On the Complexity and Approximation of Syntenic Distance

B. DasGupta®and T. Jiangfand S. Kannan!and M. Li!and Z. Sweedyk"

Abstract

The paper studies the computational complex-
ity and approximation algorithms for a new
evolutionary distance between multi-chromosomal
genomes introduced recently by Ferretti, Nadeau
and Sankoff. Here, a chromosome is repre-
sented as a set of genes and a genome is a col-
lection of chromosomes. The syntenic distance
between two genomes is defined as the min-
imum number of translocations, fusions and
fissions required to transform one genome into
the other. We prove that computing the syn-
tenic distance is NP-hard and give a simple
approximation algorithm with ratio 2. The
question of how to improve the approxima-
tion ratio is also considered, and a tight con-

*Department of Computer Science, Rutgers Univer-
sity, Camden, NJ 08102. E-mail:bhaskar@crab.rutgers.edu.
Work done while the author was at University of Waterloo
and supported by a CGAT (Canadian Genome Analysis and
Technology) grant.

"Department of Computer Science, McMaster Uni-
versity, Hamilton, Ontario L8S 4K1, Canada. E-mail:
jlang@maccs.mcmaster.ca. Supported in part by NSERC
Operating Grant OGP0046613, CGAT and a JSPS fellow-
ship. Work done while visiting at University of Washington
and Gunma University.

‘Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, E-mail:
kannan@cis.upenn.edu

SDepartment of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong. On leave from University
of Waterloo. E-mail: mli@math.uwaterloo.ca. Supported
by the NSERC operating grant OGP0046506 and a CGAT
grant.

Department of Computer and Information Sciences,
University of Pennsylvania, Philadelphia, PA. E-mail:
zzz@saul.cis.upenn.edu.

nection between finding large “balanced” in-
dependent sets in bipartite graphs and such
an improvement is shown. For the case when
an upper bound d on the syntenic distance
is known, we show that an an optimal syn-
tenic sequence can be found in O(n? - 20(d2))
time. Next, we show that if the set of op-
erations for transforming a genome is signif-
icantly restricted, we can nevertheless find a
solution that performs at most O(logd) addi-
tional moves, where d is the number of moves
performed by the unrestricted optimum. This
result should help in the design of approxima-
tion algorithms. Finally, we investigate the
median problem: Given three genomes, con-
struct a genome minimizing the total syntenic
distance to the three given genomes. The prob-
lem has application in the inference of phyloge-
nies based on the syntenic distance. We prove
that the problem is NP-hard and design an
efficient polynomial time approximation algo-
rithm with ratio 4 + € for any constant € > 0.

1 Introduction

The definition and study of appropriate measures of dis-
tance between pairs of species is of great importance in
computational biology. Such measures of distance can
be used, for example, in phylogeny construction and in
taxonomic analysis.

As more and more molecular data becomes available
methods for defining distances between species have fo-
cused on such data. One of the most popular distance
measures 1s the edit distance between homologous DNA
or aminoacid sequences obtained from different species.
Such measures focus on point mutations and define the
distance between two sequences as the minimum num-
ber of these moves required to transform one sequence
into another. It has been recognized that the edit-
distance may underestimate the distance between two
sequences because of the possibility that multiple point

mutations occurring at the same locus will be accounted
for simply as one mutation. The problem is that the
probability of a point mutation is not low enough to
rule out this possibility.

Recently, there has been a spate of new definitions of
distance that try to treat rarer, macrolevel mutations
as the basic moves. For example, if we know the order
of genes on a chromosome for two different species, we
can define the reversal distance between the two species
to be the number of reversals of portions of the chro-
mosome to transform the gene order in one species to
the gene order in the other species. The question of
finding the reversal distance was first explored in the
computer science context by Kececioglu and Sankoff
and by Bafna and Pevzner and there has been signif-
icant progress made on this question by Bafna, Han-
nenhalli, Kececioglu, Pevzner, Ravi, Sankoff and others
[1, 2, 7, 10, 11]. Other moves besides reversals have
been considered as well. Breaking off a portion of the
chromosome and inserting it elsewhere in the chromo-
some is referred to as a transposition and one can sim-
ilarly define the transposition distance[3]. Similarly al-
lowing two chromosomes (viewed as strings of genes) to
exchange suffixes (or sometimes a suffix with a prefix)
1s known as a translocetion and this move can also be
used to define an appropriate measure of distance be-
tween two species for which much of the genome has
been mapped [9].

Ferretti et. al.[5] proposed a distance measure that is
at an even higher level of abstraction. Here even the
order of genes on a particular chromosome of a species
is ignored/ presumed to be unknown. It is assumed that
the genome of a species is given as a collection of sets.
Each set in the collection corresponds to a set of genes
that are on one chromosome and different sets in the
collection correspond to different chromosomes. In this
scenario one can define a move to be either an exchange
of genes between two chromosomes, the fission of one
chromosome into two, or the fusion of two chromosomes
into one. The syntenic distance between two species has
been defined by Sankoff et. al.[5] to be the number of
such moves required to transform the genome of one
species to the genome of the other.

Notice that any recombination of two chromosomes is
permissible in this model. By contrast, the set of legal
translocations (in the translocation distance model) is
severely limited by the order of genes on the chromo-
somes being translocated. Furthermore, the transfor-
mation of the first genome into the second genome does
not have to produce a specified order of genes in the sec-
ond genome. The underlying justification of this model
1s that the exchange of genes between chromosomes is a
much rarer event than the movement of genes within a
chromosome and hence a distance function should mea-

sure the minimum number of such exchanges needed.

