1 − ρ + o(1).

5.3 Proof of Theorem 7 for TS{1},{0,2}

We can restrict instances of TS{1}{0,2} to those such (n,S) that [0, n − 1] ∈ S. If T is a solution,
it remains a solution when we view (n,S) as an instance of TS{1}; conversely, if T is a solution of
(n,S) as an instance of TS{1} then T + [0, n − 1] is a solution of (n,S) as an instance of TS{1}{0,2}.
Therefore the inapproximability results for TS{1} apply to TS{1}{0,2}.

5.4 Proof of Theorem 7 for MCP{0,1}(r)

We reduce SB{0,1} to this problem. Given an instance (n,S) of SB{0,1}, we create an instance (n,S ′)
of MCP{0,1}(r) where S ′ = {sr|s ∈ S}. Notice that t ≺ s = 1

r min{r, oc(t, sr)} for any two sequences
s and t. Hence, there is a 1-1 correspondence between solutions of SB{0,1} and MCP{0,1}(r).

6 Stronger Inapproximabilities for TS{1}(k), TS{1},{0,2}(k) and SB{0,1}(k)

Theorem 12
(a) For any two given constants 0 < ρ < δ < 1, TS{1}(nδ) and TS{1},{0,2}(nδ) cannot be approximated
to within a factor of nρ in polynomial time unless co-RP=NP.
(b) The result in (a) also holds for SBΣ(nδ) if 0 < ρ < δ < 1

2.
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Proof. We provide a reduction from the graph coloring problem whose goal is to produce an
assignment of colors to vertices of a given graph G = (V, E) such that no two adjacent vertices have
the same color and the number of colors is minimized. Let ∆∗(G) denote the maximum number of
independent vertices in a graph G1 and χ∗(G) denote the minimum number of colors in a coloring
of G. The following inapproximability result is a straightforward extension of a hardness result
known for coloring of G [5]: for any two constants 0 < ρ < δ < 1, χ∗(G) cannot be approximated
to within a factor of |V |ρ even if the ∆∗(G) ≤ |V |δ unless co-RP=NP. Let G = (V, E) be the given
graph with V = [0, n − 1] such that ∆∗(G) ≤ nδ < n

2 and assume, without loss of generality, that
n is a power of 2. By our assumption on ∆∗(G), χ∗(G) ≥ n1−δ.

(a) First, we show that it suffices to prove the inapproximability result for TS{1}(nδ) only. Given
an instance I0 = (n,S) of TS{1}(nδ), consider the instance I1 = (n,S ∪ {[0, n − 1]}) of S{1}(nδ). If
T is a solution of I0, T ∪ [0, n − 1] is a solution of I1 and if T is a solution of I1 then T − [0, n − 1]

is a solution of I0. Thus, if T ∗(I0) and T ∗(I1) are two optimal solutions of the instances I0 and
I1, respectively, then |T ∗(I1)| ≤ |T ∗(I0)| + 1. Assume that we can approximate I1 within a factor
of nρ in polynomial time and let T (I1) be such a solution. Now, |T (I1) − [0, n − 1]| ≤ |T (I1)| ≤
nρ|T ∗(I1)| ≤ nρ(T ∗(I0) + 1) ≤ nρ′T ∗(I0) for a constant ρ < ρ ′ < δ for all sufficiently large n. This
violates the inapproximability result for TS{1}(nδ).

Now we prove the inapproximability result for TS{1}(nδ). Given an input graph G, we create
an instance (2n,S) of TS{1}(nδ) such that, for each i ∈ V, S contains the test Ti = {2i} ∪ { 2j, 2j +

1 | {vi, vj} ∈ E }. Moreover, S contains additional log2 n 1-tests Ai = {j ∈ [0, 2n − 1] | j mod 2i+1 ≥
2i} for i ∈ [1, log2 n]. For notational convenience, let L(n) = ∪log2 n

i=1 Ai. Notice that |L(n)| = log2 n

and no union of 1-tests from L(n) distinguishes any pair {2i, 2i + 1} for any i ∈ [0, n − 1]. To prove
our claim, we first show the following result (cf. Lemma 11):

Let f : V → [0, χ∗(G) − 1] be an optimal coloring of G and T ∗ be an optimal solution of
the corresponding instance (2n,S) of TS{1}(nδ). Then, χ∗(G) ≤ |T ∗| ≤ χ∗(G) + log2 n.
Moreover, given any solution T of TS{1}(nδ), we can find in polynomial time a coloring
f : V → [0, χ(G) − 1] of G such that χ(G) ≤ |T |.

