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Chapter 10

A Review of Some Approximate Privacy
Measures of Multi-Agent Communication

Protocols

Bhaskar DasGupta and Venkatakumar Srinivasan

Abstract Privacy preserving computational models have become an important
research area due to the increasingly widespread usage of sensitive data in net-
worked environments, as evidenced by distributed computing applications and
game-theoretic settings (e.g., auctions). Over the years computer scientists have
explored many quantifications of privacy in computation. Much of this research
focused on designing perfectly privacy-preserving protocols, i.e., protocols whose
execution reveals no information about the parties’ private inputs beyond that im-
plied by the outcome of the computation. Unfortunately, perfect privacy is often
either impossible, or infeasibly costly to achieve (e.g., requiring impractically ex-
tensive communication steps). To overcome this, researchers have also investigated
various notions of approximate privacy. In this chapter, we review a few such no-
tions and known results for them.

10.1 Introduction

Consider the following standard two-agent communication model as originally pro-
posed by Yao (1979). We have two agents, say Alice and Bob, interacting via a pub-
lic channel as depicted in 10.1. Each of Alice and Bob holds a private input, x1 ∈ X1

and x2 ∈ X2 respectively, that is known to her and him, respectively, and they would
like to compute a function f : X1×X2 7→ R of their two private inputs. Alice and Bob
alternately execute “rounds” of a “communication protocol”, where in each round
they make available a small amount of information about their private inputs, such
as an answer to a range query on their private inputs or a few bits of their private
inputs, until each of them has seen enough information to be able to compute the
value of f (x1, x2). This setting can be generalized in an obvious manner to d > 2
agents computing a d-ary function f : X1×X2×· · ·×Xd 7→ R by allowing each agent

267



November 13, 2013 13:19 World Scientific Book - 9.75in x 6.5in WS-book-ICICIP

268 Frontiers of Intelligent Control and Information Processing

to broadcast information about its private input via a public communication channel
in a round-robin order; see 11.2 for an illustration. Without loss of generality and to
simplify exposition, we may assume that X1 = X2 = · · · = Xd = {0, 1, 2, . . . , n} for
some positive integer n that is a power of two. With this assumption, the function
f can also be visualized as n× n× · · · × n d-dimensional real matrix Af,d in which
the ith dimension represents the possible inputs of the ith agent, and each entry
contains the value of f associated with a particular set of inputs from the d agents
(i.e., Af,d [x1, x2, . . . , xd] = f (x1, x2, . . . , xd)). We will denote Af,2 simply as Af .

Fig. 10.1 The standard two-agent commu-
nication model [Yao (1979)].

Fig. 10.2 The d-agent communication
model for d = 4 computing a function
f (x1, x2, x3, x4).

A typical line of research in the above two and multi-agent model of commu-
nication, starting with the seminal work of Yao (1979), lies in investigating the
communication complexity issues, e.g., how many rounds of communications are
necessary or sufficient to compute a given family of functions. Such investigations
have resulted in a well-developed research area with many interesting results; the
reader is referred to a textbook such as Kushilevitz and Nisan (1997) for an overview
and basic results in this field, such as the number of bits that need to be exchanged
in a two-agent communication protocol by Alice and Bob to compute a given func-
tion f is at least log2 (rankf ) where rankf is the linear rank of the matrix Af over
the reals [Kushilevitz and Nisan (1997)] Applications of these results and techniques
have led to the famous AT2 bound for VLSI networks and analysis of dynamic data
structures, to mention a few.