Ferretti et. al. provide a heuristic that attempts to
compute the syntenic distance and provide empirical ev-
idence of the value of this distance measure. In this pa-
per we attempt to put the notion of syntenic distance on
more formal foundations. To wit, we show the following
results.

e The syntenic distance is, in fact, a distance.

e An optimal sequence of moves can be assumed to
occur in a canonical order with fusions preceding
translocations, preceding fissions.

e The problem of computing the syntenic distance is

NP-hard.

e There is an approximation algorithm that achieves
a factor of 2 approximation to syntenic distance.

e Computing this distance is fixed parameter tractable.

e When the set of moves is significantly restricted,
there is nevertheless an optimal sequence of re-
stricted moves whose length is not much more than
the length of the unrestricted optimal sequence.

e Any constant approximation of the “balanced” in-
dependent set problem for bipartite graphs leads
to an approximation of the syntenic distance with
ratio better than 2.

e The problem of computing the median genome, for
a given set of 3 genomes, is NP-hard and admits
an approximation with ratio 4 + € for any constant
€> 0.

These results will be described in the sections that fol-
low. Due to space limitations some proofs are omitted;
they can be found in [4].

2 Notation and Preliminaries

For the purpose of this paper, a genome is a collection
of k subsets (called synteny sets or chromosomes) of a
set of n objects (called genes). A genome mutates by
one of three simple mowves; these are the translocation,
fusion, and fission.

Definition 2.1 Let S1,S55,T5,T> be sets such that at
most one is empty and such that Ty UTs, = §51 U S,.

(a) If S1,82,T1,T5 are non-empty then (S1,S2) —
(T1,T3) is called a translocation of S and S;.

(b) If S> is empty then 81 — (T1, 1) is called a fission
of Sl.

(¢) If T3 is empty then (S1, S2) — Th is called a fusion
of S1 and Ss.

Given two genomes G; and Gz over some gene set 3, the
syntenic distance from Gy to Ga, denoted D(Gy,G2), is
the minimum number of moves needed to transform G;
into Gs.

Proposition 2.1 D(G1,G2) = D(G3,G1).

Proof: Given an optimal sequence of moves from G
to G2, it is easy to reverse every move (the reverse of
a fusion is a fission and vice versa) to get an optimal
sequence of moves transforming G, to Gj. B

It follows from Proposition 2.1 that D defines a metric
over the set of genomes over X (reflexivity and triangle
inequality of D are obvious).

Lemma 2.1 Let G1,G> be an instance of syteny. Then
there is a sequence of moves ¢ = (01,...,0m) such
that m = D(G1,G2) and every fission occurs after ev-
ery translocation and fusion.

Proof: Let 0 = (01,03,...0,) be an optimal move
sequence. If every fission occurs after every transloca-
tion or fusion we are done; so assume not. Let ¢ < m
be the largest index such that o; is a fission preceding
a translocation or fusion. We give a new optimal se-
quence (01,...,0i 1,04, 0;,1,0i42,...,0n,) Where o} is
a translocation or fusion and o} ; is a fission. Repeating
the argument eventually yields the desired sequence.

Assume that o; is the fission S; U S — (51, 52) and
041 is either the fusion (71,72) — T1 U T3 or the
translocation (Ty, Te) — (T3, T3). If neither T} nor Tb
is created by o, we can simply swap o; and o;41 to yield
the desired sequence. Thus we need only consider the
case where, without loss of generality, S; = 77. Then we
claim that o;41 is a translocation; otherwise we could
replace o; and 0,41 by (51U S2,Tz) — (52,51 U Tz),
reducing the number of move by 1, which contradicts the
optimality of ¢. Finally, since 0,41 is a translocation,
we can replace o; and o,41 by o} : (S1 U 83, 1) —
(T{US2,T3) and o} : T{ U Sy — (T7, S2) to yield the
desired sequence. []

Note that the number of translocations, fusions and fis-
sions is preserved in construction of the previous proof.
Thus we get the following corollary.

Corollary 2.1 Let G1,G> be an instance of synteny. If
there is an optimal move sequence with my transloca-
tions, mo fusions, and mg fissions, then there is an
optimal move sequence with my translocations, ms fu-
sions, and ms fissions in which all fissions come after
all translocations and fusions.

Lemma 2.2 Let G1,G> be an instance of synteny. Then
there is a sequence of moves 0 = (01,...,0m) such that

m = D(G1,G2) and such that all fusions come before all
translocations which come before all fissions.

Proof: Let o = (01,02,...,0m) be an optimal move
sequence. If there are no translocations or fusions we are
done. If not, by the Lemma 2.1 we may assume that all
translocations and fusions occur before all fissions. Let
1 be the index of the last non-fission in the sequence and
let G’ be the collection of sets after the ¢-th move. Since
o is optimal D(G1,G’) = 4. Using Proposition 2.1 and
Corollary 2.1 (on the problem of transforming G’ to Gq)
there is a move sequence that transforms G; into G’ con-
sisting solely of fusions and translocations in which the
fusions occur first. Concatenating this sequence with
Citly -y Om yields the desired move sequence. []

2.1 The Compact Representation of Synteny

For our subsequent proofs it is easier to deal with the
compact representation of the synteny problem as de-
scribed in [5]. Assume that the genomes G and G5 con-
tain n and k sets, respectively. Then, the compact rep-
resentation of G with respect to Gy is defined as follows:
replace the i set Gy ; of G1 by the set {i} for 1 < i < n,
and for every set S occurring in G, replace S by the set
Uies{j | ¢ € G1,;}. Let G} and G} be the two modified
genomes. It is easy to see that D(G1,G2) = D(G1,GY).
Hence, we can alternatively define the synteny problem
using the compact representations of genomes as follows.

