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2.1 INTRODUCTION

Since the discovery of the double helical structure of DN, molecular biology field
has undergone a significant transformation via nucleicsssgdjuencing to determine
genetic information at the most fundamental level. Thishation in biology has
created a huge volume of data, estimate by many to grow atonextial rate, by
directly reading DNA sequences. One important reason ferekceptional growth
rate of biological data lies in the medical use of such infation in the design of
therapeutics. Naturally, such a large amount of data posesiaus challenge in
storing, retrieving and analyzing biological information

In this chapter, we provide a survey of a classification probinvolving genetic
sequences, namely the problem of classifying fingerprictiors with missing values.
Oligonucleotide fingerprinting is a powerful DNA array bedseethod to characterize
cDNA and ribosomal RNA (rDNA) gene libraries, and has manpligations such
as gene expression profiling and DNA clone classificationr eéxample, Herwig
et al. [18] used oligonucleotide fingerprinting as an efficient &ast approach to
extract parallel gene expression information about allegehat are represented in
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a cDNA library from a specific tissue under analysis. The rimfation obtained
by monitoring gene expression levels in different develeptrstages, tissue types,
clinical conditions and different organisms can fuel a ustinding of gene function
and gene networks, and may assist in diagnostics of diseasktions and effects of
medical treatments.

The main focus of this chapter is motivated by the recentldpweent of adiscrete
classification approach by Figueroa, Borneman, and Jia2g(d [11], called the
Binary Qustering with_Mssing Values (BCMV) problem, for analyzing oligonu-
cleotide fingerprints, especially in applications such B#\2lone classifications. In
this approach, fingerprint data were first normalized andri@ed using control DNA
clones. Because there may exist unresolved (“missing')esln the binarization
process, they formulated the classification of (binangaucleotide fingerprints as
a combinatorial optimization problem that attempted tatig clusters and resolve
the missing values in the fingerprirgisnultaneously

The rest of the chapter is organized as follows. In secti@w& state some
basic mathematical definitions that will be useful in untierding the underlying
computational problems more effectively. In Section 2.3n@vide a brief survey of
various other classification approachesto provide thearasith a global perspective,
and in Section 2.4 we provide a brief overview of several apphes for estimating
missing values in the genomic data. In Section 2.5 we sumnvayare details the
BCMV problem and its variations. We assume that the readamigiar with standard
textbook concepts of algorithmic complexity theory suclicasd in [8, 23].

2.2 BASIC DEFINITIONS AND PROBLEM STATEMENTS

Fingerprint  Formally, we define

a fingerprint vectors (in short, fin- 0
gerprint) as a vector with each 0
component (element) front’ U 0
{N}, for some finite alphabel’

not containing the symbaV, that

consists of the hybridization inten-

sity values between the clone anf9- 2.1 (@) Four fingerprint vectord = {0,1}.
each probe. The valu¥ in a com- (b) A possible resolution of them. Each compatible

ponent of the vector corresponds t(tj'ngerprint group is enclosed by a dashed rectangle.

a component with missing values.
The number of elements of a fingerprint islgéagth

Oligonucleotide probe A short DNA sequence (usually—50 bases) which is
applied to hybridize with the clones.

Compatible fingerprints Two fingerprint vectorsfy = ( fi[1], f1[2],..., f1[¢])
and fo = ( f2[1], f2[2], ..., f2[€] ) arecompatibleif for any positioni where they
differ, at least one of [¢] and f»[i] is equal toN. See Fig. 2.1 for an illustration.
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Resolved vector A vectorr is calledresolved vectoof a fingerprint vectorf if it
is identical withf on all positions having an alphabet frathin f and has a symbol
from X in each position of that had the symbaV.

