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In an implicit combinatorial optimization problem, the constraints are not enumerated
explicitly but rather stated implicitly through equations, other constraints or auxiliary
algorithms. An important subclass of such problems is the implicit set cover (or, equiv-
alently, hitting set) problem in which the sets are not given explicitly but rather defined

implicitly. For example, the well-known minimum feedback arc set problem is such a
problem. In this paper, we consider such a cover problem that arises in the study of
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wild populations in biology in which the sets are defined implicitly via the Mendelian
constraints and prove approximability results for this problem.
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1. Introduction

In an implicit combinatorial optimization problem, the constraints are not enumer-
ated explicitly but rather stated implicitly through equations, other constraints or
auxiliary algorithms. Well-known examples of such optimization problems include
convex optimization problems where the constraints are not given explicitly but
rather can be queried implicitly through a separation oracle or given by an auxiliary
algorithm. For example, the ellipsoid method can be used to solve in polynomial time
a linear programming problem with possibly exponentially many constraints pro-
vided we have a separation oracle that, given a tentative solution, in polynomial time
either verifies that the solution is a feasible solution or provides a hyperplane sepa-
rating the solution point from the feasible region. This paper concerns the implicit
set cover problems which are defined as follows. In the standard (unweighted) ver-
sion of the set cover problem, we are given a collection of subsets S over an universe
of elements U and the goal is to find a sub-collection of sets from S of minimum car-
dinality such that the union of these sets is precisely U . A combinatorially equivalent
version of the set cover problem is the so-called hitting set problem where one needs
to pick instead a subset of the universe U of minimum cardinality which contains at
least one element from every set. Set cover and hitting set problems are fundamen-
tal problems in combinatorial optimization whose computational complexities have
been throughly investigated and well understood [11]. More general version of the
problem could include generalizing the objective function to be minimized, namely
the number of sets picked, by say having weighted sets and minimizing the sum of
weights of the selected sets, or by defining a monotone objective function on the set
system.

Implicit set cover (or hitting set) problems have the same standard setting, but
the sets are not given explicitly but rather implicitly through some implicit combi-
natorial constraints. For example, the minimum feedback vertex set or the minimum
feedback arc set problems are examples of such implicit hitting set problems. Such
implicit set cover or hitting set problems can be characterized by not giving the col-
lection of sets S explicitly but via an efficient (polynomial-time) oracle O that will
supply members of S satisfying certain conditions. For example, the recent work of
Richard Karp and Erick Moreno Centenoa considers some implicit hitting set prob-
lems with applications to multiple genome alignments in computational biology in
which the oracle O provides a minimum-cardinality set (or a good approximation to
it) from the collection S that is disjoint from a given set Q. In addition to standard

aRichard Karp, UC Berkeley, personal communication.
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polynomial-time approximation guarantees, one could also invoke other measures
of efficiencies, such as number of access to the oracle O to obtain an optimal or
near-optimal solution to the hitting set problem as used by Karp and Centeno.

In this paper, we consider an implicit (unweighted) set cover problem, which
we call the MIN-PARENT problem, that arises in the study of wild population.
Our problem in the setting described above is roughly as follows. Our oracle O
returns, given a sub-collection of elements U ′ ⊆ U , if there is a set that includes
U ′. Our specific objective function is motivated by the biological application and
is a monotone function, namely including a new element in our collection does not
decrease it. More precise formulations of our problems appear in the next section
and will easily convince the reader that our problem is not captured by previous
works or the recent work by Karp and Centeno.

2. Motivations

For wild populations, the growing development and application of molecular mark-
ers provides new possibilities for the investigation of many fundamental biologi-
cal phenomena, including mating systems, selection and adaptation, kin selection,
and dispersal patterns. In our motivation we are concerned with full sibling rela-
tionships from single generation sample of microsatellite markers. Several meth-
ods for sibling reconstruction from microsatellite data have been proposed (e.g.
see [6, 10, 12]). Combinatorial approaches to sibling reconstruction using suit-
able parsimony assumptions have been studied in [2–5]. These approaches use the
Mendelian inheritance rules to impose constraints on the genetic content possi-
bilities of a sibling group. A formulation of the inferred combinatorial constraints
in constructing a collection of groups of individuals that satisfy these constraints
under the parsimony assumption of a minimum number of parents leads to the
MIN-PARENT problems discussed in the paper.