Definition 2.2 Given a collection S(n, k) of k (not nec-
essarily distinct) sets S1,...,Sk, S; C{1,2,...,n}, the
synteny problem ¢s to compute the minimum number of
mutations, denoted by D(S(n, k)), to transform S to the

collection {{1},{2},...,{n—1},{n}}.

The dual of S(n, k) = ({a1,a2,...,6n};S1,...,5%) 18
S'(k,n)=151,...,5,, where S; is a subset of {1,...,k}
and j € S/ & i € 5;. The goal in the dual problem is
to produce the collection {1},..., {k}.

Proposition 2.2 follows from Proposition 2.1.

Proposition 2.2 Let §'(k,n) be the dual of the synteny
problem S(n, k). Then D(S(n,k)) = D(S'(k,n)).

Henceforth, unless otherwise mentioned, by synteny prob-
lem we refer to the compact representation of the syn-
teny problem. By Proposition 2.2, it is sufficient to con-
sider an instance &(n, k) of the synteny problem with
n > k, since otherwise we can solve the dual problem.

Given an instance §(n, k) of the synteny problem, the
graph G(S(n,k)) includes a vertex for each set of of
8(n, k). Two vertices are connected by an edge if and
only if their corresponding sets in S(n, k) have a non-
empty intersection. If G(S(n,k)) has 1 < p < n con-
nected components, we will simply say that S(n, k) has

p components. If G(S(n,k)) is connected we will say
that S(n, k) is connected.

Proposition 2.3 Let S(n, k) be a synteny instance with
p components. Then, D(S(n, k)) > n —p.

Proof: Let ¢ = (01,...,0m) be an optimal move
sequence for S(n, k). Let S = & and let S; be the
synteny instance obtained after the first ¢ moves. §; has
p components, Sy, has n components, and S;;1 has at
most one more component than S;. Thus D(S(n, k)) =
m>n—p.

3 NP-hardness of the Synteny Problem

In this section we prove the following theorem.

Theorem 3.1 Computing the syntenic distance exactly
is NP-hard.

Our reduction will use two problems, the largest bal-
anced quasi-independent set (LBQIS) problem and the
largest balanced independent set (LBIS) problem for bi-
partite graphs, which are defined as follows:

PROBLEM: Largest balanced independent set (LBIS)
problem.

INPUT: A connected bipartite graph G = (U, V, E) with
|U| = |V| = n and positive integer k, 1 < k < n.

QUESTION: Does there exists U' CU, V' C V, |U’'| =
|[V'| = k, such that (v',v') ¢ E for any « € U’ and
v ev'?

PROBLEM: Largest balanced quasi-independent set
(LBQIS) problem.

INPUT: A connected bipartite graph G = (U, V, E) with
|U| = |V| = n and positive integer k, 1 < k < n.

QUESTION: Does there exists U' CU, V' C V, |U’'| =
|[V'| = k, such that for some permutation wj, ub, ..., u}
of the vertices in U’ and some permutation v}, v5,. .., v},
of the vertices in V', (u,v}) ¢ E for any 1 <i < k and
i1>37

The LBIS problem is known to be NP-complete[6, page
196]. 1. Note that an LBIS of size k is also an LBQIS of
size k for a graph G, but the converse is not necessarily
true. First, we prove the following theorem.

'In [6, page 196] the largest balanced complete bipartite
subgraph problem is shown to be NP-complete, which is same
as the largest balanced bipartite independent set on the com-
plement of the graph

Theorem 3.2 Computing the synienic distance is NP-
hard if the LBQIS problem is NP-hard.

The proof of Thorem 3.2 is as follows. Given an instance
(G, k) of the LBQIS problem as mentioned above, we
create an instance S(2n—k+1,2n—k—+1) of the synteny
problem containing the following sets (assume that U =
{ug, vz, ..., tp } and V = {v1,v2,...,0p}):

(a) S ={w,us,..
(b) X; = {u; | (uj,v;) € EYU{b}for 1 <i<n.

sy Uny A1, A2y« o oy U —ky b}

(¢) i={b}for1<i<n—k.

We refer to the
(resp. a1, ds,..

elements ULy Uy o o oy Uy
., Gp_)) as the wu-elements (resp. a-
elements) and the sets Xi,Xa,...,X, (resp.
Y1,Ys,..., Y,) as the X-sets (resp. Y-sets). Define
Pyo=Sand P, = P_1—{a;}) for 1 <i<mn—k. De-
fine Qr = Py and Q;—1 = Q; — {u}} for 1 < i < k.
Finally, define Ry = Qo and R; = R;j_1 — {u%_l_i} for
1< ¢ < n—k. Notice that R, = {b}. The following
lemma will complete the proof of Theorem 3.2.

Lemma 3.1 G has a LBQIS of size k if and only if
D(S2n—k+1,2n—k+1))=2n—k.

The proof of the “only if” part of Lemma 3.1 is as fol-
lows. Assume G has a LBQIS (U’, V') of size k. Let
U—-U = {upiUqgs--up}t and V - V' =
{V41s Vpas -+ +> V). An optimal syntenic sequence of
2n — k moves consists of the following moves:

e First, fori = k+1,k+2,...,n, perform the translo-
cation (P,'_k_l,X,,;chl) — ({as—x}, Ps—1). Notice
that after the last move we have created the set

QO = P,_;.

e Next, for ¢+ = k,k — 1,...,1, perform the translo-
cation (@Q;, X,1) — ({u}},Qi—1). Notice that af-
ter the last move we have the sets 0o=U-T",
Y1,Y5, ..., Y, still remaining to be processed.

e For+ = 1,2,...,n — k, perform the translocation

(Ri—1,Y:) — ({ugq,), Bi).

Before proceeding with the proof of the “if” part of
Lemma 3.1, we need a few definitions and results.

