
Neural Networks

Bhaskar DasGupta∗

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: dasgupta@cs.uic.edu

Derong Liu

Department of Electrical & Computer Engineering

University of Illinois at Chicago

Chicago, IL 60607

Email: dliu@ece.uic.edu

Hava T. Siegelmann

Computer Science Department

University of Massachusetts

Amherst, MA 01003-9264

Email: hava@cs.umass.edu

August 29, 2005

1 Introduction

Artificial neural networks have been proposed as a tool for machine learning (e.g., see [23, 41, 47, 52]) and

many results have been obtained regarding their application to practical problems in robotics control, vision,

pattern recognition, grammatical inferences and other areas (e.g., see [8, 19, 29, 61]). In these roles, a neural

network is trained to recognize complex associations between inputs and outputs that were presented during

a supervised training cycle. These associations are incorporated into the weights of the network, which encode
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a distributed representation of the information that was contained in the input patterns. Once trained, the

network will compute an input/output mapping which, if the training data was representative enough, will

closely match the unknown rule which produced the original data. Massive parallelism of computation, as

well as noise and fault tolerance, are often offered as justifications for the use of neural nets as learning

paradigms.

Traditionally, especially in the structural complexity literature (e.g., see the book [52]), feedforward

circuits composed of AND, OR, NOT or threshold gates have been thoroughly studied. However, in practice,

when designing a neural net, continuous activation functions such as the standard sigmoid are more commonly

used. This is because usual learning algorithms such as the backpropagation algorithm assumes a continuous

activation function. As a result, neural nets are distinguished from those conventional circuits because they

perform real-valued computation and admit efficient learning procedures. The last three decades have seen

a resurgence of theoretical techniques to design and analyze the performances of neural nets (e.g., see the

survey in [36]) as well as novel application of neural nets to various applied areas (e.g., see [19] and some of

the references there). Theoretical researches in computational capabilities of neural nets have given valuable

insights into the mechanisms of these models.

In subsequent discussions, we distinguish between two types of neural networks, commonly known as

the “feedforward” neural nets and the “recurrent” neural nets. A feedforward net consists of a number of

processors (“nodes” or “neurons”) each of which computes a function of the type y = σ
(

∑k
i=1 aiui + b

)

of

its inputs u1, . . . , uk. These inputs are either external (input data is fed through them) or they represent the

outputs y of other nodes. No cycles are allowed in the connection graph and the output of one designated

node is understood to provide the output value produced by the entire network for a given vector of input

values. The possible coefficients ai and b appearing in the different nodes are the weights of the network, and

the functions σ appearing in the various nodes are the node, activation or gate functions. An architecture

specifies the interconnection structure and the σ’s, but not the actual numerical values of the weights. A

recurrent neural net, on the other hand, allows cycles in the connection graph, thereby allowing the model

to have substantially more computational capabilities (see Section 3.2).
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In this chapter we survey research works dealing with basic questions regarding computational capabilities

and learning of neural models. There are various types of such questions that one may ask, most of them

closely related and complementary to each other. We next describe a few of them informally.

One direction of research deals with the representational capabilities of neural nets, assuming unlimited

number of neurons are available (e.g., see [1, 11, 18, 39, 44, 50, 51]). The origin of this type of research can

be traced back to the work of the famous mathematician Kolmogorov [32], who essentially proved the first

existential result on the representation capabilities of depth 2 neural nets. This type of research ignores the

training question itself, asking instead if it is at all possible to compute or approximate arbitrary functions

(e.g., [11, 32]) or if the net can simulate, say, Turing machines (e.g., [50, 51]). Many of the results and proofs

in this direction are non-constructive.

Another perspective to learnability questions of neural nets takes a numerical analysis or approximation

theoretic point of view. There one asks questions such as how many hidden units are necessary in order to

well-approximate, that is to say, approximate with a small overall error, an unknown function. This type

of research also ignores the training question, asking instead what is the best one could do, in this sense of

overall error, if the best possible network with a given architecture were to be eventually found. Some papers

along these lines are [2, 12], which dealt with single hidden layer nets, and [14], which dealt with multiple

hidden layers.

Another possible line of research deals with the sample complexity questions, that is, the quantification of

the amount of information (number of samples) needed in order to characterize a given unknown mapping.

