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Abstract

The capacitated clustering problem (CCP) has been studied in a wide range
of applications. In this study, we investigate a challenging CCP in com-
putational biology, namely, sibling reconstruction problem (SRP). The goal
of SRP is to establish the sibling relationship (i.e., groups of siblings) of a
population from genetic data. The SRP has gained more and more inter-
ests from computational biologists over the past decade as it is an important
and necessary keystone for studies in genetic and population biology. We
propose a large-scale mixed integer formulation of the CCP for SRP, that
is based on both combinatorial and statistical genetic concepts. The objec-
tive is not only to find the minimum number of sibling groups, but also to
maximize the degree of similarity of individuals in the same sibling groups
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while each sibling group is subject to genetic constraints derived from the
Mendel’s laws. We develop a new randomized greedy optimization algorithm
to effectively and efficiently solve this SRP. The algorithm consists of two key
phases: construction and enhancement. In the construction phase, a greedy
approach with randomized perturbation is applied to construct multiple sib-
ling groups iteratively. In the enhancement phase, a two-stage local search
with a memory function is used to improve the solution quality with respect
to the similarity measure. We demonstrate the effectiveness of the proposed
algorithm using real biological data sets and compare it with state-of-the-art
approaches in the literature. We also test it on larger simulated data sets.
The experimental results show that the proposed algorithm provide the best
reconstruction solutions.

Key words: Clustering analysis, capacitated clustering problem,
combinatorial optimization, sibling reconstruction, computational biology

1. Introduction

The capacitated clustering problem (CCP) has been one of the most chal-
lenging problems in clustering research. Several variants of CCP have been
studied in the literature including a capacitated centred clustering problem
(CCCP) as well as a capacitated p-median problem (CPMP). The CCP can
be formally defined as follows. Given a set of data points with associated
weights (or features), the CCP is to partition the data points into clusters
such that the total weight of data points in each cluster does not exceed the
capacity limit of the cluster. In general, the objective of CCP is to max-
imize the homogeneity (similarity) of the data points in each cluster or to
maximize the separation (dissimilarity) among different clusters (Hansen and
Jaumard, 1997). Although clustering techniques have been essential tools to
solve many practical problems, previous studies on the CCP are mostly ap-
plied to facility location problems and they often focus on the development
of solution algorithms. In this study, we consider an application of the CCP
in computational biology to solve the sibling reconstruction problem (SRP).
The SRP is one of the most important problems in genetic biology (Blouin,
2003). The knowledge of sibling relationships allows biologists to understand
the fundamental biological phenomena including mating systems, ecological
behaviors and evolutions, social organizations, etc. The SRP can be for-
mally defined as follows. Given a population (or set) of individuals (or data
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points) with associated genetic features (or weights), the SRP is to partition
individuals into sibling groups (or clusters) such that the combination of fea-
tures in each sibling group does not violate the genetic constraints of sibling
group (i.e., the Mendel’s laws). The common objective of SRP is to maxi-
mize the similarity degrees of individuals in sibling groups and to minimize
the number of sibling groups in the population. The genetic constraints of
the sibling group make the SRP far more complicated than a standard CCP.
The capacity constraint in the CCP only incorporates the total weight of
data points in each cluster, which is usually one-dimensional. On the other
hand, the genetic constraints of SRP are derived from the combinatorial con-
cept of the Mendel’s laws, which consider multiple pairwise genetic features
of individuals. In addition, the actual number of sibling groups is not known
a priori, and overlapping sibling groups are commonly seen in natural pop-
ulations because wild animals are not always monogamous. In other words,
an individual can be assigned to more than one sibling group simultaneously
if the genetic constraints are satisfied.

To solve the SRP, most studies employ statistical likelihood techniques
from genetic data (Painter, 1997; Smith et al., 2001; Thomas and Hill, 2002;
Butler et al., 2004; Wang, 2004; Konovalov et al., 2004; Wang and Santure,
2009), while heuristic approaches are developed to integrate statistical like-
lihood such as graph-based approaches (Almudevar and Field, 1999; Beyer
and May, 2003; Almudevar, 2007), simulated annealing (Almudevar, 2003),
etc. More recently, there has been an increasing degree of interest to apply
combinatorial concepts to the SRP. A new optimization model with com-
plex combinatorial constraints derived from the Mendel’s laws and its com-
putational algorithms have been proposed (Berger-Wolf et al., 2005, 2007;
Chaovalitwongse et al., 2007, 2010). The model is formulated in the format
of a set covering problem (SCP), which is to find a minimum set of sibling
groups subject to the combinatorial constraints. Note that, in those studies,
only the combinatorial constraints and the concept of parsimony, which is to
minimize the number of sibling groups, were considered in the model. More
importantly, statistical similarity measure from genetic features of individu-
als can provide direct information to benefit the sibling relationships, while
the combinatorial constraints give the robustness of reconstructing sibling
groups.

In this study, we propose a new heuristic optimization algorithm, which
has similar concept to a greedy randomized adaptive search procedure (GRASP)
(Feo and Resende, 1995), that integrates the combinatorial constraints and
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the concept of parsimony with a statistical similarity measure. The proposed
framework involves the following phases: the construction of clusters and the
enhancement of quality of clusters. In the first phase, an efficient greedy ap-
proach, proposed by Chaovalitwongse et al. (2010), is employed repeatedly to
construct a number of different possible partitions of (disjoint) sibling groups
by introducing a randomized perturbation. Subsequently, among all possible
partitions of sibling groups, a set covering problem (SCP) is solved to select
the minimum set of sibling groups to cover the population. In the second
phase, we propose a new two-stage local search with a memory function to
improve the quality of sibling reconstruction based on the similarity of in-
dividuals in the sibling groups. Finally, a SCP is solved again to find the
minimum number of sibling groups.

The remainder of this paper is organized as follows. In Section 2, we
present the CCP and the sibling reconstruction problem with basic genetic
terminologies and a mathematical representation of genetic data. The capac-
itated clustering formulation for the SRP is presented in detail in Section 3.
The mathematical programming model with the combinatorial constraints of
the Mendel’s laws is formulated to integrate the statistical similarity measure
of genetic data. In Section 4, we elaborate the proposed framework designed
to solve the SRP. In Section 5, we demonstrate computational experiments
using real biological data sets and simulated data sets, and show the effective-
ness by comparing the proposed approach to the existing methods. Finally,
this paper is concluded in Section 6.

2. Background

2.1. Capacitated Clustering Problem

The mathematical model of the CCP was first proposed by Mulvey and
Beck (1984) and its variants were used to study several practical problems
in diverse applications. Here we consider one of the most common variants
of CCP. Given a set of data points i ∈ I with associated positive weights
πi and resources ci, and a set of edges (i, i′) ∈ E with associated positive
weights (e.g., similarities) wii′ , where i ̸= i′. Assume that there is a set of
clusters j ∈ J used to cover (represent) all data points. Let p be a predefined
number of clusters. There is a resource limitation Wj on each cluster j. The
objective of CCP is to find a set of clusters with the maximum weight (or
similarity) per cluster subject to a resource capacity.
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Define xij and zj as binary variables, where xij = 1 if data point i is
assigned to cluster j, and xij = 0 otherwise; zj = 1 if cluster j is selected,
and zj = 0 otherwise. The formulation of CCP is given in Equations (1)-(7).
The objective in Equation (1) is to maximize the total weight of all selected
clusters. The constraint set in Equation (2) calculates the total weight of
data points assigned to cluster j. The constraint set in Equation (3) ensures
that every data point is assigned to one cluster, while the constraint set
in Equation (4) guarantees that a cluster must be selected if there is any
data point assigned to it. The constraint set in Equation (5) ensures that
only p clusters are selected. The constraint set in Equation (6) is a knapsack
constraint ensuring that the total resource of data points assigned to a cluster
does not violate its capacity.