Definition 3.1 A connected instance S(n,n) of the syn-
teny problem is exact if D(S(n, k)) =n—1.

Definition 3.2 Let S(n, k) be an instance of synteny.
A move on 8§ is called a splitting move if it increases
the number of components of S by one and it is called
a non-splitting move otherwise.

Definition 3.3 Let S(n,n) be a connected instance of
synteny. A splitting move on S(n,n) is called a bal-
anced move if it creates two subproblems S1(n1,n1) and
82(na, na) for some ny and na.

A splitting move must be a translocations or fission since
fusions cannot increase the number of components. In
the case of a translocation, it must operate on sets in the
same connected component. A balanced move must be
a translocation since fissions increase the total number
of sets.

Lemma 3.2 Every move in any optimal move sequence
for an exact instance of synteny is a balanced move on
a connected component.

Proof: Let S(n,n) be an exact instance of synteny
and let o = (o4,..
Since S(n,n) is connected, each move of o

.,0n—1) be an optimal move se-
quence.
must be a splitting move. Assume o splits S(n,n)
into two subproblems Si(n1, k1) and Sa(ng, k2), where
n1 + nz = k1 + k2 = n. (Note these problems have dis-
joint alphabets.) Since each subsequent move must act
on a connected component of the current problem, we
can partition (og,...,0p,) into two subsequences that
solve, respectively, &1 and Sz. By optimality of o, these
subsequences must be optimal move sequences so

D(Sl(nl, kl))—|—D(82 (ng, kg)) = D(S(TL, n)) —1=n-2.

By Proposition 2.3 and the fact that S;(n, k;) is con-
nected, D(8;(n;, k;)) > max(n;, k) — 1. Thus, we get

Notice that the instance of the synteny problem created
in Theorem 3.2 is exact. Proof of Lemma 3.1 is complete
if we can prove the following lemma.

Lemma 8.3 If D(S2n—k+1,2n—k+1))=2n—k.
then G has a LBQIS of size k.

Proof: Let 0 = (01,03,...,024_1) be any optimal
move sequence. By Lemma 3.2, every move is a bal-
anced translocation.

First, we claim that, after a possible reordering of the in-
dices of the a-elements, the move oy, for 1 < j <n -k,
must be a translocation (Pj_1,X:) — ({g;}, P;) for
some £ € {v1,va,...,v,}. For contradiction, assume
this is not the case and rearrange the indices of the a-
elements, if necessary, so that 57 < n — k is the least in-
dex such that o; violates the condition. Since o; must
be a splitting translocation, it cannot translocate two
X-sets, an X-set with a Y-set, or an Y-set with P;_;.
Hence, o; must translocate an X-set with P;_;. Let
oj = (Pj_1,X¢) — (P', P"). Assume that b € P” (and,
hence b ¢ P’). Since o; must be a balanced move,

P’ must contain at most 1 a-element and at most 1 u-
element. If P’ does not contain any a-element, o; does
not violate the condition. Otherwise, P’ contains ex-
actly one u-element u; and no a-element. Then, modify
o; such that the two elements u; and a; exchange their
places in P’ and P" and then o; satisfies our condition.

Hence, after the move o,_;, we have the set Qp =
P, = {ug,u2,...,Upn, b}, the sets ¥1,¥5,...,Y; and
some k X-sets, say Xy, Tyyy..., Xy,. Then, by essen-
tially the same reasoning as before, after a possible re-
arrangement of the indices, the move o, for n —k 41 <
4 < n, must be the translocation (Qn—j4+1, Xv,_;4,)
({tn—j41}s Qn—j). This implies that (u;,v;) ¢ E for
1<i<kandi>j. []

—

This completes the proof of Theorem 3.2. To complete
our proof of Theorem 3.1, it is sufficient to prove the
following theorem.

Theorem 3.3 The LBQIS problem for bipartite graphs
is NP-complete.

We will reduce LBIS to the LBQIS problem. Assume
that we are given an instance (G, k) of the LBIS prob-
lem, where G = (U,V,E), U =V = {1,2,...,n}. We
create an instance (G, k') of the LBQIS problem, where
=k+kG=U,V,E),U =V ={j]1<
1<k+1, 1<j<n},and E' = E1U E> consists of the
following edges:

E, =
Ey, =

{([a k][5, |4 < 5}
{0 kL D i > g, (k1) € E}

Intuitively, we use the amplification technique (see, for
example, [12, page 428-429]) and “blow up” the graph
G by using k+1 copies of it with some additional edges.
We will prove the following lemma showing the correct-
ness of our reduction.

Lemma 3.4 G has an LBIS of size k if and only if G'
has an LBQIS of size k'.

The proof of the “only if” part of Lemma 3.4 is easy. Let
U; CU and V; C V be an LBIS of G of size k. Assume,
wlog, that Uy = V4 = {1,2,...,k}. Let U] = V{ be the
following permutation of a subset of k? + k vertices of

G
[17 1]7 [172]7“‘7 [17k]7 [27 1]7[272]7“‘7 [27k]7“‘7 [k+ 17 1]7
[k+1,2],...,[k+ 1,k]

Then, U] and V] induces an LBQIS of size k¥’ in G'.

The proof of the “if” part of Lemma 3.4 is more in-
volved. Let o1 and o3 be a permutation of the vertices

in U’ and V', respectively, which realizes an LBQIS of
size k' = k? + k. One crucial step in the proof is the
following lemma which says that o; and o5 can be de-
composed in k + 1 modules.