The central question that is the topic of the paper is however motivated differ-
ently from the previous line of research by recent increasingly widespread usage of
sensitive data in networked environments, as evidenced by distributed computing
applications, game-theoretic settings (e.g., auctions) and more. For example, one
motivation, as explained in details in Feigenbaum et al. (2010), comes from privacy
concerns in auction theory in Economics. An offline or online auction can obviously
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be viewed as an exchange of information between the bidders and the auctioneer
where the goal is to the compute the function that determines the winner of the
auction (see 11.3). Traditionally desired goals of designing auction mechanisms in-
clude maximizing revenues and ensuring that the designed mechanisms are indeed
truthful, i.e., bidders fare best by letting their truthful bids known [Nisan et al.
(2007)]. However, more recently, another complementary goal that has gained sig-
nificant attention, specially in the context of online auctions such as administered
by google and other similar companies, is to be able to preserve privacy of the
bidders, i.e., bidders must not reveal more information that what is necessary to
the auctioneer for optimal outcomes [Comi et al. (2012); Feigenbaum et al. (2010)].
Thus, for these types of multi-agent communication protocols, the alternate goal is
to preserve the privacy of the agents as opposed to optimizing the communication
complexity. Informally, the privacy question that is the focus of this chapter is the
following: given a communication protocol to compute a function via multi-agent
communication, how can we quantify the amount of extra information about the
agents private inputs, beyond what is necessary to compute the function value, that
is revealed by the execution of the protocol? Note that there are two conflicting
constraints: the agents do need to communicate sufficient information for comput-
ing the function value, but would prefer not to communicate too much information
about their private inputs.

To give a concrete example, consider a sequential second-price auction1 of an
item via a protocol in which the price of the item is incrementally increased and
publicly announced until the winner is determined. However, such a protocol pub-
licly reveals more information about the bidders than what is absolutely necessary
to determine the winner which could be detrimental for the bidders. For example,
the protocol reveals the information about the identity of the winner (with reveal-
ing his/her bid) together with the bid of the second-highest bidder, and revealing
such additional information could put the winner at a disadvantage in the bidding
process of a similar item in the future since the auctioneer could set a lower reserve
price. In this chapter, we will review a generalized geometric privacy framework that
captures applications of the above type as well as other applications in multi-agent
computation.

10.1.1 Perfect vs. Approximately perfect privacy

Unfortunately, even though perfect privacy is the most desirable goal, it is often
either impossible, or infeasibly costly to achieve (e.g., requiring impractically exten-
sive communication steps). For example, using the combinatorial characterization
of privately computable functions put forth by Chor and Kushilevitz (1991) and
Kushilevitz (1992), it is possible to show that the millionaires problem (defined in

1In such an auction, the winner is the bidder with the highest bid and the price paid by the
winner is that of the second-highest bid.
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Fig. 10.3 An online auction mechanism viewed as a multi-agent communication problem.

Section 10.3) is not perfectly privately computable [Chor and Kushilevitz (1991)]
and the two-bidder second-price Vickrey auction (also defined in Section 10.3) is
perfectly privately computable but only at the cost of and exponential amount of
communication by the bidders [Brandt and Sandholm (2008)]. Thus, much of the
current research works focus on quantifying and analyzing approximate notions of
privacy [Ada et al. (2012); Comi et al. (2012); Dwork (2006); Feigenbaum et al.
(2010)].

10.1.2 Privacy analysis in other environments

Besides the distributed function computation environment, privacy preserving
methods have also been studied in other environments. For example, in the con-
text of mining statistical databases a privacy preserving protocol is expected to
provide reliable information about a record being queried while revealing as little
information as possible about other records in the database. One model to address
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the privacy issue in such a data mining environment is the so-called Differential
Privacy Model originally introduced by Dwork (2006). This model was introduced
to investigate the issue of preserving privacy in statistical databases. For example,
if the statistical database is a representative sample of some population, differential
privacy model allows a user to learn the properties of the population while preserv-
ing the privacy of individuals in the population. More formally, a randomized query
returning algorithm A provides ε-differential privacy if, for all pairs of data sets D1

and D2 differing on at most one element and for all subset S of answers provided
by A, we have2

Pr [querying on D1 returns a member in S]

≤ eε Pr [querying on D2 returns a member in S]

where the probabilities are taken is over the coin tosses of the randomized algorithm
A (i.e., informally, removing one record from the database does not make a query
output too much more or less likely). Differential privacy is usually achieved by
computing the correct answer to a query and adding a noise drawn from the so-
called Laplace(f(ε)) distribution for some appropriate function f . This approach
is sufficient to handle individual queries. In Dwork (2006), the author also provides
a mechanism for ensuring differential privacy in case of adaptive queries.

Alternative frameworks, such as the k-anonymization approach [Sweeney
(2002)], has also been used for this application.

10.2 Various Frameworks to Quantify Privacy of Protocols

In this section, we review several well-known frameworks to quantify exact or ap-
proximate privacy of communication protocols for distributed function computation,
one of which is the main topic of this chapter.