(CCP) max
∑
j∈J

Wjzj (1)

s.t. Wj =
∑
i∈I

πixij +
∑

(i, i′)∈E

wii′xijxi′j ∀ j ∈ J (2)

∑
i∈I

xij = 1 ∀ j ∈ J (3)

xij ≤ zj ∀ i ∈ I, j ∈ J (4)∑
j∈J

zj = p (5)∑
i∈I

cixij ≤ Cj ∀ j ∈ J (6)

xij, zj ∈ {0, 1}. (7)

In the literature, exact solution methods have been proposed to solve
different versions of CCP. Mehrotra and Trick (1998) used a column genera-
tion with a specialized branching technique and solved a maximum weighted
cluster problem (MWCP) in the subproblem. Baldacci et al. (2002) pre-
sented a new exact algorithm by modeling the capacity location problem
as a set partitioning problem with cluster-feasibility constraints. Lorena
and Senne (2004) proposed an approach that integrates the column gener-
ation and Lagrangean/surrogate relaxation techniques to solve capacitated
p-median problems. More recently, Ceselli et al. (2009) proposed a compu-
tational framework based on column generation and branch-and-price ap-
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proaches to solve the capacitated network problems. Due to the computa-
tional complexity of real-life CCPs, a large number of heuristic approaches
have been developed. Those include classical sub-gradient heuristics (Mul-
vey and Beck, 1984; Koskosidis and Powell, 1992), simulated annealing and
tabu search (Franca et al., 1999; Osman and Creistofides, 2002), bionomic
approach (Maniezzo et al., 1998), cluster search (Chaves and Lorena, 2010),
GRASP-based algorithms (Samad and Osman, 2005; Deng and Bard, 2010),
and other heuristics (Osman and Samad, 2002; Samad and Osman, 2002;
Negreiros and Palhano, 2006; Avella et al., 2009).

2.2. Sibling Reconstruction Problem (SRP)

In genetic and population biology, as more and more genetic markers
become available for a wider range of species, biological researchers have
attempted to better characterize evolutionary, ecological, population, and
demographic parameters. With the knowledge of sibling relationships from
genetic markers such as microsatellites, population biologists will be able to
better understand the nature and organism behaviors such as the number of
reproducing adults, their fecundity, and the average size of litters. For endan-
gered species, this knowledge is important for conservation and management
strategies. The sibling reconstruction problem can be defined as a problem
of identifying sibling relationships from genotypic data where the organisms
are sampled and genotyped without information about their parents.

There are several genetic markers used in population genetics, and mi-
crosatellite is one of the most widely used for the sibling reconstruction.
Microsatellites are neutral and co-dominantly inherited, and allow the direct
inference of genotypes at each locus (i.e., a site in the chromosome). Figure
1 displays an example. In this study, we restrict to diploid individuals, which
are organisms that have a pair of alleles at each locus of a chromosome pair.
Genotypes are comprised of alleles, which are distinct length variants of mi-
crosatellites. A locus is a site which the allele occupies on the chromosome.
In an individual, homozygous (respectively, heterozygous) allele(s) represents
a pair of identical (respectively, different) alleles at a particular locus.

Chaovalitwongse et al. (2010) proposed a multi-dimensional data struc-
ture to represent microsatellites mathematically. A multi-dimensional matrix
is defined as alik ∈ {0, 1, 2}, where i ∈ I is a set of individuals; l ∈ L is a set
of loci; and k ∈ K is a set of alleles. This matrix reveals the indication of
distinct alleles (alik = 1) at a locus as well as homozygous alleles (alik = 2).
We show the representation in Figure 2. For example, a145 = 1 indicates that
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Chromosome pair

Locus 1 Locus l

Co-dominated alleles: e.g. (A, a)

……………………………

Figure 1: An illustration of a chromosome pair with several loci from a diploid individual.
Genotype is co-dominated by a pair of alleles at each locus.

shrimp 4 has a distinct allele 5 while a222 = 2 indicates that shrimp 2 has
homozygous alleles 12.

Individual Locus 1 Locus 2 Locus 1 Locus 2
Allele 1 2 3 4 5 6 7 11 12 13 14 16 17

Shrimp 1 1/2 11/13 1 1 0 0 0 0 0 1 0 1 0 0 0
Shrimp 2 2/3 12/12 0 1 1 0 0 0 0 0 2 0 0 0 0
Shrimp 3 3/3 11/12 =⇒ 0 0 2 0 0 0 0 1 1 0 0 0 0
Shrimp 4 4/5 11/14 0 0 0 1 1 0 0 1 0 0 1 0 0
Shrimp 5 6/7 14/16 0 0 0 0 0 1 1 0 0 0 1 1 0
Shrimp 6 4/7 17/17 0 0 0 1 0 0 1 0 0 0 0 0 2

Figure 2: A multidimensional matrix interprets microsatellite markers from a population
of six individuals with two loci. There are seven and six distinct alleles respectively.

When familial (parental) information is not known, genetic markers be-
come a direct reference for identifying sibling groups. The sibling relation-
ships are often inferred by using the statistical likelihood from the knowledge
of genetic typical allele distribution and frequency. In the literature, statis-
tical methods for SRP are categorized into pairwise and group approaches.
The pairwise approaches infer the relationship of a pair of two individuals
based of the genotypes. The group approaches take into account all indi-
vidual simultaneously in the group partitions. To solve the SRP with the
statistical likelihood concept, several methods have been proposed in the
literature. Painter (1997) proposed a Bayesian approach to estimated sib-
ling relationships in a generation and explore its feasibility. The technique
proposed by Almudevar and Field (1999) is based on the exclusion princi-
ple to evaluate the set of feasible sibling groups. Smith et al. (2001) used
Markov chain Monte Carlo (MCMC) algorithms to find a partition of sib-
ling groups using pairwise likelihood ratios. Subsequently, Thomas and Hill
(2002) applied the MCMC technique to reconstruct the nested structure of
full-sibling within half-sibling relationships. Butler et al. (2004) compared
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existing methods (Painter, 1997; Almudevar and Field, 1999; Smith et al.,
2001; Thomas and Hill, 2000, 2002) with a new Simpson algorithm, and com-
pared performances in terms of accuracy, efficiency, and robustness. They
have computational limitations on large scale data. Konovalov et al. (2004)
developed an efficient computer program called KINGROUP using the likeli-
hood formulas proposed by Queller and Goodnight (1989) and subsequently
presented a modified version of Simpson algorithm (Konovalov et al., 2005).

Mendel’s laws (also called Mendelian inheritance laws) (Mendel, 1901;
Bowler, 1989)have also played an important role in using the combinatorial
concept to solve the SRP. An offspring inherits one allele from each of its
parents (either father or mother) at each locus and the inheritance pattern
of one trait co-dominated by a pair of alleles is independent of another one.
There are two main combinatorial principles. Thus, for any offspring, one
of its allele pair only has at most two possibilities from parents and there
are at most four alleles appearing possibly at each locus (Berger-Wolf et al.,
2007; Chaovalitwongse et al., 2010). These combinatorial rules on genetic
patterns provide the robustness of the sibling reconstruction. Recently, a
few studies in the literature proposed the use of combinatorial concept to
solve the SRP (Beyer and May, 2003; Almudevar, 2007). Almudevar (2003)
developed a simulated annealing approach to solve the combinatorial version
of SRP. Our group proposed a series of optimization algorithms based on the
combinatorial constraints from the Mendel’s laws (Berger-Wolf et al., 2005,
2007; Chaovalitwongse et al., 2007). Our approaches enumerated all possible
sibling groups by following the Mendel’s laws and solved a set covering prob-
lem to find a minimum set of representative sibling groups, which is based
on the parsimony assumption when the actually number of sibling groups is
not known a priori. Most recently, Chaovalitwongse et al. (2010) proposed
an iterative heuristic approach, IMCS, to solve a new optimization model
(2AOM) with the combinatorial constraints to find a partition of maximal
sibling groups.

3. Capacitated Clustering Model for Sibling Reconstruction Prob-
lem

3.1. Capacitated Clustering Model

We formulate the SRP as a CCP by using the statistical likelihood mea-
sure as the objective function subject to the Mendelian combinatorial con-
straints. We note that this is the first mathematical model that integrates
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both statistical and combinatorial concepts to reconstruct the sibling rela-
tionship. We shall mathematically define our integrated problem as follows.

