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Abstract

Computing a suitable measure of consensus among several clusterings on the same data
is an important problem that arises in several areas such as computational biology and data
mining. In this paper, we formalize a set-theoretic model for computing such a similarity
measure. Roughly speaking, in this model we have k > 1 partitions (clusters) of the same data
set each containing the same number of sets and the goal is to align the sets in each partition
to minimize a similarity measure. For k = 2, a polynomial-time solution was proposed by
Gusfield (Information Processing Letters, 82, pp. 159-164, 2002). In this paper, we show that
the problem is MAX-SNP-hard for k£ = 3 even if each partition in each cluster contains no more
than 2 elements and provide a 2 — %—approximation algorithm for the problem for any k.

Keywords: computational complexity, approximation algorithms, consensus clustering.

1 Introduction

Many applications in data mining and computational biology produce clusterings that are partitions
of a set of elements. Quite often, different algorithms for the same application are used, thereby
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generating different clusterings (partitions) of the same set of elements. It is thus of interest to
compare these partitions over the same universe to find their combined similarity or distance to
check for discrepancies in individual partitions and to determine if a consensus of these different
clusterings provides any meaningful interpretation of the given data [5, 8, 9]. See [1] for one such
application of computing the consensus in bioinformatics in the context of determining the family
structure of individuals based on genetic data. The set-theoretic model that we formalize for
comparing partitions is summarized next.

Let A(S,T) = | (S\T) U (T'\S) | for two sets S and T'. A precise description of the set-theoretic
formulation that computes a distance measure between the clusters is captured by the following
problem.

Problem name: k-partition clustering (PCy)

Instance: A universe X, a collection of k partitions P, Ps,..., P, of X with each
partition P; = {S;1,Si2,...,S5i4} containing exactly the same number ¢ of sets.
Valid Solutions: a sequence of k permutations o = (01,09,...,0%) of {1,2,...,q}

that “aligns” the partitions.

Notation: For any permutation p of {1,2,...,q}, p(i) is the i*" element of p for
1< <q.

Objective: minimize f(o) = Y1, Yi<j<r<k A(Sjjaj(i), S’r,gr(i)).

The most recent prior work in comparing partitions is by Gusfield [6] where the distance measure
used is the minimum number of elements that need to be deleted such that the partitions become
identical. Gusfield provides a polynomial-time algorithm for two partitions based on matching
algorithms and observed that the problem becomes NP-hard for 3 or more clusters. The problem
PCy can be seen to be identical to the distance measure between two partitions introduced in [6]
and thus can be solved in polynomial time; the problem PCy, is one way to generalize such a distance
measure between more than two partitions.

1.1 Basic Definitions

Recall that a y-approximation of a minimization problem is a solution obtained in polynomial
time with an objective value no larger than « times the value of the optimum. In [7] Papadim-
itriou and Yannakakis defined the class of MAX-SNP-hard optimization problems and a special
approximation-preserving reduction, the so-called L-reduction, that can be used to show MAX-
SNP-hardness of an optimization problem. The definition of an L-reduction is as follows.

Definition 1 [3, 7] Given two optimization problems I and I', we say that I L-reduces to I if
there are three polynomial-time procedures 11,15, T3 and two constants a and b > 0 such that the
following two conditions are satisfied:

1. For any instance I of 11, algorithm T; produces an instance I' = f(I) of II' such that the
optima of I and I', OPT(I) and OPT(I'), respectively, satisfy OPT(I') < a-OPT(I).

2. For any solution of I' with cost ¢, algorithm T produces another solution with cost ¢’ no
worse than ¢, and algorithm T3 produces a solution of I of 11 with cost ¢ (possibly from the
solution produced by Ts) satisfying |c — OPT(I)| < b-|" — OPT(I')|.



An optimization problem is MAX-SNP-hard if any problem in MAX-SNP L-reduces to that prob-
lem. The importance of proving MAX-SNP-hardness results comes from the fact that Arora et
al. [2] showed that, assuming P#NP, for every MAX-SNP-hard problem there exists a constant
€ > 0 such that no polynomial time algorithm achieves an approximation ratio better than 1 + €.