Some recent references to such work, establishing sample complexity results, and hence “weak learnability”

in the Valiant model, for neural nets, are the papers [3, 17, 20, 35, 38]; the first of these references deals with

networks that employ hard threshold activations, the third and fourth cover continuous activation functions

of a type (piecewise polynomial), and the last one provides results for networks employing the standard

sigmoid activation function.

Yet another direction in which to approach theoretical questions regarding learning by neural networks

originates with the work of Judd (see for instance [26, 27], as well as the related work [5, 33]). Judd was
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motivated by the observation that the “backpropagation” algorithm often runs very slowly, especially for

high-dimensional data. Recall that this algorithm is used in order to find a network (that is, find the weights,

assuming a fixed architecture) that reproduces the observed data. Of course, many modifications of the

vanilla “backprop” approach are possible, using more sophisticated techniques such as high-order (Newton),

conjugate gradient, or sequential quadratic programming methods. However, the “curse of dimensionality”

seems to arise as a computational obstruction to all these training techniques as well, when attempting to

learn arbitrary data using a standard feedforward network. For the simpler case of linearly separable data,

the perceptron algorithm and linear programming techniques help to find a network –with no “hidden units”–

relatively fast. Thus one may ask if there exists a fundamental barrier to training by general feedforward

networks, a barrier that is insurmountable no matter which particular algorithm one uses. (Those techniques

which adapt the architecture to the data, such as cascade correlation or incremental techniques, would not

be subject to such a barrier.)

2 Feedforward Neural Networks

As mentioned before, a feedforward neural net is one in which the underlying connection graph contains no

directed cycles. More precisely, a feedforward neural net (or, in our terminology, a Γ-net) can be defined as

follows.

Let Γ be a class of real-valued functions, where each function is defined on some subset of R. A Γ-net

C is an unbounded fan-in circuit whose edges and vertices are labeled by real numbers. The real number

assigned to an edge (resp. vertex) is called its weight (resp. its threshold). Moreover, to each vertex v a gate

(or activation) function γv ∈ Γ is assigned.

The circuit C computes a function fC : R
m → R as follows. The components of the input vector

x = (x1, . . . , xm) ∈ R
m are assigned to the sources of C. Let v1, . . . , vn be the immediate predecessors of a

vertex v. The input for v is then sv(x) =
∑n

i=1 wiyi − tv, where wi is the weight of the edge (vi, v), tv is the

threshold of v and yi is the value assigned to vi. If v is not a sink, then we assign the value γv(sv(x)) to v.
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Otherwise we assign sv(x) to v.

Without any loss of generality, one can assume that C has a single sink t. Then fC = st is the function

computed by C.

The function class Γ quite popular in the structural-complexity literature (e.g., see [21, 22, 46]) is the

binary threshold function H defined by:

H(x) =















0 if x ≤ 0

1 if x > 0

However, in practice this function is not so popular because the function is discrete and hence using this

gate function may pose problems in most commonly used learning algorithms like the backpropagation

algorithms [47] or their variants. Also, from biological perspectives, real neurons have continuous input-

output relations [25]. In practice, various continuous (or, at least locally smooth) gate functions have been

used, for example, the cosine squasher, the standard sigmoid, radial basis functions, generalized radial basis

functions, piecewise-linear, polynomials and trigonometric polynomial functions. In particular, the standard

sigmoid function σ(x) = 1/(1 + e−x) is very popular.

The simplest type of feedforward neural net is the classical perceptron. This consists of one single neuron

computing a threshold function (see Figure 1.1). In other words, the perceptron P is characterized by a

vector (of “weights”) ~c ∈ R
m, and computes the inner product ~c.v + c0 = c1v1 + . . . + cmvm + c0. Such a

model has been well studied and efficient learning algorithms for it exists (e.g., [40], see also [34]). In this

chapter we will be however more interested in more complex multi-layered neural nets.

2.1 Approximation Properties

It is known that neural nets of only depth 2 and with arbitrarily large number of nodes can approximate any

real-valued function upto any desired accuracy, using a continuous activation function such as the sigmoidal

function (e.g., see [11, 32]). However, these proofs are mostly non-constructive and, from a practical point

of view, one is more interested in designing efficient neural nets (i.e., roughly speaking, neural nets with

small size and depth) to exactly or approximately compute different functions. It is also important, from
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a practical point of view, to understand the size-depth tradeoff of the complexity of feedforward nets while

computing functions, since generally neural nets with more layers are more costly to simulate or implement.

