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Abstract

The paper studies the computational complex�
ity and approximation algorithms for a new
evolutionary distance between multi�chromosomal
genomes introduced recently by Ferretti� Nadeau
and Sanko�� Here� a chromosome is repre�
sented as a set of genes and a genome is a col�
lection of chromosomes� The syntenic distance
between two genomes is de�ned as the min�
imum number of translocations� fusions and
�ssions required to transform one genome into
the other� We prove that computing the syn�
tenic distance is NP�hard and give a simple
approximation algorithm with ratio �� The
question of how to improve the approxima�
tion ratio is also considered� and a tight con�
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nection between �nding large �balanced� in�
dependent sets in bipartite graphs and such
an improvement is shown� For the case when
an upper bound d on the syntenic distance
is known� we show that an an optimal syn�
tenic sequence can be found in O�n� � �O�d

��	
time� Next� we show that if the set of op�
erations for transforming a genome is signif�
icantly restricted� we can nevertheless �nd a
solution that performs at most O�log d	 addi�
tional moves� where d is the number of moves
performed by the unrestricted optimum� This
result should help in the design of approxima�
tion algorithms� Finally� we investigate the
median problem
 Given three genomes� con�
struct a genome minimizing the total syntenic
distance to the three given genomes� The prob�
lem has application in the inference of phyloge�
nies based on the syntenic distance� We prove
that the problem is NP�hard and design an
e�cient polynomial time approximation algo�
rithm with ratio � 
 � for any constant � � ��

� Introduction

The de�nition and study of appropriate measures of dis�
tance between pairs of species is of great importance in
computational biology� Such measures of distance can
be used� for example� in phylogeny construction and in
taxonomic analysis�

As more and more molecular data becomes available
methods for de�ning distances between species have fo�
cused on such data� One of the most popular distance
measures is the edit distance between homologous DNA
or aminoacid sequences obtained from di�erent species�
Such measures focus on point mutations and de�ne the
distance between two sequences as the minimum num�
ber of these moves required to transform one sequence
into another� It has been recognized that the edit�
distance may underestimate the distance between two
sequences because of the possibility that multiple point



mutations occurring at the same locus will be accounted
for simply as one mutation� The problem is that the
probability of a point mutation is not low enough to
rule out this possibility�

Recently� there has been a spate of new de�nitions of
distance that try to treat rarer� macrolevel mutations
as the basic moves� For example� if we know the order
of genes on a chromosome for two di�erent species� we
can de�ne the reversal distance between the two species
to be the number of reversals of portions of the chro�
mosome to transform the gene order in one species to
the gene order in the other species� The question of
�nding the reversal distance was �rst explored in the
computer science context by Kececioglu and Sanko�
and by Bafna and Pevzner and there has been signif�
icant progress made on this question by Bafna� Han�
nenhalli� Kececioglu� Pevzner� Ravi� Sanko� and others
��� �� �� ��� ���� Other moves besides reversals have
been considered as well� Breaking o� a portion of the
chromosome and inserting it elsewhere in the chromo�
some is referred to as a transposition and one can sim�
ilarly de�ne the transposition distance���� Similarly al�
lowing two chromosomes �viewed as strings of genes	 to
exchange su�xes �or sometimes a su�x with a pre�x	
is known as a translocation and this move can also be
used to de�ne an appropriate measure of distance be�
tween two species for which much of the genome has
been mapped ����

Ferretti et� al���� proposed a distance measure that is
at an even higher level of abstraction� Here even the
order of genes on a particular chromosome of a species
is ignored� presumed to be unknown� It is assumed that
the genome of a species is given as a collection of sets�
Each set in the collection corresponds to a set of genes
that are on one chromosome and di�erent sets in the
collection correspond to di�erent chromosomes� In this
scenario one can de�ne a move to be either an exchange
of genes between two chromosomes� the �ssion of one
chromosome into two� or the fusion of two chromosomes
into one� The syntenic distance between two species has
been de�ned by Sanko� et� al���� to be the number of
such moves required to transform the genome of one
species to the genome of the other�

Notice that any recombination of two chromosomes is
permissible in this model� By contrast� the set of legal
translocations �in the translocation distance model	 is
severely limited by the order of genes on the chromo�
somes being translocated� Furthermore� the transfor�
mation of the �rst genome into the second genome does
not have to produce a speci�ed order of genes in the sec�
ond genome� The underlying justi�cation of this model
is that the exchange of genes between chromosomes is a
much rarer event than the movement of genes within a
chromosome and hence a distance function should mea�

sure the minimum number of such exchanges needed�

Ferretti et� al� provide a heuristic that attempts to
compute the syntenic distance and provide empirical ev�
idence of the value of this distance measure� In this pa�
per we attempt to put the notion of syntenic distance on
more formal foundations� To wit� we show the following
results�

� The syntenic distance is� in fact� a distance�

� An optimal sequence of moves can be assumed to
occur in a canonical order with fusions preceding
translocations� preceding �ssions�

� The problem of computing the syntenic distance is
NP�hard�

� There is an approximation algorithm that achieves
a factor of � approximation to syntenic distance�

� Computing this distance is �xed parameter tractable�

� When the set of moves is signi�cantly restricted�
there is nevertheless an optimal sequence of re�
stricted moves whose length is not much more than
the length of the unrestricted optimal sequence�

� Any constant approximation of the �balanced� in�
dependent set problem for bipartite graphs leads
to an approximation of the syntenic distance with
ratio better than ��

� The problem of computing the median genome� for
a given set of � genomes� is NP�hard and admits
an approximation with ratio �
 � for any constant
� � ��

These results will be described in the sections that fol�
low� Due to space limitations some proofs are omitted�
they can be found in ����

� Notation and Preliminaries

For the purpose of this paper� a genome is a collection
of k subsets �called synteny sets or chromosomes	 of a
set of n objects �called genes	� A genome mutates by
one of three simple moves� these are the translocation�
fusion� and �ssion�

De�nition ��� Let S�� S�� T�� T� be sets such that at
most one is empty and such that T� � T� � S� � S��

�a� If S�� S�� T�� T� are non�empty then �S�� S�	 ��
�T�� T�	 is called a translocation of S� and S��

�b� If S� is empty then S� �� �T�� T�	 is called a �ssion
of S��

�c� If T� is empty then �S�� S�	 �� T� is called a fusion
of S� and S��



Given two genomes G� and G� over some gene set �� the
syntenic distance from G� to G�� denoted D�G��G�	� is
the minimum number of moves needed to transform G�
into G��

Proposition ��� D�G��G�	 � D�G��G�	�

Proof� Given an optimal sequence of moves from G�
to G�� it is easy to reverse every move �the reverse of
a fusion is a �ssion and vice versa	 to get an optimal
sequence of moves transforming G� to G��

It follows from Proposition ��� that D de�nes a metric
over the set of genomes over � �re�exivity and triangle
inequality of D are obvious	�

Lemma ��� Let G��G� be an instance of syteny� Then
there is a sequence of moves � � ���� � � � � �m	 such
that m � D�G��G�	 and every �ssion occurs after ev�
ery translocation and fusion�

Proof� Let � � ���� ��� � � ��m	 be an optimal move
sequence� If every �ssion occurs after every transloca�
tion or fusion we are done� so assume not� Let i � m
be the largest index such that �i is a �ssion preceding
a translocation or fusion� We give a new optimal se�
quence ���� � � � � �i��� �

�
i� �

�
i��� �i��� � � � � �m	 where �

�
i is

a translocation or fusion and ��i�� is a �ssion� Repeating
the argument eventually yields the desired sequence�

Assume that �i is the �ssion S� � S� �� �S�� S�	 and
�i�� is either the fusion �T�� T�	 �� T� � T� or the
translocation �T�� T�	 �� �T �

�� T
�
�	� If neither T� nor T�

is created by �i we can simply swap �i and �i�� to yield
the desired sequence� Thus we need only consider the
case where� without loss of generality� S� � T�� Then we
claim that �i�� is a translocation� otherwise we could
replace �i and �i�� by �S� � S�� T�	 �� �S�� S� � T�	�
reducing the number of move by �� which contradicts the
optimality of �� Finally� since �i�� is a translocation�
we can replace �i and �i�� by ��i 
 �S� � S�� T�	 ��
�T �

��S�� T
�
�	 and �

�
i�� 
 T

�
��S� �� �T �

�� S�	 to yield the
desired sequence�

Note that the number of translocations� fusions and �s�
sions is preserved in construction of the previous proof�
Thus we get the following corollary�

Corollary ��� Let G��G� be an instance of synteny� If
there is an optimal move sequence with m� transloca�
tions� m� fusions� and m� �ssions� then there is an
optimal move sequence with m� translocations� m� fu�
sions� and m� �ssions in which all �ssions come after
all translocations and fusions�

Lemma ��� Let G��G� be an instance of synteny� Then
there is a sequence of moves � � ���� � � � � �m	 such that

m � D�G��G�	 and such that all fusions come before all
translocations which come before all �ssions�

Proof� Let � � ���� ��� � � � � �m	 be an optimal move
sequence� If there are no translocations or fusions we are
done� If not� by the Lemma ��� we may assume that all
translocations and fusions occur before all �ssions� Let
i be the index of the last non��ssion in the sequence and
let G� be the collection of sets after the i�th move� Since
� is optimal D�G��G

�	 � i� Using Proposition ��� and
Corollary ��� �on the problem of transforming G� to G�	
there is a move sequence that transforms G� into G

� con�
sisting solely of fusions and translocations in which the
fusions occur �rst� Concatenating this sequence with
�i��� ���� �m yields the desired move sequence�

��� The Compact Representation of Synteny

For our subsequent proofs it is easier to deal with the
compact representation of the synteny problem as de�
scribed in ���� Assume that the genomes G� and G� con�
tain n and k sets� respectively� Then� the compact rep�
resentation of G� with respect to G� is de�ned as follows

replace the ith set G��i of G� by the set fig for � � i � n�
and for every set S occurring in G�� replace S by the set
�i�Sfj j i � G��jg� Let G�� and G�� be the two modi�ed
genomes� It is easy to see that D�G��G�	 � D�G���G

�
�	�

Hence� we can alternatively de�ne the synteny problem
using the compact representations of genomes as follows�

De�nition ��� Given a collection S�n� k	 of k �not nec�
essarily distinct� sets S�� � � � � Sk� Si � f�� �� � � �� ng� the
synteny problem is to compute the minimum number of
mutations� denoted by D�S�n� k		� to transform S to the
collection ff�g� f�g� � � � � fn� �g� fngg�

The dual of S�n� k	 � �fa�� a�� � � � � ang�S�� � � � � Sk	 is
S��k� n	 � S��� � � � � S

