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Abstract. In the practice of molecular evolution, different phylogenetic trees

for the same group of species are often produced either by procedures that use
diverse optimality criteria [24] or from different genes [15, 16, 17, 18, 14].

Comparing these trees to find their similarities (e.g. agreement or consen-
sus) and dissimilarities, i.e. distance, is thus an important issue in compu-

tational molecular biology. The nearest neighbor interchange (nni) distance
[29, 28, 34, 3, 6, 2, 19, 20, 23, 33, 22, 21, 26] is a natural distance

metric that has been extensively studied. Despite its many appealing aspects
such as simplicity and sensitivity to tree topologies, computing this distance

has remained very challenging, and many algorithmic and complexity issues
about computing this distance have remained unresolved. This paper studies

the complexity and efficient approximation algorithms for computing the nni
distance and a natural extension of this distance on weighted phylogenies. The

following results answer many open questions about the nni distance posed in
the literature.

1. Computing the nni distance between two labeled trees is NP-complete.
This solves a 25 year old open question appearing again and again in, for

example, [29, 34, 3, 6, 2, 19, 20, 23, 22, 21, 26].
2. Computing the nni distance between two unlabeled trees is also NP-

complete. This answers an open question in [3] for which an erroneous proof

appeared in [23].
3. Biological applications motivate us to extend the nni distance to

weighted phylogenies, where edge weights indicate the time-span of evolution
along each edge. We present an O(n2) time approximation algorithm for com-

puting the nni distance on weighted phylogenies with a performance ratio of
4 logn + 4, where n is the number of leaves in the phylogenies.

We also observe that the nni distance is in fact identical to the linear-cost
subtree-transfer distance on unweighted phylogenies discussed in [4, 5]. Some

consequences of this observation are also discussed.
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1. Introduction

The evolution history of organisms is often conveniently represented as trees,
called phylogenetic trees or simply phylogenies. Such a tree has uniquely labeled
leaves and unlabeled internal nodes, is either unrooted or rooted (if the evolu-
tionary origin is known), and usually all of whose internal nodes have degree 3.
Over the past few decades, many different objective criteria and algorithms for
reconstructing phylogenies have been developed, including (not exhaustively) par-
simony [8, 11, 31], compatibility [25], distance [12, 30], and maximum likeli-
hood [1, 8, 9]. The outcomes of these methods usually depend on the data and
the amount of computational resources applied. As a result, in practice they often
lead to different trees on the same set of species [24]. It is thus of interest to com-
pare phylogenies produced by different methods or by the same method on different
data for similarity and discrepancy. Several metrics for measuring the distance be-
tween phylogenies have been proposed in the literature. Among these metrics, the
best known is perhaps the nearest neighbor interchange (nni) distance introduced
independently in [28] and [29].
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Figure 1. The two possible nni operations on an internal edge
(u, v): exchange B ↔ C or B ↔ D.

An nni operation swaps two subtrees that are separated by an internal edge
(u, v), as shown in Figure 1. (An edge (u, v) is internal if neither u nor v is a
leaf.) The nni operation is said to operate or perform on this internal edge. The
nni distance, Dnni(T1, T2), between two trees T1 and T2 is defined as the minimum
number of nni operations required to transform one tree into the other, as illustrated
in Figure 2.

The complexity of computing the nni distance has been open for more than 25
years (since [29]). The problem is surprisingly subtle as witnessed by the history
of many erroneous results, disproved conjectures and a faulty NP-completeness
proof [2, 19, 20, 23, 22, 26, 34]. The question is open even for the simpler case
where the trees are unlabeled. The faulty NP-completeness proof [23] we mentioned
above was for this case.

A phylogeny may also have weights on its edges, where an edge weight (more
commonly known as branch length in genetics) could represent the evolutionary
distance along the edge. Many phylogeny reconstruction methods, including the
distance and maximum likelihood methods, actually produce weighted phylogenies.
Comparison of weighted phylogenies has recently been studied in [24]. The distance
measure adopted is based on the difference in the partitions of the leaves induced
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Figure 2. The nni distance between (i) and (ii) is 2.

by the edges in both trees, and has the drawback of being somewhat insensitive to
the tree topologies [10]. The nni distance can be naturally extended to weighted
phylogenies. An nni operation is simply charged a cost equal to the weight of the
internal edge it operates on. Intuitively this extension of the nni distance is more
sensitive to the tree topologies than the one in [24].

In this paper, we study the computational complexity and efficient approxi-
mation algorithms concerning the nni distance on both unweighted and weighted
phylogenies. We finally settle almost all questions regarding the nni distance. We
show that computing the nni distance is NP-complete (cf. § 2). The proof is quite
involved and it uses the lower and upper bounds in [3, 33, 26] for sorting on a
degree-3 tree by nni operations. The problem is also shown to be NP-complete
for unlabeled trees, answering another open question in [3] (cf. § 3.) We will give
an efficient approximation algorithm for computing the nni distance on weighted
phylogenies with a performance ratio of 4 log n+4, where n is the number of leaves
(cf. § 4). Note that the approximation ratio does not depend on the weights. A
special case of this result for unweighted phylogenies was recently reported in [26].

