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Abstract� We consider two optimization problems with geometric structures� The �rst one con�
cerns the following minimization problem� termed as the rectilinear polygon cover problem� �Cover
certain features of a given rectilinear polygon �possibly with rectilinear holes� with the minimum
number of rectangles included in the polygon�� Depending upon whether one wants to cover the
interior� boundary or corners of the polygon� the problem is termed as the interior� boundary or
corner cover problem� respectively� Most of these problems are known to be NP�complete� In this
chapter we survey some of the important previous results for these problems and provide a proof of
impossibility of a polynomial�time approximation scheme for the interior and boundary cover prob�
lems� The second problem concerns routing in a segmented routing channel� The related problems
are fundamental to routing and design automation for Field Programmable Gate Arrays �FPGAs��
a new type of electrically programmable VLSI� In this chapter we survey the theoretical results
on the combinatorial complexity and algorithm design for segmented channel routing� It is known
that the segmented channel routing problem is in general NP�Complete� E	cient polynomial time
algorithms for a number of important special cases are presented�
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�� Introduction

The problem of covering a certain class of features of a rectilinear polygons with
the minimum number of rectangles belongs to a more general class of geometric
covering and decomposition problems� Depending upon whether one wants to cover
the interior� boundary or corners of the polygon� such a problem is termed as interior�
boundary or corner cover problem� respectively� The rectilinear cover problem has
received particular attention� partly because very little progress has been made in
�nding e�cient algorithms for covering arbitrary polygons with primitive shapes�
and also partly because the rectilinear cover problem has important applications
in storing images����� and in the manufacture of integrated circuits��	�� Also� an
investigation of this problem has given rise to special kinds of perfect graphs of
interest����� Unfortunately� most of these problems are NP
complete in general�
hence there is need to develop e�cient heuristics for these problems� In this chapter
we survey some previous results for these problems and provide proofs of some very
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recent results in this area�
Conventional channel routing ���� concerns the assignment of a set of connections

to tracks within a rectangular region� The tracks are freely customized by the
appropriate mask layers� Even though the channel routing problem is in general
NP
Complete ����� e�cient heuristic algorithms exist and are in common use in
many placement and routing systems� In this chapter we study the more restricted
channel routing problem 
see Fig� ���� where the routing is constrained to use �xed
wiring segments of predetermined lengths and positions within the channel� Such
segmented channels are incorporated in channeled Field Programmable Gate Arrays

FPGAs� ����� In ���� ��� it is demonstrated that a well designed segmented channel
needs only a few tracks more than a freely customized channel� The problem of
segmented channel routing is shown to be NP
Complete in ���� ���� In this chapter
we survey some of the polynomial time algorithms for cases with special geometrical
structures�

The rest of the chapter is organized as follows�
� In Section ��� we state the basic de�nitions and provide a precise statement of

the rectilinear polygon cover problem�
� In Section ��� we state results about the complexity of an exact solution for

most of the above problems�
� In Section ��� we state various approximation heuristics for approximating these

problems�
� In Section ��� we state some results which gives polynomial time solutions for

some special cases of the rectilinear polygon cover problem�
� In Section ��� we prove a result showing the impossibility of having a polynomial


time approximation scheme for the interior and boundary cover problem under
the assumption of P ��NP�

� In Sections ��� and ��� we provide a description of segmented channel routing�
introduce the related optimization problems and survey some of the previous
results�

� In Section ��� we introduce some of the polynomial time algorithms for seg

mented channel routing�

� We conclude in Section � with some open questions about these problems�

�� The Rectilinear Polygon Cover Problems

���� Definitions and Preliminaries

A rectilinear polygon P is a polygon with its sides parallel to the coordinate axes�
Such a polygon may or may not have holes� but if the holes are present they are also
rectilinear� The polygon P is said to be in general position if no three of its vertices
are on the same horizontal or vertical line� In all subsequent discussions we assume
that the given polygon is simple� i� e�� no two non
consecutive edges of the polygon
cross each other�

The corners of the given polygon can be classi�ed into convex� degenerate convex
and concave types� A convex corner is a corner produced by the intersection of two
consecutive sides of the polygon which form a �	� angle inside the interior of the
polygon� A degenerate convex corner is produced by the intersection of two pairs
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of edges forming two �	� angles� The remaining corners are the concave corners�
produced by the intersection of two consecutive edges of the polygon which form a
��	� angle inside the interior of the polygon�

The interior 
resp� boundary� corner� cover problem for a rectilinear polygon of
n vertices is the following minimization problem� �nd a set of 
possibly overlapping�
rectangles of minimum cardinality so that the union of these rectangles covers the
interior 
resp� boundary� corners� of the given polygon� For the corner cover� it
is su�cient that each corner is on the boundary 
possibly a corner� of one of the
rectangles in the given set�

An anti�rectangle set is a set of points inside the given rectilinear polygon such
that no two of them can be covered jointly by one rectangle which does not con

tain a part of the exterior of the polygon� Depending upon whether it is an interior�
boundary or corner cover problem� these points can be placed in the interior� bound

ary or corners only of the given polygon� respectively� If � is the size of a cover for
one of the cover problems� and � is the size of an anti
rectangle set for this cover�
then it is obvious that � � �� When the cover size is minimum and the size of the
anti
rectangle set is maximum� � � � holds for some special cases of the cover prob

lems� However� the equality is not true in general for either the interior� boundary
or corner cover problems� Erd�os asked if ��� � c 
for some positive constant c� for
the interior cover problem for arbitrary rectilinear polygons 
mentioned by Chaiken
et� al����� and the answer is not known yet 
the best known bound is �

�
� log������

Let A be an NP
complete minimization problem and H be a polynomial
time
approximation heuristic for A� We say that H has a performance ratio of c i� for
any instance I of A�

costH 
I� � c � costopt
I�

where costH 
I� 
resp� costopt
I�� denotes the cost of the solution of the instance I
as obtained by H 
resp�� by the optimal algorithm��

For any minimization problem A let copt be the cost of the optimal solution
and capprox be the cost of an approximate solution produced by a heuristic� Let

�n � jcopt�capproxj
copt

be the relative error of the approximate solution for input size

n� A polynomial
time approximation scheme for A is an algorithm that takes as
input an instance of the problem and a constant � � 	� and produces a solution with
�n � � in time polynomial in n���� A more detailed discussion of the related concepts
is available in ��� ����

���� Complexities of Exact Solution

In this section we summarize the previous results about the complexities of exact
solutions for the interior� boundary and corner cover problems�

������ Interior Cover Problem
Masek���� was the �rst to show that the interior cover problem is NP
complete for
rectilinear polygons with holes� For a long time the complexity of this problem was
unknown for polygons without holes� until Culberson and Reckhow��� showed the
interior cover problem is NP
complete even if the polygon has no holes� and even if
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(a) (b)Fig� 
� The sweepline heuristic for the interior cover problem
 �a� The partition phase �b� The
Extend
Delete phase
 The rectangles are shown slightly o�set for clarity


the polygon is required to be in general position� The NP
completeness reduction
of Culberson and Reckhow is quite involved� They reduce the satis�ability problem
to this problem� Given an instance of the satis�ability problem� they construct an
instance of the interior cover problem for polygons without holes such that the inte

rior of the constructed polygon can be covered with a speci�ed number of rectangles
if and only if the given formula is satis�able�

������ Boundary Cover Problem
Conn and O�Rourke��� showed that the boundary cover problem is NP
complete
for polygons with holes� even if the polygon is in general position� As before� the
complexity of the problem for polygons without holes was not known for quite some
time until Culberson and Reckhow��� showed the boundary cover problem is NP

complete even if the polygon has no holes� and even if the polygon is required to be
in general position�

������ Corner Cover Problem
Conn and O�Rourke��� showed that the following version of the corner cover prob

lem is NP
complete� cover each concave corner by two rectangles along both the
perimeter segments de�ning this corner� Using similar techniques� Berman and Das

Gupta��� showed that the corner problem is NP
complete for polygons with holes�
The complexity of the corner cover problem for polygons without holes is still un

known� although it is conjectured to be NP
complete by Conn and O�Rourke����

���� Approximation Heuristics

Because of the hardness of the rectilinear cover problems as stated in the previous
section� it is of importance to consider e�cient heuristics for the problem� Below we
summarize some of the known heuristics for these problems�

������ Interior Cover
Franzblau��� proposed the following sweep
line heuristic for the interior cover prob

lem�
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ALGORITHM Partition�Extend�

Input� Rectilinear polygon P�

Output� Rectangle cover for the interior of P�

� Partition P into a set of disjoint rectangles by extending each horizontal
edge of P 
see �g� �
a���

� Extend each rectangle vertically inside P until it is vertically maximal�
Delete any repeated rectangles 
see �g� �
b���

It is possible to implement the above heuristic so that it runs in O
n logn� time
using standard data structures�

Let cPE 
I� be the number of rectangles used by the above heuristic and copt
I�
be the optimal number of rectangles needed for the cover for an instance I� The
following theorem was proved by Franzblau����

Theorem ����� ��� cPE 
I� � O
copt
I�� log
copt
I����

However� if the given polygon has no holes� then the heuristic performs consid

erably better as shown by the following theorem�

Theorem ����� ��� If the given polygon has no holes then

cPE
I� � ��copt
I� � �

������ Boundary Cover
Berman and DasGupta��� suggested a very simple heuristic for the boundary cover
problem� The following theorem is proved in ����

Theorem ����� ��� It is possible to design a heuristic for the boundary cover prob�
lem which which runs in O
n logn� time and has a performance ratio of ��

������ Corner Cover
Berman and Dasgupta��� suggested the following heuristic for the corner cover prob

lem for polygons with holes�

ALGORITHM Corner Cover�

Input� A rectilinear polygon P � possibly with holes�

Output� A set of rectangles which together cover the corners of P �
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X

Y

Fig� �� X and Y are two vertices of the graph and �X�Y � is an edge

� Form the two sets S and T � S contains� for each horizontal segment e of
P � an adjacent rectangle of width � of maximal horizontal extent 
this
is the principal side for this rectangle�� and T contains� for each vertical
segment e of P � an adjacent rectangle of width � of maximal vertical extent

the principal side is de�ned similarly�� Now� form a bipartite graph G �

S � T�E�� where E � f
y� z� � S � T j principal sides of y and z share a
corner g 
see �g� � for an example�� Construct a minimum vertex cover
R of G using maximummatching� The set of rectangles R constitutes our
approximate cover�

The following theorem was proved in ����

Theorem ����� ��� The performance ratio of the above heuristic is �� It runs in
O
n logn� time�

When the given polygon has no holes� Berman and DasGupta��� designed a new
heuristic for the corner cover problem which runs in time O
n logn� and has a
performance ratio of �� Details of this heuristic are quite involved and available in
����

���� Polynomial Time Solutions for Special Cases

In this section we survey some of the results which provide polynomial time solution
for these problems when the given polygon is restricted�

������ Interior Cover
A rectilinear polygon P is called x
convex 
resp� y
convex� if the intersection of
any horizontal 
resp� vertical� line segment with the interior of P is a connected

possibly empty� segment� A rectilinear polygon is rectilinearly convex i� it is both
x
convex and y
convex� Chaiken et� al���� showed that for the interior cover problem
for a rectilinearly convex polygon � � � 
where � and � are the sizes of maximum
cardinality anti
rectangle set and minimum cardinality interior cover� respectively��
and use this to provide a polynomial time solution to the interior cover problem for
this special case� The result was further extended by Franzblau and Kleitman���
who proved a similar result when the polygon is just y
convex� Lubiw���� ��� gives
polynomial time algorithms for the interior cover problem for a slightly more general
class of polygons�
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������ Boundary Cover
Using matching techniques in graphs� Conn and O�Rourke��� gives an O
n