1.2 Brief Summary of Our Results
We show the following:

e PCj is MAX-SNP-hard even for k = 3 even when each set has exactly 2 elements;

e there is a (2 — %)—approximation algorithm for PCy, for any k.

2 MAX-SNP-hardness of PC;

In the sequel, for two edges e = {u,v} and ¢ = {u/,v'}, the notation e & ¢’ denotes the set
(e\e)U (e \ e). We consider the following special case of PCs:
Problem name: Aligned Matching (ALMA).

Instance: A cubic graph (V, AUBUC) where A, B, C' are three disjoint perfect match-
ings; thus for some n we have |V| =2n and |A| = |B| = |C| =n.

Valid Solutions: an ordering of each matching into an ordered sequence of edges;
matching A (resp. B, C) is ordered as ay,...,ay, (resp. bi,..., by, ¢1,...,¢p)

Definitions and notations: A triple (a;, b;, ¢;) is a column of the alignment; the cost
of such a column is cost(i) = 5-[|a; ® b;| + [b; ® ¢;| + |¢; @ a;|] and the cost of the entire
alignment is Y1 cost(1).

Objective: find an alignment with the minimum cost.
Obviously, ALMA is a special case of PCs since the cost function differs only by a multiplicative

factor 2; moreover, in ALMA every set contains exactly two elements. We prove the following
result.

Theorem 2 ALMA is MAX-SNP-hard.

The rest of the section discusses the proof of the above theorem. Let 3-MAXCUT be the MaxCut
problem restricted to cubic graphs, namely the following problem:

Problem name: 3-MaxCuT

Instance: A cubic graph (V| E), i.e., a graph with every vertex of degree 3 (and, thus,
1B = 5IV]).
Valid Solutions: a partition of V into two sets V; and V5.

Objective: mazimize the number of “cut” edges, i.e.,
maximize |{ {u,v} € E|u € Vi and v € Vo }|.

It is known that 3-MaxCuT is MAXSNP-hard [4]. We will reduce 3-MAXCUT to ALMA. Here
is an overview of the entire reduction. Given an instance I of 3-MAXCUT with 2n vertices and 3n
edges, we will create in polynomial time an instance I’ of ALMA with n’ = 2n x 96 = 192n nodes,



m' = %n’ = 288n edges and with alignments having 96n columns'. The reduction will satisfy the

properties of L-reduction in the following manner:

(i) A solution of instance I of 3-MAXCuUT with 3n — a cut edges (hence, a non-cut edges) leads to
a solution of instance I’ of ALMA with cost 288n + 6a.

(ii) From a solution of instance I’ of ALMA of cost 288n + 6a’ we can construct in polynomial
time a solution of an instance I of 3-MAXCUT with 3n — da’ cut edges.

Since obviously 2n <OPT(I) < 3n, it is easy to see that the above properties guarantee that
conditions (1) and (2) of Definition 1 for an L-reduction are satisfied.

Now, we describe the reduction in more details. Given an instance (V, E) of 3-MAXCUT we
create an instance of ALMA as follows. Each node u of V is replaced with gadget I',, that consists
of 96 nodes (see Figure 1) arranged in the form of four concentric rings of hexagons. From each
node three edges extend in three directions:

e a horizontal edge from matching A (striped);
e a diagonal edge from matching B (white) and
e an anti-diagonal edge from matching C' (black).

A node gadget is bipartite and we can color its vertices with white and black (see Figure 1). If
{u,v} € E, we connect the gadgets of u and v with 6 edges as shown in Figure 1. Note that among
the 6 connections, there are two in every of the three matchings/directions, one connecting two
white nodes and one connecting two black nodes. We use the following convention in the sequel:

If x,y € {white,black}, e is an z-y edge if it connects vertices with colors z and y.

Thus we defined an instance of ALMA (V’/, A, B, C'), where node set V' is the union of nodes of
I, gadgets (thus, |V/| = 96 - |V| = 192n) and A, B and C' are the three matchings that form the
set of edges (thus, |A| = |B| = |C| = ‘VT/| =96n and m' = |A| + |B| + |C| = 288n).