Unless otherwise mentioned, all the trees in this paper are trees with all internal
nodes of degree 3 and with unique labels on leaves. We will mention it explicitly if
a tree has nonuniquely labeled leaves or unlabeled leaves. Finally, two (weighted)
trees are considered equal iff there is an isomorphism between them preserving
topology, edge weights, if any, and leaf labels, if any.

1.1. The nni and Linear-Cost Subtree-Transfer Distances. The linear-
cost subtree-transfer distance was introduced in [5]. This distance tries to address
biological events such as recombination during the course of evolution of molecular
sequences of organisms (because of which a single evolutionary tree is no longer suf-
ficient to describe the evolutionary history of the sequences), and gives preferences
to those recombinations which are more likely to occur than others. Somewhat
surprisingly, although they are studied in parallel for very different reasons, it was
demonstrated in [5] that the linear-cost subtree-transfer distance is in fact identi-
cal to the nni distance for unweighted phylogenies. As a result, all our results in
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this paper about the nni distance on unweighted phylogenies applies directly to the
linear-cost subtree-transfer distance on unweighted phylogenies.

2. Computing the nni Distance is NP-complete

Theorem 1. Let T1 and T2 be two trees with unique leaf labels and k be an
integer. It is NP-complete to decide if Dnni(T1, T2) ≤ k.

Because the proof of Theorem 1 is quite lengthy and complicated, the reader
is referred to the appendix for details of the proof. Here we will merely sketch the
idea of the proof.

Theorem 1 is proved by a reduction from Exact Cover by 3-Sets (X3C), which
is known to be NP-complete [13], to our problem. The X3C problem is defined as
follows:

INSTANCE: A set S = {s1, . . . , sm}, where m = 3q, and a collection of subsets
C1, . . . , Cn, where Ci = {si1 , si2 , si3} ⊂ S.

QUESTION: Is there an exact cover of S, that is, are there q disjoint subsets
Ci1, . . . , Ciq such that ∪q

j=1Cij = S ?
Our reduction will construct two trees T1 and T2 with unique leaf labels, such

that transforming T1 to T2 requires at most N (to be specified later) nni moves iff
an exact cover of S exists. The following is an outline of our reduction.

Consider the linear tree shown in Figure 3, where x1, . . . , xk is a sequence of
labels. For convenience, such a linear tree will be simply called a sequence. Sorting
such a sequence means to transform it into another linear tree whose leaves are in a
certain desirable order. This can be done by a sequence of nni operations. (During
the sorting process, the tree may be nonlinear). The sequences we will construct
later consist of small coding regions and larger noncoding regions that separate
the coding regions. Sorting such a sequence will mean sorting each coding region
into the ascending order. The k2-sized noncoding regions prevent the merging of
adjacent blocks (of a coding region) in an optimal sorting procedure, i.e. it will
not be beneficial for two blocks with the same corresponding subsequences to be
merged and sorted together because it costs at most ck log k nni moves to sort a
block and k2 nni moves to bring a block across a noncoding region.

2
x
1

x
k-1

x
k

x ...

Figure 3. A linear tree with k leaves.

To construct the first tree T1, for each si ∈ S, we create a sequence Si of
leaves that takes a large number of nni moves to sort. We will make sure that
Si and Sj are “very different” sequences for each pair i �= j, in the sense that we
cannot hope to significantly save nni moves by somehow combining the sorting of
sequences Si and Sj. Then for each subset Ci = {si1 , si2 , si3}, we create three more
sequences with the same ordering as the sequences Si1 , Si2 , Si3 , respectively, but
with distinct labels. Such n groups of sequences for C1, . . . , Cn, each consisting
of three sequences, will be placed “far away” from each other and from the m
sequences S1, . . . , Sm in tree T1. Tree T2 has the same structure as T1 except that
all sequences are sorted and flipped (attached at the other end).
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Here is the connection between an exact cover of S and transforming T1 into T2

by nni moves. To transform T1 into T2, all we need is to sort the sequences defined
above. If there is an exact cover Ci1 , . . . , Ciq of S, we can partition the m sequences
S1, . . . , Sm into m

3 = q groups, according to the cover. For each Cj (j = i1, . . . , iq)
in the cover, we send the corresponding group of sequences Sj1 , Sj2 , Sj3 to their
counterparts, combine the sorting of the three pairs of sequences with identical
ordering, and then transport the three sorted versions of Sj1 , Sj2 , Sj3 back to their
original locations in the tree. Thus, instead of sorting six sequences separately,
we do three combined sorts involving merging and splitting, plus a round trip
transportation of three sequences. Our construction will guarantee that the latter
is significantly cheaper. If there is no exact cover of S, then either some sequence Si

will be sorted separately or we will have to send at least q + 1 groups of sequences
back and forth. The construction guarantees that both cases will cost significantly
more than the previous case.

3. Computing the nni Distance Between Unlabeled Trees is
NP-Complete

In this section, we prove the NP-completeness of the problem of computing the
nni distance between two trees with unlabeled or non-uniquely-labeled leaves (for the
unlabeled case, two trees are identical if and only if they have the same topology).
First, we consider the non-uniquely labeled case.

Theorem 2. For two given trees T1 and T2 with non-uniquely-labeled leaves
and an integer k, it is NP-complete to decide if Dnni(T1, T2) ≤ k.

