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Abstract. In this paper, we investigate the test set problem and its
variations that appear in a variety of applications. In general, we are
given a universe of objects to be “distinguished” by a family of “tests”,
and we want to find the smallest sufficient collection of tests. In the
simplest version, a test is a subset of the universe and two objects are
distinguished by our collection if one test contains exactly one of them.
Variations allow tests to be multi-valued functions or unions of “basic”
tests, and different notions of the term distinguished. An important ver-
sion of this problem that has applications in DNA sequence analysis has
the universe consisting of strings over a small alphabet and tests that
are detecting presence (or absence) of a substring. For most versions of
the problem, including the latter, we establish matching lower and upper
bounds on approximation ratio. When tests can be formed as unions of
basic tests, we show that the problem is as hard as the graph coloring
problem.

1 Introduction and Motivation

One of the test set problems was on the classic list of NP-complete problems
given by Garey and Johnson [6]; these problems arise naturally in many other
applications. Below we provide an informal description of the basic problem
with its motivating applications in various settings; precise descriptions and
definitions appear in Section 1.1. In every version of the test set problem, we
are given a universe of objects, family of subsets (tests) of the universe and a
notion of distinguishability of pairs of elements of the universe by a collection of
these tests. Our goal is to select a subset of these tests of minimum size that
distinguishes every pair of elements of the universe. This framework captures
problems in several areas in bioinformatics and biological modeling.

Minimum Test Collection Problem: This problem has applications in di-
agnostic testing. Here a collection of tests distinguishes two objects if a test
from the collection contains exactly one of them. Garey and Johnson [6,
pp. 71] showed a proof of NP-hardness of this problem via a reduction from



the 3-dimensional matching problem. Moret and Shairo [12] discussed some
heuristics and experimental results for this problem. Finally, very recently
the authors in [2, 8] established a (1− ε) ln n lower bound for approximation
for any polynomial-time algorithm under standard complexity-theoretic as-
sumptions where n is the number of objects and ε > 0 is an arbitrary con-
stant.

Condition Cover Problem: Karp et al. [10] considered a problem of verifying
a multi-output feedforward Boolean circuit as a model of biological pathways.
This problem can be phrased like the Minimum Test Collection Problem,
except that two elements are distinguished by a collection of tests if one
tests contains exactly one of them, and another contains both or none of
them.

String Barcoding Problem: In this problem, discussed by Rash and Gus-
field [13], the universe U consists of sequences (strings), and for every pos-
sible string v we can form a test Tv as a collection of strings from U in
which v appears. The name “string barcoding” derives from the fact that
the Boolean vector indicating the occurrence (as a substring) of the tests
from an arbitrary collection of tests in a given input sequence is referred to
as the “barcode” of the given sequence with respect to this collection of tests.
Motivations for investigating these problems come from several sources such
as: (a) database compression and fast database search for DNA sequences
and (b) DNA microarray designs for efficient virus identification in which the
immobilized DNA sequences at an array element are from a set of barcodes.
In [13], Rash and Gusfield left open the exact complexity and approxima-
bility of String Barcoding. We also consider a version in which a test can
be defined by a set T of strings, with some limit on the set size, and u ∈ U
passes test T if one of strings in T is a substring of u; such tests are as
feasible in practice as the one-string tests.

Minimum Cost Probe Set Problem with a Threshold: This problem is
very similar to String Barcoding and it was considered by Borneman et al. [3].
They used this in [3] for minimizing the number of oligonucleotide probes
needed for analyzing populations of ribosomal RNA gene (rDNA) clones by
hybridization experiments on DNA microarrays. Borneman et al. [3] noted
that this problem was NP-complete assuming that the lengths of the se-
quences in the prespecified set were unrestricted, but no other nontrivial
theoretical results are known.

1.1 Notation and Definitions

Each problem discussed in this paper is obtained by fixing parameters in our
general test set problem TSΓ (k). The following notation and terminology is used
throughout this paper:

– [i, j] denotes the set of integers {i, i + 1, . . . , j − 1, j}.
– P(S) = {A : A ⊆ S} denotes the power set of S.
– |X| denote the cardinality (resp. length) of X if X is a set (resp. sequence).



– For two sequences (strings) u and v over an alphabet Σ, v is a substring of
x (denoted by v ≺ x) if x = uvw for some u,w ∈ Σ∗.

