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Abstract

We consider the problem of reporting the pairwise
enclosures in a set of n axes-parallel rectangles in
IR?, which is equivalent to reporting dominance
pairs in a set of n points in IR*. Over a decade ago,
Lee and Preparata [LP82] gave an O(nlog®n+k)—
time and O(n)-space algorithm for these problems,
where k is the number of reported pairs. Since that
time, the question of whether there is a faster al-
gorithm has remained an intriguing open problem.

In this paper, we give an algorithm which runs
in O(nlognloglogn + kloglogn) time and uses
O(n) space. Thus, although our result is not a
strict improvement over the Lee—Preparata algo-
rithm for the full range of k, it is, nevertheless, the
first result since [LP82] to make any progress on
this long—standing open problem. Our algorithm is
based on the divide—and—conquer paradigm. The

Department of Computer Science, TUniversity of
Minnesota, Minneapolis, MN 55455, U.S.A. E-mail:
{pgupta, janardan}@cs.umn.edu.

The research of these authors was supported in part by
NSF grant CCR-92-00270. Part of this work was done while
PG was visiting the Max-Planck-Institut fiir Informatik. PG
thanks the MPI and the International Computer Science In-
stitute for partial support.

Max-Planck-Institut fir Informatik, D-66123 Saarbriic-
ken, Germany. Email: michiel@mpi-sb.mpg.de. This au-
thor was supported by the ESPRIT Basic Research Actions
Program, under contract No. 7141 (project ALCOM II).

DIMACS, Rutgers University, Piscataway, NJ 08855,
U.S.A. E-mail: bhaskar@dimacs.rutgers.edu.

Michiel Smid* Bhaskar Dasguptalf

heart of the algorithm is the solution to a red—blue
dominance reporting problem (the “merge” step).
We give a novel solution for this problem which is
based on the iterative application of a sequence of
non—trivial sweep routines. This solution technique
should be of independent interest.

We also present another algorithm whose bounds
match the bounds given in [LP82], but which is
simpler. Finally, we consider the special case where
the rectangles have at most a constant number, a,
of different aspect ratios, which is often the case in
practice. For this problem, we give an algorithm
which runs in O(anlogn + k) time and uses O(n)
space.

1 Introduction

Problems involving sets of rectangles have been
studied widely in computational geometry since
they are central to many diverse applications, in-
cluding VLSI layout design, image processing, com-
puter graphics, and databases. (See, for instance,
Chapter 8 in each of the books [PS88, PL88].) For
most of these problems, efficient (indeed, optimal)
algorithms are known. In this paper, we investigate
the following rectangle problem, whose complexity
has not yet been resolved satisfactorily.

Problem 1.1 Gwen a set R of n azes-parallel
rectangles in the plane, report all pairs (R', R) of
rectangles such that R encloses R’.

By mapping each rectangle R = [I,7] x [b,{]
to the point (—I,—b,r,t) in IR*, we can formu-
late this problem as a dominance problem: If

p = (p1,P2,P3,P4) and g = (g1, g2, g3, 94) are points
in IR*, then we say that p dominates q if p; > ¢;



for all £, 1 <4 < 4. We call the pair (g,p) a dom-
inance pair. Using this terminology, Problem 1.1
is transformed—in linear time—into the following
one:

Problem 1.2 Given a set V of n points in IR,
report all dominance pairs in V.

In fact, a result of Edelsbrunner and Over-
mars [E082] implies that Problems 1.1 and 1.2 are
equivalent, i.e., in linear time, Problem 1.2 can also
be transformed into Problem 1.1.

Here is a brief history of the problem. Let k de-
note the number of pairs (R’, R) of rectangles such
that R encloses R’, or, equivalently, the number of
dominance pairs in V. The rectangle problem was
first considered by Vaishnavi and Wood [VW80],
who gave an O(nlog? n + k)-time and O(nlog® n)-
space algorithm. This result was also obtained in-
dependently by Lee and Wong [LW81]. In 1982,
Lee and Preparata [LP82] gave an algorithm which
ran in O(nlog’n + k) time and used only O(n)
space. Ever since, the question of whether there is
a faster algorithm has remained intriguingly open
[PS88, page 371].