�
n� where Si is a subset of f�� � � � � kg

and j � S�i � i � Sj � The goal in the dual problem is
to produce the collection f�g� � � � � fkg�

Proposition ��� follows from Proposition ����

Proposition ��� Let S��k� n	 be the dual of the synteny
problem S�n� k	� Then D�S�n� k		 � D�S ��k� n		�

Henceforth� unless otherwise mentioned� by synteny prob�
lem we refer to the compact representation of the syn�
teny problem� By Proposition ���� it is su�cient to con�
sider an instance S�n� k	 of the synteny problem with
n 	 k� since otherwise we can solve the dual problem�

Given an instance S�n� k	 of the synteny problem� the
graph G�S�n� k		 includes a vertex for each set of of
S�n� k	� Two vertices are connected by an edge if and
only if their corresponding sets in S�n� k	 have a non�
empty intersection� If G�S�n� k		 has � � p � n con�
nected components� we will simply say that S�n� k	 has



p components� If G�S�n� k		 is connected we will say
that S�n� k	 is connected�

Proposition ��� Let S�n� k	 be a synteny instance with
p components� Then� D�S�n� k		 	 n � p�

Proof� Let � � ���� � � � � �m	 be an optimal move
sequence for S�n� k	� Let S� � S and let Si be the
synteny instance obtained after the �rst i moves� S� has
p components� Sm has n components� and Si�� has at
most one more component than Si� Thus D�S�n� k		 �
m 	 n� p�

� NP�hardness of the Synteny Problem

In this section we prove the following theorem�

Theorem ��� Computing the syntenic distance exactly
is NP�hard�

Our reduction will use two problems� the largest bal�
anced quasi�independent set �LBQIS	 problem and the
largest balanced independent set �LBIS	 problem for bi�
partite graphs� which are de�ned as follows


PROBLEM
 Largest balanced independent set �LBIS	
problem�

INPUT
 A connected bipartite graphG � �U� V�E	 with
jU j � jV j � n and positive integer k� � � k � n�

QUESTION
 Does there exists U � � U � V � � V � jU �j �
jV �j � k� such that �u�� v�	 
� E for any u� � U � and
v� � V � �

PROBLEM
 Largest balanced quasi�independent set
�LBQIS	 problem�

INPUT
 A connected bipartite graphG � �U� V�E	 with
jU j � jV j � n and positive integer k� � � k � n�

QUESTION
 Does there exists U � � U � V � � V � jU �j �
jV �j � k� such that for some permutation u��� u

�
�� � � � � u

�
k

of the vertices in U � and some permutation v��� v
�
�� � � � � v

�
k

of the vertices in V �� �u�i� v
�
j	 
� E for any � � i � k and

i � j �

The LBIS problem is known to be NP�complete��� page
����� �� Note that an LBIS of size k is also an LBQIS of
size k for a graph G� but the converse is not necessarily
true� First� we prove the following theorem�

�In ��� page ���� the largest balanced complete bipartite

subgraph problem is shown to be NP�complete� which is same
as the largest balanced bipartite independent set on the com�
plement of the graph

Theorem ��� Computing the syntenic distance is NP�
hard if the LBQIS problem is NP�hard�

The proof of Thorem ��� is as follows� Given an instance
�G� k	 of the LBQIS problem as mentioned above� we
create an instance S��n�k
�� �n�k
�	 of the synteny
problem containing the following sets �assume that U �
fu�� u�� � � � � ung and V � fv�� v�� � � � � vng	


�a� S � fu�� u�� � � � � un� a�� a�� � � � � an�k� bg�

�b� Xi � fuj j �uj� vi	 � Eg � fbg for � � i � n�

�c� Yi � fbg for � � i � n� k�

We refer to the elements u�� u�� � � � � un
�resp� a�� a�� � � � � an�k	 as the u�elements �resp� a�
elements	 and the sets X�� X�� � � � � Xn �resp�
Y�� Y�� � � � � Yn�k	 as the X�sets �resp� Y �sets	� De�ne
P� � S and Pi � Pi�� � faig	 for � � i � n � k� De�
�ne Qk � Pn�k and Qi�� � Qi � fu�ig for � � i � k�
Finally� de�ne R� � Q� and Ri � Ri�� � fu�k�ig for
� � i � n� k� Notice that Rn�k � fbg� The following
lemma will complete the proof of Theorem ����

Lemma ��� G has a LBQIS of size k if and only if
D�S��n � k 
 �� �n� k 
 �		 � �n� k�

The proof of the �only if� part of Lemma ��� is as fol�
lows� Assume G has a LBQIS �U �� V �	 of size k� Let
U � U � � fu�k��� u

�
k��� � � � � u

�
ng and V � V � �

fv�k��� v
�
k��� � � � � v

�
ng� An optimal syntenic sequence of

�n� k moves consists of the following moves


� First� for i � k
�� k
�� � � � � n� perform the translo�
cation �Pi�k��� Xv�

k��
	 �� �fai�kg� Pi�k	� Notice

that after the last move we have created the set
Q� � Pn�k�

� Next� for i � k� k � �� � � � � �� perform the translo�
cation �Qi� Xv�

i
	 �� �fu�ig� Qi��	� Notice that af�

ter the last move we have the sets Q� � U � U ��
Y�� Y�� � � � � Yn�k still remaining to be processed�

� For i � �� �� � � � � n � k� perform the translocation
�Ri��� Yi	 �� �fu�k�ig� Ri	�

Before proceeding with the proof of the �if� part of
Lemma ���� we need a few de�nitions and results�

De�nition ��� A connected instance S�n� n	 of the syn�
teny problem is exact if D�S�n� k		 � n� ��

De�nition ��� Let S�n� k	 be an instance of synteny�
A move on S is called a splitting move if it increases
the number of components of S by one and it is called
a non�splitting move otherwise�



De�nition ��� Let S�n� n	 be a connected instance of
synteny� A splitting move on S�n� n	 is called a bal�
anced move if it creates two subproblems S��n�� n�	 and
S��n�� n�	 for some n� and n��

A splitting movemust be a translocations or �ssion since
fusions cannot increase the number of components� In
the case of a translocation� it must operate on sets in the
same connected component� A balanced move must be
a translocation since �ssions increase the total number
of sets�

Lemma ��� Every move in any optimal move sequence
for an exact instance of synteny is a balanced move on
a connected component�

Proof� Let S�n� n	 be an exact instance of synteny
and let � � ���� � � � � �n��	 be an optimal move se�
quence� Since S�n� n	 is connected� each move of �
must be a splitting move� Assume �� splits S�n� n	
into two subproblems S��n�� k�	 and S��n�� k�	� where
n� 
 n� � k� 
 k� � n� �Note these problems have dis�
joint alphabets�	 Since each subsequent move must act
on a connected component of the current problem� we
can partition ���� � � � � �n�	 into two subsequences that
solve� respectively� S� and S�� By optimality of �� these
subsequences must be optimal move sequences so

D�S��n�� k�		
D�S��n�� k�		 � D�S�n� n		�� � n���

By Proposition ��� and the fact that Si�ni� ki	 is con�
nected� D�Si�ni� ki		 	 max�ni� ki	 � �� Thus� we get
ni � ki�

Notice that the instance of the synteny problem created
in Theorem ��� is exact� Proof of Lemma��� is complete
if we can prove the following lemma�

Lemma ��� If D�S��n � k 
 �� �n� k
 �		 � �n� k�
then G has a LBQIS of size k�

Proof� Let � � ���� ��� � � � � ��n�k	 be any optimal
move sequence� By Lemma ���� every move is a bal�
anced translocation�

First� we claim that� after a possible reordering of the in�
dices of the a�elements� the move �j� for � � j � n� k�
must be a translocation �Pj��� X�	 �� �fajg� Pj	 for
some � � fv�� v�� � � � � vng� For contradiction� assume
this is not the case and rearrange the indices of the a�
elements� if necessary� so that j � n � k is the least in�
dex such that �j violates the condition� Since �j must
be a splitting translocation� it cannot translocate two
X�sets� an X�set with a Y �set� or an Y �set with Pj���
Hence� �j must translocate an X�set with Pj��� Let
�j � �Pj��� X�	 � �P �� P ��	� Assume that b � P �� �and�
hence b 
� P �	� Since �j must be a balanced move�

P � must contain at most � a�element and at most � u�
element� If P � does not contain any a�element� �j does
not violate the condition� Otherwise� P � contains ex�
actly one u�element ut and no a�element� Then� modify
�j such that the two elements ut and aj exchange their
places in P � and P �� and then �j satis�es our condition�

Hence� after the move �n�k� we have the set Qk �
Pn�k � fu�� u�� � � � � un� bg� the sets Y�� Y�� � � � � Yk and
some k X�sets� say Xv� � xv�� � � � � Xvk � Then� by essen�
tially the same reasoning as before� after a possible re�
arrangement of the indices� the move �j� for n�k
� �
j � n� must be the translocation �Qn�j��� Xvn�j��

	 ��
�fun�j��g� Qn�j	� This implies that �ui� vj	 
� E for
� � i � k and i � j�

This completes the proof of Theorem ���� To complete
our proof of Theorem ���� it is su�cient to prove the
following theorem�

Theorem ��� The LBQIS problem for bipartite graphs
is NP�complete�

We will reduce LBIS to the LBQIS problem� Assume
that we are given an instance �G� k	 of the LBIS prob�
lem� where G � �U� V�E	� U � V � f�� �� � � � � ng� We
create an instance �G�� k�	 of the LBQIS problem� where
k� � k� 
 k� G� � �U �� V �� E�	� U � � V � � f�i� j� j � �
i � k
 �� � � j � ng� and E� � E��E� consists of the
following edges


E� � f��i� k�� �j� l�	 j i � jg
E� � f��i� k�� �j� l�	 j i 	 j� �k� l	 � Eg

Intuitively� we use the ampli�cation technique �see� for
example� ���� page ��������	 and �blow up� the graph
G by using k
� copies of it with some additional edges�
We will prove the following lemma showing the correct�
ness of our reduction�

Lemma ��� G has an LBIS of size k if and only if G�

has an LBQIS of size k��

The proof of the �only if� part of Lemma��� is easy� Let
U� � U and V� � V be an LBIS of G of size k� Assume�
wlog� that U� � V� � f�� �� � � �� kg� Let U �

� � V �
� be the

following permutation of a subset of k� 
 k vertices of
G�


��� ��� ��� ��� � � � � ��� k�� ��� ��� ������ � � �� ��� k�� � � � � �k
 �� ���

�k 
 �� ��� � � �� �k
 �� k�

Then� U �
� and V �

� induces an LBQIS of size k� in G��

The proof of the �if� part of Lemma ��� is more in�
volved� Let �� and �� be a permutation of the vertices



in U � and V �� respectively� which realizes an LBQIS of
size k� � k� 
 k� One crucial step in the proof is the
following lemma which says that �� and �� can be de�
composed in k 
 � modules�

Lemma ��	 �Rearrangement lemma� There exist in�
tegers p�� p�� � � � � pk�� 	 �� p�
p�
 � � �
pk�� � k�
k�
such that �� and �� may be assumed to be of the follow�
ing forms�

�� � � ��� x���� � � � � ��� x
p�
� �� ��� x���� � � � � ��� x

p�
� ��

� � � � �k 
 �� x�k���� � � � � �k
 �� x
pk��
k�� � 	

�� � � ��� y���� � � � � ��� y
p�
� �� ��� y���� � � � � ��� y

p�
� ��

� � � � �k 
 �� y�k���� � � � � �k 
 �� y
pk��
k�� � 	

where xji � y
j
i � f�� �� � � � � ng and pi � � means that that

sequence �pi� y�pi �� �pi� y
�
pi
�� � � � � �pi� ypipi � is absent�

Proof� We may �rst assume without loss of generality
that the permutations are

�� � � ��� x���� � � � � ��� x
p�
� �� ��� x���� � � � � ��� x

p�
� ��

� � � � �k 
 �� x�k���� � � � � �k
 �� x
pk��
k�� � 	

�� � � ��� y���� � � � � ��� y
q�
� �� ��� y���� � � � � ��� y

q�
� ��

� � � � �k 
 �� y�k���� � � � � �k 
 �� y
qk��
k�� � 	

Then clearly q� � p�� q� 
 q� � p� 
 p�� � � �� q� 
 � � �

qk � p� 
 � � � 
 pk because of the edges in E�� SincePk��

i�� qi �
Pk��

i�� pi � k� 
 k� qk�� 	 pk��� De�ne
A � fi j �j� i� � ��g�

If jAj 	 qk��� then we can modify the su�x
�i� xji �� �i� x

j��
i �� � � � � �k 
 �� x

pk��
k�� � of �� with length qk��

so that xji � ����� x
pk��
k�� are all distinct elements ofA� Hence

we can replace it with the sequence
�k 
 �� xji �� �k 
 �� xj��i �� � � � � �k 
 �� x

pk��
k�� �� The proof

is then completed by induction�

Otherwise� suppose jAj � qk��� Then qk�� � p�� � � � � pk���
In particular� qk�� � p�� Now we can modify the pre�
�x ��� y���� ��� y

�
��� � � � � �i� y

j
i � of �� with length p� so that

y��� � � � � y
j
i are all distinct elements of fy�k��� � � � � y

qk��
k�� g�

Hence we can replace it with the sequence
��� y���� ��� y

�
��� � � � � ��� y

j
i �� The proof is again completed

by induction�

Now� to complete the proof of Lemma ���� note that we
have the following two cases�

Case �� There exists i � j such that pi 	 k and
pj 	 k� Then� there is no edge between the vertices
�pi� x�pi �� �pi� x

�
pi�� � � � � �pi� x

pi
pi � and �pj� y�pj �� �pj� y

�
pj �� � � � �

�pj� y
pj
pj �� Since i � j� by our construction of G�� G must

have an LBIS of size at least k consisting of the vertices

U� � fx�pi � x
�
pi� � � � � x

pi
pig � U and V� � fy�pj � y

�
pj � � � � � y

pj
pj g

� V �

Case �� There are no such pair of indices as in Case ��
Let t 	 � be the largest integer such that pt 	 k� Now�
we have two cases


�a� There is no such t� In this case�

p� � k� 
 k � �
k��X
i��

pi	 	 �k

�b� Otherwise� since pi � k for i 
� t� pt 	 �k�

Hence� in either case� there exists an index j such that
pj 	 �k� Then� the vertices

U� � fx
pj
j � x

pj��
j � � � � � x

pj�k��
j g � U

and
V� � fy�j � y

�
j � � � � � y

k
j g � V

form an LBIS of size k for G� This completes the proof
of Lemma ����

� A Simple Approximation Algorithm
for the Synteny Problem

In this section� we describe a polynomial time approxi�
mation algorithm for the synteny problem with perfor�
mance ratio ��

Lemma ��� Let S�n� k	 be an instance of the synteny
problem� Then� it is possible to approximate D�S�n� k		
with a performance ratio of � in O�nk	 time�

Proof� Assume� without loss of generality� that n 	 k�
Assume S�n� k	 has p components and ni �resp� ki	 be
the number of elements �resp� number of sets	 in the
ith connected component of G�S	� Our simple fusion�
�ssion algorithm is as follows� First� �nd the connected
components of G�S	� Then� for each connected com�
ponent� repeatedly use fusion until only one set is re�
maining and then repeatedly use �ssion to separate the
remaining elements from the set� In all� we performPp

i���ni 
 ki � �	 � n 
 k � �p � �n � �p moves�
By Proposition ���� D�S�n� k		 	 n � p� and hence a
performance ratio of � is achieved� Note that the ap�
proximation algorithm uses no translocations and can
easily be implemented in O�nk	 time using standard
data structures �the running time is dominated by the
step necessary to build the graph G�S		�

Remark ��� The performance ratio � of the above heuris�
tic is tight� Let the instance S�n� n � �	 consist of the



n � � sets f�g� f�� �g� f�� ���g� � � �� f�� �� � � �� ng� Then�
D�S�n� n		 � n� �� whereas our heuristic takes �n� �
moves� It is possible to use n 
 k � �p moves instead
of n
 k � �p moves if we replace the last fusion in our
heuristic by a translocation which separates one of the
elements from the rest�

� Linear Synteny

The move sequences used in the NP�completeness proof
and �without loss of generality	 produced by the ap�
proximation algorithm have a particular form� There is
a merging set � that is initially one of the input sets�
The �rst k�� moves are either fusions or very restricted
translocations between � and an input set� The restric�
tion on translocations is that only translocations that
produce a singleton set fjg such that j does not occur
in any other set are allowed� The remaining moves are
�ssions on � that create singleton sets� In this section
we study this restricted problem�

Let S�n� k	 � fS�� � � � � Skg be a connected instance of
synteny and let � be a permutation of ��� � � � � k�� The
linear move sequence �� for S�n� k	 is de�ned as follows�

�� Let �� � S�� �

�� For i � k

�a	 If there is j � �i�S�i�� that is not in �
k
��i��S��

then choose the smallest such j and set �i �
��i� S�i�� 	 �� ��i��� fjg	�

�b	 Otherwise �i � ��i� S�i�� 	 �� �i���

�� For i � k� � � � � k 
 jj�kjj � �� let j be the smallest
element in �i and set �i � �i �� ��i��� fjg	�

If S�n� k	 is not connected� a linear move sequence is
a partition of the connected components of S�n� k	 and
a linear move sequence for each�� We let  D�S�n� k		
denote the length of the shortest linear move sequence
for S�n� k	�

Since the NP�Completeness proof uses linear move se�
quences�  D�S�n� k		 is hard to compute� Since the ap�
proximation algorithm �without loss of generality	 pro�
duces a linear move sequence and D�S�n� k		 �
 D�S�n� k		� this algorithm gives a ��approximation of
 D�S�n� k		� Note as well that the optimal move se�
quence for the example given in Remark ��� is a lin�
ear move sequence so� as in the general case� the ��
approximation bound is tight�

It remains open whether one can approximate linear
synteny by a factor better than �� but this problem

�If for example an input is f�g� f�g� � � � � fng then no
moves are required in either the original or linear versions of
synteny�

seems easier to analyze than the general synteny prob�
lem� The following theorem says� in fact� it su�ces
to improve the approximation bound for linear synteny
since any such algorithm yields a better approximation
for the general problem�

Theorem 	�� If linear synteny can be approximated
within a factor of c in polynomial time then for any
� � �� for su�ciently large input� general synteny can
be approximated within a factor of c 
 � in polynomial
time�

This theorem follows directly from Lemma ��� since
D�S�n� k		 is !�n� k	�

Lemma 	�� Let S�n� k	 be an instance of synteny� Then

 D�S�n� k		 � D�S�n� k		 
 O�logD�S�n� k			�

To prove this lemma we need the following de�nitions�

De�nition 	�� Let S��n� k	 be an instance of synteny
and let � be an arbitrary move sequence for S�n� k	�
The move digraph GM �S� �	 contains a vertex for each
move in �� If �i creates a set S that is input to �j then
GM has an edge from �i to �j�

We point out that GM implies a partial order on the
moves in � and any consistent total order yields a move
sequence for S�n� k	� If � is optimal� each total order
yields an optimal move sequence for S�n� k	� Note that
GM is directed� acyclic and each node has in�degree and
out�degree at most �� A directed graph is weakly con�
nected if it is connected when its edges are considered
in an undirected sense�

De�nition 	�� Let G be a weakly connected� directed
acyclic graph on n nodes� An f�n	 directed biseparator
of G is a non�empty subset of edges A that partition G
into two weakly connected components G� and G� such
that each has between f�n	 and n�f�n	 nodes� Further�
for every � u� v � inA� u � G� and v � G��

The proof of Lemma��� uses the following graph�theoretic
lemma whose proof can be found in ����

Lemma 	�� Let G be a weakly connected� directed� acyclic
graph on n nodes where the in�degree and out�degree of
each node are each at most 	� Then G has a n

� directed
biseparator�

Proof of Lemma 	��� Because of the form of Lemma
���� all logarithms in this proof are to the base ����
Let � be an arbitrary move sequence for S�n� k	 �
fS�� � � � � Skg of length d� To prove the bound it su�ces
to prove the case where � consists solely of transloca�
tions� To see this� notice �rst that we may assume that



�ssions occur after all translocations which occur af�
ter all fusions� At the end of the fusion�translocation
stages� the current sets T�� � � � � T� are disjoint� Create
a new instance of synteny by renaming each j in the
current set Ti as ai in the original instance� Thus the
fusion�translocation stages of � solves the new prob�
lem� Suppose �� is a linear move sequence that solves
the new problem and has length � d�
log d�� where d� is
the length of the fusion�translocation stage of �� Then
running �� on the original problem requires d�d� addi�
tional �ssions and has length � d
log d� � d
log d� So
assume that � consists of fusions followed by transloca�
tions� Consider the synteny instance T�� � � � � T� created
by the last fusion� Suppose �� is a linear move sequence
that solves this problem and has length � d� 
 log d��
where d� is the number of translocations� For each T�i �
let ��i be an arbitrary ordering of the sets that were fused
to create T�i and let �� � ��� � �

�
� � � ��

�
�� Then ��� has

length at most d
 logd� � d
 log d�

Thus we"ll assume � consists solely of translocations�
Notice in this case that n � k� If d � � then � is already
a linear move sequence so assume d 	 �� First consider
the case where GM�S�n� k	� �	 is connected� Note that
GM has d nodes�

By Lemma ���� there exists a n�� directed biseparator
A of GM �S�n� k	� �	� Let G� and G� be the two weakly
connected components created by removing A� Assume
Gi has di nodes� note d� 
 d� � d� We construct two
new synteny instances as follows�

S�� Each edge e of A corresponds to a set Te that is
passed to a node of G�� The instance S� consist
of these sets Te� e � A� plus any of the input sets
of S�n� k	 that are input to G�� Notice that any
move sequence implied by G� �i�e� consistent total
order on its nodes	 is a move sequence that solves
S�� Since each move is a translocation� S� has the
same number of sets as elements� let n� be this
number�

S�� Initially let S� consist of the input sets of S�n� k	
that are input to nodes of G�� A move sequence
implied by G� does not typically solve S� because
the sets Te� e � A� may not be disjoint singleton
sets� To �x this� let us �rst rename an element j
that occurs in the set S� of S� as �j� ��� Carry the
renaming through the moves of �� Then for each Te
create a new dummy name ae� For each �j� �� � Te�
rename �j� �� as ae in S�� With this renaming a
move sequence implied by G� solves S�� As above�
S� has the same number of sets as elements� let n�
be this number� Let W� � fae� e � Ag�

Inductively assume that there is a linear move sequence
�i��i for Si of length � di
g�di	� Let � be the order on

the sets of S induced by �� followed by ��� We claim
that �� has length at most d 
 max�g�d�	� g�d�		 
 ��
The lemma follows since

g�n	 � � 
 g�
�n

�
	 � logn�

For the accounting we"ll modify �� slightly to create its
singleton sets in a way we can count� In the following
���j� ���j and �j denote the current merging set of�
respectively� ��� � ��� and �� before their j�th move�
During the �rst n�� � merges �� matches the moves of
��� � By this we mean that when ��� creates a singleton
fjg� �� creates the same singleton provided j 
� W�� If
j � W� then �� simply performs a fusion at that step�
The n��th move of �� is a fusion of �n� with the �rst set
in the ordering for S� unless this �rst set is a dummy set
Te� in which case this move is skipped� In the remaining
moves it matches the �rst n� � � moves of ��� � except
those involving sets Te� e � A� during which �� makes
no move� Let W� be the set of singletons created by ���
in translocations with the sets Te� e � A� Notice that
�n� � ���n� �e�A Te nW� and �n � ���n� � ���n� �
W� nW�� Let r� � jj���n� nW�jj and r� � jj���n�jj�

As described �� is somewhat wasteful� No element of
���n� nW� exists in an S� set� If there are f fusions in
the last n�n� moves of �� � we can replace min�r�� f	 of
them by translocations creating singletons from ���n� n
W�� The sequence ��� performs r� � � fusions of which
jjAjj�jjW�jj involve sets Te� e � A� The remaining have
corresponding fusions in ��� In addition� move n� of
�� is a fusion� Since ���n� and �n� are disjoint� the
modi�ed move sequence ends with a set �n where

jj�njj � r� 
 r� �min�r�� r� � jjAjj
 jjW�jj	

� max�r�� r� � jjAjj
 jjW�jj	 
 jjAjj � jjW�jj

An additional jj�njj � � �ssions are needed� So the
function g�d	 must satisfy

d
 g�d	 	 n
max�r�� r� � jjAjj
 jjW�jj	 
 jjAjj

�jjW�jj � �

� n� 
 n� 
max�r�� r� � jjAjj
 jjW�jj	

�jjW�jj � �

since n � n�
n�� jjAjj� If r� 	 r�� jjAjj
 jjW�jj then
using the facts that n� 
 r� � � � n� 
 jj���n�jj � � �
d� 
 g�d�	 and n� � d� 
 � we get

d
 g�d	 	 d� 
 d� 
 g�d�	 
 � � d
 g�d�	 
 ��

If r�� jjAjj
 jjW�jj � r� then using the facts that n� �
d� 
 � and n� 
 r� � � � d� 
 g�g�	 we get that

d
 d�g	 	 d� 
 d� 
 g�d�	 
 � � d
 g�d�	 
 ��



Thus d
g�d	 	 d
max�g�d�	� g�d�		
� and the choice
of g�d	 � logd su�ces�

� Optimal Syntenic Sequence When
the Distance is Bounded

In practice� it may be the case sometimes� that the syn�
teny distance between two genomes is bounded� and one
is interested in �nding the optimal sequence of synteny
moves between the two genomes� The following theo�
rem states our result in this regard� Notice that the
algorithm mentioned below takes polynomial time pro�
vided d � O�

p
log�nk		�

Theorem 
�� Let S�n� k	 be an instance of the syn�
teny problem with D�S�n� k		 � d� Then� an optimal
sequence of synteny moves for S�n� k	 can be computed

in O�nk � �O�d
��	 time�

We need to prove a few results before proving Theo�
rem ���� As usual� we may assume n 	 k without any
loss of generality�

Lemma 
�� If D�S�n� k		 � n
� � �� then S�n� k	 has

one connected component containing just the set faig
for some � � i � n�

Proof� Assume G�S	 has p 	 � connected compo�
nents C�� � � � � Cp and let ni 	 � �resp� ki 	 �	 be
the number of elements �resp� number of sets	 in Ci�
By assumption� ni 
 ki 	 � for all i� Thus� n 
 k �Pp

i���ni 
 ki	 	 �p� implying p � �n
� � But� by Propo�

sition ���� p 	 n � D�S�n� k		 	 �n
� 
 �� But� this is a

contradiction#

Lemma 
�� Assume that a given instance S�n� k	 has
a connected component containing only the set faig� Let
T �n � �� k � �	 be the instance obtained by removing
the element ai and the set faig from S�n� k	� Then�
D�S�n� k		 � D�T �n � �� k � �		�

Proof� Obviously� D�S�n� k		 � D�T �n � �� k � �		�
Conversely� assume that an optimal sequence for S�n� k	
translocates the set faig with some other set� We do
not perform this translocation� but proceed with the re�
maining moves assuming that the element ai is carried
to subsequent sets� Finally� we must have a transloca�
tion or �ssion separating ai from other elements� If it
is a translocation� we replace it by a fusion� whereas if
it is a �ssion� we do nothing� So� in fact we save moves
by not translocating ai� Hence� D�T �n � �� k � �		 �
D�S�n� k		�

We now proceed with the proof of Theorem ���� By
Proposition ���� given an instance S�n� k	� we can derive

an instance T �n�� k�	 such that n� � n� k� � k� n� 	

k� and D�S�n� k		 � D�T �n�� k�		 	 n�

� � Hence� it is
su�cient to prove the theorem when n 	 k and d 	 n

� �
By Lemma ���� we know that it is su�cient to do at
most 	� fusions �rst� at most 	� translocations next
and at most 	� �ssions at the end� for every choice of
	�� 	�� 	� 	 � such that 	� 
 	� 
 	� � d�

Clearly� there are at most
�
d��
d

�
� ��d�� choices for the

	i"s� For every such choice� we count the total number
of possible alternative moves we may have to perform�
First� we count the total number f of fusions we need
to look at� Clearly�

f � $��
j��

�
n � j 
 �

�

�
�
�n
�

���
� �O�d logd�

Next� we count the total number t of translocations we
need to look at� Since there are at most �n� � ways to
translocate two sets�

t �

��
n

�

��d
� �n�� �

�n
�

���
� �n�� � �O�d

��

Since all the �ssions are done at the end� there is only
one unique way of doing them� Hence� overall our algo�
rithm takes O�nk � �O�d

��	 time�

� Synteny and the Balanced Bipartite
Independent Set Problem

In Section � we used the balanced bipartite indepen�
dent set �LBIS	 problem to show that computing the
syntenic distance exactly is NP�hard� In this section we
investigate the relationship between approximation of
the syntenic distance with a performance ratio better
than � and a good approximation of the LBIS problem�
We omit the complicated proof of the following theorem�

Lemma ��� Assume that the LBIS problem for bipar�
tite graphs can be approximated� in polynomial time�
with a performance ratio of � for some constant � �
�� Then� the syntenic distance can be approximated�
in polynomial time� with a constant performance ratio

 � ��

� The Median Problem

The median problem arises in connection with the phy�
logenetic inference problem��� and de�ned as follows�
Given three genomes G�� G� and G�� we are required
to construct a genome G such that the median distance
	G �

P�
i��D�G�Gi	 is minimized� Without any addi�

tional constraints� this problem is trivial� since we can
take G to be empty �and then 	G � �	� In the con�
text of syntenic distance� any one of the following three
constraints seem relevant




�c�� G must contain all genes present in all the three
given genomes�

�c�� G must contain all genes present in at least two of
the three given genomes�

�c�� G must contain all genes present in at least one of
the three given genomes�

Lemma ��� The median problem is NP�hard with any
one of the three constraints �c��
 �c�� or �c���

Proof� We reduce the synteny problem to this prob�
lem� Let G� and G� be the two genomes of any instance
of the synteny problem and let d � D�G��G�	 � �� The
NP�hardness reduction of Section � shows that we may
assume that both G� and G� contain the same set of
genes� Let G�� G� and G� be the three genomes for the
corresponding median problem� Assume that G is the
solution of the centroid problem �under any one of the
constraints	� If G 
� G�� then 	G 	 d 
 D�G�G�	 � d�
but if G � G�� then 	G � d� Hence� 	G is precisely the
syntenic distance between G� and G� and determining
	G determines d also�

Lemma ��� We can approximate the median problem
in polynomial time �under any one of the constraints
�c
�� �c	� or �c��� with ratio � 
 � for any constant ��

	 Conclusion

In this paper� we have proved several results concern�
ing the complexities of e�cient exact and approximate
computations of the syntenic distance between genomes�
The NP�hardness proof for computing the synteny dis�
tance uses a cascade of reductions from the LBIS prob�
lem for bipartite graphs� We also showed that any con�
stant approximation of the LBIS problem leads to an
approximation of the synteny distance with ratio better
than ��

The following problems still remain open


� Can we approximate the synteny distance in poly�
nomial time with a ratio better than �� Does a
PTAS for this problem exist� Our results seem to
indicate that the answer to this question is closely
related to �nding a large �balanced� independent
set in bipartite graphs�

� When the synteny distance is bounded� can we im�
prove the time complexity further to compute an
optimal move sequence�
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