2.3 AN OVERVIEW OF VARIOUS CLASSIFICATION APPROACHES

Classification approaches are not very new to biologistsanchical classification
has been used for a long time to create taxnomic ranks (kmggdylum, class,

order, family, genus and species) of all living things. Heer with the arrival of

fast computational tools and large amounts of genetic imédion, classification and
clustering approaches have increased their applicaloitibsiderably to efficiently
analyze the genomic data. Classification and clusteringaimesnin general to a
certain extent, an art since there are no universally aguped criteria for evaluating
solutions, and there is no ultimate algorithm. In this smttive briefly review a few
classification approaches that have been used in the pastrifdomatics; for a more
comprehensive treatment, see, for example, [24].

Shamir and Sharan in [26] discuss some algorithmic appemsafdr clustering
gene expression dataA key step in the analysis of gene expression data is the
identification of groups of genes that manifest similar esgion patterns. The goal
is to partition the elements into subsets, which are callesters so that two criteria
are satisfiedhomogeneityelements in the same cluster are highly similar to each
other), andseparation(elements from different clusters have low similarity teclkea
other).

In hierarchicalclassification approach, the solutions are typically repnéed by a
dendogram. Algorithms for generating such solutions ofterk either in top-down
manner, by repeatedly partitioning the set of elements) arbottom-up fashion.

k-means [2, 21] is another classical classification approdichssumes that the
number of cluster# is known, and aims to minimize the distance between elements
and the centroids of their assigned clusters. The HCS [16ad4d CLICK [25]
algorithms use a similar graph theoretic approach for fleason. The input data
is represented as a similarity graph. The algorithm reeelgpartitions the current
set of elements into two subsets. Before a partition, therdlgn considers the
subgraph induced by the current subset of elements. If thgraph satisfies a
stopping criterion, then it is declared a kernel. Otherpgsminimum weight cut is
computed in that subgraph, and the set is split into the twsestis separated by that
cut. The outputis a list of kernels that serve as a basis &etlentual clusters. HCS
and CLICK differ in the similarity graph they construct, thstopping criteria, and
the post-processing of the kernels. In another graph-gtieapproach, Ben-Dagt
al. [4] developed a polynomial algorithm called CASTI&tering_Afinity Search
Technique) for finding true clustering with high probabilitfhe correct cluster
structure is represented by a graph that is a disjoint uni@tiques, and errors are
subsequently introduced in the graph by independently véamgand adding edges
between pairs of vertices with some probability. If all ¢krs are of size at least
£2(n), the algorithm solves the problem to a desired accuracy higth probability.
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Self-Organizing Maps (SOM) [20] were developed as a method for fitting a number
of ordered discrete reference vectors to the distributforeotorial input samples. A
SOM assumes that the number of clusters is known.

To summarize, the hierarchical method gives an overall vdéwhe structure
without an attempt to force a hard classification, whereaother methods aim to
split the universe of elements into clusters, either by getomapproaches that move
cluster centers (SOM;-means) or by graph-theoretic approach. The last approach
may take a global view (CLICK) or single out one affinity-d&bluster at a time
(CAST).

2.4 MISSING VALUE ESTIMATION METHODS

The value ofN in the sequence for fingerprint classification correspondsome
unknown (missing) spots on the sequence during the lalrgnatocess due to various
factors €.g, machine error, gene expression microarray experimengrging data
sets with multiple expression values, insufficient regoluin microarray experiments
etc.). There are many options for dealing with missing valeach of which reaches
drastically different results.

Ignoring missing values is obviously the simplest method @nfrequently ap-
plied. This approach however has its flaws. Because it isiaféey costly or time
consuming to repeat the experiment, molecular biologistsisticians and computer
scientists have investigated the possibility of recowgtire missing gene expression
values byad-hocor systematic methods. Methods like hierarchical clustgend
k-meangclustering are not robust against missing data, and mag leffectiveness
even with a few missing values. Other standard supervisgtatal microarray
analysis techniques such as support vector machine otasifi, principal compo-
nent analysis, or singular value component analysis oftay mot be applicable to
data set with missing values. Thus methods for imputingimjsdata are needed.