1.1 Summary of contributions

Our main result is an algorithm for Prob-
lems 1.1 and 1.2 which runs in O(nlognloglogn+
kloglogn) time and uses O(n) space. While our
result is not a strict improvement over [LP82]
for the full range of k (it is an improvement for
k = o(nlog?n/loglogn), it is, nevertheless, the
first result since [LP82] to make any progress on
this long-standing open problem, and we hope that
our approach will spur further research on finally
putting this problem to rest.

Our approach is to transform Problem 1.2 to
a grid and then apply divide-and—conquer. The
heart of the algorithm is the solution to a red—blue
dominance reporting problem (the “merge” step).
We give a novel solution to this problem which is
based on the iterative application of a sequence of
non-—trivial sweep routines. We regard this solution
technique as the second contribution of the paper
since it could find applications in other grid—based
problems.

We also present a second algorithm whose
bounds match the bounds in [LP82], but which is

simpler. In particular, our algorithm employs just
one level of divide-and—conquer (as opposed to two
levels in [LP82]) and uses simple data structures.

Finally, we consider the special case, where the
rectangles have only a constant number, «a, of dif-
ferent aspect ratios, where the aspect ratio of a
rectangle is its height divided by its width. This
is a reasonable assumption in VLSI design. For
this problem, we give an algorithm which runs in
O(anlogn + k) time and uses O(n) space. (Previ-
ously, no results were known for this special case.)

The full of this paper
as [GISDY4].

version appears

1.2 Overview of the main result

Throughout the paper (except in Section 4) we con-
sider Problem 1.2. Our first observation is that
we can afford to (in O(nlogn) time) normalize the
problem to a grid. This allows us to bring into
play efficient structures such as van Emde Boas
trees [VEBT77a, vEBT7b]. Specifically, we map the
n points in V to a set S of n points in U*, where
U ={0,1,...,n — 1}, such that dominance pairs
in V are in one—to—one correspondence with domi-
nance pairs in 5. We divide S along the fourth co-
ordinate into two equal halves and recurse on these
sets. In the merge step, we (effectively) have a set
of red and blue points in U* and need to report all
red—blue dominances. We solve this problem by an
iterative sequence of sweeps, as follows:

We first “clean” the red set so as to remove
those red points that are not dominated by any
blue points. We also “clean” the blue set to elim-
inate those blue points that do not dominate any
red point. Intuitively, this cleaning step gets rid
of points that do not contribute to any dominance
pair and this allows us to bound the running time
of the next step—the reporting step.

In the reporting step, we report all red—blue dom-
inances in the cleaned sets. Assume, wlog, that
there are more red points than blue points in the
cleaned sets. To do the reporting correctly and ef-
ficiently, we do not consider the blue points all at
once. Instead, we report red—blue dominances in-
volving only those blue points that are maximal
(in three dimensions) in the blue set. We find
these maximal points by a single sweep. Then
we sweep in the opposite direction and incremen-



tally reconstruct the blue contour using informa-
tion computed in the first sweep. During this sec-
ond sweep, we report red—blue dominances involv-
ing blue maximal points. In both the reporting
step and the cleaning step, we need to dynamically
maintain certain two—dimensional contours of max-
imal points. For this we use the van Emde Boas
trees mentioned earlier.

Because of the cleaning step, we are guaranteed
to find a number of dominance pairs which is at
least proportional to the number of red and blue
points that remain after the cleaning step. Hence,
we can charge the time for this reporting step to
the number of reported dominance pairs. Since we
have found all dominance pairs in which the max-
imal elements of the blue points occur, we can re-
move them. Then, we perform the cleaning step on
the remaining red and blue points and, afterwards,
we perform a reporting step again. We repeat this
until either there are no red points left or there are
no blue points left. At the end of the algorithm,
we will have reported all red-blue dominance pairs.

2 A
algorithm

divide-and-conquer

Let V be a set of n points in IR?, where d > 2.
Point p dominates point ¢ if p; > ¢; for all 7, 1 <
7 < d. A point of V is called mazimal in V if it
is not dominated by any other point of V. The
mazimal layer of V is defined as the subset of all
points that are maximal in V.

