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2.1 INTRODUCTION

Since the discovery of the double helical structure of DNA, the molecular biology field
has undergone a significant transformation via nucleic acids sequencing to determine
genetic information at the most fundamental level. This revolution in biology has
created a huge volume of data, estimate by many to grow at an exponential rate, by
directly reading DNA sequences. One important reason for this exceptional growth
rate of biological data lies in the medical use of such information in the design of
therapeutics. Naturally, such a large amount of data poses aserious challenge in
storing, retrieving and analyzing biological information.

In this chapter, we provide a survey of a classification problem involving genetic
sequences, namely the problem of classifying fingerprint vectors with missing values.
Oligonucleotide fingerprinting is a powerful DNA array based method to characterize
cDNA and ribosomal RNA (rDNA) gene libraries, and has many applications such
as gene expression profiling and DNA clone classification. For example, Herwig
et al. [18] used oligonucleotide fingerprinting as an efficient andfast approach to
extract parallel gene expression information about all genes that are represented in
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ii SURVEY ON FINGERPRINT CLASSIFICATION

a cDNA library from a specific tissue under analysis. The information obtained
by monitoring gene expression levels in different development stages, tissue types,
clinical conditions and different organisms can fuel a understanding of gene function
and gene networks, and may assist in diagnostics of disease conditions and effects of
medical treatments.

The main focus of this chapter is motivated by the recent development of adiscrete
classification approach by Figueroa, Borneman, and Jiang in2004 [11], called the
Binary Clustering with Missing Values (BCMV) problem, for analyzing oligonu-
cleotide fingerprints, especially in applications such as DNA clone classifications. In
this approach, fingerprint data were first normalized and binarized using control DNA
clones. Because there may exist unresolved (“missing”) values in the binarization
process, they formulated the classification of (binary) oligonucleotide fingerprints as
a combinatorial optimization problem that attempted to identify clusters and resolve
the missing values in the fingerprintssimultaneously.

The rest of the chapter is organized as follows. In section 2.2 we state some
basic mathematical definitions that will be useful in understanding the underlying
computational problems more effectively. In Section 2.3 weprovide a brief survey of
various other classification approaches to provide the reader with a global perspective,
and in Section 2.4 we provide a brief overview of several approaches for estimating
missing values in the genomic data. In Section 2.5 we survey in more details the
BCMV problem and its variations. We assume that the reader isfamiliar with standard
textbook concepts of algorithmic complexity theory such asfound in [8, 23].

2.2 BASIC DEFINITIONS AND PROBLEM STATEMENTS
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Fig. 2.1 (a) Four fingerprint vectorsΣ = {0, 1}.
(b) A possible resolution of them. Each compatible
fingerprint group is enclosed by a dashed rectangle.

Fingerprint Formally, we define
a fingerprint vectors (in short, fin-
gerprint) as a vector with each
component (element) fromΣ ∪
{N}, for some finite alphabetΣ
not containing the symbolN , that
consists of the hybridization inten-
sity values between the clone and
each probe. The valueN in a com-
ponent of the vector corresponds to
a component with missing values.
The number of elements of a fingerprint is itslength.

Oligonucleotide probe A short DNA sequence (usually8–50 bases) which is
applied to hybridize with the clones.

Compatible fingerprints Two fingerprint vectorsf1 = 〈 f1[1], f1[2], . . . , f1[`] 〉
andf2 = 〈 f2[1], f2[2], . . . , f2[`] 〉 arecompatibleif for any positioni where they
differ, at least one off1[i] andf2[i] is equal toN . See Fig. 2.1 for an illustration.
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Resolved vector A vectorr is calledresolved vectorof a fingerprint vectorf if it
is identical withf on all positions having an alphabet fromΣ in f and has a symbol
fromΣ in each position off that had the symbolN .