One solution to deal with the missing values is to do the saxperament and
replicate the data. This extra labor work strategy has bsed in many experimental
scientists and wet laboratories so far. If the cost of theeggrpent is not expensive,
it may be a practical solution, but certain type of experitasnch as patient specific
time course experiments are very expensive or may even hassiipe to be repro-
duced. Less labor work and simple tentative solution is kéhfid missing values by
zeroes, average of the gene expressions, or average ofl @x@rassion values.

Two recent popular methods of imputing missing values aseKNNimpute
method [28] and thé_ LSimputemethod [3, 19] that uses the-nearest neighbor
clustering, least square and Bayesian optimization. Tls&lsdrategy of this type
is to find similar expression patterns having missing valweslustering methods,
and then to predict the missing value from the correspondaiges in the same
cluster. In these two methods, the recovery of missing datibone independently,
i.e., the estimation of each missing entry does not influence stimation of other
missing entries. Another approach is to use high rank Eigeeg in a hidden con-
cept space to predict the missing value. Representatieaiedf this type are the
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SVDimputanethod [1] that uses singular value decomposition, an8B@Aimpute
method [22] that used principal component analysis and Slag®ptimizations. The
basic strategy of this type of approach is to find bases ofessgion space, and then to
reconstruct a matrix with the dominant bases. During thensttuction process, the
missing values are filled. The basis is callEidengengand Eigengene shows a gene
expression fluctuation which is orthogonal to each otherniregpression pattern
space. Another approach similar /Dimputeand BPCAimputetype prediction
is the _Fxed Rank Approximation_Agorithm (FRAA) of Friedland, Niknejad and
Chihara [13] to predict missing entries by using Eigengeirethis approach the es-
timation of missing entries is done simultaneouséy, the estimation of one missing
entry influences the estimation of the other missing entfiégy showed that FRAA
is more accurate than replacing missing values with zenogglorow means. FRAA
by itself is a very useful tool for gene data analysis withagihg clustering methods.
The number of high rank Eigengene should be close to the rfahke perfect matrix,
but it is hard to guess the correct number of high rank Eigeagérom a data with
missing entries. To find the optimal numbBRCAimputeuses Bayesian statistics
while SVDimputeuses a given fixed number. FRAA also requires the fixed number
of major Eigengenes, but the uniqueness of FRAA is that itamaiseration process
which can increase the importance of these high rank Eigewj@ a reconstructed
matrix on each step. However, it is still difficult to guese ttorrect number of
Eigengne or rank of perfect matrix and therefore even FRAAIlftis powerful but
not useful in a practical case. The other drawback of FRAAaS the result heavily
deepens on initial tentative values for missing entriegedfandet al.[14] suggested
a hybrid method IFRAA (inproved FRAA) which is a combination of FRAA and a
good clustering algorithm.

There is no general consensus about which type of algorithbetter. Past exper-
iments in [19, 22] suggest thBP CAimputeandLLSimputepredict generally better
than the others, and the performances of these two metheddraost comparable
with depending on data sets. Troyanskayal. [28] observed thaKNNimputeis
more robust and sensitive method for missing value estimatianSVDimputeand
both SVDimputeand KNNimputesurpass the commonly used row average method.
Gan, Liew and Yan [15] proposed a hybrid approach called P@&gection Onto
Convex_&t), which is the best combination 8VDimputeand KNNimpute They
experimentally showed that POCS achieves a reduction of tt620% error than
KNNimputeandSVDimpute The FRAA method has been used by several computa-
tional biologists and experimental results on various data shows its robustness.
To further improve upon the FRAA approach, one needs to coenbiwith an al-
gorithm for gene clustering. A possible implementationddalows. First, apply
FRAA to the corrupted data set. Next, using this estimated dat, partition the
genes into clusters of genes with similar traits. Now apphAR again to the missing
entries of genes in each cluster.