Note that since in ALMA sets have exactly two elements, the cost of a column of an alignment
may be 3, 4, 5 or 6. Because (V', A, B,C) has no triangles, we observe the following.

e A column with cost 3 consists of three edges incident to a single node. We call it a star; the
center of the star is their common node. Obviously, a star is connected 2

e A column with cost 4 consists of three edges that form a path. We call it a crescent (because
each edge in a crescent must be of different color, each edge must follow a different direction,
hence the three edges form a crescent rather than a zig-zag). Obviously, a crescent has one
connected component. Note that the cost of the column is 3 plus an extra 1 corresponding
to this one component.

e A column with cost 5 consists of a path of two edges (called a pair) and another edge (called
a single). We call it a pair-with-a-single. Obviously, a pair-with-a-single has two
connected components. Note that the cost of such a column is 3 plus an extra 1 for each
connected component.

LA smaller construction is possible, but seems to require a substantially longer proof.
2A set of edges is connected if it is connected in the line-dual graph, where vertices are (former) edges and edges
indicate having a common (former) node. In this framework we can have connected components of a set of edges.



e A column with cost 6 consists of 3 singles (non-adjacent edges). Obviously, such a column
has connected components corresponding to each single. Note that the cost of such a column
is 3 plus an extra 1 for each connected component.

Thus, observe that an alignment (of 96n = %/ columns) partitions AUBUC into connected sets with
at most one edge from each matching in each column, and if besides stars this partition contains b
crescents, ¢ pairs and d singles then the cost is %n’ +b+c+d.

Lemma 3 (Proof of Property (i)) If (V, E) has a cut (V1, V) with 3n—a cut edges, (V', A, B,C)
has an alignment with cost 288n + 6a.

Proof. We construct the alignment as follows: if u € Vi, for every white node w in I'y, we create
star column with center w, and if u € V5, we do the same for every black node in I';,. Because each
node gadget contains 48 nodes of each color, a first glance would seem to indicate that we have
created an alignment with a cost of 3 x 48|V| = 144|V| = 288n.

However, the above calculation is not quite correct: contact edges may be allocated to two stars
or to none. The following two cases arise:

Case 1: {u,v} € E belongs to the cut. Assume without loss of generality that v € V} and v € V5.
Then such a white-white contact edge belongs to a star with the center in I',,, and such a black-black
contact edge belongs to a star with the center in T',,.

Case 2: {u,v} € E does not belong to the cut. Assume without loss of generality that {u,v} C V.
Consider a pair of contact edges of I';, and I';, that belong to the same matching, say A. Then the
black-black edge is not taken by any star, and thus it forms a single from A. The white-white edge
is “taken” by two stars, so we remove it from one of them, and what is left is a pair of edges from
matchings B and C'. Thus we can combine the single and the pair and we have a pair-with-a-single
column; this increases the cost by 2 (from 3 to 5), and we do it for each of the three matchings,
so the total cost increase is 3 x 2 = 6. As we do it for a edges, we obtain a solution with cost
288n + 6a. i

Now, we turn to proving Property (ii) of our reduction. We need to show that for every
alignment in (V' A, B, C) there exists another alignment with a cost that is not larger and which
is derived from a cut of (V) E) as in the proof of Lemma 3. We will normalize the alignment in
stages.

As observed before, an alignment partitions A U B U C' into connected sets with at most one
edge from each matching in each column, and if besides stars this partition contains x crescents, y
pairs and z singles then the cost is 1.5n' + z + y + 2. We say that crescents, pairs and singles are
wrreqular sets. For ease of describing the normalization, we now introduce the following problem:

Problem name: STEP (strange edge partition)

Instance: same input as in ALMA.

Valid Solutions: a partition of the set of edges such that each member of the partition
is a star (a set of three edges), a crescent (a set of three edges), a path (a set of two
edges) or a single (one edge) with at most one edge from any matching in a partition.

Objective: minimize the number of irregular sets, ¢. e. the number of crescents, pairs
and singles.