2.3 AN OVERVIEW OF VARIOUS CLASSIFICATION APPROACHES

Classification approaches are not very new to biologists; hierarchical classification
has been used for a long time to create taxnomic ranks (kingdom, phylum, class,
order, family, genus and species) of all living things. However, with the arrival of
fast computational tools and large amounts of genetic information, classification and
clustering approaches have increased their applicabilityconsiderably to efficiently
analyze the genomic data. Classification and clustering remains, in general to a
certain extent, an art since there are no universally agreed-upon criteria for evaluating
solutions, and there is no ultimate algorithm. In this section, we briefly review a few
classification approaches that have been used in the past in bioinformatics; for a more
comprehensive treatment, see, for example, [24].

Shamir and Sharan in [26] discuss some algorithmic approaches for clustering
gene expression data. A key step in the analysis of gene expression data is the
identification of groups of genes that manifest similar expression patterns. The goal
is to partition the elements into subsets, which are calledclusters, so that two criteria
are satisfied:homogeneity(elements in the same cluster are highly similar to each
other), andseparation(elements from different clusters have low similarity to each
other).

In hierarchicalclassification approach, the solutions are typically represented by a
dendogram. Algorithms for generating such solutions oftenwork either in top-down
manner, by repeatedly partitioning the set of elements, or in a bottom-up fashion.

k-means [2, 21] is another classical classification approach. It assumes that the
number of clustersK is known, and aims to minimize the distance between elements
and the centroids of their assigned clusters. The HCS [16, 17] and CLICK [25]
algorithms use a similar graph theoretic approach for classification. The input data
is represented as a similarity graph. The algorithm recursively partitions the current
set of elements into two subsets. Before a partition, the algorithm considers the
subgraph induced by the current subset of elements. If the subgraph satisfies a
stopping criterion, then it is declared a kernel. Otherwise, a minimum weight cut is
computed in that subgraph, and the set is split into the two subsets separated by that
cut. The output is a list of kernels that serve as a basis for the eventual clusters. HCS
and CLICK differ in the similarity graph they construct, their stopping criteria, and
the post-processing of the kernels. In another graph-theoretic approach, Ben-Doret
al. [4] developed a polynomial algorithm called CAST (Clustering Affinity Search
Technique) for finding true clustering with high probability. The correct cluster
structure is represented by a graph that is a disjoint union of cliques, and errors are
subsequently introduced in the graph by independently removing and adding edges
between pairs of vertices with some probability. If all clusters are of size at least
Ω(n), the algorithm solves the problem to a desired accuracy withhigh probability.
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Self-Organizing Maps (SOM) [20] were developed as a method for fitting a number
of ordered discrete reference vectors to the distribution of vectorial input samples. A
SOM assumes that the number of clusters is known.

To summarize, the hierarchical method gives an overall viewof the structure
without an attempt to force a hard classification, whereas the other methods aim to
split the universe of elements into clusters, either by geometric approaches that move
cluster centers (SOM,k-means) or by graph-theoretic approach. The last approach
may take a global view (CLICK) or single out one affinity-stable cluster at a time
(CAST).

2.4 MISSING VALUE ESTIMATION METHODS

The value ofN in the sequence for fingerprint classification corresponds to some
unknown(missing) spots on the sequence during the laboratory process due to various
factors (e.g., machine error, gene expression microarray experiments generating data
sets with multiple expression values, insufficient resolution in microarray experiments
etc.). There are many options for dealing with missing values, each of which reaches
drastically different results.

Ignoring missing values is obviously the simplest method and is frequently ap-
plied. This approach however has its flaws. Because it is often very costly or time
consuming to repeat the experiment, molecular biologists,statisticians and computer
scientists have investigated the possibility of recovering the missing gene expression
values byad-hocor systematic methods. Methods like hierarchical clustering and
k-meansclustering are not robust against missing data, and may loose effectiveness
even with a few missing values. Other standard supervised statistical microarray
analysis techniques such as support vector machine classification, principal compo-
nent analysis, or singular value component analysis often may not be applicable to
data set with missing values. Thus methods for imputing missing data are needed.