10.2.1 Communication complexity based approaches

The origin of these frameworks can be traced back to the early works of Chor and
Kushilevitz (1991) on characterizations of privately computable functions that can
be computed in a perfect private manner, and that of Kushilevitz (1992) on commu-
nication complexity issues of privately computable functions. Based on these results,
the following two privacy frameworks were independently developed by researchers
(an exact characterization of the relationship between these two frameworks is still
an open research question):

• Bar-Yehuda et al. (1993) provided a combinatorial framework to quantify the
amount of privacy that can be maintained in the computation of a function,
and the communication cost of achieving this amount of privacy.

2e denotes the base of natural logarithm.
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• Geometric frameworks to quantify exact and approximate privacy in computing
a function in two- and multi-agent communication settings were first formulated
by Feigenbaum et al. (2010) and subsequently further analyzed by Comi et al.
(2012). This geometric framework is the main framework that is reviewed in
this chapter.

Notable among other results on this approach is the work of Brandt and Sandholm
(2008) that, using the framework of Kushilevitz (1992), provided an exponential
lower bound on the communication complexity of privacy-preserving second-price
Vickrey auctions.

10.2.2 Information-theoretic approaches

The study of information-theoretically private protocols can be traced back to the
works in Ben-Or et al. (1988); Chaum, Crepeau and Damgaard (1988). An underly-
ing assumption in these works was that a constant fraction of the agents are honest,
i.e., these agents follow the protocol even if deviating from the protocol may benefit
them.

10.2.3 Cryptographic approaches

Another approach to securing privacy in any multi-agent communication is to use
cryptographic tools that rely on various (mostly unproven but always widely be-
lieved to be true) complexity-theoretic assumptions. The origin of this line of re-
search can be traced back to the earlier works of Yao [Yao (1982, 1986)]. Usually
these types of protocols are very communication intensive, though communication
efficient cryptographic protocols have indeed been obtained in some recent papers
in mechanism design problems [Dodis et al. (2000); Naor et al. (1999)].

10.2.4 Two-agent differential privacy framework

This framework, introduced by McGregor et al. (2010), attempts to extend the
differential privacy model mentioned in Section 10.1.2 in the context of distributed
function computation in a two-agent communication setting. In this setting the two
agents, say agents A and B, want to find out the hamming distance between the n

bit inputs that they hold. This setting is defined in the following manner:

• A mechanism M (on Σn) is a family of probability distributions{
µx : x is an input value

}
on R. Such a mechanism M is ε-differentially pri-

vate if and only if the following condition holds:

– ∀x, x ∈ Σn :
∣∣x − x

∣∣
H

= 1, and
– for all measurable subsets S of R, µx(S) ≤ eεµx(S).

where
∣∣x − x

∣∣
H

denotes the Hamming distance between x and x′.
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• VIEWA
P(x, y) is the joint probability distribution over inputs x, y, the transcript

of a protocol P and the private randomness of agent A (the probability space
is private randomness for both agents). VIEWB

P (x, y) is defined in a similar
manner with respect to agent B.

Then, a communication protocol P has ε-differential privacy if and only if both of
the following conditions hold:

(a) For all input x, VIEWA
P(x, y) is ε-differential private.

(b) For all input y, VIEWB
P (x, y) is ε-differential private.

A major contrition of McGregor et al. (2010) is a lower bound on the least additive
error of any differentially private protocol that is used to compute the hamming
distance.

Theorem 10.1. [McGregor et al. (2010)] Let P(x, y) be a randomized protocol with
ε-differential privacy for inputs x, y ∈

{
0, 1

}n, and let δ > 0. Then, with probability
at least 1− δ over x, y ∈ {0, 1}n and the coin tosses of P, output of agent B differs
from 〈x, y〉 by at least Ω

( √
n

log n × δ
eε

)
.

An obvious research question for investigation is to see if the above lower bound
can be improved or if an actual protocol with a matching upper bound can be found.

10.3 Benchmark Problems and Functions

Often the usefulness of a privacy definition in distributed function computation is
checked by demonstrating its value for a class of interesting functions (“benchmark”
functions). We mention a few such functions here.