Threshold circuits, i.e., feedforward nets with threshold activation functions, have been quite well studied,

and upper/lower bounds for them have been obtained while computing various Boolean functions (see, for

example, [21, 22, 42, 43, 46, 53] among many other works). Functions of special interest have been the parity

function, computing the multiplication and division of binary numbers and so forth.

However, as mentioned before, it is more common in practice to use a continuous activation function,

such as the standard sigmoid function. References [13, 37], among others, considered efficient computation

or approximation of various functions by feedforward circuits with continuous activation functions and also

studied size-depth tradeoffs. In particular, [13] showed that any polynomial of degree n with polynomially

bounded coefficients can be approximated with exponential accuracy by depth 2 feedforward sigmoidal neural

nets with a polynomial number of nodes. References [13, 37] also show how to simulate threshold circuits

by sigmoidal circuits with a polynomial increase in size and a constant factor increase in depth. Thus, in

effect, functions computed by threshold circuits can also be computed by sigmoidal circuits with not too

much increase in size and depth. Maass [35] shows how to simulate nets with piecewise-linear activation

functions with bounded depth, arbitrary real weights, and for Boolean inputs and outputs by a threshold

net of somewhat larger size and depth with weights from {−1, 0, 1}. References [13, 37] showed that circuits

composed of sufficiently smooth gate functions are capable of of efficiently approximating polynomials within

any degree of accuracy. Complementing these results, reference [13] also provided non-trivial lower-bounds

on the size of bounded-depth sigmoidal nets with polynomially-large weights when computing oscillatory

functions. In essence, one can prove results of the following types.

Definition 1.1 ([13]).1 Let γ : R → R be a function. We call γ non-trivially smooth with parameter k if and

only if there exists rational numbers α, β (α > 0) and an integer k such that α and β have logarithmic size

at most k and

(a) γ can be represented by the power series
∑

∞

i=0 ai(x− β)i for all x ∈ [β −α, β +α]. For each i > 1, ai is

1The notation γ(i) denotes the ith derivative of γ.
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a rational number of logarithmic size at most ik.

(b) For each i > 1 there exists j with i ≤ j ≤ ik and aj 6= 0.

(c) For each i > 1, ||γ(i)||[−α,α] ≤ 2ik

.

Theorem 1.1 ([13]).2 Assume that γ is non-trivially smooth with parameter k. Let p(x) be a degree n

polynomial whose coefficients are rational numbers of logarithmic size at most max. Then p(x) can be ε-

approximated (over the domain [−D,D] with [β − α, β + α] ⊆ [−D,D]) by a {γ}-circuit Cp. Cp has depth

2 and size O(n2k). The Lipschitz-bound3 of Cp (over [−D,D]n) is at most cγ ·
(

2max · (2 +D) · 1
ε

)poly(n)
,

where the constant cγ depends only on γ and not on p.

Theorem 1.2 ([13]). Let f : [−1, 1] → R be a function that ε-oscillates t times4 and let C be a Γ-circuit

of depth d, size s and Lipschitz-bound 2s over [−1, 1]. If C approximates f with error at most ε
4 , then

s ≥ tΩ(1/d).

Notice that the standard sigmoid is non-trivially smooth with a constant k, and so is the case for most of

the other continuous activation functions mentioned in Section 1. However, the simulation in Theorem 1.1

needs quadratically many nodes to simulate a polynomial by sigmoidal nets with exponential accuracy.

Unfortunately, the proof of Theorem 1.2 relies on efficient simulation of a sigmoidal-circuit by a spline-

circuit and hence cannot be extended to the case of arbitrary weights (i.e., the Lipschitz-bound condition

cannot be dropped).

2.2 Backpropagation Algorithms

Basic backpropagation [60] is currently the most popular supervised learning method that is used to train

multilayer feedforward neural networks with differentiable transfer functions. It is a gradient descent al-

2poly(n) denotes a polynomial in n.
3The Lipschitz-bound of the net is a measure of the numerical stability of the circuit. Informally speaking, a net has a

Lipschitz bound of L if all its weights and thresholds are bounded in absolute value by L.
4f ε-oscillates t times if and only if there are real numbers −1 ≤ x1 < . . . < xt+1 ≤ 1 such that (a) f(x1) = f(x2) = . . . =

f(xt+1), (b) |xi+1 − xi| ≥ ε for all i and (c) there are real numbers y1, . . . , yt such that xi ≤ yi ≤ xi+1 and |f(xi)− f(yi)| ≥ ε

for all i.
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gorithm in which the network weights are moved along the negative of the gradient of the performance

function.