Lemma 3.5 (Rearrangement lemma) There exist in-
tegers p1,pa, ..y Py > 0, pr+p2+- -+ prgr = B2+ 4,
such that o1 and o2 may be assumed to be of the follow-
ing forms:

o1 = ([1,:5%],...,[1,:511’1],[2,:5%],...,[2,:512’2],
] [k + 17$I%+1]7 RS [k+ 17:5?:—11])
0-2 = ([17y%]7"'7[17y§)1]7[27y%]7"'7[27y§27

]
-a[k+1ay;+1]a---a[k+1a klr—ll])

where xf,y{ € {1,2,...,n} and p; = 0 means that that
sequence [p;, yzl,i], [pis yzz,i], ooy [Piy Ybi] is absent.

Proof: We may first assume without loss of generality
that the permutations are

0-1 = ([17$%]7“‘7[17$I£1]7[27$%]7“‘7[27:B12)2]7
Gk Lk Rt L e])
or = ([Lwil....[Lof'] (2,800, [2,957),

k4 Ly, k41 I?rll])

Then clearly g1 < p1, ¢1 +¢2 <p1+p2, .., qa+ ...+

e < p1+. —|— pr, because of the edges in E;. Since
EF1

E,;l q = E, +1 pi = k* 4+ k, qry1 > pry1. Define

A={i|[ji] €0}

If |A| Z q k+1, then we can modify the suffix
[6, 2], [, 21T, .. [k 4+ 1, zp '] of oy with length grys
so that ZBZ», veens xi’:rll are all distinct elements of A. Hence
we can replace it with the sequence

[k + Lall, [k + 1,27, [k + 1,207
is then completed by induction.

The proof

Otherwise, suppose |A| < gr4+1. Then gz41 > p1, - ..
In particular, gx4+1 > p1. Now we can modify the pre-
fix [1, 1], [1,¥3),- .., [4, ¥/] of o2 with length p; so that

Y1,--., v, are all distinct elements of {y;,4,.. ,yg’rll

Hence we can replace it with the sequence
(1,91, [1, 93], ..,[1,¥/]. The proof is again completed
by induction. []

Now, to complete the proof of Lemma 3.4, note that we
have the following two cases.

Case 1. There exists ¢ > j such that p; > k and
pj > k. Then, there is no edge between the vertices
[pia 1];,] [pia 12),] . 7[piaxpi] and [pjvy;]] [pjayzzyj]

[p;, ys2]. Since i > j, by our construction of G/, G must
have an LBIS of size at least k consisting of the vertices

s Pe+1-

Ui }

Uy ={z,,, z;
cvV.

zhit CUand Vp = {yzl,j,yzz,j,...

Case 2. There are no such pair of indices as in Case 1.
Let ¢ > 2 be the largest integer such that p, > k. Now,
we have two cases:

(a) There is no such ¢. In this case,

k+1

(sz') > 2k

pr=k>+k—

(b) Otherwise, since p; < k for i # ¢, pr > 2k.

Hence, in either case, there exists an index j such that
pj > 2k. Then, the vertices

_ P pi—l pi—k+1
Ur={z;" 2z 7. 1 }CU

and

Vlz{yjl'ayjz'a"'ayf} gV

form an LBIS of size k for G. This completes the proof
of Lemma 3.4.

4 A Simple Approximation Algorithm
for the Synteny Problem

In this section, we describe a polynomial time approxi-
mation algorithm for the synteny problem with perfor-
marnce ratio 2.

Lemma 4.1 Let S(n, k) be an instance of the synteny
problem. Then, it is possible to approzimate D(S(n,k))
with a performance ratio of 2 in O(nk) time.

Proof: Assume, without loss of generality, that n > k.
Assume 8(n, k) has p components and n; (resp. k;) be
the number of elements (resp. number of sets) in the
it" connected component of G(S). Our simple fusion-
fission algorithm is as follows. First, find the connected
components of G(S). Then, for each connected com-
ponent, repeatedly use fusion until only one set is re-
maining and then repeatedly use fission to separate the
remaining elements from the set. In all, we perform
P ni+k—2) =n+k—2p < 2n— 2p moves.
By Proposition 2.3, D(S8(n,k)) > n — p, and hence a
performance ratio of 2 is achieved. Note that the ap-
proximation algorithm uses no translocations and can
easily be implemented in O(nk) time using standard
data structures (the running time is dominated by the
step necessary to build the graph G(5)). []

Remark 4.1 The performance ratio 2 of the above heuris-
tic is tight. Let the instance S(n,n — 1) consist of the

n — 1 sets {1},{1,2},1{1,2,3},...,{1,2,...,n}. Then,
D(S(n,n)) = n— 1, whereas our heuristic takes 2n — 2
moves. It is possible to use n 4+ k — 3p moves instead
of n+k — 2p moves if we replace the last fusion in our
heuristic by a translocation which separates one of the
elements from the rest.

5 Linear Synteny

The move sequences used in the NP-completeness proof
and (without loss of generality) produced by the ap-
proximation algorithm have a particular form. There is
a merging set A that is initially one of the input sets.
The first £ —1 moves are either fusions or very restricted
translocations between A and an input set. The restric-
tion on translocations is that only translocations that
produce a singleton set {j} such that j does not occur
in any other set are allowed. The remaining moves are
fissions on A that create singleton sets. In this section
we study this restricted problem.

Let S(n, k) = {S1,..., 5k} be a connected instance of
synteny and let = be a permutation of [1,...,k]. The
linear move sequence o for S(n, k) is defined as follows.

1. Let Al = Sﬂ-l.
2. Fori< k

(a) If thereis j € A;USy,,, that isnotin Uf_; ,Sx,
then choose the smallest such j and set o; =
(Aia Sﬂ'i+1) - (Ai-l-la {.7})

(b) Otherwise o; = (A, S¢ — Aj41.