A flawed proof of Theorem 2 was published in [23].1 Although Theorem 2 can
be proved by using Theorem 1, here we give a direct and much simpler reduction
from the X3C problem (cf. § 2) to this problem.

Assume that we are given the following instance of the X3C problem: A
set S = {s1, s2, . . . , sm} with m = 3q and subsets C1, C2, . . . , Cn where Ci =
{si1 , si2 , si3} ⊂ S. If n < q, S clearly has no exact cover. So we assume n ≥ q. Let
K > 0 be an integer to be specified later. We construct two non-uniquely-labeled
trees as in Figure 4. There are n long arms of length K in T1, n − q long arms
of length K and m short arms of length K/3 in T2. Each of these long (short,
respectively) arms is a linear chain with K (K/3, respectively) leaves connected to
it. These leaves are all identically labeled with a label x �∈ S. At the end of the i-th
long arm in T1, we attach three leaves as shown in Figure 4 labeled with the three
elements si1 , si2 , si3 in Ci, respectively. At the end of the j-th short arm in T2, we
attach a leaf labeled with sj . The extra 3n−m labels (in the multiset ∪n

i=1Ci −S)
not attached to the short arms in T2 are placed between the short and long arms
of T2. At the bottom of each long arm in T2, there is no additional labeled leaf.

Lemma 3. For any internal edge e within the long arms in T1, the partition of
(the multiset of) leaf labels induced by e in T1 is different from the partition of the
leaf labels induced by any edge e′ in T2.

Proof. Every internal edge within a long arm in T1 partitions the leaves of
T1 such that one partition contains 3 leaves labeled by the elements of S and an

1In [23], the author reduced the Partition problem to nni by constructing a tree of i nodes

for a number i.
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Figure 4. The trees T1 and T2 used in the reduction from X3C
(K = 12).

additional of p leaves (0 ≤ p ≤ K) labeled by x. The only internal edges of T2 that
partition the leaves with 3 labels from the elements of S has at least K + 1 leaves
labeled by x in that same partition.

By Lemma 3 we need at least nK nni operations to create all the short arms
of T2 from the long arms of T1. We choose K to be a sufficiently large integer (yet
polynomial in m and n), for example, K = n2. Then the proof of Theorem 2 is
completed by proving the following lemma.

Lemma 4. For all sufficiently large m and n, Dnni(T1, T2) ≤ nK + o(n2) if
and only if there is an exact cover of S.

Proof. First, assume that there is an exact cover of S, say Ci1, . . . , Ciq. Then,
T1 can be transformed to T2 by using nK+o(n2) nni moves in the following manner.

• We transform each of the q long arms in T1 corresponding to Ci1 , . . . , Ciq

into three short arms as follows. Consider the long arm L corresponding to
Cij = {sl1 , sl2 , sl3}. (See Figure 5 for an illustration). Leave the leaf node
with label sl3 at the bottom of L, and move the two leaf nodes with labels
sl1 and sl2 up L by a distance K/3. Then leave the leaf node with label
sl1 there, and move the remaining leaf node with label sl2 together with the
linear subtree of L of the last K/3 + 1 nodes up by a distance K/3. Now,
leave the leaf node with label sl2 there, and move two linear subtrees up.
This in total needs K + 4 nni moves for each long arm.

• For each long arm corresponding to a subset Cl not in the exact cover, we
simply move the three leaf nodes at the bottom up (see Figure 6). This
needs K + 3 nni moves.
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Figure 5. Transforming a long arm into three short arms.
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Figure 6. Transforming a long arm corresponding to a subset Cl

not in the exact cover of S.

• Now, we have created the short and long arms of T2, but not necessarily in
the order they appear in T2. Since n ≥ q = m

3
, it is trivial to use at most

o(n2) nni operations2 to shuffle the short and the long arms to finally obtain
T2.

2Obviously, this is a trivial upper bound which can be further improved. However, such

improvements are not necessary for the correctness of this proof.
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The total number of nni moves we use is:

(K + 4)
m

3
+ (K + 3)(n − m

3
) + o(n2) ≤ nK + o(n2),

as claimed.
Conversely, assume that there is no exact cover of S. Then, to convert T1 to T2,

by Lemma 3, the nK nni moves are still necessary to move all leaves with labels in
S up and create the short and long arms in T2. However, since we do not have an
exact cover, either one leaf with label in S must move down at least a short arm, or
a short arm of length K/3 must merge with another short arm. Both costs at least
K/3 extra nni moves. Thus in total, we must use at least nK + K/3 > nK + o(n2)
nni moves (by our choice of K for sufficiently large values of n). This completes
the proof.

Next, we consider the case when the leaves are unlabeled.

Theorem 5. For any two given trees T1 and T2 with unlabeled leaves and an
integer k, it is NP-complete to decide if Dnni(T1, T2) ≤ k.

Proof. Again, we reduce the X3C problem to this problem. In Figure 4, the
trees T1 and T2 use m+1 different labels: s1, . . . , sm and x. We denote x by sm+1.
For each leaf node with label si (1 ≤ i ≤ m + 1) in T1 and T2, we replace the
node by a linear tree Li of length iK2. Let T ′

1 and T ′
2 be the resulting two trees

(with unlabeled leaves). Since these linear trees Li’s are non-isomorphic and have
distance of at least K2 to each other, in order to transform T ′

1 to T ′
2, they have

to be moved entirely to satisfy the bounds in Lemma 4 if there is an exact cover.
Thus, the claim in Lemma 4 still holds, which implies Theorem 5.