Set-covering function fset-cover: Suppose that the universe U consists of k

elements u1, u2, . . . , uk, and the vectors ~x = (x1, x2, . . . , xk) ∈ {0, 1}k and
~y = (y1, y2, . . . , yk) ∈ {0, 1}k encode membership of the elements in two sets
S~x and S~y, i.e., xi (respectively, yi) is 1 if and only if ui ∈ S~x (respectively,
ui ∈ S~y). Then,

fset-cover (~x, ~y) def=
k∧

i=1

(xi ∨ yi) =
{

1, if S~x ∪ S~y = U
0, otherwise

Set-covering type of functions are useful for studying the differences between
deterministic and non-deterministic communication complexities [Kushilevitz
and Nisan (1997)].

Equality function f=: For two boolean vectors ~x = (x1, x2, . . . , xk) ∈ {0, 1}k and
~y = (y1, y2, . . . , yk) ∈ {0, 1}k:

f= (~x, ~y) def=
{

1, if ∀ i : xi = yi

0, otherwise
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The equality function provides a useful testbed for evaluating privacy preserving
protocols [Bar-Yehuda et al. (1993); Kushilevitz and Nisan (1997)]

Set-disjointness function fdisjoint: We have two boolean vectors ~x =
(x1, x2, . . . , xk) ∈ {0, 1}k and ~y = (y1, y2, . . . , yk) ∈ {0, 1}k (encoding set mem-
berships of elements from an universe) and we wish to decide if they disagree
on every coordinate or not, i.e.,

fdisjoint (~x, ~y) def=
{

1, if ∀ i : xi 6= yi

0, otherwise
The set-disjointness function plays an important role in the theory and appli-
cation of communication complexity.

Set-intersection function fintersect: We have two boolean vectors ~x =
(x1, x2, . . . , xk) ∈ {0, 1}k and ~y = (y1, y2, . . . , yk) ∈ {0, 1}k (encoding set mem-
berships of elements from an universe) and we wish to determine the coordinates
in which both of them have a 1, i.e.,

fintersect (~x, ~y) def= (z1, z2, . . . , zn) where, for each 1 ≤ j ≤ k, zj = xj ∧ yj

The set-intersection function has motivated the study of privacy-preserving
computation for many years. A typical application of the set-intersection func-
tion is when two organizations wish to compute the set of common members
without disclosing the members of only one of the organizations [Feigenbaum
et al. (2010)].

Millionaires problem fmillionaire: In this problem, the two agents are two mil-
lionaires, each knowing his/her own wealth as own private information, and the
goal is to discover the identity of the richer millionaire while preserving the pri-
vacy of both agents. Formally, for two boolean vectors ~x = (x0, x1, . . . , xk−1) ∈
{0, 1}k and ~y = (y0, y1, . . . , yk−1) ∈ {0, 1}k:

fmillionaire (~x, ~y) def=

0, if
k−1∑
j=0

2j xj ≥
k−1∑
j=0

2j yj

1, otherwise
Privacy-preserving protocols for the millionaires problem was investigated in
papers such as Chor and Kushilevitz (1991); Feigenbaum et al. (2010); Yao
(1979).

Second-price Vickrey auction: In a 2nd-price Vickrey auction [Vickrey (1961)]
involving one item and two bidders, each having a private value of the item, the
goal is to declare the bidder with the higher value as the winner (breaking ties
arbitrarily) and reveal the identity of the winner as well as the value of the losing
bidder. Formally, for two boolean vectors ~x = (x0, x1, . . . , xk−1) ∈ {0, 1}k and
~y = (y0, y1, . . . , yk−1) ∈ {0, 1}k:

fSecond−priceVickrey (~x, ~y) def=

 (0, y0, y1, . . . , yk−1) , if
k−1∑
j=0

2j xj ≥
k−1∑
j=0

2j yj

(1, x0, x1, . . . , xk−1) , otherwise
Second-price Vickrey auction is a fundamental technique in mechanism design
for inducing truthful behavior in one-item auctions [Nisan et al. (2007)].
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Fig. 10.4 Illustration of one run of the bi-
section protocol when Alice and Bob has pri-
vate inputs 00 and 11, respectively. The re-
cursive partitioning induced by the execu-
tion of the protocol is shown by thick dashed
lines.

Fig. 10.5 Illustration of one run of the dis-
section protocol when Alice and Bob has pri-
vate inputs 00 and 11, respectively. The re-
cursive partitioning induced by the execu-
tion of the protocol is shown by thick dashed
lines.