Given a set of individuals i ∈ I with associated weights πi and a set of
edges (i, i′) ∈ E with associated similarity measures wl

ii′ over all loci l ∈ L,
where i ̸= i′. Assume that there is a set of sibling groups j ∈ J to represent
the relationship of the given population. Because there is no prior parental
information, the number of sibling groups is not known and will have to be
determined by the model. Next we define the following decision variables.

• zj ∈ {0, 1}: indicates if there is individual(s) assigned to be a member
of sibling group j;

• xij ∈ {0, 1}: indicates if individual i is assigned to be a member of
sibling group j;

• yljk ∈ {0, 1, 2}: indicates if any member in sibling group j has distinct

(yljk = 1) or homozygous (yljk = 2) allele(s) k at locus l;

• vljkk′ ∈ {0 1}: indicates if allele k appears with allele k′ in sibling group
j at locus l.

3.1.1. Statistical Similarity Measure as Objective Function

The overall objective here is to reconstruct a set of sibling groups such
that the total similarity degree and weight of individuals assigned to the
selected sibling groups is maximized. The objective function is given by

max
∑
j∈J

Wjzj, (8)

where Wj is the sum of weight and similarity score for a sibling group j,
which can be calculated by

Wj =
∑
i∈I

πixij +
∑

(i, i′)∈E

(
∑
i∈L

wl
ii′)xijxij ∀ j ∈ J. (9)

The above equation takes into account not only the weights of individuals
assigned to the sibling group j but also the pairwise similarity measures
over all loci. The weight of each individual can be estimated from the prior
information; however, in our case all individuals are equally weighed because
of the small sample size. To calculate the pairwise similarity score, we apply
a simple pairwise approach to score the similarity based on genetic features
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at loci between a pair of individuals. The pairwise score can be calculated
by

wl
ii′ :=


1 if

∑
k∈K
|alik − ali′k| = 0;

0.5 if
∑
k∈K
|alik − ali′k| = 2;

0 if
∑
k∈K
|alik − ali′k| = 4.

(10)

The sum of similarity score
∑
l∈L

wii′ over all loci represents the degree of

similarity for a pair of individuals i and i′. The higher the degree, the more
similar two individuals.

3.1.2. Capacity Constraints: Combinatorial Rules from Mendel’s Laws

The capacity constraints of SRP are more complex than those of simple
CCP’s because the capacity constraints are multi-dimensional. That is, each
capacity constraint must be satisfied for individual independent locus of a
sibling group.

In Berger-Wolf et al. (2007), the 4-allele and 2-allele properties were first
proposed based on the Mendel’s laws. Chaovalitwongse et al. (2010) aug-
mented 2-allele property with a tighter constraint. For mathematical repre-
sentation, we formulate combinatorial constraints from the modified 2-allele
property by employing an indication matrix, alik ∈ {0, 1, 2}. From the first
rule of the Mendel’s laws, the combinatorial constraints are given in Equa-
tions (11)-(12). Equation (11) ensures that the integer variable yljk for dis-
tinct or homozygous indication must be activated for the existence of distinct
or homozygous allele(s) at locus l in sibling group j. Equation (12) ensures
that the number of distinct allele and the number of homozygous alleles is
less than or equal to four.

alikxij ≤ yljk ∀ j ∈ J, k ∈ K, l ∈ L, (11)∑
k∈K

yljk ≤ 4 ∀ j ∈ J, l ∈ L. (12)

From the second rule of the Mendel’s laws, the combinatorial constraints
are given in Equations (13)-(14). Equation (13) restricts that the binary
variable for allele pair indication vljkk′ must be activated for any assignment
of individual i to sibling group j. Equation (14) ensures that every allele
in the group does not appear with more than two other alleles (excluding
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itself). A big M number is defined by M = |I|+ 1.∑
i∈I

alika
l
ik′xij ≤Mvljkk′ ∀ j ∈ J, k ∈ K, k′ ∈ K\k, l ∈ L, (13)∑

k′∈K\k

vljkk′ ≤ 2 ∀ j ∈ J, k ∈ K, l ∈ L. (14)

For the rest of the paper, a so-called “feasible sibling group (or cluster)”
is a set of individuals that satisfies the capacity constraints in Equations
(11)-(14) at every locus.

3.1.3. Covering constraints

For certain species in natural populations that do not belong to the
monogamous mating system, the overlapping situation where any individ-
ual can be assigned to more than one sibling group are commonly seen. We
therefore consider the covering constraint set instead of the partitioning con-
straint set in Equations (4)-(5). The covering constraint sets are given by∑

i∈I

xij ≥ 1 ∀ j ∈ J, (15)

xij ≤ zj ∀ i ∈ I, j ∈ J. (16)

Equation (15) ensures that every individual is assigned to at least one
sibling group. Equation (16) ensures that the binary sibling group variable
must be activated for the assignment of any individual i to sibling group j.

It is noted that because the actual number of sibling groups is not known
in general, in this study, we therefore employ the parsimony assumption to
find the minimum number of sibling groups instead of using the constraint set
in Equation (5). For this purpose, sibling group selection can be formulated
as a set covering problem (SCP) that incorporates the covering constraints.

3.2. Preliminaries of Solving CCP for SRP

According to the formulation in the previous subsection, the CCP for SRP
can be considered as a complete optimization model (CCP-SRP) shown in
Equations (17)-(22). The objective of CCP-SRP in Equation (17) integrates
the minimization of sibling groups and the maximization of similarity degrees
of individuals in the same sibling groups, where a balancing parameter θ is
introduced between the two terms. The constraint sets in Equations (18)-(22)
follow the same definitions described in the previous section.
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(CCP-SRP) max
∑
j∈J

(θWj − 1)zj (17)

s.t. Wj =
∑
i∈I

πixij +
∑

(i, i′)∈E

(
∑
i∈L

wl
ii′)xijxij ∀ j ∈ J (18)

∑
i∈I

xij ≥ 1 ∀ j ∈ J (19)

xij ≤ zj ∀ i ∈ I, j ∈ J (20)

alikxij ≤ yljk ∀ j ∈ J, k ∈ K, l ∈ L (21)∑
k∈K

yljk ≤ 4 ∀ j ∈ J, l ∈ L (22)∑
i∈I

alika
l
ik′xij ≤Mvljkk′ ∀ j ∈ J, k ∈ K, k′ ∈ K\k, l ∈ L (23)∑

k′∈K\k

vljkk′ ≤ 2 ∀ j ∈ J, k ∈ K, l ∈ L. (24)

The CCP-SRP is a mixed-integer nonlinear programming (MINLP) prob-
lem, which is viewed as a generalization of 2AOM. To solve the CCP-SRP,
there are issues encountered such as highly computational complexity and the
calibration of the parameter θ. Firstly, let us look back on the optimization
model 2AOM in Chaovalitwongse et al. (2010), which is to find a minimum
number of sibling groups subject to capacity constraints and without the
integration of statistical similarity measure. The 2AOM has been proved to
be an NP-hard problem with many discrete variables and many constraints.
It is hard to solve directly to obtain an optimal solution. According to our
computational experiments, we failed to find a feasible solution to 2AOM
in CPLEX after 20 hours of run. Consequently, it is not easy to calibrate
the balancing parameter at a precise level, which plays a role in solving the
SCP-SRP, when the value of similarity varies with assignments of individ-
uals into different sibling groups. These observations and experiences have
motivated us to develop an efficient heuristic method to solve this problem.
In the next section, we thus propose a new greedy optimization heuristic to
solve the decomposed CCP-SRP model in two phases.
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4. Randomized Greedy Optimization Algorithm

In this study, we develop a new randomized greedy optimization algo-
rithm (RGOA) to solve the CCP of SRP. The underlying concept behind the
RGOA is motivated by the Greedy Randomized Adaptive Search Procedure
(GRASP) (Feo and Resende, 1995). The RGOA is divided into two phases:
construction and enhancement phases. Recall that the objective of CCP in
Equation (8) and its total weight in Equation (9) contains two terms, the in-
dividual weight and the pairwise similarity, to be maximized. The individual
weight of sibling group assignment is maximized in the construction phase
while the pairwise similarity is maximized in the enhancement phase.