One solution to deal with the missing values is to do the same experiment and
replicate the data. This extra labor work strategy has been used in many experimental
scientists and wet laboratories so far. If the cost of the experiment is not expensive,
it may be a practical solution, but certain type of experiments such as patient specific
time course experiments are very expensive or may even be impossible to be repro-
duced. Less labor work and simple tentative solution is to fill the missing values by
zeroes, average of the gene expressions, or average of overall expression values.

Two recent popular methods of imputing missing values are the KNNimpute
method [28] and theLLSimputemethod [3, 19] that uses thek-nearest neighbor
clustering, least square and Bayesian optimization. The basic strategy of this type
is to find similar expression patterns having missing valuesby clustering methods,
and then to predict the missing value from the correspondingvalues in the same
cluster. In these two methods, the recovery of missing data is done independently,
i.e., the estimation of each missing entry does not influence the estimation of other
missing entries. Another approach is to use high rank Eigengenes in a hidden con-
cept space to predict the missing value. Representative methods of this type are the



MISSING VALUE ESTIMATION METHODS v

SVDimputemethod [1] that uses singular value decomposition, and theBPCAimpute
method [22] that used principal component analysis and Bayesian optimizations. The
basic strategy of this type of approach is to find bases of expression space, and then to
reconstruct a matrix with the dominant bases. During the reconstruction process, the
missing values are filled. The basis is calledEigengene, and Eigengene shows a gene
expression fluctuation which is orthogonal to each other in an expression pattern
space. Another approach similar toSVDimputeand BPCAimputetype prediction
is the Fixed Rank Approximation Algorithm (FRAA) of Friedland, Niknejad and
Chihara [13] to predict missing entries by using Eigengenes. In this approach the es-
timation of missing entries is done simultaneously,i.e., the estimation of one missing
entry influences the estimation of the other missing entries. They showed that FRAA
is more accurate than replacing missing values with zeroes or with row means. FRAA
by itself is a very useful tool for gene data analysis withoutusing clustering methods.
The number of high rank Eigengene should be close to the rank of the perfect matrix,
but it is hard to guess the correct number of high rank Eigengenes from a data with
missing entries. To find the optimal number,BPCAimputeuses Bayesian statistics
while SVDimputeuses a given fixed number. FRAA also requires the fixed number
of major Eigengenes, but the uniqueness of FRAA is that it hasan iteration process
which can increase the importance of these high rank Eigengenes in a reconstructed
matrix on each step. However, it is still difficult to guess the correct number of
Eigengne or rank of perfect matrix and therefore even FRAA itself is powerful but
not useful in a practical case. The other drawback of FRAA is that the result heavily
deepens on initial tentative values for missing entries. Friedlandet al.[14] suggested
a hybrid method IFRAA (Improved FRAA) which is a combination of FRAA and a
good clustering algorithm.

There is no general consensus about which type of algorithmsis better. Past exper-
iments in [19, 22] suggest thatBPCAimputeandLLSimputepredict generally better
than the others, and the performances of these two methods are almost comparable
with depending on data sets. Troyanskayaet al. [28] observed thatKNNimputeis
more robust and sensitive method for missing value estimation thanSVDimputeand
bothSVDimputeandKNNimputesurpass the commonly used row average method.
Gan, Liew and Yan [15] proposed a hybrid approach called POCS(Projection Onto
Convex Set), which is the best combination ofSVDimputeandKNNimpute. They
experimentally showed that POCS achieves a reduction of 16%to 20% error than
KNNimputeandSVDimpute. The FRAA method has been used by several computa-
tional biologists and experimental results on various datasets shows its robustness.
To further improve upon the FRAA approach, one needs to combine it with an al-
gorithm for gene clustering. A possible implementation is as follows. First, apply
FRAA to the corrupted data set. Next, using this estimated data set, partition the
genes into clusters of genes with similar traits. Now apply FRAA again to the missing
entries of genes in each cluster.