Note that a solution of ALMA is also a solution of STEP, but a solution of STEP is not
necessarily a solution of ALMA since we do not mention in a solution of STEP how to produce the
columns of the alignments.



Figure 1: Two node gadgets with a connection. A gadget has 18 outgoing edges, so that for each
of the two colors of a node and each of the three colors of an edge and each of the three neighbors
there is an outgoing edge. Two gadgets are connected by identifying six pairs of outgoing edges
in such a way that in a pair both edges are of the same kind: the same edge color and the same
node color. Here the left gadget is an A-neighbor of the right gadget and the right gadget is a
B-neighbor of the left one. A gadget also has 3 “self”-edges (shown by dashed lines), one for each
color (striped, white or black), that are created by identifying pairs of the “unnamed edges” of the
same color. Note that each such self-edge connects a black vertex and a white vertex.

Clearly, a solution to ALMA instance (V', A, B,C) with cost 1.5|V'| + f yields a solution of
STEP with cost f. An overview of our normalization process is as follows:

e We will start with a solution of ALMA on (V’, A, B,C) of cost 1.5|V'| + ¢. This implies a
solution of STEP on (V' A, B, C) of cost c.

e The normalization process has polynomially many steps. In each step we obtain a new
solution, with a cost that is the same or smaller, so the final solution has cost ¢’ < c.

e From the final normalized solution of cost ¢’ we create a solution of 3-MAXCuUT on (V, E) that
has at least 1.5|V| — ¢//6 > 1.5|V| — ¢/6 cut edges. This will be obtained by observing that
the final solution corresponds to a solution of 3-MAXCUT on (V, E) in a manner as shown in
Lemma 3.

Intuitively, the reason we introduce the problem STEP is that at every step of the normalization
the cost of the solution of STEP will be unchanged or it will become smaller, but we will not need
to ensure that this solution of STEP is also a solution of ALMA.

We will use the following notations and terminologies for convenience:

e The term solution refers to a solution of STEP on the instance (V' A, B,C'). The cost of
such a solution is therefore defined in terms of STEP.

e sstar (resp. sirset) is a star (resp. an irregular set) that belongs to the current solution.

We now state a series of Lemma describing successive steps of the normalization process. Each
lemma assumes that the alterations in the solutions as necessary in the preceding lemmas have
been applied.



Lemma 4 A solution can be altered, without increasing its cost, so that every node u is a center
of a sstar, or is adjacent to such a center.

Proof. Otherwise remove each edge adjacent to u from its sirset and create a new sstar with
these edges. This obviously does not increase the number of irregular sets. ||
Thus, from now on, assume that all appropriate alterations have been made to satisfy Lemma 4.
For each sirset we allocate 1 penalty point to gadgets in the following manner: if it contains
an edge connecting two gadgets we allocate 0.5 point to each of them, otherwise it is contained
in one gadget then we allocate 1 point to this gadget. We now use the following definitions and
notations:

e We say that a gadget is nice if it gets less than 4 points, otherwise we call it ugly.
e We say that a star or a pair with black (resp. white) center is black (resp. white).

Now we will normalize gadgets in stages. In the first stage we normalize the solution within nice
gadgets. We say that a hexagon of a gadget is healthy if if each selected set that covers some of
its six edges covers exactly two of them. Otherwise, the hexagon is sick, and two sirsets cover an
odd number of its edges. Observe that a healthy hexagon is covered by three pairs or stars of the
same color, thus we say that a healthy hexagon is black or white depending on whether the colors
of these pairs (or stars) are black of white, respectively.

Lemma 5 (healing of sick hexagons of a specific type within nice gadgets) A solution can
be altered, without increasing ils cost, so that if a heragon has two non-consecutive edges shared
with healthy hexagons of the same color, it is healthy as well, and with the same color.

Proof. Let such a hexagon with two adjacent healthy hexagon neighbors be the upper left one
in Figure 2. Assume that the healthy neighbors are the lower and the upper right, and that they
are both white (other cases are very similar). We indicate the white pairs/stars implied by this
assumption with striped gray background (indicated by Il in gray) in Figure 2).