10.4 Examples of Standard Communication Protocols

A protocol P will refer to (a priori) fixed set of rules for communication, and the
transcript of P is the total information (e.g., bits) exchanged during an execution of
P. By a “run” of the protocol, one refers to the entire execution of the protocol for
a specific set of private inputs of the two agents. For simplicity, we illustrate these
protocols for two agents only, but they are easily generalized for the case of d > 2
agents in an obvious manner. Typically, one assumes that in each communication
round of a protocol P, except the very last one, one of the agents alternately sends
out a bit that is computed as a function of that agents’ input and communication
history. The last message sent in P is assumed to contain the actual value of the
function and therefore may require a larger number of bits. The final outcome of
the protocol P is denoted by the function tP . Viewed in this manner, each run of
a protocol recursively induces a partition of the associated matrix Af of a function
f . Three such well-known communication protocols studied in the literature are as
follows:

α-bisection protocol: For a constant α ∈
[
1
2 , 1

)
, a protocol is a α-bisection pro-

tocol provided the following two conditions hold:

• at each communication step, the maintained subset of inputs of each agent
is a set of contiguous integers, and

• at each communication step, the communicating agent partitions its input
space of size z into two halves of size α z and (1 − α) z.

Bisection protocol: A 1
2 -bisection protocol is simply called a bisection protocol

(see 10.4 for an illustration).
Bounded-bisection protocol: For an integer valued function g(k) such that 0 ≤
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g(k) ≤ k, bounded-bisectiong(k) is the protocol that runs a bisection protocol
with g(k) bisection operations followed by a protocol (if necessary) in which
each agent repeatedly partitions its input space into two halves one of which is
of size exactly one.

Sealed-bid auction protocol: This straightforward protocol is applicable for
functions that represent the auction of an item. Here the auctioneer receives
sealed bids from all bidders and computes the outcome based on this informa-
tion.

Ascending-price English auction protocol: This straightforward protocol is
applicable for functions that represent the auction of an item. Suppose that we
have two bidders only. We start with a price of zero for the item and, in each
discrete time step increment, we increase the price by one until one of the two
bidders indicates that his/her value for the item is less than the current price,
say a. Then, we allocate the item to the other bidder for a price of a − 1.

Comi et al. [Comi et al. (2012)] considered a more general version of the α-bisection
protocol in the following manner. When designing protocols for environments in
which the input of each agent has a natural ordering (e.g., the set of input of an
agent from

{
0, 1

}k can represent the numbers 0, 1, 2, . . . , 2k − 1, as is in the case
when computing the maximum/minimum of two inputs, in the millionaires problem,
in second-price auctions, and more), a natural restriction is to allow protocols such
that each agent asks questions of the form “Is your input between a and b (in this
natural order over possible inputs)?”, where a, b ∈

{
0, 1

}k. Notice that such a
protocol divides the input space into two (not necessarily equal) halves (see 10.5).
Such protocols were termed as the dissection protocol in Comi et al. (2012) and
were useful in analyzing average loss of privacy.

10.5 A Geometric Approach to Quantify Privacy

In this section, we review a recent interesting geometric approach to privacy is based
on communication complexity that was initiated by Feigenbaum et al. [Feigenbaum
et al. (2010)] and subsequently followed up in Ada et al. (2012); Comi et al. (2012).
Although originally motivated by agents’ privacy in mechanism design, the defini-
tions and tools can be easily applied to distributed function computation in general.
This framework allows one to quantify approximate privacy as well as study the
trade-off between privacy preservation and communication complexity. For simplic-
ity of exposition, we discuss the framework first for two agents and later comment
on how to generalize it when d > 2 agents communicate. As mentioned in the
introduction, we have two agents and a function f : X × X 7→ R of two arguments
to compute, where X = {0, 1, 2, . . . , n} with n = 2k for some positive integer k,
and such a function f can be visualized via the associated two-dimensional matrix
Af . For convenience, we will view the elements in X in binary as a k-bit number



November 13, 2013 13:19 World Scientific Book - 9.75in x 6.5in WS-book-ICICIP

A Review of Some Approximate Privacy Measures of Multi-Agent Communication Protocols 277

whenever required.
Intuitively, a quantification of (exact or approximate) privacy should satisfy the

objective that any observer of the protocol P should not be able to distinguish the
private inputs of the two communicating agents from as large a set as possible of
other possible private inputs. To capture this intuition, Feigenbaum et al. [Feigen-
baum et al. (2010)] makes use of the machinery of communication-complexity theory
to introduce the so-called Privacy Approximation Ratio (Par) via a geometric and
combinatorial interpretation of protocols. To define Par, we first need to state
some basic communication complexity definitions for a two-agent communication
model [Kushilevitz and Nisan (1997)].