In the next section, we survey in more details a combinatorial approach to deter-
mining missing values originally proposed by Figueroa, Borneman, and Jiang [11],
the main focus of this chapter.
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2.5 FINGERPRINT CLASSIFICATION: A COMBINATORIAL
APPROACH FOR ESTIMATING MISSING VALUES

In this approach, called Binary Clustering with Missing Values (BCMV) approach,
fingerprint data are first normalized and binarized using control DNA clones. To
resolve the missing values in the binarization process, Figueroaet al. formulated
the classification of (binary) oligonucleotide fingerprints as several combinatorial
optimization problems as described below that attempt to identify clusters and resolve
the missing values in the fingerprintssimultaneously. They studied the computational
complexity of these problems and their parameterized versions where the maximum
number ofN ’s in a fingerprint vector is bounded by an integer parameterp.

In the following problem formulations, we assume thatΣ = {0, 1}.

Binary Clustering with M issing Values (BCMV) The problem of clustering with
p missing values (CMV(p) for short) is to partition a setF of n fingerprint vec-
tors, each of of length̀ with at mostp symbols that areN , into disjoint subsets
F1, F2, . . . , Fk such that, for each1 ≤ i ≤ k, any two fingerprints inFi are com-
patible. The objective is tominimizethe number of partitions. Intuitively, the CMV
problem aims to resolve the fingerprints using the minimum number of resolved
vectors.

Inside Edge Binary Clustering with M issing Values (IEBCMV) The problem
of inside compatible clustering withp missing values (IEBCMV(p) for short) is
defined analogously except that the number of compatible pairs of vectors within
the same partition is maximized instead of the minimizationof the cardinality of the
partition. That is, the objective now is tomaximizethe number of co-clustered pairs
of fingerprints.

Outside Edge Binary Clustering with M issing Values (OEBCMV) The problem
of outside compatible clustering withp missing values (OEBCMV(p) for short) is
again defined analogously except that now the number of compatible pairs of vectors
belonging to different clusters is minimized. That is, the new objective is tominimize
the number of pairs of compatible fingerprints assigned to different clusters.

2.5.1 Algorithmic Complexity Results

BCMV (p)

BCMV(p) was first considered and motivated in [11]. For arbitraryp, the following
strong inapproximability result can be shown.

Theorem 2.1 [9] For any constant0 < ε < 1 and unrestrictedp, BCMV(p) cannot
be approximated to within a ratio ofn1−ε unlessNP ⊆ ZPP.

Sketch of Proof. In the standard graph coloring problem, the goal is to produce
an assignment of colors to vertices of a given graphG = (V,E) such that no two
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adjacent vertices have the same color and the number of colors is minimized. Let
χ∗(G) denote the minimum number of colors in a coloring ofG. The following
inapproximability result is known [10]: for any constant0 < ε < 1, χ∗(G) cannot
be approximated to within a factor of|V |1−ε unlessNP ⊆ ZPP.

Given an instanceG = (V,E) with n vertices andm edges, one can construct an
instance of BCMV(p) in the following manner. There is a sequencefv of lengthm
for every nodev of G. Consider any arbitrary ordering of them edges ofG. For
the ith edge in the order, say{u, v}, we havefu[i] = 0, fv[i] = 1, andfx[i] = N

for everyx ∈ V \ {u, v}. See Fig. 2.2 for an illustration. The proof can then be
completed by showing thatG can be colored withy colors if and only if BCMV(p)
outputs a solution withy partitions. �
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Fig. 2.2 An illustration of the reduction in Theorem 2.1.

However, in prac-
tice the number ofN ’s
in a binarized finger-
print vector is often
upper bounded by a
small constant, depend-
ing on the quality of
hybridization intensity
values and choice of
control clones. Thus, it behooves to look at the problem withrestricted values ofp.
Figueroa, Borneman and Jiang [11] showed the problem to beNP-hard even when
p = 3, and polynomial-time solvable whenp = 1. The polynomial-time solvability
for BCMV(1) was shown by reducing it to vertex cover problem onbipartite graphs,
and observing that the later problem is well-known to be solvable in polynomial time
by matching techniques. Figueroaet al. in 2005 [12] further showed that BCMV(2)
is NP-hard by giving a reduction from the minimum vertex cover problem on planar,
cubic, 3-connected and triangle-free graphs, which is known to beNP-hard [29], to
the BCMV(2) problem.