The flowchart of our RGOA is shown in Figure 3 and the associated
pseudo-code is presented in Algorithm 1. In the construction phase, we mod-
ify an efficient approach, called IMCS, for the SRP (Chaovalitwongse et al.,
2010) by introducing a randomized perturbation on the individual weight.
The function of randomized perturbation is added into IMCS to construct
diverse, yet high-quality feasible, partitions of (disjoint) sibling groups. A
number of diverse partitions of sibling groups are accumulated over a number
of iterations in the construction phase, where a parameter max t is prede-
termined for limiting the maximum number of iterations. Subsequently, we
perform cluster selection by solving a SCP to find the minimum set of sib-
ling groups, which will be an initial solution for the next phase. In the
enhancement phase, we propose a new local search with a memory function
in two scales, cluster-based and individual-based neighborhoods, to improve
the solution quality with respect to the pairwise similarity degree. In order
to explore more high-quality solutions, we implement the RGOA procedure
repeatedly to obtained a number of (high-quality) elite sets of sibling groups,
where a parameter max r is predetermined for limiting the maximum num-
ber of replications. Finally, among all (elite) solutions, the cluster selection is
again performed by solving a SCP to obtain the final minimum set of sibling
groups.

4.1. Construction Phase: Finding good and feasible sibling groups

The goal of the construction phase is to construct high-quality partitions
of feasible sibling groups, each maximizing the total weight of individuals
assigned to it. In this paper, the greedy IMCS approach is employed and
generalized by adding a new randomized weight perturbation to it. The idea
behind the IMCS procedure is to iteratively construct a sibling group that
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Start

Constructing solutions

Cluster selection

t <= max_t
yes

no

Construction Phase:
Employ the randomized 
greedy approach to find 
diverse sibling groups. 

Cluster selection: 
Find the minimum set 

End

Elite solution r

Local Search

r <= max_r
yes

Cluster selection

no

Enhancement Phase:
1. Local search solutions in 

cluster neighborhood.
2. Local search solutions in 

individual neighborhood.

Find the minimum set 
of sibling groups.

Figure 3: Flow diagram of randomized greedy optimization algorithm. Construction phase
is to construct a set of sibling groups with the randomized perturbations. Enhancement
phase is to employ the two-stage local search to improve the solution quality. Cluster
selection is to solve a set covering problem (SCP) to obtain the minimum set of sibling
groups. A solution is defined a set of sibling groups (clusters).

covers the maximum number of individuals until no individuals are left while
each group is subject to the Mendelian capacity constraints. Please refer
to Chaovalitwongse et al. (2010) for more details. Because the IMCS uses a
greedy-based optimization model that has an combinatorial objective func-
tion, it is very likely that there exist alternate or multiple optimal solutions.
In other words, there may be several different groups with the same number
of individuals that can be assigned to the group. In order to obtain di-
verse solutions in the construction phase, a randomized weight perturbation
scheme is introduced. The weight of individual i is defined by πi and added to
the objective function of the IMCS. The concept behind the randomized per-
turbation is motivated by the noise method proposed in Charon and Hudry
(1993). Note that, without the loss of generality, one can say that the IMCS
in Chaovalitwongse et al. (2010) uses πi = 1, ∀i ∈ I. In our case, the weight
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Algorithm 1 Randomized greedy optimization algorithm

1: Input: a set of individuals with genetic data
2: Output: a minimum set of sibling groups
3:
4: procedure Randomized greedy optimization algorithm(input)
5: repeat
6: initialization: solution← apply IMCS
7: repeat
8: solution ← solve IMCSP
9: solution ← Update(solution) ◃ accumulate solution
10: until t > max t
11: solution ← ClusterSelection(solution) ◃ solve a SCP
12: solution ← LocalSearch Cluster(solution)
13: solution ← LocalSearch Individual(solution)
14: solution ← Update(solution) ◃ accumulate solution
15: until r > max r
16: solution ← ClusterSelection(solution) ◃ solve a SCP
17: return output
18: end procedure

is perturbed by adding a noise with a uniform distribution [1 − ϵ, 1 + ϵ],
where ϵ is a small positive number. The perturbed IMCS (IMCSP) can then
be formulated as follows. Define the following decision variables:

• xi ∈ {0, 1}: indicates if individual i is assigned to be a member of the
current sibling group;

• ylk ∈ {0, 1, 2}: indicates if any members in the current sibling group
has distinct (ylk = 1) or homozygous (ylk = 2) allele(s) k at locus l;

• vlkk′ ∈ {0 1}: indicates if allele k appears with allele k′ in the current
sibling group at locus l.

The optimization model of IMCSP is given by

(IMCSP) max
∑
i∈I

πixi (25)

s.t. alikxi ≤ ylk ∀ i ∈ I, k ∈ K, l ∈ L (26)∑
k∈K

ylk ≤ 4 ∀ l ∈ L (27)∑
i∈I

alika
l
ik′xi ≤Mvlkk′ ∀ k ∈ K, k′ ∈ K\k, l ∈ L (28)
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∑
k′∈K\k

vlkk′ ≤ 2 ∀ k ∈ K, l ∈ L. (29)

The objective in Equation (25) is to maximize the total weight of individuals
selected to be in the sibling group. The constraint sets in Equations (26)-(27)
are derived from the first rule of the Mendel’s laws, which is to ensure that
the sum of the total number of distinct alleles and the number of homozygous
alleles is less than or equal to four. The constraint sets in Equations (28)-
(29) are derived from the second rule of the Mendel’s laws, which is to ensure
that each and every allele does not appear with more than two other alleles,
except itself, in each locus. The procedure of IMCSP approach is shown in
Algorithm 2, which is to solve the IMCSP model iteratively.

Algorithm 2 IMCSP

1: Input: a set of individuals with genetic data
2: Output: a partition of sibling groups
3:
4: procedure IMCSP(input)
5: initialization: generate a perturbation randomly
6: repeat
7: solution ← solve IMCSP(input)
8: solution ← Update(solution) ◃ accumulate solution
9: remove selected individuals from the input set
10: until no individual is assigned
11: return output
12: end procedure

In addition to the randomized weight perturbation scheme, we introduce
a cut constraint to explore and further diversify alternate optimal solutions
of IMCSP. This situation discussed in Chaovalitwongse et al. (2010). The
cut constraint is defined by ∑

i∈Ī

xi ≤ |Ī| − 1, (30)

where Ī ⊂ I contains only the individuals assigned in the current group. The
implementation of this cut constraint is described as follows. We first solve
the original IMCSPmodel, add the cut constraint to the IMCSP to remove the
current optimal solution from the feasible space, and then resolve the IMCSP
model with the cut constraint to obtain an alternate optimal solution. By
using this cut constraint, we propose two variants other than the original
IMCSP:
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1. IMCSP 1: add the cut constraint to the original IMCSP in the first and
second iterations;

2. IMCSP 2: add the cut constraint to the original IMCSP repeatedly in
the first iteration.

4.1.1. Cluster Selection: Minimum Set Covering Problem

Cluster selection is the last step of the construction phase. The goal of
cluster selection is to select the best subset of sibling groups from a pool of
high-quality solution candidates generated by the iterative IMCSP. It can also
be used to remove redundant or dominated groups from the solution pool.
Cluster selection can thus be mathematically formulated as a SCP. Define a
binary assignment matrix dij, which presents that individual i ∈ I is assigned
to sibling group j ∈ S, where S is a pool of all sibling group candidates. The
SCP is given by min

∑
j∈S

zj; s.t.
∑
i∈I

dijzj ≥ 1, ∀j ∈ S. The objective of SCP is

to find the minimum set of sibling groups. The constraint set ensures that
each individual must be covered by at least one of sibling group candidates.
Note that this SCP is relatively small, and it can be solved efficiently by any
MIP solvers.