The basic backpropagation algorithm performs the following steps:

1. Forward pass: Inputs are presented and the outputs of each layer are computed.

2. Backward pass: Errors between the target and the output are computed. Then, these errors are

“back-propagated” from the output to each layer until the first layer. Finally, the weights are adjusted

according to the gradient descent algorithm with the derivatives obtained by backpropagation.

We will discuss in more details a generalized version of this approach for recurrent networks, termed as the

“real-time backpropagation through time”, in Section 3.1. The key point of basic backpropagation is that the

weights are adjusted in response to the derivatives of performance function with respect to weights, which

only depend on the current pattern; the weights can be adjusted sequentially or in batch mode. More details

about the basic backpropagation can be found in [60]. The asymptotic convergence rates of backpropagation

is proved in [55]. Traditionally, the parity function has been used as an important benchmark for testing the

efficiency of a learning algorithm. Empirical studies in [54] show that the training time of a feedforward net

using backpropagation while learning the parity function grows exponentially with the number of inputs,

thereby rendering the learning algorithm to be very time-consuming. Unfortunately, a satisfactory theoretical

justification for this behavior is yet to be shown. Also, it is well known that the backpropagation algorithm

may get stuck in local minima, and in fact, in general gradient descent algorithms may fail to classify

correctly data that even simple perceptrons can classify correctly (e.g., see [7, 48, 63]). Strategies of avoiding

local minima include local perturbation and simulated-annealing techniques, whereas the later problem (in

absence of a local minima) can be avoided using, say, threshold LMS procedures.

2.3 Learning Theoretic Results

Approximation results discussed in Section 2.1 does not necessarily translate into good learning algorithms.

For example, even though a sigmoidal net has great computational power, we still need to investigate how to
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learn the weights of such a network from a set of examples. Learning is a very important aspect of designing

efficient neural models from a practical point of view. There are a few possible approaches to tackle this

issue; we describe one of those approaches next.

2.3.1 VC-dimension Approach

VC-dimensions (and, their suitable extensions to real valued computations) provide information-theoretic

bounds to the sample complexities for learning problems in neural nets. We very briefly (also, somewhat

informally) review some (by now standard) notions regarding sample complexity which deals with the calcu-

lation of VC dimensions as applicable for neural nets (for more details, see the books [57, 59], the paper [6],

or the survey in [36]).

In the general classification problem, an input space X as well as a collection F of maps X → {−1, 1}

are assumed to have been given. (The set X is assumed to be either countable or an Euclidean space, and

the maps in F , the set of functions computable by the specific neural nets under consideration, are assumed

to be measurable. In addition, mild regularity assumptions are made which ensure that all sets appearing

below are measurable, but details are omitted since in the context of neural nets these assumptions are

almost always satisfied.) Let W be the set of all sequences

w = (u1, ψ(u1)), . . . , (us, ψ(us))

over all s ≥ 1, (u1, . . . , us) ∈ X
s, and ψ ∈ F . An identifier is a map ϕ : W → F . The value of ϕ on a

sequence w as above will be denoted as ϕw. The error of ϕ with respect to a probability measure P on X,

a ψ ∈ F , and a sequence (u1, . . . , us) ∈ X
s, is

Errϕ(P,ψ, u1, . . . , us) := Prob [ϕw(u) 6= ψ(u)]

(where the probability is being understood with respect to P ).

The class F of functions is said to be (uniformly) learnable if there is some identifier ϕ with the following

property: For each ε, δ > 0 there is some s so that, for every probability P and every ψ ∈ F ,

Prob [Errϕ(P,ψ, u1, . . . , us) > ε] < δ
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(where the probability is being understood with respect to P s on X
s).