In a subsequent paper, Bonizzoni, Della Vedova, Dondi and Mauri [7] showed
some improvements in closing the gaps between the known lower bounds and upper
bounds on the approximability of variants of the original problem proposed in [12].
They showed that, even when each fingerprint contains only two unknown positions,
BCMV(2) is APX-hard1 by giving anL-reduction from minimum vertex cover on
cubic graphs which is known to beAPX-hard. In particular, to prove that BCMV(2)
is APX-hard, they combined twoL-reductions: the first one from the minimum
vertex cover problem on a graphG to the minimum vertex cover on a graph gadget
G′ and the second one from the minimum vertex cover problem on a graph gadget
G′ to BCMV(2).

As the proof of Theorem 2.1 suggests, BCMV(p) can be easily formulated as one
of finding aminimum clique partitionof a graph in the following manner:

1A problem that isAPX-hard cannot be approximated within a factor of(1+ε), for some positive constant
ε > 0, in polynomial-time unlessP = NP.
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Given a set of fingerprint vectorsF , define a graphGF = (F,EF ) where two
nodes (fingerprints) are adjacent if and only if they are compatible.

The graphGF is known as thecompatibility graphof F . Hence BCMV ofF
is equivalent to the problem of finding a minimum clique partition (MCP) onGF .
However, it is also well-known that finding MCP of a graph is ingeneral anNP-
hard problem. Nonetheless, based on such a reformulation, The authors in [11,
12] presented efficient algorithmic approaches for BCMV(p) by taking advantage
of some unique properties of the graphGF , resulting in several results such as the
following.

• There exists a greedy algorithm with an approximation ratioof min{1 +
lnn, 2 + p ln `} that can be implemented to run inO (n` 2p) time. For
p = O(log n) this approximation algorithm runs in polynomial time.

• There exists a polynomial-time heuristics that achieves anapproximation ratio
of 2p.

• They provide a practical greedy heuristics based on iterating on building the
largest possible cluster that has a worst-case running timeof O

(

p2
p

n2
)

. Since
p is usually small compared ton in practice, the running time of the algorithm
is practically efficient. To find a small clique partition ofGF one keeps on
finding uniquemaximalcliques and removing it from the graph (and updates
the graph accordingly) until no unique maximal cliques can be found. Then,
a greedy action takes place by removing a maximum clique fromthe graph
and the same process is repeated until all vertices ofGF have been included in
some clique.

IEBCMV (p) and OEBCMV(p)

These two variants of the original optimization problems in[12], introduced in [7],
aim to solve the fingerprint classification problem based on slightly different op-
timization criteria. The first variant, termed as the problem of inside compatible
clustering with at mostp missing values (IECBMV(p) for short) is defined analo-
gously to BCMV(p)with the exception that the number of compatible pairs of vectors
within the same clusters is maximized instead of the minimization of the cardinality
of the partition. The second variant, termed as the problem of outside compatible
clustering with at mostp missing values (OECBMV(p) for short) is again defined
analogously to BCMV(p) with the exception that now the number of compatible
pairs of vectors belonging to different clusters is minimized. Various results on these
problems that were reported in the papers [7, 12] include thefollowing.

• It was shown in [12] that, whenp = O(log n), IECMV(p) can be approximated
in polynomial time within a factor of22p−1, whereas in the special case when
no two compatible vectors haveN at the same position OECMV(p) can be ap-
proximated in polynomial time within a ratio of2

(

1− 2−2p
)

. To obtain these
results, they reduced IECBMV(p) and the restricted version of OECBMV(p)
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to special variants of maximum and minimum satisfiability problems which
yielded polynomial-time constant-factor approximationsfor both problems.

They showed that IECBMV(p) can be expressed as a variant of the maxi-
mum satisfiability problem where the Boolean formula is in disjunctive normal
form (DNF). By a result of Trevisan [27], the maximum satisfiability prob-
lem for DNF formulas with conjunctive clauses of length at most k admits a
polynomial-timeapproximation algorithm with an approximation ratio of2k−1

which leads to an approximation ratio of22p−1 for the IECBMV(p) problem.