4.2. Enhancement Phase: Improving the solution quality

The goal in the enhancement phase is to improve the solution quality with
respect to the pairwise similarity degree of individuals assigned to the same
sibling groups by performing local search. Generally, a local search starts
with an initial solution, explores alternative solutions in the neighborhood,
makes a move to a better solution, and terminates when no better solution
is found. In our case, the initial solution is given as a set of sibling groups
j ∈ J selected in the construction phase. The associated feasible space is
defined as all constructed sibling groups j ∈ S. The effectiveness of local
search thus relies on its evaluation function, initial solution, neighborhood
definition, and search strategies. The evaluation function, which we want to
maximize, is herein defined by the pairwise similarity degree of individuals
assigned to the same sibling groups, which is the second term in Equation
(9), ∑

j∈J

∑
(i, i′)∈E

(
∑
l∈L

wl
ii′)xijxij. (31)

To improve the efficiency of search procedure, we employ a memory function,
which is motivated by the tabu search (Glover, 1989, 1990). The memory
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function is used to collect the past movements, which are associated to solu-
tions, and to guide the search path in an improving direction. In the search
path, the most recently visited solution enters the memory, and the oldest
one is removed from the memory. Each solution in the memory must be vis-
ited until it is removed from the list. This is mainly to prevent a local cyclic
search where there are many similar solutions to explore. In addition, the
memory length is one of keys to affect the search efficiency. Longer memory
length may guide the search path in the wrong direction, while shorter mem-
ory length may not have any effect. However, there is not a standard setting
for the memory length, which really depends on the problem complexity.

We herein propose a two-stage local search in cluster-based and individual-
based neighborhoods. In the cluster-based search, a cluster switch is per-
formed when a sibling group with a higher pairwise similarity is randomly
selected from other solutions to replace a sibling group with a lower simi-
larity in the current solution. To record the cluster movement, we define
the memory structure as (j1, j2, ..., jn), where j is the label of sibling group
visited and n is the memory length. Subsequently after the cluster-based
search, local search in the individual-based neighborhood is performed. An
individual shift is performed when an individual is randomly selected from
one sibling group and shifted to another sibling group, also selected ran-
domly. Similar to the cluster-based search, the memory structure is defined
as ([j1, i1], [j2, i2], ..., [jm, im]), where j and i are the labels of sibling group
and individual visited, and m is the memory length. After some moves,
the solution may no longer be feasible because the new individual added to
the sibling group may violate the Mendelian capacity constraints. In such a
case, this movement is forbidden and a new neighbor (solution) is reselected.
Thus, it is necessary to check if the current movement is forbidden in ev-
ery iteration. Note that, by definition of individual-based neighborhood, the
feasible space is reduced from S to J and fixes on only sibling groups j ∈ J
determined from the first stage. The local search is performed iteratively.
The stopping criteria are the maximum number of search iterations for both
stages and the maximum number of no-improvement consecutive iterations.
The local search terminates when whichever stopping criterion is reached
first.

4.3. Final Cluster Selection

The final step of RGOA is to perform the final cluster selection to find
the minimum set of sibling groups from a number of elite sets. This step is

18



similar to the last step of the construction phase.

5. Computational Experiments

5.1. Performances on Real Data sets

5.1.1. Characteristics of Real Data sets

In this study, we show the performance of our proposed algorithm on real
biological data sets. These real data sets are considered benchmark data
that have widely used in the literature because the true sibling relationships
(ground truth) are known. The characteristics of the data sets are sum-
marized in Table 1. In all data sets, except the salmon data set, there are
some missing values in genotypic data. The percentage of missing genotypic
data in each data set is reported in the last column of Table 1. Based on
preliminary analysis of allele frequency, there are violations of the Mendel’s
laws in the salmon and turtle data sets. This might be due to genotyping
errors. The background and more detailed information of these data sets are
described below.

Table 1: Characteristics of the biological data sets
# of # of # of # of Missing

Species individuals sibling groups loci alleles per locus alleles (%)
Salmon 351 6 4 (9, 11, 9, 7) 0.00
Shrimp 59 13 7 (20, 18, 12, 7, 23, 9, 16) 2.66
Fly 190 6 2 (7, 7) 37.89
Ant 377 10 6 (22, 16, 15, 3, 5, 8) 9.00
Turtle 175 26 3 (5, 13, 10) 16.38

Salmon: The Atlantic salmon Salmo salar data set comes from the ge-
netic improvement program of the Atlantic Salmon Federation (Herbinger
et al., 1999). We use a truncated sample of microsatellite genotypes of 250
individuals from 5 families with 4 loci per individual. This data set is a sub-
set of one of the samples of genotyped individuals used by Almudevar and
Field (1999).

Shrimp: The tiger shrimp Penaeus monodon data set (Jerry et al., 2006)
consists of 59 individuals from 13 families with 7 loci. There are 8 pairs of
missing alleles.

Fly: The Scaptodrosophila hibisci data set (Wilson et al., 2002) consists
of 190 individuals in the same generation from 6 families sampled at various
numbers of loci with up to 7 alleles per locus. All individuals shared 2
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sampled loci which were chosen for our study. A total of 37.89% of the
alleles were missing in this data set.

Ant: The Leptothorax acervorum data set (Hammond et al., 2001) are
haplodiploid species. The data set consists of 377 worker diploid ants. This
data set is a subset of one of the samples used by Wang (2004). There are
9% missing alleles in the data set.

Turtle: Kemp’s ridleys sea turtle data set, Lepidochelys Kempi, is polyan-
drous and sampled from 26 mothers and offspring groups at 3 loci (Kickler
et al., 1999). There are 16.38% missing alleles in the data set.

5.1.2. Computational Settings

In this study, all computational experiments were programmed in MAT-
LAB, and all MIP models were solved using a callable GAMS library with
CPLEX version 10.0 (default setting). All experiments were run on an Intel
Xeon Quad Core 3.0GHz processor workstation with 8 GB RAM memory.
Execution time reported in this section were obtained from the desktop’s
internal timing calculations, which include time used for preprocessing and
postprocessing.

The parameter settings of algorithm implementation are as follows. Each
test data instance was implemented in a 20-hour computing time limit. The
maximum number of RGOA replications was set to max r = 100. The max-
imum number of construction iterations was set to max t = 50 in the con-
struction phase, where three variants of IMCSP, IMCSP 1, and IMCSP 2 were
applied. In the enhancement phase, the major stopping criterion, the max-
imum number of search iterations, for two stages of local search were given
by 50 × |J | and 50 × |I|, respectively, and the auxiliary stopping criterion,
the maximum number of no-improvement consecutive iterations, was set to
20, where |J | is the cardinality of cluster set and |I| is the cardinality of
individual set.

5.1.3. Solution Assessment

Although the overall similarity degree of reconstructed sibling groups is
as an objective function to maximize in our approach, the ultimate objec-
tive of SRP is the accuracy of the reconstructed solutions. Specifically, the
ground truth of sibling relationships of all test data sets is known. In sib-
ling reconstruction research, reconstruction accuracy can be measured by
calculating the percentage of individuals correctly assigned to resulting sib-
ling groups in comparison to the actual sibling groups. The reconstruction
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accuracy can be calculated by quantifying an error measurement from the
minimum partition distance (Gusfield, 2002). Specifically, the partition dis-
tance is equivalent to the minimum number of individuals that are removed
from the reconstructed sibling groups so that they are identical to the actual
sibling groups. The distance can be calculated by formulating and solving
a maximum bipartite weighted matching problem. For more details, please
refer to Chaovalitwongse et al. (2010). The ratio of the minimum distance
to the total number of individuals provides a percentage of reconstruction
errors. The reconstruction accuracy is equal to (1− error rate).

5.1.4. Reconstruction Results

As mentioned in the previous section, there are three variants of our
approach in the reconstruction phase: IMCSP, IMCSP 1, and IMCSP 2, and
there are two stages in the enhancement phase: cluster-based and individual-
based. The average and standard deviation of the reconstruction accuracies of
all three variants after each phase of the framework are reported in Table 2. It
can be seen that there are not significant differences among the three variants.
Overall the accuracies gradually increase from the construction phase to the
enhancement phase with the exceptions of the salmon and shrimp data sets.
However, for the ant data set, the local search achieved a 100% reconstruction
accuracy.