In the next section, we survey in more details a combindtapproach to deter-
mining missing values originally proposed by Figueroa,rigmnan, and Jiang [11],
the main focus of this chapter.
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2.5 FINGERPRINT CLASSIFICATION: A COMBINATORIAL
APPROACH FOR ESTIMATING MISSING VALUES

In this approach, called Binary Clustering with Missing e (BCMV) approach,
fingerprint data are first normalized and binarized usingredidNA clones. To
resolve the missing values in the binarization process,d¥impet al. formulated
the classification of (binary) oligonucleotide fingerpsirgts several combinatorial
optimization problems as described below that attemp#&ntifly clusters and resolve
the missing values in the fingerprirsisnultaneously They studied the computational
complexity of these problems and their parameterized @assivhere the maximum
number ofN’s in a fingerprint vector is bounded by an integer parameter

In the following problem formulations, we assume that= {0, 1}.

Binary Clustering with M issing Values (BCMV) The problem of clustering with
p missing values (CMYp) for short) is to partition a sef’ of n fingerprint vec-

tors, each of of lengtlf with at mostp symbols that areV, into disjoint subsets

Fy, F;, ..., Fy such that, for eachh < ¢ < k, any two fingerprints inF; are com-

patible. The objective is tminimizethe number of partitions. Intuitively, the CMV
problem aims to resolve the fingerprints using the minimurmber of resolved
vectors.

Inside Edge Binary Clustering with M issing Values (IEBCMV) The problem
of inside compatible clustering with missing values (IEBCMYp) for short) is
defined analogously except that the number of compatibles divectors within
the same partition is maximized instead of the minimizatibthe cardinality of the
partition. That is, the objective now is thaximizehe number of co-clustered pairs
of fingerprints.

Outside Edge Binary Clustering with M issing Values (OEBCMV)  The problem
of outside compatible clustering wighmissing values (OEBCM¥p) for short) is

again defined analogously except that now the number of ctibippairs of vectors
belonging to different clusters is minimized. That is, tleewobjective is taninimize

the number of pairs of compatible fingerprints assignedffergint clusters.

2.5.1 Algorithmic Complexity Results

BCMV (p)

BCMV(p) was first considered and motivated in [11]. For arbitrarthe following
strong inapproximability result can be shown.

Theorem 2.1 [9] For any constanf < e < 1 and unrestrictegh, BCMV(p) cannot
be approximated to within a ratio of' ~¢ unlessNP C ZPP.

Sketch of Proof. In the standard graph coloring problem, the goal is to preduc
an assignment of colors to vertices of a given grépk- (V, E') such that no two
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adjacent vertices have the same color and the number ofscislarinimized Let
x*(G) denote the minimum number of colors in a coloring@f The following
inapproximability result is known [10]: for any constahk ¢ < 1, x*(G) cannot
be approximated to within a factor gf |1 ~< unlessNP C ZPP.

Given an instancé& = (V, E) with n vertices andn edges, one can construct an
instance of BCM\(p) in the following manner. There is a sequernfceof lengthm
for every nodev of G. Consider any arbitrary ordering of the edges ofG. For
theit" edge in the order, saju, v}, we havef,[i] = 0, f,[i] = 1, andf,[i] = N
for everyx € V' \ {u,v}. See Fig. 2.2 for an illustration. The proof can then be
completed by showing th&t can be colored witly colors if and only if BCM\(p)
outputs a solution witly partitions. O

However, in prac-

tice the number of\'’s {a,c} {a,e} {c,e} {c,d} {b,c}
in a binarized finger(d) alo 0 N N N
print vector is often bl N N N N 0
upper bounded by a = c| 1 N 0 0 1
small constant, depend dfN N N 1 N
el N 1 1 N N

ing on the quality of
hybridization intensity Fig. 2.2 Anillustration of the reduction in Theorem 2.1.
values and choice of

control clones. Thus, it behooves to look at the problem wasiricted values gb.
Figueroa, Borneman and Jiang [11] showed the problem fdfbéard even when
p = 3, and polynomial-time solvable when= 1. The polynomial-time solvability
for BCMV(1) was shown by reducing it to vertex cover problenbipartite graphs
and observing that the later problem is well-known to beadole in polynomial time
by matching techniques. Figueresal. in 2005 [12] further showed that BCM¥)
is NP-hard by giving a reduction from the minimum vertex coverigemn on planar,
cubic, 3-connected and triangle-free graphs, which is kntmabeNP-hard [29], to
the BCMV/(2) problem.