4. Approximating the nni Distance on Weighted Phylogenies

In this section, we present an O(n2) time approximation algorithm with per-
formance ratio 4 logn + 4 for computing the nni distance on weighted phylogenies.
As mentioned in § 1, many phylogeny reconstruction methods produce weighted
phylogenies. Hence the weighted nni distance problem is also very important in
computational molecular biology. This algorithm generalizes the approximation al-
gorithm in [26] for unweighted phylogenies, but is considerably more complicated.

Obviously, the nni operations can be performed only on internal edges and
they do not change the weight of any edge. Given two weighted trees T1 and T2,
for feasibility of transformation between T1 and T2 by using nni moves, we require
that the following feasibility conditions are satisfied:

(i): For each leaf label a, the weight of the edge in T1 incident to a is the same
as the weight of the edge in T2 incident to a.

(ii): The multisets of the weights of internal edges of T1 and T2 are identical.
If T1 and T2 do not satisfy the above two conditions, clearly T1 cannot be

transformed to T2 by using nni operations.

Definition 1. Let T1 and T2 be two weighted trees with (not necessarily
uniquely) labeled leaves. An internal edge e1 of T1 and an internal edge e2 of
T2 are a good edge pair iff the following hold:

1. w(e1) = w(e2).
2. The partition (of the multiset) of edge weights induced by e1 in T1 is the

same as the partition of edge weights induced by e2 in T2.
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3. The partition (of the multiset) of leaf labels induced by e1 in T1 is the same
as the partition of leaf labels induced by e2 in T2.

Intuitively, if e1 and e2 form a good edge pair, then in order to transform T1

to T2, it is not necessary to perform an nni operation on e1. An edge e1 ∈ T1 is bad
if there is no edge e2 in T2 such that e1 and e2 form a good edge pair. Definition 1
applies to unweighted trees by letting all edges to have weight 1.

Theorem 6. Let T1 and T2 be two weighted phylogenies each with n leaves.
Then, Dnni(T1, T2) can be approximated to within a factor of 4(1 + log n) in O(n2)
time.

In the rest of this section, we prove Theorem 6. The basic idea of the algorithm
is as follows. We first identify “bad” components in the tree that need a lot of
nni moves in the transformation process. Then, for each bad component, we put
things in correct order by first converting them into balanced shapes. But notice
that we cannot afford to perform nni operations many times on the edges with
heavy weights. Furthermore, not only the leaf nodes need to be moved to the right
places, so do the weighted edges. The main difficulty of our algorithm is the careful
coordination of the transformations so that at most O(logn) nni operations are
performed on each heavy edge.

Note that given an adjacency-list representation of a tree, it takes O(1) time
to update the tree after a single nni operation. Since the multisets of internal edge
weights of T1 and T2 are the same, for simplicity, we use {e1, e2, . . . , en−3} to denote
the set of internal edges of both T1 and T2. We renumber the edges of both T1 and
T2, if necessary, in O(n log n) time such that w(e1) ≤ w(e2) ≤ . . . ≤ w(en−3). Let
W =

∑n−3
i=1 w(ei).

The following lemma provides a lower bound on Dnni(T1, T2), which is needed
to establish the performance ratio of our approximation algorithm. It holds for
either unweighted or weighted trees.

Lemma 7. If T1 and T2 have no good edge pairs, then Dnni(T1, T2) ≥ W .

Proof. For each internal edge ei ∈ T1, the partition of either the leaf labels
or the edge weights induced by ei is different from that induced by any edge in
T2. Hence, in order to transform T1 into T2, at least one nni operation must be
performed on ei with cost w(ei). So the total cost of transforming T1 into T2 is at
least W .

We are ready to present our algorithm. First we consider the special case
where T1 and T2 have no good edge pairs. By Lemma 7 it suffices to describe how
to transform T1 to T2 with total cost at most (4 log n + 4)W . The algorithm for
this case consists of three steps.

Step 1: Pick an arbitrary leaf node r and transform T1 into a balanced binary
tree T ′

1 of height �log n	 as shown in Figure 7, where the internal edges ei (1 ≤ i ≤
n − 3) are positioned as follows: at the ith level (i ≥ 1), e2i−1+j (0 ≤ j < 2i) is
the jth edge from the left. It is easy to see that, on any path from r to a leaf, the
weight of the internal edges are non-decreasing. This fact will be needed in Step 3
of our algorithm. Step 1 is carried out in three phases.