– For two sets of numbers A and B and a number a, a × A denotes the set
{ai| i ∈ A} and A + B denotes the set {a + b| a ∈ A& b ∈ B}.

Definition 1. (Problem TSΓ (k) with parameters Γ ⊆ P([0, 2]) and a
positive integer k)

Instance: (n,S) where S ⊂ P([0, n − 1]).
Terminologies:

– A k-test is a union of at most k sets from S.
– For a γ ∈ Γ and two distinct elements x, y ∈ [0, n − 1], a k-test

T γ-distinguishes x and y if |{x, y} ∩ T | ∈ γ.
Valid solutions: A collection T of k-tests such that

(∀x, y ∈ [0, n − 1] ∀γ ∈ Γ ) x �= y =⇒ ∃T ∈ T such that
T γ-distinguishes x and y.

Objective: minimize |T |.

An example to illustrate Definition 1: Let n = 3, k = 1, Γ = { {1} } and
S = { {0}, {1}, {0, 1} }. Then, T = { {0}, {0, 1} } is a valid solution since the
1-test {0, 1} {1}-distinguishes 0 from 2 as well as 1 from 2 while the 1-test {0}
{1}-distinguishes 0 from 1.

Now we precisely state the relationship of the TSΓ (k) problem to several
other problems in bioinformatics and biological modeling that we discussed be-
fore:

Minimum Test Collection Problem (Garey and Johnson [6]): This is
precisely TS{1}(1).

Condition Cover Problem (Karp et al. [10]): Assuming that the allowed
perturbations are given as part of the input, this problem is identical to
TS{1},{0,2}(1).

String Barcoding Problem: Define a k-sequence as a collection of at most k
distinct sequences. In this problem, considered by Rash and Gusfield [13] for
the case when k = 1, we are given a set S of sequences over some alphabet
Σ. For a fixed set of m k-sequences t = (t0, . . . , tm−1), the barcode code(s, t)
for each s ∈ S is defined to be the Boolean vector (c0, c1, cm−1) where ci is 1
iff there exists a t ∈ ti such that t ≺ s. We say that t defines a valid barcode
if for any two distinct strings s, s′ ∈ S, code(s, t) is different from code(s′, t).
The string barcoding problem over alphabet Σ, denoted by SBΣ(k), has a
parameter k ∈ N and is defined as follows:

Instance: (n,S) where S ⊂ Σ∗ and 1 ≤ k ≤ n = |S|.
Valid solutions: a set of k-sequences t defining a valid barcode.
Objective: minimize |t|.

SBΣ(k) is a special case of TS{1}(k) in which U = S and for each substring
p of each sequence in S there is a test {s ∈ S : p ≺ s}; valid barcodes can
be identified with valid sets of k-tests.



Minimum Cost Probe Set with Threshold r (Borneman et al. [3]):
This problem, denoted by MCPΣ(r), is a variation of TS{1}(1). Denote by
oc(x, y) the number of occurrences of x in y as a substring, For a fixed set of
m sequences t = (t0, t1, . . . , tm−1), an r-barcode code(s, t) for any sequence
s is defined to be the vector (c0, c1, . . . , cm−1) where ci = min{r, oc(ti, s)}.
Given a set S of sequences over some alphabet Σ, t defines a valid r-barcode
if for any two distinct strings s, s′ ∈ S, code(s, t) is different from code(s′, t).
MCPΣ(r) is now defined as follows:

Instance: (n, r,S,P) where S,P ⊂ Σ∗ and |S| = n.
Valid solutions: a set of sequences t ∈ P∗ defining a valid r-barcode.
Objective: minimize |t|.

If P is the set of all substrings of sequences in S, MCPΣ(1) is precisely
SBΣ(1). All our results on SBΣ(1) apply to MCPΣ(r) with appropriate
modifications.

2 Summary of Our Results

We provide matching upper and lower bounds on approximation ratios of poly-
nomial time algorithms for TS{1}(1), TS{1},{0,2}(1), SBΣ(1) and MCPΣ(r) and
strong lower bounds on approximation ratios of polynomial time algorithms for
TS{1}(k), TS{1},{0,2}(k) and SBΣ(k) for large k; these results are summarized
in Table 1.