Table 3 presents the best final results of reconstruction accuracies and
the numbers of sibling groups from the last step of elite cluster selection. It
is observed that the proposed RGOA achieved 100% reconstruction accuracy
on the shrimp and ant data sets. It is interesting to note that in other data
sets that RGOA did not achieve 100% accuracy either there are missing allele
information (fly and turtle) or violations in the Mendel’s laws (salmon and
turtle). For these reasons, RGOA did not provide accurate reconstruction
results on those data sets. Nevertheless, even if the true optimal solutions
were obtained, the reconstruction accuracies would be poor as well. The real
reason is that the objective of our optimization framework and the Mendelian
constraints assume that the data are not erroneous. In fact, most genetic
data are erroneous. Thus a more robust optimization framework should
be further investigated. From the table, it is also observed that IMCSP 1
and IMCSP 2 with the cut constraint are more time-consuming. From the
last column in Table 3, for the same amount of time limit the numbers
of replications of IMCSP 1 and IMCSP 2 are obviously smaller than IMCSP
because each iteration of IMCSP takes much less time than that of IMCSP 1
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Table 2: Reconstruction accuracies (%) in terms of mean ± standard deviation of the
reconstruction results from different phases of RGOA tested on all data sets.

Constructive Phase 1 Phase 2 Phase 2
Species strategy cluster-based individual-based
Salmon IMCSP 98.29 ± 0 98.29 ± 0 98.29 ± 0

IMCSP 1 98.01 ± 0 98.01 ± 0 98.29 ± 0
IMCSP 2 98.29 ± 0 98.29 ± 0 98.29 ± 0

Shrimp IMCSP 98.73 ± 2.54 98.73 ± 2.54 98.73 ± 2.54
IMCSP 1 98.73 ± 2.54 98.73 ± 2.54 98.73 ± 2.54
IMCSP 2 94.92 ± 0 94.92 ± 0 94.92 ± 0

Fly IMCSP 52.82 ± 4.14 56.79 ± 4.78 59.59 ± 5.07
IMCSP 1 54.74 ± 5.86 56.56 ± 4.83 58.02 ± 5.25
IMCSP 2 53.16 ± 3.79 56.05 ± 3.90 58.36 ± 3.83

Ant IMCSP 98.81 ± 0.94 99.60 ± 0.18 100 ± 0
IMCSP 1 98.81 ± 0.56 99.47 ± 0 100 ± 0
IMCSP 2 98.67 ± 0 99.47 ± 0 100 ± 0

Turtle IMCSP 47.54 ± 1.87 48.57 ± 2.22 49.03 ± 2.05
IMCSP 1 46.50 ± 2.26 48.00 ± 2.07 48.43 ± 2.11
IMCSP 2 46.29 ± 6.47 46.29 ± 6.47 46.86 ± 5.66

and IMCSP 2. From our computational experience, we conclude that the
IMCSP variant without the cut constraint should be used in order to save
the computing time, yet maintain a good solution quality. On the other
hand, the introduction of randomized perturbation can be helpful in terms
of the diversification in the case where practitioners want to explore alternate
solutions.

5.1.5. Comparison with Other Existing Methods

To illustrate that our approach is among the best sibling reconstruction
methods developed thus far, we compare the solution quality of RGOA and
that of other state-of-the-art methods in the literature. The methods in
the literature reported here include 2AOM, IMCS, A&F, B&M, KINGROUP,
and COLONY. The IMCS approach solves a full optimization model 2AOM
with 2-allele constraints to generate a partition of maximal sibling groups
with 2-allele constraints while the statistical likelihood measure is not in-
corporated (Chaovalitwongse et al., 2010). The A&F algorithm is based on
a completely combinatorial approach to exhaustively enumerate all possible
sibling groups satisfying the 2-allele constraints and obtain a maximal, not
necessarily optimal, collection of sibling groups (Almudevar and Field, 1999).
The B&M algorithm is based on a mixture of likelihood and combinatorial
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Table 3: Final results of the number of sibling groups, accuracy (%) and the number of
replications. The computing time is limited within 20 hours (72,000 seconds). The perfect
reconstruction are underlined.

Final Results
Constructing Actual # of # of Accuracy # of Time

Species strategy sibling groups sibling groups (%) replications (sec.)
Salmon IMSCP 7 7 98.29 6 > 72,000

IMSCP 1 7 7 98.29 2 > 72,000
IMSCP 2 7 7 98.29 1 > 72,000

Shrimp IMSCP 13 13 100.00 4 > 72000
IMSCP 1 13 13 94.92 4 > 72,000
IMSCP 2 13 13 94.92 1 > 72,000

Fly IMSCP 6 7 58.95 22 > 72,000
IMSCP 1 6 7 65.79 22 > 72,000
IMSCP 2 6 7 63.16 7 > 72,000

Ant IMSCP 10 10 100.00 2 > 72,000
IMSCP 1 10 10 100.00 2 > 72,000
IMSCP 2 10 10 100.00 1 > 72,000

Turtle IMSCP 26 18 56.57 10 > 72,000
IMSCP 1 26 17 51.43 9 > 72,000
IMSCP 2 26 18 42.86 2 > 72,000

techniques used to construct a graph with individuals as the nodes and the
edges weighted by the pairwise likelihood (relatedness) ratio. The algorithm
identifies potential sibling groups by finding the connected components in
the graph (Beyer and May, 2003). The KINGROUP algorithm is based on
the likelihood estimates of partitions of individuals into sibling groups by
comparing, for every individual, the likelihood of being part of any exist-
ing sibling group with the likelihood of starting its own group (Konovalov
et al., 2004). The COLONY approach uses the maximum likelihood method
to assign sibship and parentage jointly (Wang, 2004).

Table 4: Comparison results in accuracy (%) with other state-of-the-art approaches on
five different species. The best results are underlined.

Species RGOA a IMCS 2AOM A&F B&M KG COLONY
Salmon 98.29 98.29 94.02 –b 98.29 94.60 56.70
Shrimp 100.00 100.00 96.61 67.80 100.00 77.97 100.00
Fly 63.16 47.37 66.84 31.05 19.62 54.73 –c

Ant 100.00 93.10 – d –b 97.61 97.10 100.00
Turtle 56.57 40.00 –d –b 38.18 39.40 40.00
a We report the best accuracy among all experiments.
b A&F ran out of 4GB memory as it enumerates all possible sibling groups.
c There are no results available.
d No feasible solutions are obtained within 20 hours time limit.

23



Reconstruction accuracies of the above-mentioned reconstruction meth-
ods and RGOA on all biological data sets are shown in Table 4. Note that
the best reconstruction results of RGOA among different parameter settings
are reported. The most accurate reconstruction results are underlined. In
all cases, RGOA obtained the best reconstruction results and outperformed
all other methods. It is worth noting that although the RGOA’s construction
phase is based on the IMCS approach, randomized perturbation and local
search can greatly improve the reconstruction accuracies. Specifically for the
fly and turtle data sets, in which there are a lot of missing values, RGOA was
able to increase the accuracies by about 15%. Both B&M and KINGROUP
appear to be inaccurate on the data sets with a lot of missing values. We
were not able to obtain the reconstruction results from the A&F algorithm
on the salmon, ant, and turtle data sets because it ran out of memory when
enumerating all possible combinations.

In Figure 4, we show the reconstruction accuracies of RGOA with the
constructing strategy IMCSP on two real data sets (ant and turtle) over the
time shift, which are compared to 2AOM and IMCS. Accuracies of RGOA are
averaged by the number of replications at the time of 4, 8, 12, and 16 hours,
and accuracies at 20 hours are obtained by final cluster selection. RGOA
approach can achieve as good as, even better than accuracies IMCS approach
although it takes longer computing time to obtained solutions. Moreover,
it guarantees to have more diverse solutions so that we obtain better recon-
struction accuracies on these two data sets. On the other hand, compared
to 2AOM, we can always obtain good feasible solutions in a relatively short
time (< 20 hours) for large and complex data sets.