This is proved as follows:

(i) Suppose that G can be colored with χ∗(G) colors i.e. there exists a function f : V → [0, χ∗(G)−1]

such that f(i) �= f(j) if {i, j} ∈ E. For each i ∈ [0, χ∗(G) − 1], τi = ∪f(v)=iTv is a nδ-test. Moreover,
the set of χ∗(G) + log2 n nδ-tests τ0, τ2, . . . , τχ−1, A1, A2, . . . , Alog2 n {1}-distinguish every pair of
distinct elements in [0, 2n−1] since (1) the pair {2i, 2i+1} is {1}-distinguished by τx with f(vi) = x

and (2) for i �= j, both 2i and 2i + 1 are {1}-distinguished from 2j and 2j + 1 by one test among
A1, A2, . . . , Alog2 n; Hence, |T ∗| ≤ χ∗(G) + log2 n.

(ii) Suppose that T = {τ1, τ2, . . . , τ|T |} is a set of nδ-tests that {1}-distinguishes every pair of
universe elements in [0, 2n − 1]. Since {2i, 2i + 1} ∩ L(n) ∈ {0, 2} for every i ∈ [0, n − 1], the set of
at most |T | nδ-tests T ′ =

{
τ1 − A, τ2 − A, . . . , τ|T | − A

}
{1}-separates the pairs {2i, 2i + 1} for all

i ∈ [0, n − 1]. Now, for any nδ-test τ ′ ∈ T ′, if τ ′ contains both Ti and Tj where {i, j} ∈ E, then
Ti ∪ Tj does not {1}-separate any pair {2�, 2� + 1} for any � ∈ [0, n − 1]. Thus, we can remove every
such pair of 1-tests from every nδ-test τ ′ in any arbitrary manner to ensure that the resulting set
of nδ-tests still {1}-separates the pairs {2�, 2� + 1} for all � ∈ [0, n − 1]. After the removals, each
τ ′ ∈ T ′ consists of a set of 1-tests Ti1 , Ti2 , . . . , Tip such that {ix, iy} �∈ E for x, y ∈ [1, p]. Moreover,
for each � ∈ [0, n − 1], T� occurs in some test in T ′ since T� is the only test that {1}-distinguishes

1A set of vertices are independent if no two of them are connected by an edge.
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the pair {2�, 2�+ 1}. Let τ ′
0, τ

′
2, . . . , τ

′
|T ′|−1 be the set of nδ-tests in T ′ after the removals. Our color

assignment function f is given by f(i) = j if Ti ∈ τ ′
j.

We can now complete our proof as follows. Assume that we can approximate the above instance
(2n,S) of TS{1}(nδ) within a factor of nρ in polynomial time and let T be such a solution. Using (ii)
we can color G with χ(G) ≤ |T | colors. Now, χ(G) ≤ |T | ≤ nρ|T ∗| ≤ nρ(χ∗(G)+ log2 n) ≤ nρ′

χ∗(G)

for a constant ρ < ρ ′ < δ for all sufficiently large n. This violates the inapproximability result for
χ∗(G).

(b) We reuse the notations and reductions of part (a) whenever necessary. An instance (2n,S)

of TS{1}(nδ) is called normal if L(n) ⊆ S. Notice that the hard instances of TS{1}(nδ) generated
in part (a) was normal. An instance (m,S) of TS{1}(nδ) has the order property if D(m) ⊆ S
where D(m) = ∪m−1

i=0 ({i} ∪ [0, i]). Our complete reduction from graph coloring to SB{0,1}(nδ) is the
composition of the following reductions (cf. Lemma 11):

(�) We transform an instance graph G of the coloring problem to an instance I0 = (2n,S) of normal
TS{1}(nδ) such that:

Let f : V → [0, χ∗(G) − 1] be an optimal coloring of G and T ∗(I0) be an optimal
solution of the corresponding instance I0 of TS{1}(nδ). Then, χ∗(G) ≤ |T ∗(I0)| ≤
χ∗(G) + log2 n. Moreover, given any solution T (I0) of the instance I0, we can find
in polynomial time a coloring f : V → [0, χ(G) − 1] of G such that χ(G) ≤ |T (I0)|.