If V is a set of points in the plane, i.e., if
d = 2, then the maximal points, when sorted by
their z-coordinates, form a staircase, also called
a contour. The ordering of the maximal points
by z-coordinate is the same as the ordering by y-
coordinate. Consider the contour of V. Let p be
any point in the plane. We say that p is inside
the contour if it is dominated by some point of the
contour. Otherwise, we say that p is outside the
contour.

2.1 The normalization step

Let V be a set of n points in IR*. For each
i, 1 < 12 < 4, we sort the vectors in the set

{(pivplv <y Pi—1,Pid1, - - 7p4) (P17P27P37P4) €

V'} lexicographically. Then we replace the i-th co-
ordinate of each point of V' by its rank in this or-
dering. We denote the resulting set of points by §.
The following lemma can easily be proved.

Lemma 2.1 The above normalization step takes
O(nlogn) time.  This produces a set S C
{0,1,2,...,n— 1}* of n points such that (g,p) is a
dominance pair in V iff the corresponding pair in
S is also a dominance pair. Moreover, for each i,
1 <4 < 4, no two points of S have the same i-th
coordinate.

2.2 The algorithm

Let S be the set of n points from Lemma 2.1. Note
that during the normalization we can obtain the
points of S sorted by their third coordinates. Our
algorithm for finding all dominance pairs in S fol-
lows the divide-and-conquer paradigm. Since in
each recursive call the number of points decreases,
but the size of the universe remains the same, we
introduce the latter as a separate variable u. Note
that in our case u = n—the initial number of
points. However, to keep our discussion general,
we will derive our bounds in terms of both « and
n and finally substitute n for u to get our main
result. The algorithm is as follows:

1. Compute the median m of the fourth coordi-
nates of the points of 5. By walking along
the points of S in their order according to the
third coordinate, compute the sets S; = {p €
S :ps <m}and S; = {p € S:ps>m}. Both
these sets are sorted by their third coordinates.

2. Using the same algorithm recursively, solve the
problem for S; and Ss.

3. Let R (resp. B) be the set of “red” (resp.
“blue”) points in U® obtained by removing
the fourth coordinate from each point of 5
(resp. S2). Compute all dominance pairs (7, b),
where r € R and b € B.

2.3 The merge step

We give two solutions for the merge step (step 3
above). Let z, y and z denote the coordinate axes
in U3. In the first solution, we sweep a plane paral-
lel to the zy-plane downward along the z-direction.



During the sweep, we maintain a radix priority
search tree (PST), see [McC85], for the projections
onto the sweep plane of all points of B that have
been visited already. If the sweep plane visits a
point (b;,b,,b,) of B, then we insert (b,,b,) into
the PST. If a point (r,,7,,r,) of R is encountered,
we query the PST and find all points (b, b,) such
that b, > r, and b, > r,. For each such point, we
report the corresponding pair in R X B, or, in fact,
in Sl X Sz.

If krp denotes the number of red-blue domi-
nance pairs in R X B, then the merge step takes
time O(nlogu + krp). This implies that the algo-
rithm for Problem 1.2 takes O(nlognlogu + k) =
O(nlog’n + k) time and O(n) space. Thus this
algorithm matches the bounds in [LP82], but is
simpler since it uses only one level of divide and
conquer. Moreover, because of the normalization
step, we can use a radix PST, which is a simple
data structure not requiring any rebalancing.

In the next section, we give an alternative al-
gorithm for the three—dimensional red-blue domi-
nance problem, taking O(nloglogu+krploglogu)
This will lead to an O(nlognloglogn +
kloglogn) time algorithm for Problem 1.2.

time.

3 Red-blue dominance reporting
in three dimensions

In the final algorithm (Section 3.3), we first con-
struct an empty van Emde Boas tree (VEB-tree) on
the universe U. (See [vEBT77a, vEB77b].) During
the entire algorithm, elements will be inserted and
deleted in this tree and we will perform queries on
it. Its construction time is O(u), its query and up-
date times are O(loglogu) and it uses O(u) space.
In the rest of this section, we assume that we have
this tree available.