5.2. Performances on Simulated Data sets

To show the ability of the proposed RGOA approach for larger complex
data sets, we apply a random population generator (Chaovalitwongse et al.,
2010) to generate larger simulated data sets when the real data sets at hand
are relatively small-size, even the largest available in the literature. Essen-
tially, the mechanism of the random population generator is to first construct
a group of parents with the full genetic information such that a single gen-
eration of true sibling groups is known a priori. The generation process is
as follows with parameters required: M/F is the number of male/female
adults, l is the number of sampled loci, a is the number alleles per locus, j is
the number of juveniles in the population per one adult female, and o is the
number of maximum number of offsprings per parent couple.
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Figure 4: Averaged accuracies of RGOA on real data sets (ant and turtle) are obtained
over time shift, compared to 2AOM and IMCS approaches in Chaovalitwongse et al. (2010).
Accuracy = 0 represents that no feasible solution is available by 2AOM at the time. For
IMCS, all solutions are obtained within two hours.

Step 1. First, we generated the parent population of M males and F
females with parents with l loci, each having a distinct alleles per locus.

Step 2. After the parents were generated, we created a population of their
offsprings by randomly selecting j pairs of parents. A male and a female were
chosen independently and uniformly at random from the parent population.

Step 3. For each of the chosen parent pairs, we generated a specified
number of offsprings, o, each randomly receiving one allele from its mother
and one from its father at each locus.

The parameter settings for larger simulated data sets are given: M and
F = 30, j = 10, o = 40 and 50, l = 2, 3, and 4, and a = 10. Additional com-
putational settings are considered as follows. As mentioned previously, we
suggest to adopt the constructive strategy IMCSP in the construction phase
to save the computing time. For diversification reason, we expect to have
more replications of ROGA) within a fixed computing time by shortening
the construction phase. We add a stopping criterion of the maximum num-
ber of no-improvement consecutive iterations based on the similarity score
in the construction phase and slightly reduce the maximum number of con-
struction iterations to 20. Thus, the construction procedure terminates when
whichever stopping criterion is reached first. The results are reported in Ta-
ble 5, in turn, the number of sibling groups, accuracy (%) and the number of
replications within 20 hours time limit, and compared to the known sibling
relationships. We can still obtain good results in terms of the number of
sibling groups and reconstruction accuracy. More accurate reconstruction is
obtained when there are more genetic information (i.e., more loci). However,
more loci make the problem more complex to solve, which can be seen that
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the number of replications of RGOA decreases with the complexity of prob-
lems because it is more time-consuming to solve for a single solution in the
construction phase. Moreover, we compare the performance of the RGOA to
IMCS and 2AOM approaches in Chaovalitwongse et al. (2010). The accura-
cies are reported in Table 6. With proposed randomized perturbation and
local search, we obtain better reconstruction accuracies than IMCS. 2AOM
can not be solved to obtain the solutions within 20 hours time limit. It
is shown that our proposed approach is capable of solving larger complex
problems effectively.

Table 5: Results of RGOA approach tested on larger simulated data sets. Final results
are reported, in turn, the number of sibling groups, accuracy (%) and the number of
replications within 20 hours (72,000 seconds) time limit, and compared to the known
sibling relationships. The perfect reconstruction are underlined.

Final Results
Simulated Actual # of # of Accuracy # of Time
data set sibling groups sibling groups (%) replications (sec.)

Rand-j10-o40-l2-a10 10 10 91.00 24 > 72,000
Rand-j10-o50-l2-a10 10 10 91.60 13 > 72,000
Rand-j10-o40-l3-a10 10 10 100.00 7 > 72,000
Rand-j10-o50-l3-a10 10 10 99.80 7 > 72,000
Rand-j10-o40-l4-a10 10 10 100.00 3 > 72,000
Rand-j10-o50-l4-a10 10 10 100.00 3 > 72,000

Table 6: Accuracy results of RGOA approach compared to IMCS and 2AOM approaches
(Chaovalitwongse et al., 2010) from the simulated data sets.

Simulated data set RGOA IMCS 2AOMa

Rand-j10-o40-l2-a10 91.00 89.00 -
Rand-j10-o50-l2-a10 91.60 79.40 -
Rand-j10-o40-l3-a10 100.00 98.25 -
Rand-j10-o50-l3-a10 99.80 96.80 -
Rand-j10-o40-l4-a10 100.00 99.25 -
Rand-j10-o50-l4-a10 100.00 100.00 -
a No feasible solution is obtained within 20 hours
time limit.

6. Conclusion and Discussion

In this study, we modeled the SRP as a special case of the CCP and
developed a new efficient solution approach, called RGOA, algorithm to solve
the SRP. The algorithm employs both combinatorics and statistical likeli-
hood concepts to analyze the microsatellite genetic data. To our knowledge,
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the proposed algorithm is among the first approach to put both statistical
and combinatorial concepts together into a single optimization model. The
statistical likelihood measure is used as an objective function while the com-
binatorial concept of the Mendel’s laws is used as a capacity constraint. To
practically solve this hard, large-scale combinatorial optimization, RGOA was
designed based on the core concept of GRASP. Nevertheless, the difference
between the proposed RGOA and the GRASP lies on the incorporation of
randomness and greediness in the construction phase. In addition, the so-
lution structures of RGOA and GRASP are also different. GRASP uses an
explicit evaluation function to assess the quality of solutions directly. For
our problem in particular, unlike GRASP, the solution quality is defined by
the reconstruction accuracy, which cannot be measured until the end of the
final step of RGOA because the actual sibling groups should not be known in
practice. The solution quality in RGOA can be implicitly evaluated by sim-
ilarity scores. We thus employed the cluster selection to find the (possibly
best) combination of sibling groups from all possible solutions at the end of
construction phase.

RGOA was tested on real biological data sets and larger simulated data
sets, and compared with other state-of-the-art SRP methods. The experi-
mental results suggest that RGOA is the most accurate method among all
tested methods. In addition, for the data sets with a lot of missing data,
RGOA appears to be more robust than other methods. Although RGOA is
heuristic-based and cannot guarantee the optimality, the best solution should
be the most accurate solution, not the one that maximizes the statistical like-
lihood measure. More importantly, RGOA is able to provide multiple high-
quality solutions so that practitioners can investigate a set of good solutions
as opposed to the optimal solution. Note that RGOA is quite demanding in
terms of computational time. The stopping criteria are rather too specific on
the computational time. In the future, a systematic framework based on the
column generation may be considered. Moreover, in practice, the full sibling
reconstruction is limited to monogamous species. New framework for the
study of half sibling reconstruction (Sheikh et al., 2010) should be studied.
Other biological objectives such as minimizing the parent pairs and inferring
higher ordered sibling relationships are worthy to explore in the future.

27



Acknowledgments

This research is supported by the following grants: NSF IIS-0611998
(Chaovalitwongse), NSF CCF-0546574 (Chaovalitwongse), NSF IIS-0612044
(Berger-Wolf, Ashley, DasGupta). We first thank Saad Sheikh and Isabel
C. Caballero for knowledge and corrections. We are grateful to the people
who have shared their data with us: Jeff Connor, Atlantic Salmon Federa-
tion, Dean Jerry, and Stuart Barker. We would also like to thank Anthony
Almudevar, Bernie May, and Dmitri Konovalov for sharing their software.

References

Almudevar, A., 2003. A simulated annealing algorithm for maximum likeli-
hood pedigree reconstruction. Theoretical Population Biology 63, 63–75.

Almudevar, A., 2007. A graphical approach to relatedness inference. Theo-
retical Population Biology 71 (2), 213–229.

Almudevar, A., Field, C., 1999. Estimation of single generation sibling rela-
tionships based on DNA markers. Journal of Agricultural, Biological, and
Environmental Statistics 4, 136–165.

Avella, P., Boccia, M., Sforza, A., Vasil’ev, I., 2009. An effective heuristic
for large-scale capacitated facility location problems. Journal of Heuristics
15, 597–615.