Fig. 10.6 Illustration of concepts in Definition 10.1.

Definition 10.1 (see 11.5 for an illustration).

(I) A region R of Af is any subset of entries in Af . R is monochromatic if all
entries in R are of the same value. A monochromatic region R of Af is max-
imal if no other monochromatic region in Af properly contains it. The ideal
monochromatic partition of Af is made up of the maximal monochromatic re-
gions.

(II) A partition of Af is a collection of disjoint regions in Af whose union equals
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to Af . A monochromatic partition of Af is a partition all of whose regions are
monochromatic.

(III) A rectangle in Af is a sub-matrix of Af . A tiling of Af is a partition of Af

into rectangles. A tiling T1 of Af is said to be a refinement of another tiling T2

of Af if every rectangle in T1 is contained in some rectangle in T2.
(IV) A protocol P achieves perfect privacy if, for every pair of inputs (x1, x2) and

(x′
1, x

′
2) such that f(x1, x2) = f(x′

1, x
′
2), it holds that tP(x1, x2) = tP(x′

1, x′
2).

(V) A communication protocol P for f is perfectly privacy-preserving if the
monochromatic tiling induced by P is the ideal monochromatic partition of Af .

(VI) Let RP (x1, x2) be the monochromatic rectangle induced by protocol P for
(x1, x2) ∈ {0, 1}k × {0, 1}k and RI (x1, x2) be the monochromatic region con-
taining Af [x1, y1] in the ideal monochromatic partition of Af . Then P has a
worst-case privacy-approximation-ratio (Par) of ∆worst if

∆worst = max
(x1,x2)

[∣∣ RI (x1, x2)
∣∣

|RP (x1, x2)|

]
See 10.7 for an illustration.

(VII) Let D be a probability distribution over the space of inputs. The average case
privacy-approximation-ratio (Par) of a communication protocol P under dis-
tribution D for function f is

∆D = ED

[
|RI(x1, x2)|
|RP (x1, x2)|

]
where ED denotes the expectation with respect to the distribution D.

(VIII) The worst case Par for a function f is the minimum, over all protocols P for
f , of the worst case Par of P .

In Definition 10.1(VI)–(VIII), the underlying assumption is that partition-
ing an ideal monochromatic rectangle results in loss of privacy. The intuition
behind this is as follows. Consider the situation depicted in 10.8 where the
shaded ideal monochromatic rectangle is partitioned into two rectangles by a pro-
tocol. Note that the value of f(x, y) is the same for all x1 ≤ x ≤ x2 and
y1 ≤ y ≤ y2 since the shaded rectangle is monochromatic. But, observing the
protocol allows one to distinguish between subsets of these inputs, namely in-
puts in the subset { (x, y) |x1 ≤ x ≤ x2, y1 ≤ y < y′} from inputs in the subset
{ (x, y) |x1 ≤ x ≤ x2, y

′ ≤ y < y2}, thereby revealing extra information.
Using the above framework and definitions, Feigenbaum et al. [Feigenbaum et al.

(2010)] provided calculations of worst-case and average Par values for a number of
functions as summarized in Table 10.1.

10.5.1 Tiling functions and dissection protocols

Comi et al. [Comi et al. (2012)] further investigated this geometric approach by
defining a special class of functions called the “tiling” functions, and analyzing the
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Fig. 10.7 Illustration of the calculation of the worst-case Par ∆worst.