1)

3. Fori =k,...,k+ ||Ag|| — 1, let § be the smallest
element in A; and set o; = A; — (As41, {7})-

If §(n,k) is not connected, a linear move sequence is
a partition of the connected components of S(n, k) and
a linear move sequence for each.”? We let D(S(n,k))
denote the length of the shortest linear move sequence
for S(n, k).

Since the NP-Completeness proof uses linear move se-
quences, ﬁ(S(n, k)) is hard to compute. Since the ap-
proximation algorithm (without loss of generality) pro-
duces a linear move sequence and D(8(n,k)) <
ﬁ(S(n, k)), this algorithm gives a 2-approximation of
ﬁ(S(n, k)). Note as well that the optimal move se-
quence for the example given in Remark 4.1 is a lin-
ear move sequence so, as in the general case, the 2-
approximation bound is tight.

It remains open whether one can approximate linear
synteny by a factor better than 2, but this problem

’If for example an input is {1},{2},...,{n} then no
moves are required in either the original or linear versions of
synteny.

seems easier to analyze than the general synteny prob-
lem. The following theorem says, in fact, it suffices
to improve the approximation bound for linear synteny
since any such algorithm yields a better approximation
for the general problem.

Theorem 5.1 If linear synteny can be approzimated
within a factor of ¢ in polynomial time then for any
€ > 0, for sufficiently large input, general synieny can
be approximated within a factor of ¢ + € in polynomial
time.

This theorem follows directly from Lemma 5.1 since

D(8(n, k)) is Q(n, k).
Lemma 5.1 Let S(n, k) be an instance of synteny. Then
B(S(n, k) < D(S(n,) + Olog D(S(n,).

To prove this lemma we need the following definitions.

Definition 5.1 Let $(n, k) be an instance of synteny
and let o be an arbitrary move sequence for S(n,k).
The move digraph G (S, o) contains a vertex for each
move in 0. If 0; creates a set S that is input to o then
Gy has an edge from o; to o;.

We point out that Gps implies a partial order on the
moves in ¢ and any consistent total order yields a move
sequence for §(n, k). If ¢ is optimal, each total order
yields an optimal move sequence for S(n, k). Note that
Gy 18 directed, acyclic and each node has in-degree and
out-degree at most 2. A directed graph is weakly con-
nected if 1t is connected when its edges are considered
in an undirected sense.

Definition 5.2 Let G be a weakly connected, directed
acyclic graph on n nodes. An f(n) directed biseparator
of G is a non-empty subset of edges A that partition G
into two weakly connected components G1 and G5 such
that each has between f(n) and n— f(n) nodes. Further,
for every < u,v > inA, u € Gy and v € Gs.

The proof of Lemma 5.1 uses the following graph-theoretic
lemma whose proof can be found in [8].

Lemma 5.2 Let G be a weakly connected, directed, acyclic
graph on n nodes where the in-degree and out-degree of
each node are each at most 2. Then G has a § directed
biseparator.

Proof of Lemma 5.1: Because of the form of Lemma
5.2, all logarithms in this proof are to the base 4/3.
Let o be an arbitrary move sequence for S(n, k) =
{S1,..., Sk} of length d. To prove the bound it suffices
to prove the case where o consists solely of transloca-
tions. To see this, notice first that we may assume that

fissions occur after all translocations which occur af-
ter all fusions. At the end of the fusion/translocation
stages, the current sets T7,...,Ty are disjoint. Create
a new instance of synteny by renaming each j in the
current set 7T; as a; in the original instance. Thus the
fusion/translocation stages of o solves the new prob-
lem. Suppose o is a linear move sequence that solves
the new problem and has length < d’+logd’, where d' is
the length of the fusion/translocation stage of o. Then
running o, on the original problem requires d —d’ addi-
tional fissions and has length < d+logd’ < d+logd. So
assume that o consists of fusions followed by transloca-
tions. Consider the synteny instance 717, ...,T; created
by the last fusion. Suppose o is a linear move sequence
that solves this problem and has length < d' + logd’,
where d’ is the number of translocations. For each T,,
let 7} be an arbitrary ordering of the sets that were fused
to create Ty, and let «#' = 7{ - «f---7},. Then o, has
length at most d + logd’ < d + logd.

Thus we’ll assume o consists solely of translocations.
Notice in this case that n = k. If d = 1 then o is already
a linear move sequence so assume d > 2. First consider
the case where Gpr(S(n, k), o) is connected. Note that
G s has d nodes.

By Lemma 5.2, there exists a n/4 directed biseparator
A of Gy (8(n, k), o). Let G1 and G be the two weakly
connected components created by removing 4. Assume
G; has d; nodes; note dy + ds = d. We construct two
new synteny instances as follows.

S3: Each edge e of A corresponds to a set T, that is
passed to a node of G3. The instance S; consist
of these sets T.,e € A, plus any of the input sets
of 8(n, k) that are input to G2. Notice that any
move sequence implied by G5 (i.e. consistent total
order on its nodes) is a move sequence that solves
8S3. Since each move is a translocation, 83 has the
same number of sets as elements; let ny be this
number.

&1: Initially let S; consist of the input sets of S(n, k)
that are input to nodes of G;. A move sequence
implied by G does not typically solve &; because
the sets T.,e € A, may not be disjoint singleton
sets. To fix this, let us first rename an element j
that occurs in the set Sy of 8; as [j,£]. Carry the
renaming through the moves of o. Then for each T,
create a new dummy name a.. For each [j,£] € T,
rename [4,€] as a. in &. With this renaming a
move sequence implied by G solves §;. As above,
&1 has the same number of sets as elements; let n4
be this number. Let W1 = {a.,e € A}.