In the learnable case, the function s(ε, δ) which provides, for any given ε and δ, the smallest possible s

as above, is called the sample complexity of the class F . It can be proved that learnability is equivalent to

finiteness of a combinatorial quantity called Vapnik-Chervonenkis (VC) dimension ν of the class F in the

following sense (cf. [6, 58]):

s(ε, δ) ≤ max

{

8ν

ε
log

(

13

ε

)

,
4

ε
log

(

2

δ

)}

Moreover, lower bounds on s(ε, δ) are also known, in the following sense (cf. [6]): for 0 < ε < 1
2 , and assuming

that the collection F is not trivial (i.e., F does not consist of just one mapping or a collection of two disjoint

mappings, see [6] for details), we must have

s(ε, δ) ≥ max

{

1 − ε

ε
ln

(

1

δ

)

, ν(1 − 2(ε(1 − δ) + δ))

}

The above bounds motivate studies dealing with estimating VC dimensions of neural nets. When there is

an algorithm that allows computing an identifier ϕ in time polynomial on the sample size, the class is said

to be learnable in the PAC (“probably approximately correct”) sense of Valiant (cf. [56]). Generalizations

to the learning of real-valued (as opposed to Boolean) functions computed by, say, sigmoidal neural nets, by

evaluation of the “pseudo-dimension”, are also possible; see the discussion in [36].

It is well-known that a simple perceptron with n inputs has a VC-dimension of n + 1 [6]. However, the

VC-dimension of a threshold network with w programmable parameters is Θ(w logw) [3, 9, 10, 35]. Maass [35]

and Goldberg and Jerrum [20], among others, investigated VC-dimensions of neural nets with continuous

activations and showed polynomial bounds on neural nets with piecewise-polynomial activation functions.

Even finiteness of the VC-dimension of sigmoidal neural nets was unknown for a long time, until [38] showed

that it was finite. Subsequently, [28] gave a O(w2n2) bound on the VC-dimension of sigmoidal neural nets,

where w is the number of programmable parameters and n is the number of nodes. Reference [31] gives a

Ω(w2) lower bound for sigmoidal nets.
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2.3.2 The Loading (Consistency) Problem

The VC-dimensions provide information-theoretic bounds on sample complexities for learning. To design an

efficient learning algorithm, the learner should be able to design a neural net consistent with the (polynomi-

ally many) samples it receives. This is known as the consistency or the loading problem. In other words, now

we consider the tractability of the training problem, that is, of the question (essentially quoting Judd [27]):

“Given a network architecture (interconnection graph as well as choice of activation function) and a set of

training examples, does there exist a set of weights so that the network produces the correct output for all

examples?”

The simplest neural network, i.e., the perceptron, consists of one threshold neuron only. It is easily

verified that the computational time of the loading problem in this case is polynomial in the size of the

training set irrespective of whether the input takes continuous or discrete values. This can be achieved via

a linear programming technique. Blum and Rivest [5] showed that this problem is NP-hard for a simple

3-node threshold neural net. References [15, 16] extended this result to show NP-hardness of a 3-node neural

net where the activation function is a simple, saturated piecewise linear activation function, the extension

was non-trivial due to the continuous part of the activation function. It was also observed in [16] that

the loading problem is polynomial-time if the input dimension is constant. However, the complexity of the

loading problem for sigmoidal neural nets still remains an open problem, though some partial results when

the net is somewhat restricted appeared in references such as [24]. Any NP-hardness results of the loading

problems also prove hardness in the PAC learning model, due to the result in [30].

Another possibility to design efficient learning algorithms is to assume that the inputs are drawn according

to some particular distributions. For example, see [4] for efficient learning a depth 2 threshold net with a

fixed number of hidden nodes and with the output gate being an AND gate, assuming that the inputs are

drawn uniformly from a n-dimensional unit ball.
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3 Recurrent Neural Networks

As stated in the introduction, a recurrent neural net allows cycles in the connection graph. A sample

recurrent neural network is illustrated in Figure 1.3.

3.1 Learning Recurrent Networks: Backpropagation Through Time

Backpropagation through time (BPTT) is an approach to solve temporal differentiable optimization problems

with continuous variables [45] and used most often as a training method for recurrent neural networks. In

this section, we describe the method in more details.

3.1.1 Network Definition and Performance Measure

We will use the general expression of Werbos [60] to describe the network dynamics. Symbols y denote node

inputs and outputs, while symbol s denote the weighted sum of node inputs. An ordered set of i, j, l, k on

the weights denotes a connection from node j of layer i to node k of layer l; w0,j,l,k denotes connections

from outside the network. The node activation function is denoted by f(·). The last layer of the network is

denoted by M . The number of nodes in a layer l is denoted by nl. The bias inputs to each node are handled

homogeneously using the connection weights for zeroth input where inputs yext
0 (t) and yl−1,0(t) are fixed at

unity for this purpose.