Approximation Ratio
Problem Upper Bound Lower Bound Theorem(s)

Time the bound the bound Assumptions

TS{1}(1) O(n2|S|) 1 + ln n (1 − ε) ln n NP �⊂DTIME(nlog log n) 1 and 5

TS{1},{0,2}(1) O(n2|S|) 1 + ln 2 + ln n (1 − ε) ln n NP �⊂DTIME(nlog log n) 1 and 5

SBΣ(1) O(n3�2) 1 + ln n (1 − ε) ln n NP �⊂DTIME(nlog log n) 1 and 5|Σ| > 1

MCPΣ(r) O(n2|P|+ [1 + o(1)] ln n (1 − ε) ln n NP �⊂DTIME(nlog log n) 1 and 5
L|P|) |Σ| > 1

TS{1}(nδ) nε NP �=co-RP 9
0 < ε < δ < 1

SBΣ(nδ) nε NP �=co-RP 9
0 < ε < δ < 1

2

Table 1. Summary of our approximability results: (n,S) is an input instance of TSΓ (k)
and SBΣ(k), (n,S,P) is an input instance of MCPΣ(r), � is the maximum length of
any sequence in S, L is the total length of all sequences in S and ε and δ are constants.
The column “Assumptions” contains sufficient condition(s) for the respective lower
bound.



Techniques Used
(a) Our algorithm to achieve the tight approximation bound in Theorem 1 for
TS{1}(1), TS{1},{0,2}(1) and MCPΣ(r) is a greedy algorithm that selects tests
based on information content defined in terms of the change in the partition
of the universe when the test is applied. This notion is directly related to the
Shannon information complexity [1, 14]. A careful analysis yields an upper bound
on the approximation ratio that matches the lower bound in Theorem 5 within
a small additive term. We believe the analysis will be useful in the context of
analyzing other problems involving recursive partitioning of a given universe as
well.

(b) The inapproximability results of Theorem 5 are proved by approximation
preserving reductions from the set cover problem. To handle the barcode problem
for Σ = {0, 1} we introduce an artificial intermediate problem (the “test set with
order” problem) in which some tests are provided almost for free but they help
very little in constructing a good set of tests. This roughly corresponds to the
fact that we cannot avoid tests that do not correspond to sets in the original set
cover instance, but we can make them cheap.

(c) The inapproximability results in Theorem 9 are obtained by approximation
preserving reductions from the graph coloring problem.

Conparison of our results with those in [2, 8]: The authors in [2, 8] proved
a (1− ε) ln n lower bound for approximation for TS1(1). In this paper, we prove
a lower bound of (1 − ε) ln n for SB{0,1}, an extremely restricted special case of
TS1(1) that is of utmost importance to the bioinformatics community in de-
tecting unknown virus sequences and designing probes for DNA microarrays.
The proof in [2, 8] from set-cover to TS1(1) does not seem to be easily trans-
formable to provide a lower bound for SB{0,1} with a similar quality of non-
approximability because of the special nature of SB{0,1}. We therefore needed
to introduce an artificial intermediate problem (the “test set with order” prob-
lem, denoted by TSOk) which we could then translate to SB0,1 in a non-trivial
manner. It should be noted that, for general k, TSOk is neither equivalent to or
nor a special case of TS1(1).

Notational simplifications: We will skip (1) in TS{1}(1), TS{1},{0,2}(1) and
SB{0,1}(1), write “{1}-distinguishes” simply as “distinguishes” or “separates”,
and 1-tests simply as tests. Also, unless otherwise stated, all “computations”,
“transformations” or “reductions” take polynomial time.

The Map. Proofs of some of the claims in Theorems 1, 5 and 9 appear in
Sections 3 , 4 ,and 5, respectively.

3 Approximation Algorithms for Test Set and Minimum
Cost Probe Problems

The Set Cover (SC) Problem is defined on an input instance (U,S) such that
S ⊂ P(U) with the goal of finding a C ⊆ S such that

⋃
A∈C A = U and |C| is



minimized. We can translate the TS{1} problem to SC as follows. Given instance
(n,S) of TS{1}, we define instance (U, τ(S)) where U = {e ⊂ [0, n − 1] : |e| =
2}, τ(T ) = {e ∈ U : |e ∩ T | = 1}, and τ(S ′) = {τ(T ) : T ∈ S}. The
best proven approximation ratio for SC is achieved by a greedy heuristic [9]
that, starting from the empty partial set cover, keeps adding new sets to the
solution that maximize the number of elements that are not covered as yet. This
heuristic for set cover runs in O(

∑
T∈S |τ(T )|) time and has an approximation

ratio of 1 + ln (maxT∈S |τ(T )|). Since maxT∈S |τ(T )| = |T | (n − |T |) ≤ n2

4 ,
the above translation offers a O(n2|S|) time greedy heuristic for TS{1} with an
approximation ratio of (2 ln n)−ln 4. A similar reduction for the TS{1},{0,2} (resp.
MCPΣ(r)) to the SC problem can also be given providing a greedy heuristic with
an approximation ratio of (2 lnn) − ln 4

3 (resp. 2 ln n). The main result of this
section improves upon that simple heuristic as follows.