In a subsequent paper, Bonizzoni, Della Vedova, Dondi andrM&] showed
some improvements in closing the gaps between the knowrr loswends and upper
bounds on the approximability of variants of the originadlglem proposed in [12].
They showed that, even when each fingerprint contains ordyutvknown positions,
BCMV(2) is APX-hard by giving anL-reduction from minimum vertex cover on
cubic graphs which is known to B&PX-hard. In particular, to prove that BCMY)
is APX-hard, they combined twd.-reductions: the first one from the minimum
vertex cover problem on a gragghto the minimum vertex cover on a graph gadget
G’ and the second one from the minimum vertex cover problem aaphggadget
G’ to BCMV(2).

As the proof of Theorem 2.1 suggests, BCk#Y can be easily formulated as one
of finding aminimum clique partitiorof a graph in the following manner:

1A problem that isAPX-hard cannot be approximated within a factot bf-¢), for some positive constant
€ > 0, in polynomial-time unles® = NP.

vii
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Given a set of fingerprint vectos, define a grapltzr = (F, Er) where two
nodes (fingerprints) are adjacent if and only if they are catibfe.

The graphG'r is known as theompatibility graphof F. Hence BCMV of F
is equivalent to the problem of finding a minimum clique gati (MCP) onGr.
However, it is also well-known that finding MCP of a graph isgeneral arNP-
hard problem. Nonetheless, based on such a reformulatiom,atithors in [11,
12] presented efficient algorithmic approaches for BOQMMVby taking advantage
of some unique properties of the gra@h-, resulting in several results such as the
following.

e There exists a greedy algorithm with an approximation rafianin{1 +
Inn, 2 + p In/} that can be implemented to run @ (nf2?) time. For
p = O(log n) this approximation algorithm runs in polynomial time.

e There exists a polynomial-time heuristics that achievesggomoximation ratio
of 2P,

e They provide a practical greedy heuristics based on itegain building the
largest possible cluster that has a worst-case runningﬂr@e(pQP n2). Since
p is usually small compared toin practice, the running time of the algorithm
is practically efficient. To find a small clique partition 6fr one keeps on
finding uniqguemaximalcliques and removing it from the graph (and updates
the graph accordingly) until no unique maximal cliques carfdund. Then,
a greedy action takes place by removing a maximum clique tfmrgraph
and the same process is repeated until all verticésohave been included in
some clique.

IEBCMV (p) and OEBCMV (p)

These two variants of the original optimization problem§li], introduced in [7],
aim to solve the fingerprint classification problem based lghty different op-
timization criteria. The first variant, termed as the problef inside compatible
clustering with at mosp missing values (IECBMYp) for short) is defined analo-
gously to BCMMp) with the exception that the number of compatible pairs ofwec
within the same clusters is maximized instead of the miratidn of the cardinality
of the partition. The second variant, termed as the probleoutside compatible
clustering with at mosp missing values (OECBM\Yp) for short) is again defined
analogously to BCMVfp) with the exception that now the number of compatible
pairs of vectors belonging to different clusters is miniedz Various results on these
problems that were reported in the papers [7, 12] includédh@wing.

e Itwas shownin [12] that, whem= O(logn), IECMV(p) can be approximated
in polynomial time within a factor 0#??—!, whereas in the special case when
no two compatible vectors havé at the same position OECMY) can be ap-
proximated in polynomial time within a ratio df(l — 2*2”). To obtain these
results, they reduced IECBMY) and the restricted version of OECBMM)
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to special variants of maximum and minimum satisfiabilitpldems which
yielded polynomial-time constant-factor approximatiforsboth problems.

They showed that IECBM{p) can be expressed as a variant of the maxi-
mum satisfiability problem where the Boolean formula is sjuctive normal
form (DNF). By a result of Trevisan [27], the maximum satibfity prob-
lem for DNF formulas with conjunctive clauses of length atstioadmits a
polynomial-time approximation algorithm with an approxition ratio of2* 1
which leads to an approximation ratio 2¥—! for the IECBMV(p) problem.