All the algorithms presented in the following part of the chapter are based on the following network

dynamics expressed in pseudo-code format:

for k = 1 to n1 {

s1,k(t) =

next

∑

j=0

w0,j,1,k(t)yext
j (t) +

nM
∑

j=1

wM,j,1,k(t)yM,j(t− 1) +

n1
∑

j=1

w1,j,1,k(t)y1,j(t− 1) (1.1)

y1,k = f(s1,k(t)) (1.2)

}

for l = 2 to M {
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for k = 1 to nl {

sl,k(t) =

nl−1
∑

j=0

wl−1,j,l,k(t)yl−1,j(t) +

nl
∑

j=1

wl,j,l,k(t)yl,j(t− 1) (1.3)

y1,k = f(s1,k(t)) (1.4)

}

}

Note that the input line is not the first layer. Assume that the task to be performed by the network

is sequential supervised learning task, meaning that certain of units’ output values are to match specified

target values at each time step. Define a time-varying ej(t):

ej(t) =



















dj(t) − yj(t) if j ∈ layer M

0 otherwise

(1.5)

where dj(t) is the target of the output of the jth unit at time t and define the two performance measure

functions:

J(t) =
1

2

∑

k∈M

[ek(t)]2 (1.6)

J total(t0, t) =

t
∑

τ=t0

J(τ). (1.7)

3.1.2 Unrolling a Network

In essence, BPTT is the algorithm which calculate derivatives of performance measure with respect to

weights for a feedforward neural network which is obtained by unrolling the network in time. Let N denote

the network which is to be trained to perform a desired sequential behavior. Assume that N has n units and

that it is to run from time t0 up through some time t. As described by Rumelhart et al., we may “unroll”

this network in time to obtain a feedforward network N ∗ which has a layer for each time step in [t0, t] and

n units in each layer. Each unit in N has a copy in each layer of N ∗, and each connection from unit j to

unit i in N has a copy connecting unit j in layer τ to unit i in layer τ + 1, for each τ ∈ [t0, t). An example

of this unrolling mapping is given in Figure 2 in [62]. The key value of this conceptualization is that it
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allows one to regard the problem of training a recurrent network as the corresponding problem of training

a feedforward neural network with certain constraints imposed on its weights. The central result driving

the BPTT approach is that to compute ∂J (t0, t)/∂wij in N one simply computes the partial derivatives of

∂J (t0, t) with respect to each of the τ weights in N ∗ corresponding to wij and adds them up.

Straightforward application of this idea leads to two different algorithm, depending on whether an

epochwise or continual operation approach is sought. One is real-time BPTT and the other is epochwise

BPTT. We only describe the real-time BPTT due to space limitations.

3.1.3 Derivation of BPTT Formulation

Suppose that a differentiable function F expressed in terms of {yl,j(τ)|t0 ≤ τ ≤ t}, the outputs of the

network over time interval [t0, t] is given. Note while F may have an explicit dependence on yl,j(τ), it may

also have an implicit dependence on this same value through later output values. To avoid the ambiguity in

interpreting partial derivatives like ∂F
∂yl,j(τ) , we introduce variable y∗l,j(τ) such that y∗l,j(τ) = yM,j(τ) for all

l = M . Define the following:

ǫl,j(τ) =
∂F

∂yl,j(τ)
, (1.8)

δl,j(τ) =
∂F

∂sl,j(τ)
. (1.9)

Since F depends on yl,j(τ), sl,k(τ + 1) and sl+1,m(τ), we have:

∂F

∂yl,j(τ)
=

∂F

∂y∗l,j(τ)
+

nl
∑

k=1

∂F

∂sl,k(τ + 1)

∂sl,k(τ + 1)

∂yl,j(τ)
+

nl+1
∑

m=1

∂F

∂sl+1,m(τ)

∂sl+1,m(τ)

∂yl,j(τ)
(1.10)

from which we derive the following:

1. τ = t. For this case,

ǫM,j(τ) =
∂F

∂y∗M,j(τ)
= −ej(τ) (1.11)

where M means the output layer of the network and j ∈ {1, 2, . . . , nM} and

ǫl,j(τ) =
∂F

∂yl,j(τ)
=

nl+1
∑

m=1

∂F

∂sl+1,m(τ)

∂sl+1,m(τ)

∂yl,j(τ)
=

nl+1
∑

m=1

∂F

∂yl+1,m(τ)

∂sl+1,m(τ)

∂yl,j(τ)

∂sl+1,m(τ)

∂yl,j(τ)

=

nl+1
∑

m=1

ǫl+1,m(τ)f
′

(sl+1,m(τ))wl,j,l+1,m (1.12)
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where l = 1, 2, . . . ,M − 1 and j = 1, 2, . . . , nl, and

δl,j(τ) =
∂F

∂sl,j(τ)
=

∂F

∂yl,j(τ)

∂yl,j(τ)

∂sl,j(τ)
= ǫl,j(τ)f

′

(sl,j(τ)) (1.13)

where l = 1, 2, . . . ,M and j = 1, 2, . . . , nl.