(��) We transform a normal instance I0 = (2n,S) of TS{1}(nδ) into an instance I1 = (2n2,S ′) of
normal TS{1}(nδ) with order property such that

Let T ∗(I0) and T ∗(I1) be two optimal solutions of the instances I0 and I1, respec-
tively. Then, |T ∗(I0)|−log2 n

1+nδ−1 ≤ |T ∗(I1)| ≤ |T ∗(I0)| + 2 log2 n. Moreover, given any
solution T (I1) of instance I1, we can find in polynomial time a solution T (I0) of
instance I0 such that |T (I0)| ≤ (1 + nδ−1)|T (I1)| + log2 n.

(� � �) We transform an instance I1 = (2n2,S ′) of normal TS{1}(nδ) with order property to an
instance I2 = (2n2,S ′′) of SB{0,1}(nδ) such that

Let T ∗(I1) and �t∗(I2) be two optimal solutions of the instances I1 and I2, respec-
tively. Then, 1

2|T ∗(I1)| ≤ |�t∗(I2)| ≤ |T ∗(I1)|. Moreover, given any solution �t(I2)

of instance I2, we can find in polynomial time a solution T (I1) of instance I1 such
that |T (I1)| ≤ 2|�t(I2)|.

Suppose that we can produce the reductions in (�), (��) and (� � �) above. Combining them, we
can transform an instance graph G of graph coloring to an instance I2 = (2n2,S ′′) of SB{0,1}(nδ)

such that

Let f : V → [0, χ∗(G) − 1] be an optimal coloring of G and �t∗(I2) be an optimal solution
of the instance I2. Then, χ∗(G)−log2 n

2(1+nδ−1)
≤ |�t∗(I2)| ≤ χ∗(G) + 2 log2 n +

log2 n
1+nδ−1 . Moreover,

given any solution �t(I2) of instance I2, we can find in polynomial time a coloring f :

V → [0, χ(G) − 1] of G such that χ(G) ≤ 2(1 + nδ−1)|�t(I2)| + log2 n,
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and this is sufficient to prove our impossibility result as follows. Assume that we can approximate
I2 within a factor of nρ in polynomial time and let �t(I2) be such a solution. Then we can color G

with χ(G) ≤ 2(1 + nδ−1)|�t(I2)| + log2 n colors. Now,

χ(G) ≤ 2(1 + nδ−1)|�t(I2)| + log2 n

≤ 2nρ(1 + nδ−1)|�t∗(I2)| + log2 n

≤ 2nρ(1 + nδ−1)
(
χ∗(G) + 2 log2 n +

log2 n
1+nδ−1

)
+ log2 n

≤ nρ′
χ∗(G) for a constant ρ < ρ ′ < δ for all sufficiently large n

This violates the inapproximability result for χ∗(G).
To complete the proof, we need to provide the transformations in (�), (��) and (� � �).
The transformation in (�) has already been described in part (a).
The transformation in (��) is as follows. Let g be a function that maps subsets of [0, 2n − 1]

into subsets of [0, 2n2 − 1] via the mapping g(A) = {x + 2kn| x ∈ A and k ∈ [0, n − 1]}. For a
collection of sets C, define g(C) = {g(A)| A ∈ C}. Then, S ′ = L(n2) ∪ g(S − L(n)) ∪ D(2n2). The
required properties of this transformation can be proved as follows:

• If T (I0) is a solution of I0 then T (I1) = g(T −L(n))∪L(n2) is a solution of I1 with |T (I1)| ≤
|T (I0)| + |L(n2)| = |T (I0)| + 2 log2 n.