Theorem 1 There is an O(n2|S|) time approximation algorithm for TSΓ with
approximation ratio 1+ln n for Γ = {{1}} and 1+ln 2+ln n for Γ = {{1}, ]{0, 2}}.
There is an O(n2|P | + L|P |) time approximation algorithm for MCPΣ(r) with
approximation ratio 1 + lnn + ln log2(r′ + 1), where r′ = min{r, n} and L is the
total length of the sequences in S.

3.1 Proof of Theorem 1 for TS{1}

In this section we provide a greedy heuristic for TS{1} running in time O(n2|S|)
time with an improved approximation ratio of 1 + lnn. Notice that the upper
bound almost matches the lower bound in Theorem 5 for SB{0,1}, a special case
of TS{1}.

First, we consider the problem TS{1}. In the definition below and throughout
the rest of this section we use T + T to denote T ∪ {T}.

Definition 2. A set of tests T ⊂ S defines the following:

– an equivalence relation
T≡ on [0, n − 1] given by i

T≡ j if and only if ∀T ∈
T (i ∈ T ≡ j ∈ T ),

– a set of permutations ΠT = {π ∈ (permutations of [0, n − 1]) : ∀i ∈ [0, n −
1] i

T≡ π(i)},
– entropy HT = log2 |ΠT |.
– information content of a T ∈ S with respect to T , IC(T, T ) = HT −HT +T =

log2
|ΠT |

|ΠT +T | .

Our definition of entropy is very similar to the one suggested in [12]. Suppose

that the equivalence relation
T≡ on [0, n−1] produces q equivalence classes of size

s1, s2, . . . , sq. Then, the entropy suggested in [12] is 1
n log2(Π

q
i=1s

si
i ) whereas our

entropy HT is log2(Π
q
i=1si!).

The information content heuristic (ICH for short) is the following simple
greedy heuristic:



T = ∅
while HT �= 0 do

select a T ∈ S − T that maximizes IC(T, T )
T = T + T

endwhile
The correctness of ICH follows from the fact that HT = 0 implies the equivalence

classes of
T≡ are n singleton sets {0}, {1}, . . . , {n−1} and the fact that if HT �= 0

then there exists a T ∈ S−T with IC(T, T ) > 0 (otherwise our problem instance
has no feasible solution). It is also not very difficult to implement this algorithm
efficiently within our claimed time bounds.

To implement ICH, we iteratively maintain the equivalence classes of
T≡ as

sorted lists. We also precompute and store log2(i!) for each i ∈ [1, n]. Given a
specific T ∈ S − T , it is easy to compute in O(n) time the equivalence classes

of
T +T≡ from the equivalence classes of

T≡ since an equivalence class E of
T≡

is either an equivalence class of
T +T≡ or it is partitioned into two equivalence

classes E1 = E ∩ T and E2 = E − E1 of
T +T≡ ; the first case contributes nothing

to IC(T, T ) while the second case adds log2

( |E|
|E1|

)
to IC(T, T ). Finally, notice

that the while loop is executed at most n times.
Now we analyze the approximation ratio of ICH. We will use the convention

x = |X| for a set X.

Lemma 2 If T0 ⊂ T1 then IC(T, T0) ≥ IC(T, T1).

Lemma 3 IC(T, ∅ ) < n for every test T .

Lemma 4 If IC(T, T ) > 0 then IC(T, T ) ≥ 1.