Phase 1.1: Transform T1 to a linear tree L as shown in Figure 8, where the
internal edges e1, . . . , en−3 appear in some arbitrary order form left to right as in
Figure 8. This can be done as follows: Treat T1 as an rooted and ordered tree with
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l5

e5

l7 l8l3l1 l2 l4 l6

r

e1 e2

e3 e4 e6

Figure 7. The balanced tree T ′
1 when n = 9.

root r. Each edge of T1 will be either a left or a right edge. The edge from r to its
child is drawn as a left edge. Consider any internal node u with children v1 and v2.
If both v1 and v2 are internal nodes, or both are leaf nodes, we may chose either
the edge (u, v1) or the edge (u, v2) as the left edge. If only one child (say v1) is an
internal node, we chose (u, v1) as the left edge. The left path of T1 is the path P
from r to a leaf node using only left edges. If P contains all internal edges, then
T1 is already a linear tree and we are done. Otherwise, let e be an right internal
edge with one end node on P . Perform an nni operation on e. Re-arranging the
left and the right edges according to the above description, we obtain a new tree
whose left path contains one more edge than the left path P of T1. Repeat this
process until T1 is transformed into a linear tree. Clearly, at most one nni operation
is performed on each internal edge of T1 during the transformation process. Thus
Phase 1.1 costs at most W and can be completed in O(n) time.

e′2 e′n−3

· · ·

e′1

Figure 8. The linear tree L.

Phase 1.2: Similar to Phase 1.1, we transform T ′
1 to some linear tree L′ in O(n)

time with total cost at most W . Let the internal edges appear in L′ from left to
right as

e′′1 , e′′2 , · · · , e′′n−3.(1)

Phase 1.3: We use an analogue of merge sort to transform the linear tree L to
the linear tree L′. The transformation is the same as in [26], but focuses on the
internal edges instead. This transformation costs W logn and can be performed in
O(n logn) time.

To transform T1 to T ′
1, we perform the nni operations in Phase 1.1, followed

by the nni operations in Phase 1.3, followed by the inverse of the nni operations
in Phase 1.2. Thus Step 1 can be completed in O(n logn) time with total cost at
most (2 + log n)W .
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Step 2: Transform T2 to a balanced binary tree T ′
2. The position of the internal

edges of T ′
2 are identical to that of T ′

1. Similar to Step 1, this can be done in
O(n logn) time with total cost at most (2 + logn)W .

Step 3: Transform T ′
1 to T ′

2. Since both trees have identical internal structure,
we only need to move the leaves of T ′

1 to their corresponding positions in T ′
2. Let

r = l0, l1. . . . , ln−1 denote the leaf nodes in T ′
1 in counter-clockwise order starting

at the root leaf r. Let li′ be the destination in of the leaf li (1 ≤ i ≤ n − 1) in T ′
2.

Denote the permutation mapping i to i′ by π.
We move the leaves in T ′

1 according to π. Write π as a product of disjoint cycles,
and process each cycle C = (i1, i2, . . . , ik) in turn as follows. The lowest internal
edge above the leaf lij will be called the internal edge adjacent to lij . Without loss
of generality, assume li1 have the lightest adjacent internal edge weight among all
lij (1 ≤ j ≤ k). Now move the leaf li1 to the leaf lπ(i1) = li2 by a sequence of nni
operations. Then, move li2 to li3 and so on. The last nni operation that swaps li1
into place also starts li2 on its way up and we continue moving it to li3 . Finally,
leaf lik is moved to take the place vacated by li1 . This completes the processing
of the cycle C. It is easy to see that this process restores the original topology of
internal edges. Figure 9 illustrates this process for a cycle (1, 8, 3).

Since the height of T ′
1 is �log n	, it is easy to see that Step 3 takes at most

O(n logn) time. Next, we analyze the total cost of Step 3. For simplicity, we
assume that n = 2m +1 (see Figure 7). Partition the set of the internal edges of T ′

1

into E1 ∪ · · · ∪ Em−1, where Ei consists of the internal edges at level i. Let Wi be
the total weight of the edges in Ei. For any e ∈ Ei, there are 2m−i leaves below e.
Thus there are at most 2m−i nni operations that move a leaf “down” e and at most
2m−i nni operations that move a leaf “up” e. Furthermore, consider the processing
of a cycle C = (i1, i2, . . . , ik). Let eij (1 ≤ j ≤ k) be the internal edge in Em−1

that is above the leaf lij . Let w(C) denote the total weight of the edges ei1 , . . . , eik .
During the processing of C, the up and down nni operations coincide for each eij

(2 ≤ j ≤ k). Thus the cost contribution of the edges in Em−1 for processing C is
at most: 2w(ei1) +

∑k
j=2 w(eij) which, by our choice of cycle start i1, is at most

1.5w(C). Summing up over all cycles C in π, the total cost D for Step 3 is at most:

D ≤ 3Wm−1 +
m−2∑

i=1

2m−i+1Wi =
m−1∑

i=1

2m−i+1Wi −Wm−1.

In the linear combination ω =
∑m−1

i=1 2m−i+1Wi, the coefficient of Wi is twice that of
Wi+1. By our choice of the ordering of the internal edges, we have Wi ≤ Wi+1/2. It
follows that ω is maximized when Wi = Wi+1/2, i.e. all edges have uniform weight.
Together with the only other constraint Σm−1

i=1 Wi = W and noting that there are
2m−2 internal edges in all, this gives Wi = 2i ∗W/(2m−2) for the worst case cost.
Assuming for convenience that m ≥ 5, so that 2m−1/2 ≥ 2(m− 1), we have:

D ≤
m−1∑

i=1

2m−i+1Wi −Wm−1 =
(m − 1)2m+1 − 2m−1

2m − 2
W ≤ 2(m − 1)W(2)

Thus the total cost of Step 3 is at most 2(logn)W .
To transform T1 to T2, we first perform the nni operations in Step 1 (trans-

forming T1 to T ′
1), followed by the nni operations in Step 3 (transforming T ′

1 to
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Figure 9. The nni operations for processing the cycle (1, 8, 3).