3.1 The cleaning step

One of the essential steps in our algorithm is to re-
move all red points that are not dominated by any
blue point, and all blue points that do not dominate
any red point. We denote this as the “cleaning” of
the red (resp. blue) set w.r.t. the blue (resp. red)
set.

In [KO88|, Karlsson and Overmars give an

O(nloglogu) time and O(u) space algorithm,
which given n points in U®, computes the maxi-
mal elements. We modify this algorithm to find
all red points that are not dominated by any blue
point, within the same time and space bounds:

We sweep a plane parallel to the zy-plane down-
ward along the z-direction, stopping at each point.
During the sweep, we maintain the contour of the
two-dimensional maximal elements of the projec-
tions (onto the sweep plane) of the blue points al-
ready seen. We store these maximal elements in
the initially empty vEB-tree, sorted by their -
coordinates. When the sweep plane visits a blue
point b, we update the contour and the vEB-tree,
as follows: We search in the vEB-tree with the 2-
coordinate of b and determine if b’s projection is
inside or outside the blue contour. If it is outside,
then we delete from the vEB-tree all blue points on
the contour whose projections are dominated by b’s
projection and we insert b as a new contour point.
Note that the points to be deleted can easily be
found since they are contiguous in the vEB-tree.

On visiting a red point r, we query the vEB-
tree with the z-coordinate of » and determine if r’s
projection lies inside or outside the blue contour.
If it is inside, we insert r into an initially empty set
Rl.

At the end of the sweep, we delete all elements
from the vEB-tree. The empty tree will be used
later on in the algorithm.

Lemma 3.1 We have Ry = {r € R : b €
B such that r is dominated by b} at the end of
the algorithm.  Moreover, the algorithm takes
O(nloglogu) time and uses O(u) space.

The given algorithm cleans the red set R w.r.t.
the blue set B. To clean B w.r.t. R, we use the
mapping F that maps the point (a,b,¢) in U> to
the point (u — 1 —a,u—1—-bu—1-c¢)in U>.
This mapping reverses all dominance relationships.
Also, the mapping F is equal to its inverse. We run
our sweep algorithm on the sets F(R) and F(B),
maintaining a red contour and querying with the
blue points. As a result, we get a set By C F(B),
where each point in By is dominated by some point
in F(R). Then the set By = F(By) satisfies By =
{b € B :3r € R such that b dominates r}.



Lemma 3.2 Let R and B be sets of points in U>
that are sorted by their third coordinates, and let
u = |U| and n = |R| + |B|. Assume that n < u.
Also, assume we are given an empty vEB-tree on
the universe U. In O(nloglogu) time and us-
ing O(u) space, we can compute sets Ry C R
and B; C B such that Ry = {r € R : b €
B such that r is dominated by b}. and By = {b €
B :3r € R such that b dominates r}.

The procedure that cleans the red set R w.r.t.
the blue set B and returns the set R; will be de-
noted by Clean(R, B). The set B; is obtained as
F(Clean(F(B),F(R))).

Remark 3.1 Observe that it does not matter
whether we first clean R w.r.t. B and then clean B
w.r.t. R, or vice versa. In either case, we get the
same clean sets R; and Bj.

3.2 The sweep and report step

Let Ry and B; be the sets of Lemma 3.2. Wlog,
let us assume that |Rq| > |Bi1|. Let B} denote
the three-dimensional maxima of B;. The proce-
dure Sweep(R1, B1), which will be described in this
section, reports all red-blue dominance pairs (r, ),
where » € R; and b € Bj. Note that because
of the cleaning step, there are at least |R;| such
pairs. (If |Ry| < |Bi|, then we invoke the proce-
dure Sweep(F(B1), F(R1)).)

Step 1: We sweep along the points of By down-
wards in the z-direction and determine the set Bj:
During the sweep, we maintain the contour of the
2-dimensional maximal elements of the projections
of the points of B; already seen. These maximal
elements are stored in the initially empty vEB-tree,
sorted by their z-coordinates. We also maintain a
list M, in which we store all updates that we make
in the vEB-tree.