Baldacci, R., Hadjiconstantinou, E., Maniezzo, V., Mingozzi, A., 2002. A
new method for solving capacitated location problems based on a set par-
titioning approach. Computers & Operations Research 29, 365–386.

Berger-Wolf, T., DasGupta, B., Chaovalitwongse, W., Ashley, M. V., 2005.
Combinatorial reconstruction of sibling relationships. In: Proceedings of
the 6th International Symposium on Computational Biology and Genome
Informatics (CBGI 05). pp. 1252–1255.

Berger-Wolf, T., Sheikh, S., DasGupta, B., Ashley, M., Caballero, I., Chao-
valitwongse, W., Putrevu, S., 2007. Reconstructing sibling relationships in
wild populations. Bioinformatics 23, 49–56.

Beyer, J., May, B., 2003. A graph-theoretic approach to the partition of
individuals into full-sib families. Molecular Ecology 12, 2243–2250.

28



Blouin, M., 2003. DNA-based methods for pedigree reconstruction and kin-
ship analysis in natural populations. TRENDS in Ecology and Evolution
18 (10), 503–511.

Bowler, P. J., 1989. The Mendelian Revolution: The Emergence of Hereditar-
ian Concepts in Modern Science and Society. The Johns Hopkins University
Press.

Butler, K., Field, C., Herbinger, C., Smith, B., 2004. Accuracy, efficiency
and robustness of four algorithms allowing full sibship reconstruction from
dna marker data. Molecular Ecology 13, 1589–1600.

Ceselli, A., Liberatore, F., Righini, G., 2009. A computational evaluation
of a general branch-and-price framework for capacitated network location
problems. Annals of Operations Research 167, 209–251.

Chaovalitwongse, W., Berger-Wolf, T. Y., DasGupta, B., Ashley, M. V.,
2007. A robust combinatorial approach for sibling relationships reconstruc-
tion. Optimization Methods and Software 22 (1), 11–24.

Chaovalitwongse, W., Chou, C.-A., Berger-Wolf, T. Y., DasGupta, B.,
Sheikh, S., Putrevu, S. L., Ashley, M. V., Caballero, I. C., 2010. New
optimization model and algorithm for sibling reconstruction from genetic
markers. INFORMS Journal on Computing 22 (2), 180–194.

Charon, I., Hudry, O., 1993. The noise method: a new method for combina-
torial optimization. Operations Research Letters 14, 133–137.

Chaves, A. A., Lorena, L. A., 2010. Clustering search algorithm for the ca-
pacitated centred clustering problem. Computers & Operations Research
37, 552–558.

Deng, Y., Bard, J., 2010. A reactive grasp with path relinking for capacitated
clustering. Journal of Heuristics, 1–34.

Feo, T., Resende, M., 1995. Greedy randomized adaptive search procedures.
Journal of Global Optimization 6, 109–133.

Franca, P. M., Sosa, N. M., Pureza, V., 1999. Adaptive tabu search approach
for solving the capacitated clustering problem. International Transactions
of Operations Research 6, 665–678.

29



Glover, F., 1989. Tabu search - part I. ORSA, Journal on Computing 1,
190–206.

Glover, F., 1990. Tabu search - part II. ORSA, Journal on Computing 2,
4–32.

Gusfield, D., May 2002. Partition-distance: A problem and class of perfect
graphs arising in clustering. Information Processing Letters 82 (3), 159–
164.

Hammond, R. L., Bourke, A. F. G., Broford, M. W., 2001. Mating frequency
and mating system of the polygynous ant, Leptothorax acervorum. Molec-
ular Ecology 10, 2719–2728.

Hansen, P., Jaumard, B., 1997. Cluster analysis and mathematical program-
ming. Mathematical Programming 79, 191–215.

Herbinger, C., O’Reilly, P., Doyle, R., Wright, J., O’Flynn, F., 1999. Early
growth performance of atlantic salmon full-sib families reared in single
family tanks or in mixed family tanks. Aquaculture 173, 105–116.

Jerry, D., Evans, B., Kenway, M., Wilson, K., 2006. Development of a mi-
crosatellite DNA parentage marker suite for black tiger shrimp penaeus
monodon. Aquaculture 255, 542–547.

Kickler, K., T., M., Holder, Davis, S., Márquez-M, R., Owens, D. W., 1999.
Detection of multiple paternity in the kemp’s ridley sea turtle with limited
sampling. Molecular Ecology 8 (5), 819–830.

Konovalov, D. A., Bajema, N., Litow, B., 2005. Modified simpson o(n3) algo-
rithm for the full sibship reconstruction problem. Bioinformatics 21 (20),
3912–3917.

Konovalov, D. A., Manning, C., Henshaw, M. T., 2004. KINGROUP: A pro-
gram for pedigree relationship reconstruction and kin group assignments
using genetic markers. Molecular Ecology Notes 4 (4), 779–782.

Koskosidis, Y., Powell, W., 1992. Clustering algorithms for consolidation
of customer orders into vehicle shipments. Transportation Research 26B,
365–379.

30



Lorena, L. A., Senne, E. L., 2004. A column generation approach to capaci-
tated p-median problems. Computers & Operations Research 31, 863–876.

Maniezzo, V., Mingozzi, A., Baldacci, R., 1998. A bionomic approach to the
capacitated p-median problem. Journal of Heuristics 4, 263–280.

Mehrotra, A., Trick, M. A., 1998. Cliques and clustering: A combinatorial
approach. Operations Research Letters 22, 1–12.

Mendel, G., 1901. Experiments on plant hybridization (versuche ber pflanzen-
hybriden). Journal of the Royal Horticultural Society 26, 1–32.

Mulvey, J., Beck, M., 1984. Solving capacitated clustering problems. Euro-
pean Journal of Operations Research 18, 339–348.

Negreiros, M., Palhano, A., 2006. The capacitated centred clustering prob-
lem. Computers & Operations Research 33, 1639–1663.

Osman, I. H., Creistofides, N., 2002. Capacitated clustering problems by
hybrid simulated annealing and tabu search. International Transactions of
Operations Research 1, 317–336.

Osman, I. H., Samad, A., 2002. Guided construction search for the capac-
itated p-median problem. Working Paper, School of Business, American
Univeristy of Beirut, Lebanon.

Painter, I., 1997. Sibship reconstruction without parental information. Jour-
nal of Agricultural, Biological, and Environmental Statistics 2, 212–229.

Queller, D. C., Goodnight, K. F., 1989. Estimating relatedness using genetic
markers. Evalution 43 (2), 258–275.

Samad, A., Osman, I. H., 2002. Density based problem space search for the
capacitated clustering problems. Annals of Operations Research 131, 21–
43.

Samad, A., Osman, I. H., 2005. Greedy random adaptive memory program-
ming search for the capacitated clustering problems. European Journal of
Operations Research 162, 30–44.

31



Sheikh, S., Berger-Wolf, T. Y., Khokar, A., Chou, C.-A., Chaovalitwongse,
W., Ashley, M. V., Caballero, I. C., DasGupta, B., 2010. Combinatorial
reconstruction of half-sibling groups: Models and algorithms. Journal of
Bioinformatics and Computational Biology 8 (2), 1–20.

Smith, B. R., Herbinger, C. M., Merry, H. R., 2001. Accurate partition of
individuals into full-sib families from genetic data without parental infor-
mation. Genetics 158, 1329–1338.

Thomas, S. C., Hill, W. G., 2000. Estimating quantitative genetic parameters
using sibships reconstructed from marker data. Genetics 15, 1961–1972.

Thomas, S. C., Hill, W. G., 2002. Sibship reconstruction in hierarchical pop-
ulation structures using markov chain Monte Carlo techniques. Genetic
Research 79, 227–234.

Wang, J., 2004. Sibship reconstruction from genetic data with typing errors.
Genetics 166, 1968–1979.

Wang, J., Santure, A. W., 2009. Parentage and sibship inference from multi-
locus genotype data under polygamy. to appear in Genetics.

Wilson, A., Sunnucks, P., Barker, J., 2002. Isolation and characterization of
20 polymorphic microsatellite loci for scaptodrosophila hibisci. Molecular
Ecology Notes 2, 242–244.

32