By taking the negation of the above DNF formula and applyimgNIbrgan’s
laws, they obtained a formulain conjunctive normal form (CNF) with clauses
of length at mosep. Now, the problem of finding the minimum number of
clauses ind that can be simultaneously satisfied is easily seen to beaqunt

to the OECBM\(p) problem. Furthermore, if no two compatible vectors con-
tain N at the same position, then therd id correspondence between satisfied
clauses and compatible pairs of fingerprints that are iedfit clusters. Using
the fact that the problem of minimukisatisfiability admits a polynomial time
approximation algorithm with an approximation ratioQo(fl — 2"“) [6], they
obtained an approximation ratio Bf(l — 2—21’) for the so restricted version
of the OECBMM\p) problem.

e Further improvements of the results of [12] are reported sulasequent pa-
per [7]. Here, they proved that both of these problemsA®®X-hard. The
APX-hardness of IECBMY®) is obtained via arL-reduction from maximum
independent set osrregular graphs which is known to B> X-hard [5], and
their results show that it iSIP-hard to approximate IECBM{2) with a ratio

better tharl + .

On the positive side, these authors presented a fixed-pteatmactable ap-
proximation algorithm whose running time @ (2Pn3€), and achieved an
approximation ratio oR2. Despite the hardness of these restricted versions
of the problem, they also showed that the general clustgringlem on an
unbounded number of missing values such that these misalags/occur for
every fixed position of at most one input fingerprint vecton t& solved in
polynomial time. Finally, they gave a polynomial-time algiom for solving
the BCMV(p) problem for the special case where, for each position of &fing
print vector, there is at most one fingerprint withZsrsymbol in such position.
They denoted such a restriction byBCMV and showed that their proposed
algorithm run inO (n?¢) time.

2.5.2 Experimental Results

The experimental results on simulation and real data detraied that the greedy
heuristics in [11] run faster and perform better (in the eahbf DNA clone classi-
fication) than popular clustering methods such as UPGMA, STBER and CLICK.
If the ratio between the largest and the smallest intensilyes is above some pre-
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specified threshold, the intensity of the clone was coneitlas a missing value, and
the reliability of hybridization intensities were evaledtusing clones spotted twice.
The results on real data from the classification of microfidA clones suggested

that this discrete approach is more accurate than clugtengthods based on real
intensity values in terms of separating clones that hafereifit characteristics with

respect to the given oligonucleotide probes. An importaivaatage of the dis-

crete approach was that binarized fingerprints were esdlgnméproducible whereas
(normalized) real intensity values were generally not.

2.5.3 Open Problems for Future Research

As observed in [7, 12], several open problems remains faréubn the algorithmic
complexity side. For example:

e Is there a constant factor approximation algorithm for OBGAp) in the
general case, and a non-trivial approximation ratio foredseheuristics for
IECMV(p)? Can we discover any non-trivial relationship betweentréus
problem BCM\W{p), IECBMV (p) and OECBM\{p) in terms of their hardness
of approximation? Some experimental works could be hefpfuhis purpose
to develop intuitions about this the special structure efitiput data.

e Naturally, one could relate resolving the fingerprint vesteith construction of
the phylogenetic trees of the corresponding resolved semgse For instance,
a natural objective could be to find an assignment toXhpositions which
will yields phylogenetic trees optimizing a specific evadatary objective¢.g,
perfect phylogeny, phylogenetic tree of minimum size or aimum number
of mutations etc.). After the rDNA clone libraries are caouosted, the clones
can classified by individual hybridization experiments oRAmicroarrays
with a series of short DNA oligonucleotides into clone typesoperational
taxonomic units (OTUs), where an OTU is a set of DNA clonegigkahe
same set of oligonucleotides that have successfully higadd Once classified,
the nucleotide sequence of representative clones from @&dth can then
be obtained by DNA sequencing to provide phylogenetic degtsons of the
microorganisms.
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