3. Precise Formulations of MIN-PARENT Problems

An element (individual) u is an ordered sequence (u1, u2, . . . , u�) where each uj is
a genetic trait (locus) and is represented by a multi-set {uj,0, uj,1} of two (possibly
equal) numbers (alleles) inherited from its parents. Biologically, each element corre-
sponds to an individual in the sample of the wild population from the same genera-
tion. We have a universe U consisting of n such elements. Certain sets of individuals
in U can be full siblings, i.e. having the same pair of parents under the Mendelian
inheritance rule. These sets are specified in an implicit manner in the following way.
The Mendelian inheritance rule states that an individual u = (u1, u2, . . . , u�) ∈ U
can be a child of a pair of individuals (parents), say v = (v1, v2, . . . , v�) and
w = (w1, w2, . . . , w�), if and only if for each locus j ∈ {1, . . . , �} one allele of uj

is from vj and the other element of uj is from wj . Finally, a subset U ′ ⊆ U is a
(full) sibling group if and only if there exists a pair of parents v and w such that
every member of U ′ is a child of v and w. Note that any pair of individuals is a
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full sibling group by the Mendelian constraints. As an illustration, the four individ-
uals (with � = 2 loci) ({1, 2}, {1, 1}), ({4, 3}, {6, 6}) and ({1, 2}, {1, 6}) form a full
sibling group since they can be the children of the two parents ({1, 3}, {1, 6}) and
({2, 4}, {1, 6}).

Given these Mendelian constraints, our goal is to cover the universe U by a set
of full-sibling groups under the parsimonious assumption of a minimum number of
parents. Formally, the MIN-PARENTn,� problem is defined as follows.

Problem name: MIN-PARENTn,�

Input: Our input is an universe U of n individuals each with � loci.
Valid Solutions: a cover A of U such that each set S ∈ A in the cover is a sibling

group.
Notation: B(A) denote a set of individuals (parents) such that every set S (sibling

group) in the cover has its two parents from B(A).
Objective for minimization: minimize |B(U)| = minA |B(A)|

In the setting of the implicit set cover problems described before, our cover problem
is as follows:

• Our sets (sibling groups) are defined implicitly by the Mendelian constraints; note
that the number of such sets is possibly exponential and thus we cannot always
enumerate them in polynomial time.

• Our polynomial time oracle O answers queries of the following type: given a
given subset U ′ ⊆ U of the universe, does U ′ form a valid (sibling) set following
the Mendelian constraints?b It is easy to show a polynomial-time implementation
of the oracle (e.g., see [4]).

Finally, note that our objective function is obviously monotone since U ′ ⊂ U implies
|B(U ′)| ≤ |B(U)|. A natural parameter of interest in covering problems the maxi-
mum size (number of elements) a in any set. For our problem, the parameter a

corresponds to maximum number of individuals of any sibling group.
We first show that the MIN-PARENT problem is MAX-SNP-hard even if a = 3.

This leads us to the question about the computational complexity of the problem
for arbitrary a. We will show that, for arbitrary a, it is very hard to even find
an approximation to a minimum set of parents for a given sibling partition of the
universe with given a candidate set of parents that includes an optimal set of parents.
Formally, the FIND-MIN-PARENTn,� is defined as follows.

Problem name: FIND-MIN-PARENTn,�.
Input: a partition A of a set U of n elements, each with � loci, such that each set

S in the partition A is a sibling set, and a set of elements (possible parents) P .

bNote that if U ′ is not a valid set, the oracle O does not provide any hint about other possible
valid sets.
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Valid Solutions: any B(A) provided that B(A) ⊆ P .
Notation: B(A) denote a set of individuals (parents) such that every set S (sibling

group) in the cover has its two parents from B(A).
Objective for minimization: minimize |B(U)| = minB(A)⊆P |B(A)|.

3.1. Standard terminologies

Recall that a (1 + ε)-approximate solution (or simply an (1 + ε)-approximation)
of a minimization (resp. maximization) problem is a solution with an objective
value no larger (resp. no smaller) than 1 + ε times (resp. (1 + ε)−1 times) the
value of the optimum, and an algorithm achieving such a solution is said to have
an approximation ratio of at most 1 + ε. A problem is r-inapproximable under a
certain complexity-theoretic assumption means that the problem does not have a
r-approximation unless the complexity-theoretic assumption is false.

