Simple Approximation Algorithm for Nonoverlapping Local Alignments

Piotr Berman*

Problem. We study the following maximization prob-
lem called the Independent subset of Rectangles (IR)
problem. We are a given a set S of N positively weighted
axis parallel rectangles such that, for each axis, the pro-
jection of a rectangle on this axis does not enclose that
of another. Define two rectangles to be independent if
for each axis, the projection of one rectangle does not
overlap that of another. The goal of the IR problem is
to select a subset S’ C S of independent rectangles of
total maximum weight.

Motivation. A fundamental problem in Computa-
tional Molecular Biology is to elucidate similarities be-
tween sequences (See [4] for detailed case). A corner-
stone result in this area is that given two strings of
length n and m, there are local alignment algorithms
that will score pairs of substrings for “similarity” ac-
cording to various biologically meaningful scoring func-
tions and we can pull out all “similar” or high scor-
ing substring pairs [6]. Having found the high scoring
substring pairs, a global description of the similarity be-
tween two sequences is obtained by choosing the disjoint
subset of these pairs of highest total score. This prob-
lem was formulated as the IR problem by Bafna et al. [1]
with each output substring pair being represented as a
rectangle.!

Previous Results. Bafna et al. [1] proved this problem
to be NP-Hard and presented an Q(N?2) time approx-
imation algorithm with a performance ratio of 3.25.2
The current best approximation algorithm for the IR
problem is due to Berman [2] which has a performance
ratio of 2.5+¢ (for any constant € > 0), and takes Q(N*)
running time. Construct the conflict graph of the input

*Department of Computer Science, Pennsylvania State Uni-

versity, University Park, PA 16802. Email: berman@cse.psu.edu.
Supported in part by NSF grant CCR-9700053, NLM grant
LM05110 and DFG grant Bo 56/157-1.

tDepartment of Computer Science, University of Illinois at
Chicago, Chicago, IL 60607. Email: dasgupta@cs.uic.edu.
Supported in part by NSF Grant CCR-9800086 and a startup
fund from UIC.

fAT&T Labs — Research, 180 Park Avenue, Florham Park, NJ
07932. Email: muthu@research.att.com

1For alternate formulation, see the chaining problem [4, Page
326].

2If rectangles are unweighted, a polynomial time approxima-
tion algorithm with a performance ratio of 2 +¢ (for any constant
e > 0) is known. [5].

Bhaskar DasGupta'

S. Muthukrishnan?

rectangles in which each node is a rectangle, and there
is an edge between two rectangles if and only if they are
independent. This graph is 5-claw free. IR problem is
equivalent to finding the maximum weight independent
set (MWIS) of this graph; known results provide greedy
improvement based algorithms for finding MWIS.

Our Result and Significance. The basic bottleneck
of known approximation algorithms for the IR problem
is that they are computationally expensive taking time
Q(N?). Our main result here is an approximation algo-
rithm for the IR problem that has running time nearly
linear in the input size. Our algorithm takes O(N log N)
time and space, and is a factor 3 approximation. It is
also exceedingly simple, requiring Phase 1 of a single
pass over the data to push a subset of rectangles into
a stack and Phase 2 of popping the stack and adding a
selection of rectangles into our solution. This algorithm
thus uses an approach reminiscent of real-time machine
scheduling algorithms [3], and is quite different from
the known approaches for solving this problem. The
difficult part of the result is the analysis to prove that
this algorithm is indeed 3-approximation. Thus, while
this algorithm does not produce the best approxima-
tion known for this problem, it is simpler, substantially
faster, and hence, likely to be more practical.
Algorithm Description. Let R;, Rs,..., Ry be the
N input rectangles in our collection, where R; =
X; x Y; for some two intervals X; = [d;,e;] and Y; =
[fi,gi]. Consider the intervals X, Xo,..., Xy formed
by projecting the rectangles on one axis and call two
intervals X; and X; independent if and only if the
corresponding rectangles R; and R; are independent.
The notation X; ~ X; (respectively, X; % X;) is used
to denote if two intervals X; and X; are independent
(respectively, not independent). We can assume the
endpoints of the rectangles are numbered using integers
in [1,2N], without loss of generality. Our algorithm
consists of the evaluation phase followed by the selection
phase, described below. We define a triplet («,(3,7)
to be an ordered sequence of three values o, 8 and 7.
Let L is sequence that contains a triplet (w(R;),d;,e;)
for every R, = X; x Y; with X; = [d;,e;]; L is
sorted so the values of e;’s are in non-decreasing order.
Let S is an initially empty stack that stores triplets.
TOTAL(X;) returns the sum of v’s of those triplets



(v,a,b) € Ssuch that [a,b] % X;. The evaluation phase
consists of processing each item from L in turn. Say
(w(R;),d;,e;) is being processed. We evaluate v «
w(R;) —TOTAL([d;, e;]); if v > 0, we push ((v, d;, €;),S)
onto the stack and continue. When L is empty, we being
the selection phase. We pop S until it is empty. Say
(v,d;,e;) has been popped. If [d;,e;] ~ X for every
interval X in our solution, we add [d;, e;] to our solution.
That completes the algorithm description. The full
version of this paper will show how to implement this
algorithm in O(N log N) time.