2. τ = t− 1, . . . , t0. In this case,

ǫM,j(τ) =
∂F

∂yM,j(τ)
=

∂F

∂y∗M,j(τ)
+

n1
∑

k=1

∂F

∂s1,k(τ + 1)

∂s1,k(τ + 1)

∂yM,j(τ)
+

nM
∑

k=1

∂F

∂sM,k(τ + 1)

∂sM,k(τ + 1)

∂yM,j(τ)

= −ej(τ) +

n1
∑

k=1

δ1,k(τ + 1)wM,j,1,k +

nM
∑

k=1

δM,k(τ + 1)wM,j,M,k (1.14)

where M means the output layer M of network and j ∈ {1, 2, . . . , nM},

ǫl,j(τ) =
∂F

∂yl,j(τ)
=

nl
∑

k=1

∂F

∂sl,k(τ + 1)

∂sl,k(τ + 1)

∂yl,j(τ)
+

nl+1
∑

m=1

∂F

∂sl+1,m(τ)

∂sl+1,m(τ)

∂yl,j(τ)

=

nl
∑

k=1

δl,k(τ + 1)wl,j,l,k +

nl+1
∑

m=1

∂F

∂yl+1,m(τ)

∂yl+1,m(τ)

∂sl+1,m(τ)

∂sl+1,m(τ)

∂yl,j(τ)

=

nl
∑

m=1

δl,k(τ + 1)wl,j,l,k +

nl+1
∑

m=1

ǫl+1,m(τ)f
′

(sl+1,m(τ))wl,j,l+1,m (1.15)

where l = 1, 2, . . . ,M − 1 and j = 1, 2, . . . , nl and

δl,j(τ) =
∂F

∂sl,j(τ)
=

∂F

∂yl,j(τ)

∂yl,j(τ)

∂sl,j(τ)
= ǫl,j(τ)f

′

(sl,j(τ)) (1.16)

where l = 1, 2, . . . ,M and j = 1, 2, . . . , nl.

In addition, for any appropriate i and j

∂F

∂wi,j,l,k
=

t
∑

τ=t0

∂F

∂wi,j,l,k(τ)
(1.17)

and, for any τ

∂F

∂wi,j,l,k(τ)
=

∂F

∂sl,k(τ)

∂sl,k(τ)

∂wi,j,l,k(τ)
= δl,k(τ)yi,j(τ) or δl,k(τ)yi,j(τ − 1). (1.18)

Combining these last two equations yields:

∂F

∂wi,j,l,k
=

t
∑

τ=t0

δl,k(τ)yi,j(τ) or δl,k(τ)yi,j(τ − 1)). (1.19)

Equations (1.11), (1.12), (1.13), (1.14), (1.15), (1.16), and (1.19) represent the BPTT computation of

∂F/∂wi,j,l,k for differentiable function F expressed in terms of the outputs of individual units in the network.
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3.1.4 Real-Time Backpropatation Through Time

In real-time BPTT, the performance measure is J(t) at each time. To compute the gradient of J(t) at time

t, we proceed as follows. First, consider t fixed for the moment. This allows us the notational convenience

of suppressing any reference to t in the following. Compute ǫl,j(τ) and δl,k(τ) for τ ∈ [t0, t] by means of

equations (1.11), (1.12) and (1.13). Equation (1.14) needs a little change since with F = J(t), ej(τ) = 0;

thus, for τ < t,

ǫM,j(τ) =
∂F

∂yM,j(τ)
=

∂F

∂y∗M,j(τ)
+

n1
∑

k=1

∂F

∂s1,k(τ + 1)

∂s1,k(τ + 1)

∂yM,j(τ)
+

n1
∑

k=1

∂F

∂sM,k(τ + 1)

∂sM,k(τ + 1)

∂yM,j(τ)