If necessary, we can extend a selected pair to a sstar without changing the
cost of the solution by taking the third edge of the star from another selected
set removes a sirset and adds at most one sirset. We indicate the edges we
could take in this fashion with solid gray background in Figure 2.

By Lemma 4, node u in Figure 2 is either a center of a sstar or adjacent to
a center of a sstar. If u is a center of a sstar then our hexagon is obviously
healthy. Otherwise, assume that our hexagon is not healthy with u being adja- Figure 2: Figure
cent to a center of a sstar (and, thus the black edge incident to u belongs to a for Lemma, 5.
sstar), and white and striped edges adjacent to u belong to different sirsets.

This means that the striped edge is a single. Now, we can take away black edge incident to u from
its sstar, the white edge incident on u from its sirset and create the sstar with center u. Because
we removed the single from the ranks of sirsets, the number of sirsets remains unchanged, while
our hexagon is healed. ||

Lemma 6 (healing of all sick hexagons within nice gadgets) A solution can be altered, with-
out increasing its cost, so that in a nice gadget all hexagons are healthy.

Proof. A gadget consists of four concentric circles of hexagons. Suppose first that two hexagons,
say A and B, are contained in the inner three circles, are not adjacent® and are both sick. Then

3Two hexagons are adjacent if they share a side (edge).



each of them has two sirsets that cover odd number of its edges. Since our assumption is that
the gadget is nice, at least one sirset must be shared between the two hexagons. The only way
such a sirset can be shared between the two hexagons is a crescent surrounding a hexagon, say
C, with A and B being separated by another hexagon, say D. In this case, by Lemma 4, there
are two sstars adjacent to the crescent that separate A from D and D from B; each of the sick
hexagons A, D and B has another sirset covering its edges and these sirsets cannot be shared;
consequently the gadget has at least four sirsets and it is ugly, a contradiction!

Thus, all the sick hexagons in the inner three circles of
hexagons must be mutually adjacent to each other. This
implies that the inner three circles of hexagons contain at
most 3 sick hexagons (since the line dual graph of inner
three circle of hexagons does not have larger cliques than
triangles), and then it is easy to see that we can heal them
using Lemma 5. Thus we can assume that all hexagons in the
inner three circles are healthy — and that all of them have
the same color, say, white (by an obvious observation that
two adjacent healthy hexagons must have the same color).
We can also assume that the three inner circle of hexagons
are completely covered with sstars (otherwise the solution
can be easily normalized). We call these sstars as inner
sstars.

Now if a hexagon A adjacent to a corner position (i.e., adjacent to ezactly one inner hexagon)
is healthy, then we can heal two hexagons in the outer circle in each of the two directions from
A by application of Lemma 5. Moreover, if two neighbors of a hexagon A in the outer circle are
healthy, we can heal A. Thus if there exists a sick hexagon and we cannot heal it, there must be
a side of the gadget consisting of 4 hexagons on the outer circle of hexagons, and each is covered
in part by two sirsets. If we can collect 0.5 point from each “sirset ownership”, we have 4 points
and the gadget is ugly, a contradiction.

A sirset may be “giving points” for the following reasons: it contains a contact edge so it has
to give 0.5 point to another gadget, or it covers an odd number of edges of some number of hexagon
in our “line of four”. We have a problem only if there are at least three such commitments. No
sirset can share edges with three hexagons that are in a line, but it is possible, for a crescent
sirset, to cover a contact edge and one edge in two hexagons.

Such a crescent sirset has 4 nodes, and the middle two must be on the gadget boundary; by
Lemma 4 each of the middle nodes must be adjacent to a sstar, one of sstars being white and
the other black. In almost all cases both sstars have to contact or overlap the inner sstars,
which implies that they have the same color, a contradiction (see left example in Figure 3). The
remaining cases look like the right example in Figure 3. Black sstar adjacent to the solid-gray
crescent is not adjacent to the inner (white) sstars; as a result, the lower right edge of the corner
hexagon has to be covered by a sirset that will deliver 1 point to that hexagon, so we can let the
crescent to deliver 0.5 point to another gadget, and 0.5 point to the second hexagon from the right.