�
� � time

algorithm for covering the horizontal boundary segments of a polygon P provided P
is in general position� The same result can be used to devise an O
n

�
� � time heuristic

for the boundary cover of a polygon P which has a performance ratio of � provided
P is in general position�

������ Corner Cover
Conn and O�Rourke��� presented an O
n

�
� � time algorithm for covering the convex

vertices of a given polygon P optimally� However� this algorithm does not generalize
to covering the concave corners of P �

���� Impossibility of Approximation Schemes

In this section we show that the vertex cover problem for graphs in which the degree
of any vertex is bounded by a constant B can be reduced to the interior or boundary
cover problems preserving the nature of approximation� Due to a recent result of
Arora et al���� this shows that a polynomial time approximation scheme for these
covering problems is impossible� unless P � NP �

Let 
F� P � and 
G�Q� be two combinatorial optimization problems where F and
G are the cost functions and P and Q are the feasibility predicates� Let optF�P 
x�
and optG�Q
x� be the optimal cost values for an instance x and quality
a� b� �
max

�
a�b
b
� b�a

a

�
for positive integers a and b� We say 
F� P � can be reduced to


G�Q� preserving approximation��� with ampli�cation c if and only if there exists
two deterministic polynomial time algorithms T� and T� and a positive constant c
such that for all x and y� if �x � T�
x� then

��� Q
�x� y�� P 
x� T�
�x� y��� and

��� if Q
�x� y� then quality
optF�P 
x�� F 
T�
�x� y��� � c
quality
optG�Q
�x�� G
y����

This reduction ensures that an approximation G will result in an equally good
approximation of F�

The bounded�degree vertex cover problem for graphs is as follows�

INSTANCE� An undirected graph G � 
V�E� with every vertex of degree at most
some constant B� and a positive integer K�

QUESTION� Is there a subset V � � V � j V � j� K� such that for every edge
fu� vg � E� either u � V � or v � V ��

Culberson and Reckhow��� showed the NP
hardness of the rectilinear cover prob

lem without holes by reducing the �
SAT problem to this problem� However� their
reduction is not approximation preserving since it introduces quadratically many
rectangles in the optimal solution and hence does not preserve the approximation
quality in the sense described above� Here� we show how to reduce the bounded

degree vertex cover problem to the interior or boundary cover problems preserving
the approximation nature� We �rst consider the interior cover problem�
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.    .   .  .
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..........
vertex 1 vertex 2 vertex n

beam
rectangle

Translation stage (stage 0)

edge 1 edge 2 edge e

Permutation stages (stage 1,2,...,p)

Translation stage (stage   p+1)

Fig� �� The overall scheme

beam
machines

uncovered
squares

notch

(a)

(b)

Fig� 
� �a� A vertex gadget and its background covers and uncovered squares
 �b� A beam machine
and its two optimal covers
 The uncovered square near its mouth is shown by thick lines


The overall scheme of our approach is shown in �g� �� We use a gadget for every
vertex� Beams 
rectangles� coming out of a gadget indicate that this vertex partici

pates in vertex cover� The beams are �rst translated� then permuted appropriately�
again translated and �nally enter the edge
gadgets� Each edge gadget is coupled
with two beams and represents an edge between the two vertices which correspond
to the two beams�

Now� we describe each component in details�

Vertex gadget� The vertex gadget is shown in full details in �g� �
a�� It consists
of B beam machines when B is the degree of this vertex 
B � � in the �gure��
Each beam machine can be covered optimally with � rectangles with only one
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input beams

(a) (b)

Fig� �� �a� An edge gadget
 �b� Its two optimal covers


rectangle extending through its mouth in horizontal or vertical direction 
see �g�
�
b��� and in each of these two optimal covers there is an uncovered square near
the mouth of the machine 
shown in �g� �
b��� There is one additional beam
machine at bottom right� and a notch at the extreme left bottom� which forces
this beam machine to use its horizontal beam� The background of this gadget
can be covered optimally with �B � � rectangles� thus leaving out B uncovered
squares 
�g� �
a��� These squares can be covered by the horizontal beams of B
beam machines in an optimal cover� or by one more additional rectangle in a
non
optimal cover� This structure has the following properties�

�a� There is an optimal cover of this gadget with �B � � rectangles when no
beam from any of the beam machines is �used� 
i� e�� extends vertically
downwards�� This corresponds to the case when this vertex does not par

ticipate in a vertex cover�

�b� If a beam from any beammachine extends vertically downwards then �B��
rectangles are necessary and su�cient to cover this gadget� The same
property holds when more than one beam from one or more beam machines
extends vertically downwards� This corresponds to the case when this
vertex participates in a vertex cover�

For each of the covers described above� it is also possible to place an equal
number of anti
rectangle points in the interior of the polygon�

Edge gadget� This gadget is shown in �g� �� If either of its two input beams are
used then it can be covered optimally with � rectangles� otherwise it requires
at least � rectangles� This is same as the inverter structure in����

Translation stage� It consists of e pairs of joints��� where e is the number of edges
in the graph� A pair of joint rectangles is an aligned pair of beam machines 
�g�
��� If the �incoming� beam for the left polygon of the joint is present 
i� e� �
the corresponding edge is present� then the �outgoing� beam from the right
polygon of the joint should be used for optimal cover� otherwise the common
horizontal rectangle between should be used� The unique background cover for
this stage 
covering the staircases with the uncovered squares at the mouth of
the joint polygons 
refer to �g� �
b� for such uncovered squares�� involves �e
rectangles and is shown in �g� �
b�� This is a slightly simpli�ed version of the
joint structure in Culberson and Reckhow���� There are two translation stages�
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left-side
beam machines

incoming
beams

joint
rectangles

right-side
beam machines

outgoing
beams

(b)(a)

Fig� �� �a� A translation stage for � beams
 �b� Its background covers


first
beam

i-th  beam in the
required permutation

i+1-th beam in the
required permutation

last beam

i-th
stage

i+1-th stage

(a) (b)

permuted 
beam for the
i-th position
of the
permutation

Fig� �� �a� A permutation stage
 �b� The beam which is permuted is shown


They are used to allow the optimal covering of permutation stages not to a�ect
the vertex gadgets and the edge gadgets�

Permutation stage� There are at most p � �e permutation stages when e is the
number of edges in the graph� These are needed because the order in which
the beams come out of the vertex gadgets is not necessarily the same as they
should arrive at the edge gadgets� Each stage consists of staircases and holes
as shown in �g� �
a�� In stage i we put the ith beam from left �in the required
permutation� in its correct place and so the boundary of the polygon is always
visible from the right
side hole� The right
side hole is placed so that it makes
impossible the right
staircases of the previous stages to be covered by any rect

angle which covers optimally the background this or later stages� If a beam is
present and covers one notch of the left
side hole� the vertical beam of the beam
machine at the right is used for the optimal cover� otherwise� for optimal cover�
the horizontal beam of this beam machine covers the notch of the right
side hole

and� so� its vertical beam cannot be used for optimal cover�� In all we need �
rectangles to cover each stage� because� there are � anti
rectangle points� and
none of these can be covered by rectangles covering those of previous or later
stages� The left
side hole can be merged with the boundary for stage n� The
details are given in a lemma below�
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X X

Fig� �� Joining vertex gadgets �for a graph having � vertices� to the translation stage
�anti�rectangle points marked by X�


The proofs of the following lemma follow from the above discussion�

Lemma ����� A vertex gadget can be covered optimally only if all of its beam rect�
angles are not �used	�

Lemma ����� The part of the polygon connecting the vertex gadgets to the transla�
tion stage needs v rectangles to cover it independent of the cover of any other stage
or gadgets� where v is the number of vertices of the graph and these rectangles do
not in
uence the optimal cover of the total polygon�

Proof� We can place anti
rectangle points at each joints of vertex gadgets to the
translation stage� and none of these anti
rectangle points can be covered together
with those in the covers of the vertex gadgets� the translation stage or any other
stages 
see �g� ����

The proofs of the following two lemmas are straightforward from the discussion
above�

Lemma ����� For each translation stage the following are true�

�a� It requires �e rectangles to cover its staircases along with the mouth of the joint
polygons �i� e�� its background
�

�b� If the incoming beam to the left�side polygon is present� then for optimal cover
the outgoing beam of the right�side polygon should be present� However� if the
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left
staircase

n  1

n  2 n  3

right staircase

Fig� �� Permutation stages
 The incoming beam is shown to be present


input beam is not present� then for optimal cover the joint rectangle must be
present�

�c� The joint polygons can always be covered optimally� if the rule of �b
 above is
followed�

�d� The optimal cover of the background of this stage cannot be a�ected by a rect�
angle that participates in an optimal cover of vertex or edge gadgets or other
stages�

Lemma ����� Consider the ith permutation stage �stage i
� Then the following are
true ��g� �
�

�a� Stage i has � anti�rectangle points �for its background cover
 which cannot be
covered together with those of any other stage� Also� � rectangles are su�cient
to cover background of stage i�

�b� Let the two notches of the left hole be n� and n� and that of right hole be n��
Then�

�i� if n� is covered by the incoming beam� then for optimal cover n�� n� and the
three left staircases must be covered by rectangles which cover the � right
staircases and hence the right�side beam machine can send out its vertical
beam�
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Translation stage
(stage 2e+1)

first
edge gadget

second
edge gadget

X background
of edge gadget

Fig� 
�� Edge gadgets for a graph having � edges
 The anti�rectangle point in the background
cover of the edge is shown by X


�ii� if n� is not covered by the incoming beam� then for optimal cover notches
n�� n� and the three left staircases must be covered by the rectangles which
cover the � right staircases and n� is covered by the horizontal beam of the
beam machine �and hence the outgoing beam is absent
�

�c� Anti�rectangle points for covering the background of stage i cannot be covered
together with those of any other stage�

�d� The stage i places the ith beam from the left in the required permutation into its
correct position�

Lemma ����� The background of the edge gadget needs � rectangle to cover opti�
mally independent of any other stage� This optimal cover of the background of the
edge gadgets is not in
uenced by the covering rectangles of the previous stages� If
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an edge gadget gets one or two incoming beams� it needs only � more rectangles to
cover it�

Proof� Rectangles covering vertex gadgets or stages � to �e cannot extend to the
edge gadget� The beam rectangles in stage �e� � can extend to cover edge gadgets

see �g� �	�� but these rectangles cannot take part in the optimal cover of the
background of stage �e � �� One rectangle is su�cient to cover the background of
the edge gadget� and the corresponding anti
rectangle point is shown in �g� �	� �

Lemma ����	 Any covering of the polygon �corresponding to a given graph
 can be
transformed in polynomial time �in the size of the given graph
 to another cover with
the following properties without increasing the number of covering rectangles�

�a� Either all the beams of a vertex gadget are used or none is used�

�b� Each edge gadget uses at least one of its two beams from the previous translation
stage �and hence needs � additional rectangles for its optimal cover
�

�c� The background of the vertex gadgets� translation stages� permutation stages and
edge gadgets are covered with the optimal number of rectangles�

Proof�

�a� If only some beams are used for a vertex gadget we can as well use all the beam
rectangles without increasing the number of rectangles for the vertex gadget�
Then� we keep moving from one stage to another till we arrive at the edge
gadget� turning the joint rectangle of each stage o� and using the incoming and
outgoing beam rectangles 
if this was not the case� the cover for a particular
stage was not optimal and we actually improve� refer to lemma ������ �������
Surely we do not use more rectangles at the edge gadget 
we will improve if it
had no incoming beam rectangles��

�b� Assume this is not the case� We keep moving from the edge gadget through
successive stages towards the vertex gadgets in a manner similar to as described
in 
a� above 
we arbitrarily turn on one of the two beams of the edge gadget�� We
may use one more rectangle at the vertex gadget� if it was not using its beams�
but the gain of one rectangle at the corresponding edge gadget compensates�

�c� Once we have done the transformations needed for parts 
a� and 
b� above� we
can select the necessary background covers depending on whether the incoming
beams of a particular stage are used or not as outlined in lemma ������ �����

part 
a��� ����� and ������ since the optimal covers of these parts of the polygon
are independent of each other and depends only on the presence or absence of
the beam rectangles�

It is obvious that traversal in 
a�� 
b� or 
c� above takes polynomial time��
Using lemmas ������ ������ ������ ����� and ������ and the properties of the gadgets�

it is possible to prove the following lemma 
see ��� for a proof��
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Lemma ����
 Let G � 
V�E� be a graph in which the degree of any vertex is at most
a constant B � 	 and P be the polygon constructed from it by the above procedure�
Let the number of permutation stages needed be p �p � B	 j V j
� Then� the following
holds�

�a� A minimal vertex cover of G of size m corresponds to a rectilinear cover of P
of size at most �		 j E j ��� 	 p� 
� 	B � ��	 j V j �m � ��

�b� A rectilinear cover of P� after the transformation as outlined in lemma ������
of size � corresponds to a minimal vertex cover of size at least � � 
�		 j E j
��� 	 p� 
� 	B � ��	 j V j ����

Theorem ����� The reduction of the vertex cover problem to the rectilinear cover
problem as outlined above is approximation preserving�

Proof� T� is the transformation needed to construct the polygon using gadgets as
outlined above� The transformation T� consists of the following�

�a� Modify the cover as outlined in lemma ������

�b� Select a vertex in the vertex cover if and only if the corresponding gadget in the
polygon uses all its beam rectangles�

The quality constraint for the reduction follows from lemma ����� above� and the
fact that p � �	 j E j� B	 j V j� �

Hence� we have proved the following result�

Theorem ����� No polynomial�time approximation scheme exists for the interior
cover problem� unless P�NP�

A careful examination of our construction shows that all the results hold for
boundary cover also� in particular we can always place all the anti
rectangle points
on the boundary of the polygon� Hence� we also prove the following result�

Theorem ����� No polynomial�time approximation scheme exists for the boundary
cover problem� unless P�NP�

�� Segmented Channel Routing

���� Motivation

The architecture of channeled FPGAs ���� is similar to that of conventional 
mask
programmed� gate arrays� comprising rows of logic cells separated by segmented
routing channels 
Fig� ���� The inputs and outputs of the cells each connect to
a dedicated vertical segment� Programmable switches are located at each crossing
of vertical and horizontal segments and also between pairs of adjacent horizontal
segments in the same track� By programming a switch� a low resistance path is
created between the two crossing or adjoining segments�
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Fig� 

� FPGA routing architecture� � denotes a programmed switch� unprogrammed switches
are omitted for clarity�

A typical example of routing in a channeled FPGA is shown in Fig� ��� The
vertical segment connected to the output of cell � is connected by a programmed
switch to a horizontal segment� which in turn is connected to the input of cell �
through another programmed switch� In order to reach the inputs of cells � and ��
two adjacent horizontal segments are connected to form a longer one�

The choice of the wiring segment lengths in a segmented channel is driven by
tradeo�s involving the number of tracks� the resistance of the switches� and the
capacitances of the segments� These tradeo�s are illustrated in Fig� ���

Fig� ��
a� shows a set of connections to be routed� With the complete freedom to
con�gure the wiring a�orded by mask programming� the left edge algorithm ���� will
always �nd a routing using a number of tracks equal to the density of the connections

Fig� ��
b��� This is the case since there are no �vertical constraints� in the problems
we consider�

In an FPGA� achieving this complete freedom would require switches at every
cross point� Furthermore� switches would be needed between each two cross points
along a wiring track so that the track could be subdivided into segments of arbi

trary length 
Fig� ��
c��� Since all present technologies o�er switches with signi�cant
resistance and capacitance� this would cause unacceptable delays through the rout

ing� Another alternative would be to provide a number of continuous tracks large
enough to accommodate all nets 
Fig� ��
d��� Though the resistance is limited� the
capacitance problem is only compounded� and the area is excessive�



�� BHASKAR DASGUPTA AND VWANI ROYCHOWDHURY

A segmented routing channel o�ers an intermediate approach� The tracks are
divided into segments of varying lengths 
Fig� ��
e��� allowing each connection to
be routed using a single segment of the appropriate size� Greater routing  exibility
is obtained by allowing limited numbers of adjacent segments in the same track to
be joined end
to
end by switches 
Fig� ��
f��� Enforcement of simple limits on the
number of segments joined or their total length guarantees that the delay will not
be unduly increased� Our results apply to the models of Fig� ��
e� and Fig� ��
f��

In Section ��� we formally de�ne segmented channel routing and summarize the
key results� Details of some of the algorithms are given in Section ����

���� Definitions and Survey of Results

The input to a segmented channel routing problem� as depicted in Fig� ��� is a
segmented channel consisting of a set T �of T tracks� and a set C of M connections�
The tracks are numbered from � to T � Each track extends from column � to column
N � and is divided into a set of contiguous segments separated by switches� The
switches are placed between two consecutive columns�

For each segment s� we de�ne left
s� and right
s� to be the leftmost and right

most column in which the segment is present� � � left
s� � right
s� � N � Each
connection ci� � � i � M � is characterized by its left
most and right
most column�
left
ci� and right
ci�� Without loss of generality� we assume throughout that the
connections have been sorted so that left
ci� � left
cj � for i � j�

A connection c may be assigned to a track t� in which case the segments in
track t that are present in the columns spanned by the connection are considered
occupied� More precisely� a segment s in track t is occupied by the connection c if
right
s� � left
c� and left
s� � right
c�� In Fig� �� for example� connection c�
would occupy segments s�� and s�� in track � or segment s�� in track ��

De�nition ����� �Routing�
A routing� R� of a set of connections is an assignment of each connection to a track
such that no segment is occupied by more than one connection�
A K�segment routing is a routing that satis�es the additional requirement that
each connection occupies at most K segments�

We can now de�ne the following segmented channel routing problems�

Problem ����� �Unlimited Segment Routing� Given a set of connections
and a segmented channel� �nd a routing�

To reduce the delay through assigned connections� it may be desirable to limit the
number of segments used for each connection�

Problem ����� �K�Segment Routing� Given a set of connections and a seg

mented channel� �nd a K
segment routing�

It is often desirable to determine a routing that is optimal with respect to some
criterion� We may thus specify a weight w
c� t� for the assignment of connection c
to track t� and de�ne�



TWO GEOMETRIC OPTIMIZATION PROBLEMS ��

1 12 23 3 4 4

f.   Segmented  for  2-segment  routing.

e.   Segmented  for  1-segment  routing.

c.   Routing  in  fully  segmented  channels.

b.   Routing  in  unconstrained  channels.

a.   Set  of  connections  to  be  routed.

c4c3

c2

c1

4433 22 11

1 12 23 3 4 4

d.   Routing  in  unsegmented  channel.

4433 22 11

4433 22 11

Fig� 
�� Examples of channel routing� � denotes open switch� � closed switch�
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�� An example of a segmented channel and a set of connections� M � �� T � �� N � ��
Connections� c�� c�� c�� c�� c� � Segments� s��� s��� s��� s��� s��� s��� s��� s���

Problem ����� �Optimal Routing� Given a set of connections and a seg

mented channel� �nd a routing which assigns each connection ci to a track ti such

that
MX

i��

w
ci� ti� is minimized�

For example� a reasonable choice for w
c� t� would be the sum of the lengths of the
segments occupied when connection c is assigned to track t� Note also that with
appropriate choice of w
c� t�� Problem ����� subsumes Problem ������

The problems de�ned above consider segmented channel routing with the restric

tion that each connection may only be assigned to a single track� It is easy to see
that the routing capacity of a segmented channel may be increased if a connection
is assigned to segments in di�erent tracks� For example� consider the segmented
channel routing problem in Fig� ��� It can be easily shown that if the assignment
of each connection is constrained to a single track successful routing does not exist�
However� by assigning connection c� to segments s�� and s��� which are located in
tracks t� and t�� successful routing may be achieved� We refer to such a routing as
generalized routing�

De�nition ����� �Generalized Routing�
A generalized routing� RG� of a set of connections consists of an assignment of each
connection to one or more tracks such that no segment is occupied by more than
one connection�

Thus a generalized routing allows each connection c � 
left
c�� right
c�� to be split
into p 
p � �� parts� 
left
c�� l��� 
l���� l��� 
l���� l��� 	 	 	 � 
lp����� right
c��� such
that each part can be assigned to di�erent tracks� A column li� where a connection
is split� is referred to as a column where the connection c changes tracks�

Detailed hardware implementations may be developed to support generalized
routing� For example� vertical wire segments may be added to facilitate track chang

ing� In this case if a connection changes tracks� two switches must be programmed
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� An example where generalized routing is necessary for successful assignment�

compared to only one if the connection is assigned to two contiguous segments in
the same track� Thus allowing connections to occupy multiple tracks might lead to
increase in area and to greater delays�

Motivated by such penalties� constraints may be imposed on the generalized
segmented channel routing problem leading to the following potentially important
special cases�
�� Determine a generalized routing that uses at most k segments for routing any
particular connection�
�� Determine a generalized routing that uses at most l di�erent tracks for routing
any connection�
�� Determine a generalized routing where connections can switch tracks only at
predetermined columns�

Preliminary results on the following unconstrained version of generalized seg

mented channel routing problem is presented in �����

Problem ����� �Generalized Segmented Channel Routing� Given a set of
connections and a segmented channel� �nd a generalized routing�

In ���� the following results are presented�

Theorem ����� Determining a solution to Problem ����� is strongly NP
complete�

Theorem ����� Determining a solution to Problem ����� is strongly NP
complete
even when K � ��

The reductions used to prove these theorems are rather tricky� and may have appli

cations to problems in the area of task
scheduling on non
uniform processors�

Although Theorems ����� and ����� show that segmented channel routing is in
general NP
complete� several special cases of the problem are tractable� In this
chapter we present polynomial
time algorithms for the following special cases�
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Identically Segmented Tracks� Two tracks will be de�ned to be identically
segmented if they have switches at the same locations� and hence� segments of the
same length� The left edge algorithm used for conventional channel routing can be
applied to solve Problems ������ ������ and ������
��Segment Routing� A routing can be determined by a linear time 
O
MT ��
greedy algorithm that exploits the geometry of the problem� The corresponding
optimization problem can be also solved in polynomial time by reducing it to a
weighted maximum bipartite matching problem�
At Most ��Segments Per Track� If each track is segmented into at most two
segments then also a greedy linear time algorithm 
similar to the one for �
Segment
routing� can be designed to determine a routing�

We have also developed a general O
T !M �
time algorithm using dynamic pro

gramming for solving Problems ������ ������ and ������ This general algorithm can
be adapted to yield more e�cient algorithms for the following cases�
Fixed Number of Tracks� If the number of tracks is �xed then the general
algorithm directly yields a polynomial time algorithm�
K�segment Routing� The general algorithm can be modi�ed to yield an O

K�
��TM �
time algorithm� Note that for small values of K the modi�ed algorithm
performs better than the general one�
Fixed types of Tracks� If the number of tracks is unbounded but the tracks
are chosen from a �xed set� where Ti is the number of tracks of type i� then an

O


lY

�

TK	�
i �M � time 
hence� a polynomial
time� algorithm can be designed�

���� Algorithms

In this section we present algorithms for various special cases of Problems �����
������
We �rst discuss algorithms that exploit the geometry of the segmented channels�
We then discuss a general algorithm based on dynamic programming� Finally we
discuss a heuristic algorithm 
based on linear programming� that appears to work
surprisingly well in practice�

������ Geometrical Algorithms

Identically Segmented Tracks
If all tracks are identically segmented 
i�e�� the locations of the switches are the
same in every track�� then Problems ����� and ����� can be solved by the left edge
algorithm ���� in timeO
MT �� Assign the connections in order of increasing left ends
as follows� assign each connection to the �rst track in which none of the segments
it would occupy are yet occupied�

Note that the density of the connections does not provide an upper bound on the
number of tracks required for routing 
as is the case for conventional routing when
the left edge algorithm is used in the absence of vertical constraints�� However� if
prior to computing the density� the ends of each connection are extended until a
column adjacent to a switch is reached� then the density would be a valid upper
bound�
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��Segment Routing
If we restrict consideration to �
segment routings� Problem ����� can be solved by
the following greedy algorithm�

The connections are assigned in order of increasing left ends as follows� For
each connection� �nd the set of tracks in which the connection would occupy one
segment� Eliminate any tracks where this segment is already occupied� From
among the remaining tracks� choose one where the unoccupied segment�s right
end is closest to the left 
i�e� the right end coordinate of the segment in the
chosen track is the smallest� and assign the connection to it� If there is a tie�
then it is broken arbitrarily� In the example of Fig� ��� the algorithm assigns c�
to s��� c� to s��� c� to s��� c� to s��� and c� to s��� The time required is O
MT ��

Next we show that if some connection cannot be assigned to any track� then no
complete routing is possible� The proof of the following theorem can be found in
�����

Theorem ����� The above algorithm solves Problem ����� if K � ��

For �
segment routing� Problem ����� may be solved e�ciently by reducing it to
a bipartite matching problem� The underlying bipartite graph can be constructed
as follows� the left side has a node for each connection and the right side a node
for each segment� An edge is present between a connection and a segment if the
connection can be assigned to the segment�s track� The weight w
c� t� is assigned
to the edge between connection c and a segment in track t� A minimum
weight
matching indicates an optimal routing� The time required using the best known
matching algorithm 
see ����� is O
V ��� where V � M �NT is the number of nodes�

At Most ��Segments Per Track
In a track with �
segments� the �rst segment from the left will be referred to as the
initial segment and the next one will be referred to as the end segment� If the track
is unsegmented� i�e� it has only one segment� then for our purposes we will refer to
the only segment as an end segment�

The following greedy algorithm� which is similar to the one for �
Segment routing�
can be used to determine a solution to Problem ������

The connections are assigned in order of increasing left ends 
ties are resolved
arbitrarily�� During the execution of the algorithm a track will be considered as
unoccupied if no connection has been assigned to it�

Now for each connection� determine the set of tracks in which the connection
would occupy a single segment� Eliminate any track where this segment is al

ready occupied� Now consider the following two cases�
Case �� If no track is available 
i�e� after the above mentioned elimination of
tracks� then append the connection to the pool� P � of unassigned 
but already
examined� connections�
Case �� If tracks are available then assign the connection to a track where the
unoccupied segment�s right end is closest to the left 
i�e� the right end coordi

nate of the segment in the chosen track is the smallest�� If more than one track
quali�es then the tie is broken arbitrarily�
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Next� if jP j 
i�e� the number of unassigned� but already examined� connections�
equals the number of tracks unoccupied by any connection� then assign the con

nections in P to these unoccupied tracks in any order� mark these tracks as
occupied� and remove the assigned connections from P � Else� if jP j is greater
than the number of such unoccupied tracks then stop� and signal that no valid
routing is possible�
Continue with the next connection�
When� all the connections are examined and pool P is non
empty then assign
the connections in P to unoccupied tracks�

Theorem ����� The above mentioned algorithm determines a routing� if there
exists one� for the case where every track has at most two segments�

A proof for the above theorem is outlined in �����

������ A General Algorithm for Determining Routing
Although the problem of determining a routing for a given segmented channel and
a set of connections is in general NP
complete� we describe below an algorithm that
�nds a routing in time linear inM 
the number of connections� when T 
the number
of tracks� is �xed� This is of interest since T is often substantially less than M � The
algorithm may also be quite e�cient when there are many tracks� but they are
segmented in a limited number of ways 
see Theorem � below�� The algorithm �rst
constructs a data structure called an assignment graph and then reads a valid routing
from it� The same algorithm applies to both Problems ����� and ������ though with
di�erent time and memory bounds� It can also be extended to Problem ������

Frontiers and the Assignment Graph
Given a valid routing for connections c� through ci� it is possible to de�ne a fron�
tier which constitutes su�cient information to determine how the routing of c����ci
may be extended to include an assignment of ci	� to a track such that no segment
occupied by any of c� through ci will also be occupied by ci	�� Fig� �� shows an
example of a frontier� It will be apparent that ci	� may be assigned to any track
t in which the frontier has not advanced past the left end of ci	�� For example� in
Fig� �� connection c� can be assigned to track t� but not to track t��

More precisely� given a valid routing of c�� 	 	 	 � ci� � � i � M � de�ne the frontier x
to be a T 
tuple 
x���� x���� ���� x�T �� where x�j� is the leftmost unoccupied column in
track tj at or to the right of column left
ci	��� 
A column in track tj is considered
unoccupied if the segment present in the column is not occupied�� The frontier
is thus a function x � Fi
tc� � 	 	 	 � tci� of the tracks tc� � 	 	 	 � tci to which c����ci are
respectively assigned� For i � 	� let x � F
� where F
�t� � left
c�� for all t� For
i � M � let x � FM � where FM �t� � N � � for all t�

Next� we describe a graph called the assignment graph which is used to keep track
of partial routings and the corresponding frontiers� A node at level i� � � i � M � of
the assignment graph corresponds to a frontier resulting from some valid routing of
c� through ci� Level 	 of the graph contains the root node� which corresponds to F
�
If a complete valid routing for c�� 	 	 	 � cM exists� then level M of the graph contains
a single node corresponding to FM � Otherwise� level M is empty�
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The assignment graph is constructed inductively� Given level i � 	 of the graph�
construct level i � � as follows� 
For convenience� we identify the node by the
corresponding frontier��

For each node xi in level i f

For each track tj	 � � j � T f

If xi
j� � left
ci��� f

�� ci�� can be assigned to track tj� ��

Let xi�� be the new frontier after ci�� is assigned to track t�

If xi�� is not yet in level i� � f

Add node xi�� to level i� ��

Add an edge from node xi to node xi��� Label it with
tj�

g

g

Else f

�� xi
j� � left
ci��� so ci�� cannot be assigned to track tj� ��

Continue to next track tj���

g

g

g

If there are no nodes added at level i� �� then there is no valid assignment of c�
through ci	��

Searching for the node xi	� in level i� � can be done in O
T � time using a hash
table� Insertion of a new node in the table likewise requires time O
T ��

If there are a maximum of L nodes at each level� then construction of the entire
assignment graph requires time O
MLT ��� Once the assignment graph has been
constructed� a valid routing may be found by tracing a path from the node at level
M back to the root� reading the track assignment from the edge labels� 
If there is no
node at level M � then no complete valid assignment exists�� This takes only O
M �
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time� so the overall time for the algorithm is O
MLT ��� The memory required to
store the assignment graph is O
MLT ��

A minor change allows us to solve the optimization problem as well� Each edge
is labeled with the weight w
c� tc� of the corresponding assignment� Each node is
labeled with the weight of its parent node plus the weight of the incoming edge� The
algorithm is modi�ed as follows� If a search in level i � � �nds that the new node
xi	� already exists� we examine its weight relative to the weight of node xi plus
w
ci	�� tci���� If the latter is smaller� we replace the edge entering xi	� with one
from xi and update the weights accordingly� Thus the path traced back from the
node at level M will correspond to a minimal weight routing� The order of growth
of the algorithm�s time remains the same� as does that of its memory�

Analysis for Unlimited Segment Routing
The following theorem shows that for unlimited segment routing� L � � T !� so
that the time to construct the assignment graph and �nd an optimal routing is
O
M T � T !� and the memory required is O
M T T !�� A proof of the theorem can
be found in �����

Theorem ����� For unlimited segment routing� the number of distinct frontiers
that may occur for some valid assignment of c� through ci is at most � T !�

Analysis for K�Segment Routing
The following theorem shows that for K
segment routing� L � 
K���T � so that the
time to construct the assignment graph and �nd an optimal routing is O
MT �
K �
��T � and the memory required is O
MT 
K � ��T � 
see ���� for a proof��

Theorem ����� for K
segment routing� the number of distinct frontiers that may
occur for some valid routing of c� through ci is at most 
K � ��T �

Case of Many Tracks of a Few Types
Suppose the T tracks fall into two types� with all tracks of each type segmented
identically� Then two frontiers that di�er only by a permutation among the tracks
of each type may be considered equivalent for our purposes in that one frontier can
be a precursor of a complete routing if and only if the other can� Thus we can
restrict consideration to only one of each set of equivalent frontiers� and strengthen
the result of Theorem � as follows�

Theorem ����� Suppose there are T� tracks segmented in one way� and T� �
T � T� segmented another way� The number of distinct frontiers x that may occur
for some valid K
segment routing of c� through ci� and that satisfy x�i� � x�j� for
all i � j with tracks ti and tj of the same type� is O

T�T��K��

A proof for the above theorem can be found in ����� It follows that a K
segment
routing may be found in time O
M 
T�T��

KT ��� and memory O
M 
T�T��
KT �� The

result of Theorem ����� may easily be generalized to the case of l types of tracks� in

which case the time is O
M 

lY

�

TK
i ��� and the memory is O
M 


lY

�

TK
i �T ��
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������ A Linear Programming Approach
Problems ����� and ����� can be reduced to 	"� Linear Programming 
LP� problems
via a straight
forward reduction procedure� The 	"� LP is in general NP
Complete�
For our purposes� however� such a reduction is interesting because simulations in
���� showed that for almost all cases the corresponding 	"� LP problems could be
solved by viewing them as ordinary LP problems for which e�cient algorithms are
known�

We now brie y describe the reduction procedure for Problem ������ The cor

responding reduction for Problem ����� follows after minor modi�cations� Let us
de�ne binary variables xij� for � � i � M � and � � j � T � as follows� if xij � ��
then connection ci is assigned to track tj � else if xij � 	� then connection ci is not
assigned to track tj � Since in a routing each connection is assigned to at most one
track� one has the following constraints�

TX

j��

xij � �� 
 � � i �M

One also has to make sure that in any routing two connections assigned to the same
track must not share a segment� Consider a track tj � one can then easily determine
sets of connections Pj�� 	 	 	 � Pjlj 
not necessarily disjoint� such that at most one from
each set can be assigned to the track tj� Hence for each such set Pjk� one must satisfy

X

ci�Pjk

xij � �

Finally� one must make sure that all the connections are routed� this can be ensured
by maximizing the following objective function�

MX

i��

TX

j��

xij

One can now easily verify that the above 	� � LP�s objective function achieves the
value of M if and only if there is a solution to Problem ����� �����

�� Conclusion and Open Problems

We have discussed some of the important results for the rectilinear polygon cover
problems� However� the following problems still remain open and may be worth
investigating further�
� Can we prove a better upper bound for the performance ratio of the sweepline

heuristic 
or any other heuristic� for the interior cover problem for polygons with
holes� There is currently no example known in which the sweepline heuristic
has a performance ratio more than ��

� Prove or disprove if �
�
� c for some positive constant c for the interior cover

problem�
� Prove or disprove that the corner cover problem is NP
complete for rectilinear

polygons without holes�
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We have also introduced problems concerning the design and routing for seg

mented channels� There are several open issues in this new area of routing� For
example� although e�cient algorithms for many special cases of the routing problem
have been developed� several other interesting cases are yet to be solved� following
are some relevant ones� �� connection lengths are bounded� and �� connections are
non
overlapping� An important open problem is to develop e�cient algorithms for
approximate segmented channel routing� Also� e�cient algorithms for the general

ized routing problems are not known�
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