=

n1
∑

k=1

∂F

∂s1,k(τ + 1)

∂s1,k(τ + 1)

∂yM,j(τ)
+

n1
∑

k=1

∂F

∂sM,k(τ + 1)

∂sM,k(τ + 1)

∂yM,j(τ)

=

n1
∑

k=1

δ1,k(τ + 1)wM,j,1,k +

nM
∑

k=1

δM,k(τ + 1)wM,j,M,k. (1.20)

Thus, equations (1.11), (1.12), (1.13), (1.15), (1.16), (1.19) and (1.20) represent the real-time backprop-

agation through time. The process begins by using equation (1.11) to determine ǫM,j(t). This step is called

injecting error, or, to be more precise, injecting e(t) at time t. Then δ and ǫ are obtained for successively

earlier time steps through the repeated use of the equations (1.15), (1.16) and (1.20). Here ǫl,j(τ) represents

the sensitivity of the instantaneous performance measure J(t) to small perturbations in the output of the

jth unit at layer l at time τ , while δl,j(τ) represents the corresponding sensitivity to small perturbations

to that unit’s net input at that time. Once the backpropagation computation has been performed down to

time t0, the desired gradient of instantaneous performance is computed by the following pseudo-code:

for τ = t to t0 {

for l = 2 to M {

for k = 1 to nl {

for j = 0 to nl−1 {

∂F

∂wl−1,j,l,k
+ =

∂F

∂sl,k(τ)

∂sl,k(τ)

∂wl−1,j,l,k
= δl,k(τ)yl−1,j(τ) (1.21)

}
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for j = 1 to nl {

∂F

∂wl,j,l,k
+ =

∂F

∂sl,k(τ)

∂sl,k(τ)

∂wl,j,l,k
= δl,k(τ)yl,j(τ − 1) (1.22)

}

} /*k loop*/ } /*l loop*/

for k = 1 to n1 {

for j = 1 to next {

∂F

∂w0,j,1,k
+ =

∂F

∂sl,k(τ)

∂sl,k(τ)

∂w0,j,1,k
= δ1,k(τ)yext

j (τ) (1.23)

}

for j = 1 to nM {

∂F

∂wM,j,1,k
+ =

∂F

∂sl,k(τ)

∂sl,k(τ)

∂wM,j,1,k
= δ1,k(τ)yM,j(τ − 1) (1.24)

}

for j = 1 to n1 {

∂F

∂w1,j,1,k
+ =

∂F

∂sl,k(τ)

∂sl,k(τ)

∂w1,j,1,k
= δ1,k(τ)y1,j(τ − 1) (1.25)

}

} /*k loop*/

} /*τ loop*/

where the notation “+ =” is to indicate that the quantity on the right hand side of an expression is added

to the previous value (time) of the left hand side. Thus, the sum of ∂F
∂wi,j,l,k

from t0 to t is computed. Because

this algorithm makes use of potentially unbounded history storage, it also sometimes called BPTT(∞).

3.2 Computational Capabilities of Discrete and Continuous Recurrent Net-

works

The computational power of recurrent nets is investigated in references such as [50, 51]; see also [49] for a

thorough discussion of recurrent nets and analog computation in general. Recurrent nets include feedforward
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nets and thus the results for feedforward nets apply to recurrent nets as well. But recurrent nets gain

considerable more computational power with increasing computation time. In the following, for the sake of

concreteness, we assume that the piecewise-linear function π(x) =































0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1

is chosen as activation

function. We concentrate on binary input and assume that the input is provided one bit at a time.

First of all, if weights and thresholds are integers, then each node computes a bit. Recurrent net with

integer weights thus turn out to be equivalent to finite automata and they recognize exactly the class of

regular language over the binary alphabet {0, 1}.

The computational power increases considerably for rational weights and thresholds. For instance, a

“rational” recurrent net is, up to a polynomial time computation, equivalent to a Turing machine. In

particular, a network that simulates a universal Turing machine does exist and one could refer to such a

network as “universal” in the Turing sense. It is important to note that the number of nodes in the simulating

recurrent net is fixed (i.e., does not grow with increasing input length).

Irrational weights provide a further boost in computation power. If the net is allowed exponential

computation time, then arbitrary Boolean functions (including non-computable functions) are recognizable.

However, if only polynomial computation time is allowed, then nets have less power and recognize exactly

the languages computable by polynomial-size Boolean circuits.
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