When the sweep plane visits a point b of By, we
add b to an initially empty list L iff b’s projection
lies outside the current contour. In this case, we
also update the contour by updating the vEB-tree,
and we add the sequence of updates made to the
list M.

Lemma 3.3 After Step 1, list L contains the set
B of three-dimensional mazima of By .

Remark 3.2 B} C By is the set of points whose
projections are added to the two—dimensional con-
tour during Step 1. Note that once a point has been
added, it may be removed again from the contour
later on during the sweep in Step 1 itself.

Step 2: We now sweep along the points of R, U B}
upwards in the z-direction. Using the list M, we
reconstruct the contour of the projections of the
points of B that are above the sweep plane. With
each blue point & on the contour, we store a list
Cp C Ry of candidate red points.

Initially, the sweep plane is at the point having
minimal z-coordinate and the vEB-tree stores the
final contour from Step 1. For each blue point b on
this contour, we initialize an empty list Cj.

When the sweep plane reaches a blue point b of
Bj, we do the following:

2.1. Using M, we undo in the vEB-tree the changes
we made to the two-dimensional blue contour
when we visited b during the sweep of Step
1. Call each blue point which now appears
on the contour a new point; call all remaining
blue points on the contour old. Note that the
new points form a single continuous staircase.

2.2. For each r € C, we report (r,b) as a domi-
nance pair.

2.3. For each new blue point ¢ on the contour, we
have to create a list C;: We look at all points
of C. For each such point r, we search with its
z-coordinate in the vEB-tree. If r’s projection
is inside the new contour, then we find the
leftmost blue point p of the new contour that
is to the right of ». Starting at p we walk
right along the contour. For each blue point
g encountered such that ¢ is new, we insert r
into the list C;;. We stop walking as soon as we
find a blue point ¢ whose projection does not
dominate r’s projection or we reach the end of
the contour. (See Figure 1.)

When the sweep plane reaches a red point r, we
search with its z-coordinate in the vEB-tree and
determine if its projection is inside or outside the
current contour. If it is inside, we start walking
along the contour from the point immediately to
the right of r and insert r into the list C, for each



Figure 1: Illustrating Step 2.3. Point r is inserted into the lists C),, Cy and Cy.

blue point ¢ on the contour, until we reach a blue
point whose projection does not dominate »’s pro-
jection or we reach the end of the contour. Note
that at the end of Step 2, the vEB-tree is empty.

Lemma 3.4 In Step 2 of the algorithm, all dom-
inance pairs (r,b), where r € Ry and b € B}, are
reported. Moreover, only such pairs are reported.

Proof. Suppose that (r,b) is reported. Then,
r € Ry and b € B]. Also, r € C}, when b is reached
and so r, < b,. Also, by construction of C, b’s pro-
jection dominates r’s projection. Thus b dominates
7.

Now let » € Ry and b € Bj] such that b dominates
r. We prove that the pair (r,b) is reported. At the
moment when the sweep plane reaches b, this point
is removed from the contour. We have to show that
r is contained in (Y} at this moment.

When the sweep plane reaches r, we insert this
point into the lists C, for all points ¢ that are on
the contour at that moment and whose projection
onto the zy-plane dominate r’s projection. If b is
one of these points, then we are done, because r
stays in Cp until the sweep plane reaches b. Oth-
erwise, b’s projection lies inside the contour. Let ¢
be the point with smallest z-coordinate that is on
the contour at the moment when the sweep plane
reaches » and whose projection onto the zy-plane
dominates b’s projection. Then, r is inserted into

C,. Note that b, > g,, because otherwise b would
be dominated by ¢, contradicting the fact that b
belongs to Bj.