Now we are ready for an amortized analysis of ICH. Suppose that an optimum
solution of (n,S) is T ∗ = {T ∗

1 , . . . , T ∗
k }. During the execution of ICH, for a

current partial test set T , let Ti = T + T ∗
1 + · · · + T ∗

i (accordingly, T0 = T )
and hi = IC(Ti−1, T

∗
i ). Notice that

∑k
i=1 hi =

∑k
i=1(HTi−1 − HTi−1+T∗

i
) =

HT −HT +T ∗ = HT , since HT +T ∗ = 0. Let h∗
i < n denote the initial value of hi

i.e. the value of hi with T = ∅ .
During the jth iteration of the while loop, ICH selects a test T (with, say,

IC(T, T ) = ∆j) and changes T into T + T . As a result, HT drops by ∆j and
hi drops by some δi,j with

∑k
i=1 δi,j = ∆j . This iteration adds 1 to the solution

cost. We distribute this cost among the elements of T ∗ by charging T ∗
i with

δi,j/∆j . Because hi = IC(Ti−1, T
∗
i ) ≤ IC(T , T ∗

i ), we know that ∆j ≥ hi since
otherwise ICH would select T ∗

i rather then T . Therefore reducing the current
hi by δi,j is associated with a charge that is at most δi,j/hi. Let m(h) be the
supremum of possible sums of charges that some T ∗

i may receive starting from
the time when hi = h. By induction on the number of such positive charges
we will show that m(h) ≤ 1 + ln h. If this number is 1, then h > 0 and hence
ln h ≥ 0 (by Lemma 4), while the charge is at most 1. In the inductive step, we



consider a situation when T ∗
i starts with hi = h, receives a single charge δ/h,

hi is reduced to h − δ and afterwards, by inductive assumption, T ∗
i receives at

most m(h− δ) charges. Because h− δ > 0 we know by Lemma 4 that h− δ ≥ 1.
Therefore

m(h) ≤ m(h− δ) +
δ

h
≤ 1 + ln(h− δ) +

δ

h
< 1 +

∫ h−δ

1

dx

x
+

∫ h

h−δ

dx

x
= 1 + lnh.

By Lemma 3, h < n. This proves our claim on the approximation ratio for TS{1}.

4 Inapproximability Results for Test Set, String
Barcoding and Minimum Cost Probe Set Problems

The NP-hardness of TS{1} follows from the NP-hardness of the minimum test
collection problem in [6] from a reduction from the 3-dimensional matching
problem and minor modifications of this reduction can be used to prove the
NP-hardness of TS{1},{0,2} as well. NP-hardness of MCPΣ(r) from the vertex
cover problem was mentioned without a proof in [3]. Our goal is to show that it is
impossible (under reasonable complexity theoretic assumptions) to approximate
these problems any better than mentioned in Theorem 1.

Theorem 5 For any given constant 0 < ρ < 1, it is impossible to approximate
SB{0,1} (a restricted case of TS{1}), TS{1},{0,2} or MCP{0,1}(r) within a factor
of (1 − ρ) ln n in polynomial time unless NP⊂DTIME(nlog log n).

Our proof of Theorem 5 proceed in two stages:

– In Section 4.1 we introduce the Test Set with Order (TSO) problem and pro-
vide a reduction from the set cover problem to the TSO problem preserving
apprpximation.

– Our complete reduction from the set cover problem to SB{0,1}, described in
Section 4.2, uses a composition of the abovementioned reduction and another
approximation-preserving reduction from the TSO problem to SB{0,1}.

4.1 Test Set with Order

To make the approximation preserving reduction from set cover to SB{0,1} easier
to follow, we introduce an intermediate problem called Test Set with Order with
parameter k ∈ N (denoted by TSOk):

Instance: (n, k,S) where k is a positive integer, (n,S) is an instance of
TS{1} and S includes the family of “cheap” sets S0 = {{i}| i ∈ [0, n −
1]} ∪ {[0, i] | i ∈ [0, n − 1]}.
Valid solutions: a solution for the instance (n,S) of TS{1}.
Objective: minimize cost(T ) = |T − S0| + 1

k |T ∩ S0|.



Note that TSO1 is in fact a special case of TS{1}; hence any hardness results
proved for TSO1 would apply to TS{1} as well. Our claim follows once the
following theorem is proved.

Theorem 1. For any integer constant k > 0 and any constant 0 < ρ < 1, it
is impossible to approximate TSOk within a factor of (1 − ρ) ln n in polynomial
time unless NP⊂DTIME(nlog log n).

In the rest of this section, we prove the above theorem. We need the following
straightforward extension of the hardness result in [4] for a slightly restricted
version of SC.