Figure 3: The boundary of the inner
hexagon and crescent examples are
indicated by solid gray background,
and the sstars implied by Lemma 4
are indicated by striped gray.

Lemma 7 (forcing two adjacent nice gadgets to be of different color) A solution can be
altered, without increasing its cost, so any two adjacent nice gadgets are of different colors.

Proof. Suppose that two adjacent nice gadgets I'y, and I', have the same color, say black. We
will show that we can alter the solution, without increasing its cost, so that one of them is ugly.



By Lemma 6, both gadgets are covered with black sstars except that on the boundary they
may be covered by black pairs. These gadgets are connected with 6 contact edges; 3 white-white
edges are on both ends in contact with black stars and they forms shared sirsets in the form of
singles, and thus they give 1.5 points to each of I';, and I',,.

A black-black contact edge is in contact with two selected black pairs; we can combine each
such edge with the adjacent black pair in I',, such that the contact edge is covered by a black sstar,
and I', contains a sirset black pair. This gives 3 points to I'y,. Together, ', gets 1.5 + 3 = 4.5
points and hence it becomes ugly. i

Lemma 8 (linking ugly gadgets to sirsets) Suppose that we have a solution to an instance
(V' A, B,C) of STEP in which there are a ugly gadgets of which b are adjacent to nice gadgets
of two different colors. Then this solution contains at least 4a + 2b sirsets.

Proof. Since each ugly gadget has at least 4 points, we just need to show that each ugly gadget
that is adjacent to two nice gadgets has 6 points (and, thus, two extra points).

For each ugly gadget I';, with nice neighbors, black I',, and white I'y,, we create 6 paths that [
are included in I';, and the contact edges of I', with I, and I';,, and 0 connect sstars that cover
I', with sstars that cover I',,.

If a connecting edge is adjacent to a pair of 'y, or ['y,, we create
a star that consists of this pair and this edge. We use shortest
possible paths; see examples in Figure 4.

Each of these paths has an odd number of edges. For exam-
ple, is we connect a white-white contact edge e to I';, (the black
gadget) with black-black contact edge €’ to 'y, (the white gadget),
neither e nor ¢’ is not covered by sstars of I, or I',, and the Figure 4: Figure for Lemma 8.
path connecting these two edges has 3 edges, so we have a total of
5 edges. If the connected contact edges are both white-white, then the white gadget contains one
of them and the connecting path has 2 edges, so we have the total of 3 edges.

An path of odd length cannot be covered without a sirset. One can see that sirsets that
cover the connecting paths cannot be shared between the paths or with other gadgets, so we have 6
points associated with I',, only. Thus for every ugly gadget adjacent to two nice gadgets of different
colors we have 6 — 4 = 2 extra points. |

Lemma 9 (linking nice and ugly gadgets to 3-MaXCuUT) Suppose that we have a solution to
the instance (V', A, B,C) of STEP in which

e cvery two adjacent nice gadgets are of different colors;

e there are a ugly gadgets of which b are adjacent to nice gadgets of two different colors.

Then, the instance (V, E) of 3-MAXCUT has a solution with at most 2“;'17 non-cut edges®.

Proof. We transfer our gadget properties to nodes of our 3-MAXCUT instance (V, E), so we refer
to nice, ugly, white and black nodes. We partition the set on nodes into white and black, so that
non-cut edges are either white-white or black-black. Our initial partition does not have any non-cut
edges, but we may have to introduce them when we color the ugly nodes.

We give each ugly node 2 points plus an extra 1 point of it has nice neighbors of two colors.
We will make sure that the ugly nodes are colored in such a way that for each non-cut edge
(white-white or black-black) we can pay 3 points.

1A non-cut edge is an edge that is not a cut edge.



We use two strategies: either we convert an ugly node to a nice one without introducing non-cut
edges, or we will proceed recursively: delete a node u that has 3 points, color the remaining ugly
nodes, then if v has 2 white neighbors, we color it black, and if it has at most 1 white neighbor,
we color it white. In either case we introduce at most one non-cut edge.