When the sweep plane reaches ¢, point r is in-
serted into the lists C), for all points p that appear
on the contour at that moment and whose projec-
tions dominate r’s projection. If b is one of these
points, then we are done. Otherwise, let p be the
point with smallest z-coordinate that is on the con-
tour at the moment when the sweep plane reaches ¢
and whose projection onto the zy-plane dominates
b’s projection. Point r is inserted into C},. We have
b, > p,. Now we consider the moment when the
sweep plane reaches point p, and repeat the same
argument. Continuing in this way, and observing
that point b must appear on the contour, it follows
that » will be inserted into Cp. O

Lemma 3.5 Let krp be the number of dominance
pairs (r,b) such that r € Ry and b € Bj. Al
gorithm Sweep(R1, By) takes O(krploglogu) time
and uses O(u) space.

Proof. Let n = |Rq|+|B1|. Step 1 of the algorithm
takes O(nloglogu) time. The total time for updat-
ing the contour in Step 2.1 is upper-bounded by the
time for Step 1. The total time for Step 2.2 is obvi-
ously ®(krp). It remains to estimate the time for
updating the C-lists in Step 2.3. Let » € C} be a



red point to be added to the C-lists of the new con-
tour points that appear as a result of undoing the
changes at b in Step 2.1. Deciding whether r’s pro-
jection lies inside or outside the two-dimensional
contour takes O(loglogu) time. If it lies outside,
then we charge this cost to the pair (»,b) just re-
ported in Step 2.2.
charges due to all red points is O(krploglogu).
If r lies inside the contour and if it is inserted into
m C-lists (m will be at least one), then the time
taken is O(m + loglogu) = O(mloglogu). We
charge O(loglogu) to each of the m instances of
r thus inserted. Likewise, when we encounter a
red point r in the upward sweep, we use a similar
charging scheme.

Thus the algorithm takes O((n + krp) loglogu)
time. We know that krp > |Ri| because of the
cleaning step. Also, since |R;| > |Bi|, we have
n < 2|Ry| < 2kgp. This proves the bound on the
running time. It is clear that the algorithm uses
O(u) space. O

The total number of such

3.3 The overall three—dimensional red—
blue dominance algorithm

The algorithm for reporting all red-blue dominance
pairs in R X B is given in Figure 2. This algorithm
uses the procedures Clean and Sweep that were
given in Sections 3.1 and 3.2, respectively. Also re-
call the mapping F that was defined in Section 3.1.
We assume that we have constructed already the
empty vEB-tree on the universe U.

Lemma 3.6 Algorithm 3Ddom(R, B) terminates
and reports all dominance pairs (r,b), where r € R
and b € B. Moreover, if a pair (r,b) is reported,
then it is a red-blue dominance pair.

Proof. The algorithm terminates because after
each iteration of the while-loop either | B;11| = | B;\
BI| < |Bi| (since |Bl| > 0) or |Riy1| = |F(F(Ry)\
R})| < |R;| (since |R;| > 0). We now prove that
(r,b) is reported iff b dominates r.

Suppose that (r,b) is reported. Since a report
happens only during one of the calls to Sweep, it
follows from the correctness of this procedure (see
Lemma 3.4) that b dominates 7.

Conversely, suppose that b dominates r. Note
that a point is discarded in algorithm 3Ddom (R, B)

either during a call to Clean or right after that
call to Sweep during which it becomes a three-
dimensional maximal element. Since b dominates
r, it follows that if neither » nor b has been dis-
carded just before one of the calls to Clean within
the while-loop then neither will be discarded dur-
ing that call. (Similarly, if neither » nor b has been
discarded just before the two calls to Clean out-
side the while-loop, then neither will be discarded
during those two calls.) Moreover, at least one
of r and b will be discarded sometime during the
algorithm since the algorithm terminates. Wlog,
assume that b is discarded. Then it follows that
b becomes a three-dimensional maximal element
before » becomes one (if ever). Let b become a
three-dimensional maximal element in Step 1 of
Sweep(R;, B;) for some i. Thus, when Step 2 of
Sweep(R;, B;) commences, r € R;. By the correct-
ness of the Sweep routine, (r,b) is reported as a
dominance pair. O

Theorem 3.1 Let R and B be two sets of points
in U3 that are sorted by their third coordinates. As-
sume we are given an empty vEB-tree on the uni-
verse U. Let uw = |U| and n = |R| + |B|, and
let k' be the number of dominances (r,b), where
r € R and b € B. Assume that n < u. Algo-
rithm 3Ddom finds all these dominance pairs in

O((n+ k')loglogu) time and O(u) space.