Fact 6 Assuming NP �⊂DTIME(nlog log n), instances of the SC problem for which
the optimal cover requires at least (log2 n)2 sets cannot be approximated to within
a factor of (1 − ε′) ln n for any constant ε′ > 0 in polynomial time.

For notational simplicity, assume that kn is an exact power of 2 and � =
log2(kn). The following lemma gives a reduction from SC to TSOk problem.

Lemma 7 There exists a polynomial-time computable function τ that maps an
instance (n,S) of SC into instance (2kn, k, τ(S)) of TSOk such that optimal so-
lutions of (n,S) and (2kn, k, τ(S)), C∗ and T ∗ respectively, satisfy the following:

|C∗| ≤ cost(T ∗) ≤ |C∗| + � + 1.

Moreover, given any solution X of (2kn, k, τ(S)), we can in polynomial time
construct a solution Y of (n,S) such that |Y | ≤ cost(X).

Proof. τ(S) contains the following sets:

cover sets: D(S) = 2 × (k × S + [0, k − 1]) for S ∈ S;
cheap sets: {i} and [0, i] for each i ∈ [0, 2kn − 1];
other sets: Ai = {j ∈ [0, 2kn − 1]| j mod 2i+1 ≥ 2i} for i ∈ [1, �].

First, we show that cost(T ∗) ≤ |C∗|+�. Given a set cover C of (n,S) we define the
following test set that is a solution of (2kn, τ(S)): T = {D(A)| A ∈ C}∪{Ai| i ∈
[1, �]}. To see that T is indeed a valid solution, consider i, j ∈ [0, 2kn−1]. Suppose
that i is even and j is not. Then for some A ∈ C and a ∈ 2 × [0, k − 1] we have
(i−2a)/2k ∈ A, and thus i ∈ D(A) while j �∈ D(A). On the other hand, if that i
and j have the same parity then they differ on kth bit for some k ∈ [1, �], in which
case i and j are distinguished by test Ak. Hence, cost(T ∗) = |T ∗| ≤ |C∗| + �.

Next, we show that |C∗| ≤ cost(T ∗). Given a set of tests T , consider the
partial cover C′ = {A| D(A) ∈ T }, and let C =

⋃
S∈C′ S. Consider i ∈ [0, n −

1]−C. For a ∈ [0, k−1] we know that some set of T distinguished 2ki−2a from
2ki−2a+1. This distinguishing set can only be one of the three sets: {2ki−2a},
{2ki − 2a + 1} or [0, 2ki − 2a]. Note that for each i ∈ [0, n − 1] − C and each
a ∈ [0, k− 1] we have a choice of different three sets, so in each such case we use
a different element of T . We can conclude that T contains k(n− |C|) such sets,
and thus cost(T ) ≥ |C′|+n−|C|. Since for each i ∈ [0, n−1] T must distinguish



2i − 1 from 2i, T must contain one of these three sets: {2i − 1}, {2i}, [0, 2i − 1].
Note that each i ∈ [0, n− 1]−C has different possibilities, thus for each of them
T contains a different set of choices. We can therefore extend C′ to a cover C of
(n,S) by adding at most n − |C| sets. Hence |C| ≤ cost(T ).

Hence, cost(T ∗) ≤ |C∗| + � + 1
k .

We can now complete the proof of Theorem 1. Consider an instance of SC
as mentioned in Fact 6, transform it to an instance of TSOk as described in
Lemma 7 and let C∗ and T ∗ be optimal solutions to the instances of SC and
TSOk, respectively. Suppose that we can approximate TSOk within a factor of
(1−ρ) ln n and let T ′ be such an approximate solution. Then, by using Lemma 7
we can find a solution C ′ to the instance of SC such that

|C ′| ≤ cost(T ′)
≤ (1 − ρ) ln n cost(T ∗)
≤ (1 − ρ) ln n (|C∗| + � + 1)
≤ (1 − ρ + o(1)) lnn |C∗| since |C∗| = Ω(�2) and � = Ω(log n)

which violates Fact 6 by choosing ε′ = 1 − ρ + o(1).

4.2 Proof of Theorem 5 for SB{0,1}

As before, for notational simplicity, assume that kn is an exact power of 2 and
� = log2(kn). First, using the reduction described in the proof of Lemma 7, we
provide a reduction of SC to SB{0,1}.