T ′
2), followed by the inverse of the nni operations in Step 2 (transforming T ′

2 to T2).
The complete algorithm can be done in O(n logn) time with total cost at most
4(1 + log n)W .

Next we consider the general case when T1 and T2 may have some good edge
pairs. We first need to identify the set E′′ of edges in T1 that form good edge pairs
with edges in T2. The proof of the following lemma can be found in [7].

Lemma 8. [7] Let T1 and T2 be two trees, each with n leaves. Then, the set of
edges of T1 which partition the leaf labels similarly as some edge of T2 can be found
in O(n) time.

Using the above lemma, it is trivial to find the set E′′ in O(n2) time: First, we
find the set of all edges E′′′ ⊇ E′′ of T1 that partition the leaf labels similarly as
some edge of T2 in O(n) time using Lemma 8. It is trivial to identify the edges in
E′′ that also satisfy the other conditions of Definition 1, in a total of O(n2) time.
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Let E′ be the set of internal edges of T1 not in E′′. Similar to Lemma 7, we
can show that at least one nni operation on each internal edge e ∈ E′ is needed to
transform T1 to T2. Thus:

Dnni(T1, T2) ≥ W ′ =
∑

e∈E′

w(e)(3)

The edges in E′ induce in T1 a subgraph consisting of one or more connected
components each of which is a subtree of T1. These connected components can
easily be found in O(n) time. To transform T1 to T2, we perform the approximation
algorithm described above on each such component. The total cost is bounded by
4(1 + log n)W ′. The algorithm takes O(n2) time. This completes the proof of
Theorem 6.

5. Conclusion and Open Problems

The results reported in this paper have been obtained as a part of our project
of building a software package for comparing phylogenetic trees. Several open
questions still remain:

• Can we approximate the nni distance with a better ratio (on weighted or
unweighted phylogenies)? It seems that to obtain a ratio of o(log n), we have
to be able to prove nontrivial lower bounds for sorting sequences on trees
with nni moves.

• The nni operation is similar to and slightly more powerful than the rotation
operation discussed in [3, 32]. Is it NP-complete to compute the rotation
distance? Can we approximate the rotation distance better than the trivial
ratio 2? This question turns out to be subtler than it appears to be. Partial
results in this direction can be found in [27].

Acknowledgments: We wish to thank J. Felsenstein for explaining to us the
biological motivation for comparing weighted phylogenies.
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APPENDIX

Proof of Theorem 1: Using the discussion and notations in § 2, we now con-
tinue to give the detailed proof of Theorem 1. Apparently many difficult questions
have to be answered: How can we find these m sequences S1, . . . , Sm that are hard
to sort by nni moves? How do we ensure that sorting one such sequence will never
help to sort others? How can we ensure that it is most beneficial to bring the se-
quences Sj1 , Sj2 , Sj3 corresponding to elements in a subset Cj to their counterparts
to get sorted, and not the other way around?
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We begin with the construction of the sequences S1, . . . , Sm. Recall that each
such sequence is actually a linear tree, as in Figure 3. Intuitively, it would be a
good idea to take a long and difficult-to-sort sequence and break it into m pieces of
equal length. But because the upper bound in [3, 26] and the lower bound in [33]
(see [26] for the calculation) do not match, this simple idea does not work. The
reason is that it is impossible to guarantee that sorting one of these pieces will not
help to sort the other pieces (by merging, sorting together, and then splitting). So
we first have to find sequences that are hard to sort and do not help each other in
sorting.

Lemma 9. For any constant ε > 0, there exists a constant c > ε and infinitely
many k for which there are two sequences x and y of length k such that (i) each
of them takes at least (c − ε)k logk nni moves to sort, and (ii) each of them takes
at most ck log k nni moves to sort, and (iii) it takes at least (c− ε)(2k) log(2k) nni
moves to sort both of them together, i.e. the sequence xy.

Proof. From the results in [3, 26, 33], we know that for each k, there exists
a sequence of k leaves such that sorting the sequence takes at most k log k + O(k)
nni moves and at least 1

4k log k − O(k) nni moves. Let us define ck, for any k, as
the maximum number of nni moves to sort any sequence of length k, divided by
k logk. Since 1

4
− o(1) ≤ ck ≤ 1 + o(1), infinitely many k satisfy

c2k ≥ ck − ε

3
.(4)

Since any length 2k sequence can be sorted by first sorting both length k halves
and then merging them using less than 2k nni moves, we have c2k2k log(2k) <
2ckk logk + 2k hence c2k ≤ ck + o(1). Taking xy to be a hardest sequence of
length 2k for large enough k satisfying the inequality (4), and taking c = ck,
necessarily satisfies conditions (ii) and (iii). Without loss of generality, let wx ≤ wy

be the costs of sorting x and y. Then the above sorting method for xy shows that
c2k2k log(2k) ≤ wx + wy + 2k hence, together with the fact that wy ≤ ck logk, we
have:

wy ≥ wx ≥ (c − ε

3
)2k(1 + logk) − 2k − ck log k ≥ (c − 2ε

3
)k log k − 2k(1 +

ε

3
− c)

≥ (c − ε)k log k

proving (i). Furthermore, infinitely many of these ck must be arbitrarily close to
each other, giving a single c to satisfy the lemma.