Proof. Let n; = |R;| 4 | B;| and let k; be the num-
ber of dominance pairs that are reported during the
i-th iteration. Because of the cleaning step and
because we distinguish between the cases where
|R;| > |Bi| and |R;| < |B;|, we have n; < 2k;.
Also, since during each iteration, we output differ-
ent dominance pairs, we have > . k; = k’. The ini-
tial cleaning of R and B takes O(nloglogu) time.
By Lemmas 3.2 and 3.5, the i-th iteration takes
time O((n; + k;)loglogu), which is bounded by
O(k;loglogu). It follows that the entire algorithm
takes time

O(nloglogu+)  k;loglogu) = O((n+k')loglog u).

The algorithm uses space O(n + u), which is
bounded by O(u). O



Algorithm 3Ddom (R, B)
(* R and B are sets of points in U?; the algorithm reports all pairs (r, ) such
that » € R, b € B and b dominates r *)
begin
Ry := Clean(R, B);
By := F(Clean(F(B),F(R)));
1:=1;
while R; # 0 and B; # 0
do if |R;| > |B;]
then Sweep(R;, B;);
(* this procedure computes the set B. of three-dimensional maxima
of B; and reports all dominances (r,b) where r € R; and b € B} *)

H := B; \ Bl
Rit1 := Clean(R;, H);
Bi_|_1 = H

(* Bit1 is clean w.r.t. Ripq; )
else Sweep(F(B;), F(R;));
(* this procedure computes the set R of three-dimensional maxima
of F(R;) and reports all dominances (r,b) where » € F(R})
and b € B; *)
H:= F(R;)\ R;
Biy1 := F(Clean(F(B;), H));
Ri_|_1 = f(H)
(* Riyq is clean w.r.t. Bijq; *)
fi;
1:=1+1
od

end

Figure 2: The three-dimensional red-blue dominance reporting algorithm.



3.4 Analysis of the four-dimensional
dominance reporting algorithm

Consider again our divide-and-conquer algorithm
of Section 2.2 for solving the 4-dimensional dom-
inance reporting problem on the normalized set
S C U*. We implement Step 3—the merge step—
using algorithm 8Ddom.

Let T'(n,u) denote the total running time on a
set of n points in U*, that are sorted by their third
coordinates. Recall that it is assumed that n =
u (however, the sizes of the sets in the recursive
calls will be smaller than «). We do not include in
T(n,u) the time that is charged to the output.

Step 1 of the algorithm takes O(n) time,
and Step 2 takes 2T7(n/2,u) time. By The-
orem 3.1, Step 3—except for the reporting—
takes O(nloglogu) time. Hence, T(n,u) =
O(nloglogu) + 2T(n/2,u), which
T(n,u) = O(nlognloglogu). For each domi-
nance pair, we spend an additional amount of
O(loglogu) time. Since each such pair is re-
ported exactly once, the total running time of
the divide-and-conquer algorithm is bounded by
O(nlognloglogu + kloglogu), where k denotes
the number of dominance pairs in 5. Moreover,
the algorithm uses O(u) space.

Our original problem was to solve the dominance
reporting problem on a set V of n points in IR%. In
O(nlogn) time, we normalize the points, giving a
set S of n points in U* = {0,1,...,n — 1}*. Then,
in O(n) time, we construct an empty vEB-tree on
the universe U. Finally, in T'(n,n) + O(kloglogn)
time we find all £ dominance pairs in S. This gives
all £ dominance pairs in V. The entire algorithm
takes O(nlognloglogn + kloglogn) time and it
uses O(n) space. This proves our main result:

solves to

Theorem 3.2 Problems 1.1 and 1.2 can be solved
in O(nlognloglogn + kloglogn) time and O(n)
space, where k is the number of pairs of enclos-
ing rectangles or, equivalently, the number of dom-
mance pairs.