Lemma 8 For any given constant integer k > 0, there exists a polynomial-
time computable function σ that maps an instance (n,S) of SC into an instance
(2kn, σ(S)) of SB{0,1}, so that if C∗ and t∗ are the optimal solutions for (n,S)
and (2kn, σ(S)), respectively, then

|C∗|
1 + 1

k

≤ |t∗| ≤ |C∗| + �.

Moreover, given any solution x of (2kn, σ(S)), we can in polynomial time con-
struct a solution Y of (n,S) such that |Y |

1+ 1
k

≤ |x|.

Proof. First, we define a family τ(S) of subsets of [0, 2kn−1] using the function
τ from Lemma 7. Let S0 be the family of “special” or “cheap” test sets, and
S1 = τ(S) − S0. We number the elements of S1, so S1 = {B0, . . . , Bm−1} and
let Bm = [0, 2kn − 1] ∈ S0. For each i ∈ [0, 2kn − 1] we define sequence si as a
concatenation of alternating groups of 0i+1 and a distinct member from the set
{1k+1 | i ∈ Bk}, begining and ending with 0i+1. This completes the description
of the function σ.

Consider any set cover C of (n,S). As noted in the proof of Lemma 7, we can
map it into a solution for TSOk without using any cheap tests and with at most



|C∗| + � test sets. Then, we replace test Bj with a test sequence 01j+10. Thus
|t∗| ≤ |C∗| + �.

Now consider a solution vector of sequences t for σ(S). We show how to
replace each sequence t of t with at most two sets such that the following two
statements hold:

(a) if (t ≺ sp) �= (t ≺ sq) for two sequences sp and sq, then the replaced sets
{1}-distinguish p from q;

(b) when we use two sets, one of them is cheap.

By (a), the replacement sets form a solution for the instance (2kn, k, τ(S))
of TSOk. By (b), the cost of the this solution for (2kn, k, τ(S)) is at most(
1 + 1

k

)
|t|. Finally, by Lemma 7, it is possible to construct from this solution

for (2kn, k, τ(S)) a solution for the set cover instance (n,S) with no more than(
1 + 1

k

)
|t| sets. Hence, it only remains to show the replacement. We have the

following cases:

Case 1: t contains a substring 10a1 for some a > 0. Then t can be a substring
of only sa−1, so we can replace t with a cheap test {a − 1}.

Case 2: Otherwise, t is of the form 0∗1∗0∗.
Case 2.1: t = 0a for some a > 0. Then t is a substring of all si’s with

i ≥ a − 1, and therefore we can replace it with a cheap test [0, i − 2].
Case 2.2: t = 0a1b for some a, b > 0. If b > m + 1, t is not a substring of

any si, so we can discard it. If b ≤ m + 1, then this test is equivalent to
0a because every si contains 1m+1.

Case 2.3: t = 1a0b for some a, b > 0. Similar to Case 2.2.
Case 2.4: t = 0a1b0c where a, b, c > 0. Let d = max{a, c}; one can see that

we can replace t with Bb−1 and [0, d − 2].

We can now complete the proof of our claim in a manner similar to that
in the proof of Lemma 7. Consider an instance of SC as mentioned in Fact 6,
transform it to an instance of SB{0,1} as described in Lemma 8 and let C∗ and
t∗ be optimal solutions to the instances of SC and SB{0,1}, respectively. Suppose
that we can approximate SB{0,1} within a factor of (1−ρ) ln n and let t′ be such
an approximate solution. Then, by using Lemma 8 we can find a solution C ′ to
the instance of SC such that

|C ′| ≤
(
1 + 1

k

)
cost(t′)

≤
(
1 + 1

k

)
(1 − ρ) ln n cost(t∗)

≤
(
1 + 1

k

)
(1 − ρ) ln n (|C∗| + � + 1)

≤ (1 − ρ + o(1)) lnn |C∗| since |C∗| = Ω(�2) and � = Ω(log n)

which violates Fact 6 by choosing ε′ = 1 − ρ + o(1).

5 Stronger Inapproximabilities for TS{1}(k), TS{1},{0,2}(k)
and SB{0,1}(k)

Theorem 9
(a) For any two given constants 0 < ρ < δ < 1, TS{1}(nδ) and TS{1},{0,2}(nδ)



cannot be approximated to within a factor of nρ in polynomial time unless co-
RP=NP.
(b) The result in (a) also holds for SBΣ(nδ) if 0 < ρ < δ < 1

2 .
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