• Conversely, given a solution T (I1) of I1, we will show how to compute a solution T (I0) of I0

such that |T (I0)| ≤ (1 + nδ−1|T (I1)| + |L| elements.

An nδ-test T ∈ T (I1) is a union of some tests from L(n2)∪g(S−L(n))∪D(2n2). We partition
this union into separate nδ-tests from L(n2), plus p(T) and d(T), where p(T) is a union of
some nδ-tests from g(S) and d(T) is a union of some nδ-tests from D(2n2).

A k-test in d(T) that is a union of some k 1-tests from D(2n2) can distinguish at most k pairs
of the form {2i, 2i + 1}. Therefore all the nδ-tests in d(T) distinguish at most |T (I1)|n

δ such
pairs. Let A ⊆ [0, n − 1] consists of such i’s that for every j ∈ g({i}) one of the nδ-tests in
d(T) distinguishes the pair {2j, 2j + 1}. Clearly, |A| ≤ nδ−1|T (I1)|.

Now we define T (I0). It contains L(n), and for each i ∈ A it contains an arbitrary 1-test
from S ′ that distinguishes {2i, 2i + 1}. Finally, for each T ∈ T (I1) it contains g−1(p(T)).

The transformation in (���) is similar to as described in Lemma 11 from TSOk to SB{0,1} for k = n

with minor modifications and simplifications. Namely, in the notation of Lemma 11, S0 = D(2n2),
S1 = {B0, B1, . . . , Bm} = S ′′ − S0, Bm = [0, 2n2 − 1] ∈ S0 and, for each i ∈ [0, 2n2 − 1], we define a
sequence si ∈ S ′′ as a concatenation of alternating groups of 0i+1 and a distinct member from the
set {1k+1 | i ∈ Bk}, begining and ending with 0i+1. The required properties of this transformation
can be proved as follows:

• Consider a solution T (I1) of the instance I1. Replace each Bj ∈ T (I1) by a test sequence
01j+10, each {i} ∈ T (I1) by the test sequence si and each [0, i] ∈ T (I1) by the test sequence
0i+1.

• Conversely, consider a solution �t(I2) of the instance I2. The proof of item (a) in the proof
of Lemma 11 shows how to replace each sequence t of �t(I2) with at most two sets, say St1

and St2
, of the instance I1 such that {p | t ≺ sp ∈ S ′′} = (St1

∪ St2
) ∩ [0, 2n2 − 1] for every

t ∈ �t(I2).

❑
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7 Conclusion and Future Research

The results in [15, 16] provide tighter lower-order terms for approximation algorithms for set-cover
problems; in a similar spirit, it may be worthwhile to investigate the possibility of providing tight
lower-order terms for our approximation algorithm in Theorem 2. We are currently implementing
and evaluating various algorithmic approaches discussed in this paper. We report some preliminary
computational results in Table 2.

Borneman et al. [3] This paper
Number Average Time Number Average Time Length

of Probe (in minutes) of Probe (in minutes) of
Probes Length Probes Length probes

Binary distinguishability

42 5 30–90 48 5 4.54 5 (fixed)
48 6 30–90 43 6 11.93 6 (fixed)
56 8 30–90 51 8 12.4 8 (fixed)
– – – 34 14.83 24.22 ≤ 60

– – – 33 15.1 30.1 ≤ 79

– – – 33 16.72 52.31 arbitrary

Non-binary distinguishability

21 5 30–90 21 5 5.7 5 (fixed)
29 6 30–90 28 6 10 6 (fixed)
46 8 30–90 45 8 11.31 8 (fixed)
– – – 21 6.38 9.42 arbitrary

Table 2: Comparison of current best implementation of algorithms based on our information con-
tents approach with the Lagrangian Relaxation method of Borneman et al. [3]. The dataset
contains 1158 small-subunit ribosomal genes from GenBank. Borneman et al. [3] edited the
nucleotide sequences such that it contains only the sequence between two highly conserved
primers but not the primer sequences themselves. We have considered the entire sequence
without editing them. The execution times for the results in [3] are taken from the website
http://www.cs.ucr.edu/∼andres/probes.pdf
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