4 A faster algorithm for a special
case

Assume that there are only a = O(1) different as-
pect ratios in the set R of rectangles. By a diagonal

of a rectangle we mean the line-segment joining its
SW and NE corners. Clearly, there are a different
slopes among the diagonals in R. For some such
slope p, let R’ C R consist of the rectangles whose
diagonals have slope p. Let R = [I,r] x [b,t] and
R =[U',r"] x [b/,t'] be rectangles in R and R/, re-
spectively. (Throughout, we view rectangle sides as
closed line segments, i.e., endpoints are included.)

Lemma 4.1 Let L be a line with slope p which
moves over the plane from the northwest to the
southeast. Consider the moment at which L co-
incides with the diagonal of R'. If L intersects R,
then one of the following holds:

1. L meets the left and top sides of R. In this
case, we have R' C R iff ' >l and t' < t.

2. L meets the left and right sides of R. In this
case, we have R' C R iff ' > l and ' < r.

3. L meets the bottom and top sides of R. In this
case, we have R’ C R iff b’ > b and ' < t.

4. L meets the bottom and right sides of R. In
this case, we have R' C R iff b’ > b andr' < r.

Note that L meets the corners of R in a specific
order, namely, NW, NE, SW, SE (resp. NW, SW,
NE, SE), depending on whether R’s diagonal has
slope less (resp. greater) than p. The NE and SW
corners will be met simultaneously if R’s diagonal
has slope p; this case is covered by Lemma 4.1 since
rectangle sides are closed line segments.

4.1 The algorithm

For each diagonal-slope p we do the following: We
project all the rectangle corners in R onto a line L
normal to L and sort them in non-decreasing order.
Note that the SW and NE corners of each rectangle
in R’ projects to the same point on L. We treat
these two points as a composite point.

Using L, we sweep over I from —oo to + 00,
maintaining four priority search trees, PST;, 1 <
1 < 4. (PST; will handle condition % of
Lemma 4.1.) Let v be the current event point.
The following actions are taken:

1. v corresponds to the NW corner of R = [I, 7] x
[b,t]. We insert (I,t) into PST;.



2. v corresponds to the NE corner of R = [I, 7] x
[b,t]. If the SW corner of R has not been seen
so far then we delete (/,¢) from PST; and in-
sert (I,r) into PST,;. Otherwise, we delete
(b,t) from PST3 and insert (b, r) into PST4.

3. v corresponds to the SW corner of R = [, 7] x
[b,t]. If the NE corner of R has not been seen
so far then we delete (/,¢) from PST; and in-
sert (b,t) into PST3. Otherwise, we delete
(I,r) from PST, and insert (b, r) into PST4.

4. v corresponds to the SE corner of R = [[,7] x
[b,t]. We delete (b, 7) from PST,.

5. v corresponds to the SW and NE corner of
R =[l',r]x[V,t'] € S'. We query PST; with
(I',t') and report all points (,¢) in it such that
I > 1and ¢ < t. Similarly, we query PST,
with (I', ), PST3 with (b',t'), and PST4 with
(t/,7"). Then we delete (I',t') from PST; and
insert (b',7') into PSTy,.

Theorem 4.1 Given a set R of n azes-parallel
rectangles in IR? with at most o different aspect
ratios, where o 1s a constant, all k pairs of rectan-
gles (R, R) such that R encloses R’ can be reported
in O(anlogn + k) time and O(n) space.

5 Concluding remarks

We have given an algorithm for solving the rect-
angle enclosure reporting problem, or, equiva-
lently, the four-dimensional dominance report-
ing problem, that runs in O(nlognloglogn +
kloglogn) time, where k is the number of reported
pairs. Previously, the problem had been solved in
O(nlog®n + k) time by Lee and Preparata [LP82].
We leave open the question of whether the prob-
lem can be solved in O(nlogn + k) time. It seems
very difficult to remove the loglogn term that oc-
curs in the “reporting” part of our running time.
We have given a new technique to solve the three-
dimensional red-blue dominance reporting prob-
lem. Using the same approach we can solve the
two-dimensional version of this problem, where
the red and blue points are sorted by their -
coordinates, optimally, i.e., in O(n + k) time.
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