Inductively assume that there is a linear move sequence
oi,x; for 8 of length < d; 4 ¢(d;). Let 7 be the order on

the sets of & induced by m; followed by 7. We claim
that o, has length at most d + max(g(d1),g(d2)) + 1.
The lemma follows since

o(m) < 1+ 92 < logn.

For the accounting we’ll modify o, slightly to create its
singleton sets in a way we can count. In the following
A1, Ay and A; denote the current merging set of,
respectively, oz,, o, and o, before their j-th move.
During the first n; — 1 merges o, matches the moves of
Or,. By this we mean that when o, creates a singleton
{j}, o= creates the same singleton provided j ¢ Wy. If
j € Wy then o, simply performs a fusion at that step.
The n1-th move of o is a fusion of A,,, with the first set
in the ordering for §; unless this first set is a dummy set
T., in which case this move is skipped. In the remaining
moves it matches the first no — 1 moves of o,, except
those involving sets T,,e € A, during which o, makes
no move. Let W5 be the set of singletons created by o,
in translocations with the sets T.,e € A. Notice that
Anl = Al,”l UeEA Te \ Wl and An = Al,”l U A27n2 U
W2 \ Wl. Let 1L = ||A17n1 \ W1|| and Ta = ||A27n2||.

As described o, is somewhat wasteful. No element of
Ay, \ Wy exists in an Sp set. If there are f fusions in
the last n—ny moves of o, we can replace min(rq, f) of
them by translocations creating singletons from Aq ,, \
W;. The sequence o, performs r2 — 1 fusions of which
[|A]| — |[W3]| involve sets T,, e € A. The remaining have
corresponding fusions in o,. In addition, move n; of
or is a fusion. Since Aj,, and A,, are disjoint, the
modified move sequence ends with a set A, where

Al = 714 rs—min(ry, ry — [|A][+ |[W2]])
= max(ry, ry — [[A][+|[W2]) + [[Al]l - [[W]]

An additional ||A,|| — 1 fissions are needed. So the
function g(d) must satisty

d+g(d) = n+max(ry,rs— |[A]|+ |[Wel]) + || A]|

—[|Ws|| — 2
= 01+ ng +max(ry, r2 — [|A|| + [|[W2])
—[|Ws|| — 2

since n = ny +nz — ||4||. If r1 > ra— ||A]| + ||W2|| then
using the facts that ny + 71 — 2 < ny 4+ [|A1,, || -2 =
d1+g(d1) and ny < dz + 1 we get

d+g(d) > dy+dz+g(di) +1=d+g(d1) + L.

If ro — ||A]| 4 ||W2|| > 71 then using the facts that nq <
di+1and ny+r3 — 2 =dz + g(g2) we get that

d+d(g) >dy +dy+g(da)+1=d+g(ds) + 1.

Thus d+g¢(d) > d+max(g(d1), g(d2))+1 and the choice
of g(d) = logd suffices. [|

6 Optimal Syntenic Sequence When
the Distance is Bounded

In practice, it may be the case sometimes, that the syn-
teny distance between two genomes is bounded, and one
1s interested in finding the optimal sequence of synteny
moves between the two genomes. The following theo-
rem states our result in this regard. Notice that the
algorithm mentioned below takes polynomial time pro-

vided d = O(+/log(nk)).

Theorem 6.1 Let S(n, k) be an instance of the syn-
teny problem with D(S(n,k)) < d. Then, an optimal
sequence of synteny moves for S(n, k) can be computed

in O(nk - 20(d2)) time.

We need to prove a few results before proving Theo-
rem 6.1. As usual, we may assume n > k without any
loss of generality.

Lemma 6.1 If D(S(n,k)) < 5 — 1, then S(n, k) has
one connected component containing just the set {a;}
for some 1 <1 < mn.

Proof: Assume G(S) has p > 1 connected compo-
nents Cq,...,Cp, and let n; > 1 (resp. k; > 1) be
the number of elements (resp. number of sets) in C;.
By assumption, n; + k; > 3 for all 2. Thus, n+ k =

?_(ni + ki) > 3p, implying p < 2?" But, by Propo-
sition 2.3, p > n — D(8(n, k)) > 2?" + 1. But, this is a
contradiction! B

Lemma 6.2 Assume that a given instance S(n, k) has
a connected component containing only the set {a;}. Let
T(n — 1,k — 1) be the instance obtained by removing
the element a; and the set {a;} from S(n, k). Then,
D(8(n, k) = D(T(n -1,k —1)).

Proof: Obviously, D(S(n,k)) < D(T(n — 1,k — 1)).
Conversely, assume that an optimal sequence for S(n, k)
translocates the set {a;} with some other set. We do
not perform this translocation, but proceed with the re-
maining moves assuming that the element a; is carried
to subsequent sets. Finally, we must have a transloca-
tion or fission separating a; from other elements. If it
is a translocation, we replace it by a fusion, whereas if
1t 1s a fission, we do nothing. So, in fact we save moves
by not translocating a;. Hence, D(T(n — 1,k — 1)) <
D(S(n, k). =

We now proceed with the proof of Theorem 6.1. By
Proposition 6.2, given an instance §(n, k), we can derive

an instance T'(n/, k') such that n' < n, k' < k, n’ >
k" and D(S(n,k)) = D(T(n',k')) > %I Hence, it is
sufficient to prove the theorem when n > k and d > 3.
By Lemma 2.2, we know that it is sufficient to do at
most «y fusions first, at most as translocations next
and at most «j fissions at the end, for every choice of

a1, as, a3 > 0 such that ay + as + a3 < d.