Analysis of the Algorithm. Let B be a solution re-
turned by the algorithm A be any optimal solution. For
a rectangle R € A, let Br denote the number of those
rectangles in B that were not independent of R and
were examined no earlier than R by the evaluation phase
and let 8 = maxgc4 Br. We first show that our algo-
rithm has performance ratio 3. Consider the set of in-
tervals S in the stack at the end of the evaluation phase.
Let W(A) = > p,caw(Rs) and V(S) = 32, 4, cyes V-
The sum of the weights of the rectangles selected during
the selection phase is at least V(S). Hence, it suffices
to show that BV (S) > W(A). Consider a rectangle
R;, = X; xY; € A and the time when the evalua-
tion phase starts the processing of X; = [d;,e;]. Let
TOTAL'([d;,ei]) and TOTAL"([d;,e;]) be the values
of TOTAL([d;,e;]) before and after the processing of
X;, respectively. If w(R;) < TOTAL'([d;,e;]), then
X; is not pushed to the stack and TOTAL" ([d;,e;]) =
TOTAL'([d;,e;]). On the other hand, if w(R;) >
TOTAL'([d;, ei]), then X; is pushed to the stack with a
value of w(R;) — TOTAL'([d;,e;]), as a result of which
TOTAL"([d;, e;]) becomes at least TOTAL'([d;,e;]) +
(w(R;) — TOTAL'([d;, e;])) = w(R;). Hence, in either
case TOTAL"([d;,e;]) > w(R;). Summing up over all

Ri’s,
> w(R) < >

R;cA Ri:[di,ei]XYi€A

By definition of 8 and TOTAL" ([d;, e;]),

W (4) < > v<B Y v

((v,a,b)€S)A(b<ei)A([a,b]2[di e:])) (v,a,b)€S

which results in W (A4) < BV (S) completing the proof.
We can now prove that § < 3, completing the analysis
(omitted here).

Concluding Remarks. We have designed a fast, ex-
ceedingly simple two-phase algorithm for the IR prob-
lem: a stack and an augmented balanced search tree
suffice to implement this algorithm. Additionally, this
algorithm incremental, that is, it can be directly embed-
ded into the dynamic programming for the local align-
ments problem; thus, intermediate rectangles that will

W (4) = TOTAL"([d;, e;))

not be stored on the stack need not to be maintained.
We expect our algorithm to be practical. In an attempt
to improve the approximation, we can run our algorithm
two times each on the projections of rectangles on the
z and y axes in left-to-right/right-to-left and top-to-
bottom /bottom-to-top order to take the best of the four
solutions. We can show by an example that this does
not improve our approximation ratio. We have used the
planar geometry induced by the rectangles for the IR
problem to obtain a 3-approximation. Can we exploit
the geometry of rectangles more to design simple ap-
proximation algorithms with performance ratios 2.5 or
better? From the computational biology viewpoint, it is
highly desirable to perform similarity analysis on mul-
tiple strings, and hence, d-dimensional version of this
problem is of interest too. Our algorithm gives 29 — 1
approximation in a straightforward way. Whether one
can design an algorithm with a performance ratio that
increases less drastically (e.g., linearly) with d is still
open.

References

[1] V. Bafna, B. Narayanan and R. Ravi. Nonoverlapping
local alignments (Weighted independent sets of azis-
parallel rectangles, Discrete Applied Mathematics, 71,
pp. 41-53, 1996.

[2] P. Berman. A d/2 approzimation for mazimum weight
independent set in d-claw free graphs, Proc. of the 7th
Scandinavian Workshop on Algorithmic Theory, LNCS
1851, July 2000, pp. 214-219.

[3] P. Berman and B. DasGupta. Improvements in
Throughput Magzimization for Real-Time Scheduling,
proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, May 2000, pp. 680-687.

[4] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge Univ Press, 1997.

[6] M. M. Halldérsson. Approzimating discrete collections
via local improvements, proceedings of the 6th ACM-
SIAM Symposium on Discrete Algorithms, January
1995, pp. 160-169.

[6] M. S. Waterman and M. Eggert, A new algorithm for
best subsequence alignments with application to trna-
rrna comparisons, J. Mol. Biol. 197, 1987, pp. 723-728.