Fig. 10.8 Partitioning an ideal monochromatic rectangle leads to loss of privacy.

power of the more general dissection protocol in computing these tiling functions.
The dissection protocol was defined in Section 10.4. To illustrate the main ideas
more clearly, here we consider a slightly simplified version of the definition of a
tiling function in which we assume that the index of a row (respectively, a column)
of Af is the same as the private value held by the first (respectively, second) agent.
Then, a function f is a tiling function [Comi et al. (2012)] if the monochromatic
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Table 10.1 List of bounds on average and worst-case Par for a few functions as derived in Feigenbaum et al.
(2010). D is assumed to be the uniform distribution.

Protocol
Computed function

fmillionaire fSecond−priceVickrey

∆D ∆worst ∆D

arbitrary ≥ 2k −
1

2
−

1

2k+1
≤ 2

3
2k + 1

3 2k

bisection = 3
2
2k −

1

2
= 2

k
2 = k

2
+ 1

α-bisection
= 2

k
2

(assuming α > 1
2k )

bounded-bisectiong(k) =
g(k)+3

2
− 2g(k)

2k+1 + 1
2k+1 − 1

2g(k)+1

sealed-bid auction = 2k+1

3
+ 1

3 2k

Ascending-price
English auction

= 1

regions in Af form a tiling; the number of monochromatic regions in this tiling is
denote by ∇f . See 10.9 for illustrations. Comi et al. [Comi et al. (2012)] proved
the following results.

(a) (b)

Fig. 10.9 Example of (a) tiling and (b) non-tiling functions.

Theorem 10.2.

(a) Every boolean tiling function can be computed in a perfectly privacy-preserving
manner.

(b) There exists a tiling function f : {0, 1}k × {0, 1}k 7→ {0, 1}3 such that every
dissection protocol P for f has ∆worst = Ω

(
2

k
2

)
.

(c) Let D be the uniform distribution. Then, the following results hold.
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(i) For any tiling function f , there is a dissection protocol P using at most
O(∇f ) communication rounds such that

• ∆D ≤ 4, and
• P can be computed in O

(
k4k

)
time.

(ii) There exists a tiling function f such that for every dissection protocol we
have ∆D ≥ 11

9 .

A proof of Theorem 10.2(c)(i) was obtained in Comi et al. (2012) via a connec-
tion between protocols and the binary space partitions (Bsp). Bsps present a way
to implement a geometric divide-and-conquer strategy and is an extremely popu-
lar approach in numerous applications such as hidden surface removal, visibility
problems, and motion planning [Tóth (2005)]. A Bsp for a collection of disjoint
rectangles in the two-dimensional plane can be defined in the following manner.
The plane is divided into two parts by cutting rectangles with a horizontal or ver-
tical line if necessary. The two resulting parts of the plane are divided recursively
in a similar manner and the process continues until at most one fragment of the
original rectangles remains in any part of the plane. This division process can be
naturally represented as a binary tree (Bsp-tree) where a node represents a part
of the plane and stores the cut that splits the plane into two parts that its two
children represent. Each leaf of the Bsp-tree then represents the final partitioning
of the plane by storing at most one fragment of an input rectangle; see Fig. 10.10 for
an illustration. The following result on Bsp was shown in d’Amore and Franciosa
(1992):

Fig. 10.10 A binary space partition for a set of given rectangles.

[d’Amore and Franciosa (1992)] For any set of disjoint axis-parallel rectangles in
the plane, there is a Bsp such that every rectangle is partitioned into at most 4
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rectangles due to Bsp.

The above result can be used to prove Theorem 10.2(c)(i) by identifying Bsps with
dissection protocols.

10.5.2 Generalization for d > 2 agents

Comi et al. [Comi et al. (2012)] showed that the average Par is very high for
dissection protocols even for 3 agents and uniform distribution, thereby suggesting
that this quantification of privacy may not provide good bounds for three or more
agents. More precisely, they proved the following result.

Theorem 10.3. Let D denote the uniform distribution. Then, there exists a tiling
function f : {0, 1}k × {0, 1}k × {0, 1}k 7→{0, 1}3k such that every dissection protocol
must have ∆D = Ω

(
2k

)
.

10.6 Conclusion

In this chapter, we have provided an overview to privacy preserving computing
in a distributed function computation setup that includes game-theoretic settings.
In particular, we have reviewed in greater details a recently developed geometric
approach to quantifying loss of privacy. Future research questions of interest include
identifying other non-tiling classes of functions for which good approximate-privacy
preserving protocols are possible and relating the geometric privacy model to other
privacy models.
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