This strategy can be described as applying the first possible rule from the following list:

O delete an ugly node that has 3 points (always works if a node has a nice neighbors of both
colors);

O if an ugly node u has a nice neighbor, we make u white if the nice neighbor(s) is black and
vice versa; moreover give each ugly neighbor of u ‘ one of the points that v had (note that since u
has a nice neighbor, it has at most two ugly ones);

O if no ugly node has a nice neighbor, pick one arbitrarily and make it nice by giving it an
arbitrary color. [ |

It is now obvious how to finish the proof of the theorem, and more precisely, property (ii) of
the constructed instance (V', A, B, C):

e We start with a a solution of cost « = 1.5|V'| + ¢ = 288n + ¢ (for some ¢) of ALMA on
(V', A, B,C) and thus with a solution of cost ¢ = a — 288n of STEP on (V', A, B, C).

e The current solution of STEP is normalized without increasing the cost via Lemma 6 such
all nice node gadgets are all-healthy.

e The current solution of STEP is normalized without increasing the cost via Lemma 7 such
that the neighboring nice gadgets are of different color.

e For some a and b we now have a ugly gadgets of which b are adjacent to nice gadgets of two
different colors. By Lemma 8, we have some 3 number of irregular sets in the solution where
da +2b < B < o — 288n.

e By Lemma 9 we can create a solution to the instance (V, E) of 3-MAXCUT instance with at

most
2a+b_4a+2b< a—288n

3 6 6
non-cut edges. Thus, the number of cut edges is at least 3n — .

(=21 e

This completes the proof of Theorem 2.

3 An Approximation Algorithm for PCy

The following additional notations are used for convenience:

e 0" = (0],...,0}) is a sequence of k permutations that produces an optimal solution of
objective value OPT = Y31 371 << A(S) 0+ (5)s Sr.o+ (i) -

e For any k permutations o = (01,09,...,0%) of {1,2,...,q}, Ay (P}, Pr) = Y0, A(Sjﬂj(i), S0 (i))-

Lemma 10 There is a (2 — %)—approm’mation algorithm for PCjy that runs in O (k‘2 (12 + q3))
time.

Proof. The result for PCy follows from [6]. Thus we may assume that k£ > 2. It is obvious that
A satisfies the triangle inequality, that is, for any three sets X, Y and Z, A(X,Z) < A(X,Y) +
A(Y,Z). Our algorithm is simply as follows:

10



e for each 1 <4 < k align P; optimally individually with each P; for j # i using the algorithm
for PCy to produce an alignment o; = (01,02, ...,0ik);

e take the best of all these solutions.
Suppose that the best solution is achieved by o, = (04,1,0r2,...,0.k). Note that:
e For any i and j, Ay, (P, Pj) = Ay, (P, B).

e For any i and j, As, (P, Pj) < Ay« (P, P;) and thus

S An(PLP) < Y A (P, Pj)=OPT (1)
1<i<j<k 1<i<j<k
e For any 4,7 and r,
q q
Aai(‘Pjapr) = ZA( 7,049 ral Z zalv jO’l +A(S7L,U“ ST,U,') = Aai(Pij)"‘Aai(RaPr)
i=1 i=1

(2)

e For any ¢,

f(UZ) = s;ﬁz 1(P17PS) +Zj7éi Zr;ﬁi,r>j Aai(Pj7P7’)

< s;éz z(Rv PS) + Zj#i Zr;«éi,r>j(A0i(Pi7 P]) + AU«L (Bv PT)) [USing inequahty (2)]

= Yeri Do (P, Ps) + (k= 2) - 3oz Aoy (B, By)

= ( ) Z];ﬁz AUz(‘P“‘P])

e Thus,
i flo) < SRk - 1) Zﬁéz Aaz (B, j)}

= 2 (k - 1) Zl§z<j§k Aai( 27Pj) [Since Aai(F)i?Pj) - AUJ'(PJWPZ')}
< (2k-2)-0OPT [using inequality (1)]

and f(o,) < %Zle floi) < (2 - %) -OPT.
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