Clearly, there are at most (djl"o’) < 234/2 choices for the
«;’s. For every such choice, we count the total number
of possible alternative moves we may have to perform.
First, we count the total number f of fusions we need
to look at. Clearly,

__ 4]_ oy
remn (") < (3) =0

Next, we count the total number ¢ of translocations we
need to look at. Since there are at most 2" — 1 ways to
translocate two sets,

[e p—

Since all the fissions are done at the end, there is only
one unique way of doing them. Hence, overall our algo-
rithm takes O(nk - 20(4)) time.

7 Synteny and the Balanced Bipartite
Independent Set Problem

In Section 3 we used the balanced bipartite indepen-
dent set (LBIS) problem to show that computing the
syntenic distance exactly is NP-hard. In this section we
investigate the relationship between approximation of
the syntenic distance with a performance ratio better
than 2 and a good approximation of the LBIS problem.
We omit the complicated proof of the following theorem.

Lemma 7.1 Assume that the LBIS problem for bipar-
tite graphs can be approrimated, in polynomial time,
with a performance ratio of € for some constant ¢ >
1. Then, the syntenic distance can be approrimated,

in polynomial time, with a constant performance ratio
6 <2.

8 The Median Problem

The median problem arises in connection with the phy-
logenetic inference problem[5] and defined as follows.
Given three genomes Gi, G2 and G3, we are required
to construct a genome G such that the median distance
ag = E?:l D(G,G;) is minimized. Without any addi-
tional constraints, this problem is trivial, since we can
take G to be empty (and then ag = 0). In the con-
text of syntenic distance, any one of the following three
constraints seem relevant:

(c1) G must contain all genes present in all the three
given genomes.

(¢2) G must contain all genes present in at least two of
the three given genomes.

(¢8) G must contain all genes present in at least one of
the three given genomes.

Lemma 8.1 The median problem is NP-hard with any
one of the three constraints (c1), (¢2) or (c3).

Proof: We reduce the synteny problem to this prob-
lem. Let G; and G5 be the two genomes of any instance
of the synteny problem and let d = D(G1,G3) > 0. The
NP-hardness reduction of Section 3 shows that we may
assume that both G; and G» contain the same set of
genes. Let G1, G1 and G5 be the three genomes for the
corresponding median problem. Assume that G is the
solution of the centroid problem (under any one of the
constraints). If G # Gy, then ag > d+ D(G,G1) > d;
but if G = G, then ag = d. Hence, ag is precisely the
syntenic distance between G; and G; and determining
ag determines d also. []

Lemma 8.2 We can approzimate the median problem
in polynomial time (under any one of the constraints
(el), (c2) or (¢3)) with ratio 4 + € for any constant e.

9 Conclusion

In this paper, we have proved several results concern-
ing the complexities of efficient exact and approximate
computations of the syntenic distance between genomes.
The NP-hardness proof for computing the synteny dis-
tance uses a cascade of reductions from the LBIS prob-
lem for bipartite graphs. We also showed that any con-
stant approximation of the LBIS problem leads to an
approximation of the synteny distance with ratio better
than 2.

The following problems still remain open:

e Can we approximate the synteny distance in poly-
nomial time with a ratio better than 27 Does a
PTAS for this problem exist? Qur results seem to
indicate that the answer to this question is closely
related to finding a large “balanced” independent
set in bipartite graphs.

e When the synteny distance is bounded, can we im-
prove the time complexity further to compute an
optimal move sequence?

References

[1] V. Bafna and P. Pevzner. Genome Rearrangements
and Sorting by Reversals. In 34th IEEE Symp. on

Foundations of Computer Science, 1993, pp. 148-
157.

V. Bafna and P. Pevzner. Sorting by Reversals:
Genome Rearrangements in Plant Organelles and
Evolutionary History of X Chromosome. Mol. Biol.
and Evol., 12, 1995, pp. 239-246.

V. Bafna and P. Pevzner. Sorting by Transposi-
tions. In Proc. of 6th Ann. ACM-SIAM Symp. on
Discrete Algorithms, 1995, pp. 614-623.

B. DasGupta, T. Jiang, S. Kannan, M. Li and Z.
Sweedyk. On the Complexity and Approximation
of Syntenic Distance. University of Pennsylvania

Technical Report MS-CIS-96-21.

V. Ferretti, J.H. Nadeau and D. Sankoff. Original
Synteny. In Proc. of 7th Ann. Symp. on Combina-
torial Pattern Matching, 1996, pp. 159-167.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., 1979.

S. Hannenhalli and P. Pevzner. Transforming Cab-
bage into Turnip (polynomial algorithm for sorting
signed permutations by reversals). In Proc. of 27th
Ann. ACM Symp. on Theory of Computing, 1995,
pp. 178-189.

S. Kannan and Z Sweedyk. A Separator Theorem
for Directed Acyclic Graphs. University of Penn-
sylvania Tehnical Report MS-CIS-96-20.

J. Kececioglu and R. Ravi. Of Mice and Men:
Evolutionary Distances Between Genomes under
Translocation. In Proc. of 6th Ann. ACM-SIAM
Symp. on Discrete Algorithms, 1995, pp. 604-613.

J. Kececioglu and D. Sankoff. Exact and Approx-
imation Algorithms for the Inversion Distance be-
tween Two Permutations. In Proc. of 4th Ann.
Symp. on Combinatorial Pattern Matching, Lec-
ture Notes in Computer Science 684, Springer Ver-

lag, 1993, pp. 87-105.

J. Kececioglu and D. Sankoft. Efficient Bounds for
Oriented Chromosome Inversion Distance. In In
Proc. of 5th Ann. Symp. on Combinatorial Pattern
Matching, Lecture Notes in Computer Science 807,
Springer Verlag, 1994, pp. 307-325.

C. H. Papadimitriou and K. Steiglitz. Combina-
torial Optimization: Algorithms and Complexity.

Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1982.