Let ε = 1/8, k a sufficiently large integer satisfying Lemma 9 and c, x, y the
corresponding constant and sequences. Next we use x and y, each of length k,
to construct m long sequences S1, . . . , Sm. Choose m binary strings α1, . . . , αm

in {0, 1}�log m�. The sequence Si (1 ≤ i ≤ m) is obtained from the string αi by
performing the following: Replace each letter 0 with the sequence xm3

and each
letter 1 with the sequence ym3

. Give each occurrence of x and y unique labels.
Insert between every pair of adjacent x/y blocks a delimiter sequence of length k2

with unique labels. This results in sequences S1, . . . , Sm, all with distinct labels.
Each pair of them differ by at least m3 x or y blocks at some position. The m
sequences will have specific orientations in the tree; let’s refer to one end as head
and the other end as tail.
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x x y y y y

Figure 10. The structure of the string Si corresponding to binary
string 011.

Figure 10 shows the structure of a single sequence using binary string 011. To
make the picture clear, we pretend m3 is only 2. Assume both x and y blocks have
length k = 4. The gaps between blocks represent the noncoding regions whose
leaves are not shown explicitly. Recall that sorting this sequence entails sorting all
the blocks plus moving the point of attachment (connecting point to the tree) from
the left to the right of the sequence. The latter requires k2(m3 log m − 1) moves
to cross the noncoding regions. To this we need to add for each block the cost of
sorting it and having the attachment move through it. Let qi denote the sum of
the cost of sorting and passing through each block in the sequence.

We are now ready to do the reduction. From the set S = {s1, . . . , sm} and
the subsets C1, C2, . . . , Cn, we construct the tree T1 as follows. (The construction
of T2 will be described later). For each element si ∈ S, T1 has a sequence Si

as defined above. For each subset Ci = {si1 , si2 , si3}, we create three sequences
Si,i1 , Si,i2, Si,i3 , with the same ordering as Si1 , Si2 , Si3 , respectively, but with dif-
ferent and unique labels. Notice that we are not allowed to repeat labels.

1

C 2

C n

C

connection

....

S ....
...

doubly tree 

Figure 11. The structure of the tree T1

Figure 11 outlines the structure of the tree T1. Here a thick solid line represents
a sequence Si or Si,j with the circled end as head; a dotted line represents a toll
sequence of m2 uniquely labeled leaves; and a small black rectangle represents a
one-way circuit as illustrated in Figure 13(i). The heads of the m sequences at
the left of Figure 11 are connected by a (double) tree-type connection of depth
logm + log n to the n toll sequences, each leading to the entrance of a one-way
circuit. The exit of each such one-way circuit is connected to the entrances of three
one-way circuits leading finally to the three sequences corresponding to some subset
Ci.

As mentioned before, a sequence Si and a counterpart S′
i with identical ordering

will be brought together to be sorted. We now consider the cost of combining the
sorting process of Si and S′

i. At the beginning of this process, the attachments
of Si and S′

i (i.e. the edge linking it to the main structure of T1) are at the left
end of Si and S′

i, respectively (see Figure 12). During the sorting process, the
attachments move through Si and S′

i from left to right and their blocks are sorted
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on the way. At the end of the process, the attachments are at the right end of Si and
S′

i, with all their blocks sorted. In Figure 12, the top (bottom, respectively) long
horizontal line represents the sequence Si (S′

i, respectively). The bridge between
the two sequences represents the attachments to the main structure (which is not
shown). Consider the processing of a block B in Si and its corresponding block B′

in S′
i. The attachments move from left to right. Each leaf in B′ moves four steps

across the attachments to join its partner in B, followed by one move to advance
the attachments. (In Figure 12, one leaf of B′ has joined its partner in B and the
attachment has passed one leaf of B). After 5k moves, all leaves of B′ have joined
their partners in B and the attachments are at the right of B. We spend another
k moves to get attachment of Si back to the left of B. Now we can proceed as in
the single sequence case to sort the combined blocks B and B′. (This will move the
attachments to the right of the block B again). Finally, we move the attachment of
S from right to left again in k moves (to get ready for splitting process), and spend
another 5k moves to split B and B′. At the end, both B and B′ are sorted and
the attachments end up on the right of both blocks. The total cost for processing
B and B′ is thus 12k plus the cost of sorting a single block B.

Compared to sorting Si and S′
i separately, because we saved qi for sorting (and

passing through) all coding blocks of a sequence, but spent extra 12k moves on
each coding block, we thus save

qi − 12km3 log m(5)

nni moves.

Figure 12. Merging two sequences.
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Figure 13. One-way circuit.

A one-way circuit is shown in Figure 13 (i) (where r is an integer to be deter-
mined later). The leaf labeled by a (b, respectively) is the entrance (exit, respec-
tively) of the one-way circuit. The counterpart of the one-way circuit in T2 is as
shown in Figure 13 (ii). It is designed for the purpose of giving “free rides” to a
subtree moving first from the entrance to the exit and then later from the exit back
to the entrance, while transforming the one-way circuit (i) into its counterpart (ii).
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On the other hand, it imposes a large extra cost for subtrees first moving from the
exit to the entrance and then back to the exit. This can be seen as follows.