By taking the negation of the above DNF formula and applying De Morgan’s
laws, they obtained a formulaΦ in conjunctivenormal form (CNF) with clauses
of length at most2p. Now, the problem of finding the minimum number of
clauses inΦ that can be simultaneously satisfied is easily seen to be equivalent
to the OECBMV(p) problem. Furthermore, if no two compatible vectors con-
tainN at the same position, then there is1-1 correspondence between satisfied
clauses and compatible pairs of fingerprints that are in different clusters. Using
the fact that the problem of minimumk-satisfiability admits a polynomial time
approximation algorithm with an approximation ratio of2

(

1− 2−k
)

[6], they
obtained an approximation ratio of2

(

1− 2−2p
)

for the so restricted version
of the OECBMV(p) problem.

• Further improvements of the results of [12] are reported in asubsequent pa-
per [7]. Here, they proved that both of these problems areAPX-hard. The
APX-hardness of IECBMV(2) is obtained via anL-reduction from maximum
independent set on3-regular graphs which is known to beAPX-hard [5], and
their results show that it isNP-hard to approximate IECBMV(2) with a ratio
better than1 + 1

3479
.

On the positive side, these authors presented a fixed-parameter tractable ap-
proximation algorithm whose running time isO

(

2pn3`
)

, and achieved an
approximation ratio of2. Despite the hardness of these restricted versions
of the problem, they also showed that the general clusteringproblem on an
unbounded number of missing values such that these missing values occur for
every fixed position of at most one input fingerprint vector can be solved in
polynomial time. Finally, they gave a polynomial-time algorithm for solving
the BCMV(p) problem for the special case where, for each position of a finger-
print vector, there is at most one fingerprint with anN symbol in such position.
They denoted such a restriction by1-BCMV and showed that their proposed
algorithm run inO

(

n2`
)

time.

2.5.2 Experimental Results

The experimental results on simulation and real data demonstrated that the greedy
heuristics in [11] run faster and perform better (in the context of DNA clone classi-
fication) than popular clustering methods such as UPGMA, CLUSTER and CLICK.
If the ratio between the largest and the smallest intensity values is above some pre-
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specified threshold, the intensity of the clone was considered as a missing value, and
the reliability of hybridization intensities were evaluated using clones spotted twice.
The results on real data from the classification of microbialrDNA clones suggested
that this discrete approach is more accurate than clustering methods based on real
intensity values in terms of separating clones that have different characteristics with
respect to the given oligonucleotide probes. An important advantage of the dis-
crete approach was that binarized fingerprints were essentially reproducible whereas
(normalized) real intensity values were generally not.

2.5.3 Open Problems for Future Research

As observed in [7, 12], several open problems remains for future on the algorithmic
complexity side. For example:

• Is there a constant factor approximation algorithm for OECBMV(p) in the
general case, and a non-trivial approximation ratio for greedy heuristics for
IECMV(p)? Can we discover any non-trivial relationship between thevarious
problem BCMV(p), IECBMV(p) and OECBMV(p) in terms of their hardness
of approximation? Some experimental works could be helpfulfor this purpose
to develop intuitions about this the special structure of the input data.

• Naturally, one could relate resolving the fingerprint vectors with construction of
the phylogenetic trees of the corresponding resolved sequences. For instance,
a natural objective could be to find an assignment to theN -positions which
will yields phylogenetic trees optimizing a specific evolutionary objective (e.g.,
perfect phylogeny, phylogenetic tree of minimum size or a minimum number
of mutations etc.). After the rDNA clone libraries are constructed, the clones
can classified by individual hybridization experiments on DNA microarrays
with a series of short DNA oligonucleotides into clone typesor operational
taxonomic units (OTUs), where an OTU is a set of DNA clones sharing the
same set of oligonucleotides that have successfully hybridized. Once classified,
the nucleotide sequence of representative clones from eachOTU can then
be obtained by DNA sequencing to provide phylogenetic descriptions of the
microorganisms.
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