In any optimal transformation of circuit (i) to (ii), the leaves marked by u’s are
paired up with the leaves marked by z’s first and then the leaves marked by v’s are
paired with the u-z pairs. This requires ur and v1 to move up and out of the way.
The pairing of the u’s essentially provides a shortcut for ur to reach zr in half as
many steps, and similarly for v1.

A precise breakdown of the cost is as follows: (r − 3)/2 steps to move ur up,
then r−1

2 times 6 steps to move each u pair down between the proper z’s and pair
them up, and one final step to pair ur. The exact same number of steps is needed
for the symmetric pairing of v’s. Hence in total we need (assuming r is odd)

2(
r − 3

2
+ 6

r − 1
2

+ 1) = r − 3 + 6(r − 1) + 2 = 7r − 7

nni moves. Note that a subtree situated at ‘a’ can initially pair up with ur in 2
steps and move together with it, spending 3 more steps to pop off just before ur

pairs with zr , to end up at ‘b’. It can later spend another 5 steps to move together
with v1 ending up back at ‘a’. A subtree going first from ‘b’ to ‘a’ and then back
to ‘b’ could only be done ‘for free’ by pairing with v1 first and with ur later, since
these are the only leaves to move away from ‘b’ and ‘a’ respectively in an optimal
transformation. But for v1 to reach ‘a’ with minimum cost requires collapsing all
the v’s which imposes an extra cost on pairing u’s with z’s later. The least penalty
for moving from ‘b’ to ‘a’ back to ‘b’ is thus for v1 not to take the shortcut which
costs an extra r

2 steps.
We will choose r so large (i.e. r = m4) that it is not worthwhile to move any

sequence Si,j , corresponding to some Ci, to the left through the one-way circuits
to sort and then move it back to its original location in T1.

In the following sorting a sequence Si or Si,j means to have each of its x/y blocks
sorted and then the whole sequence flipped. The tree T2 has the same structure as
T1 except that

• all sequences Si and Si,j are sorted.
• each circuit in Figure 13 (i) is changed to (ii).
In order to transform T1 into T2, we need to sort the sequences Si and Si,j

and convert each one-way circuit to the structure shown in Figure 13 (ii). If the
set S has an exact cover Ci1, . . . , Ciq , we can do the transformation efficiently as
follows. For each Cj = {sj1 , sj2 , sj2}, (j = i1, . . . , iq), in the cover, we send the
three sequences Sj1 , Sj2 , Sj3 on the left of T1 to their counterparts Sj,j1 , Sj,j2 , Sj,j3

on the right of T1, combine the sorting of each pair as explained in Figure 12, then
move the sorted Sj1 , Sj2 , Sj3 sequences back. During this process we also get each
one-way circuit involved into the correct shape. We then sort the other un-sorted
sequences Si,j on the right of T1 and get their leading one-way circuits into the
correct shape.

The total cost N for this process is calculated as follows. Recall that we send
precisely q groups of sequences from the left to the right of T1.

1. The overhead for these q groups to cross the tree connection network: q(log m+
logn) + O(1) nni moves. This is done by grouping three sequences in each
group first, then moving them as one unit.

2. The cost of crossing the q toll sequences of length m2 before the first batch
of one-way circuits: qm2 nni moves.



ON COMPUTING THE NEAREST NEIGHBOR INTERCHANGE DISTANCE 19

3. Converting each one-way circuit to the structure in Figure 13 (ii) costs 7r−7
nni moves.

4. Moving a group of sequences across a one-way circuit and back costs O(1)
extra nni moves, for each of the q groups.

5. The cost of sorting 3q pairs of sequences (by combining).
6. the cost of sorting the remaining 3n − 3q sequences individually.
The following lemma completes the reduction and thus the proof of Theorem 1.

Lemma 10. If the set S has no exact cover, then Dnni(T1, T2) ≥ N + m2/2.

Proof. Suppose that S has no exact cover. Then to transform T1 into T2, we
either have to send more than q groups (some groups with less than 3 sequences)
to the right crossing the one-way circuits, or some sequence Si is sorted separately
from Sj,i’s or some sequence Si is sorted together with a “wrong” sequence Sj,h,
where h �= i. In the first case, the cost will be increased by m2 nni moves, which is
the cost of moving an extra group past a delimiter sequence of length m2. In the
last case, at least one segment of m3 x’s is sorted together with a segment of y’s.
By Lemma 9 and the choice ε = 1

8
, this is not much better than sorting the two

segments separately and costs at least (c− 1
8 )m3k logk−m3k more nni moves than

sorting one such segment, which is larger than m2 for sufficiently large k and m,
since c > 1

4 . The second case introduces an extra cost of qi − 12km3 log m −m2 =
Ω((m3 log m)k log k) by equation (5) and Lemma 9, which is again larger than m2

for sufficiently large k and m.
Notice that in the above definition of N , the bounds in items 2,3,6 are all

optimal. The bounds in items 1 and 5 are the worst case overheads and may not
be optimal. But these two items only account for O(m(log m + log n)) nni moves,
which is not sufficient to compensate for the extra cost m2 given above.
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