L-reductions are a special kind of approximation-preserving reduction that can
be used to show MAX-SNP-hardness of an optimization problem. Given two opti-
mization problems Π and Π′, Π L-reduces to Π′ if there are three polynomial-time
procedures T1,T2, T3 and two constants a and b > 0 such that the following two
conditions are satisfied:

(1) For any instance I of Π, algorithm T1 produces an instance I ′ = f(I) of Π′

generated from T1 such that the optima of I and I ′, OPT (I) and OPT (I ′),
respectively, satisfy OPT (I ′) ≤ a · OPT (I).

(2) For any solution of I ′ with cost c′, algorithm T2 produces another solution
with cost c′′ that is no worse than c′, and algorithm T3 produces a solution
of I of Π with cost c (possibly from the solution produced by T2) satisfying
|c − OPT (I)| ≤ b · |c′′ − OPT (I ′)|.
An optimization problem is MAX-SNP-hard if another MAX-SNP-hard problem

L-reduces to that problem. Arora et al. [1] show that, assuming P �= NP, every
MAX-SNP-hard problem is (1 + ε)-inapproximable for some constant ε > 0 unless
P = NP.

3.2. Our results

For MIN-PARENTn,�, we show in Sec. 4 that the problem is MAX-SNP-hard even
if a = 3 and observe in Sec. 5 that for any a and any integer constant c > 0
the problem admits an easy

(
a
c + ln c

)√
n-approximation. We show in Sec. 6 that,

for arbitrary a, FIND-MIN-PARENTn,� admits no 2logε n-approximation, for every
constant 0 < ε < 1, unless NP ⊆ DTIME(npoly log(n)).

4. Inapproximability of MIN-PARENT for a = 3

Lemma 4.1. MIN-PARENTn,� is MAX-SNP-hard even if a = 3.

Proof. For notational simplification, when an individual has the multiset {x, x} in
a locus, we will refer to it by saying that the individual has a “label” of value x
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in that locus. Our construction will ensure that all individuals have only one label
at every locus. It is then easy to check that a set of individuals can be a sibling
set if and only if at each locus they have labels with no more than two distinct
values. In the sequel, we will use the terminologies “label x” and “locus {x, x}”
interchangeably.

The (vertex-disjoint) triangle-packing (TP) problem is defined as follows. We
are given an undirected connected graph G. A triangle is a cycle of 3 nodes. The
goal is to find (pack) a maximum number of node-disjoint triangles in G. TP is
known to be MAX-SNP-hard even if every vertex of G has degree at most 4 [7].
Moreover, the proof in [7] show that the MAX-SNP-hard instances of TP in their
reduction produces an instance of TP with n nodes in which an optimal solution
has αn triangles for some constant 0 < α < 1.

We will provide an approximation preserving reduction from an instance graph
G of n nodes of TP with nodes of G having a maximum degree of 4 as obtained
in [7] to MIN-PARENTn,�. We introduce an individual u for every node u of the
graph G and provide ordered label sequences for each node (individual) such that:

(1) Three individuals corresponding to a triangle of G have at most two values in
every locus and thus can be a sibling set.

(2) Three individuals that do not correspond to a triangle of G have at least three
values in some locus and thus cannot be a sibling set.

(3) Consider any maximal set of vertex disjoint triangles in G and the corresponding
sibling sets (each of size 3). Partition the remaining vertices of G not covered
by these triangles arbitrarily into pairs (groups of size 2) and consider the
corresponding full sibling sets (each of size 2). Then, each sibling set in the
above collection requires two new parents.

Note that since we have a maximal set of triangles, no three vertices in the set
of pairs can form a triangle. Conversely, given any solution of MIN-PARENTn,�, we
preprocess the solution to get a canonical solution to ensure that no three individuals
in the union of pairs can be a sibling set; this preprocessing does not increase the
number of sibling sets.

Note that, since any pair of individuals can be a full sibling set, the above
properties imply that TP has a solution with t triangles if and only if the MIN-
PARENT problem can be solved with 2t + 2 · n−3t

2 = n − t parents.
The MAX-SNP-hardness now follows easily since an optimum solution of TP on

G has αn triangles for some constant 0 < α < 1. More precisely, let I and I ′ be the
instance of TP and the corresponding instance of MIN-PARENTn,�, respectively,
and let OPT(I) and OPT(I ′) denote the number of triangles and the number of
parents in an optimal solution of I and I ′, respectively. Then, the following two
statements hold.

(a) Since OPT(I) = αn we have OPT(I ′) = n − αn = 1−α
α αn =

(
1−α

α

)
OPT(I)

where 1−α
α is a positive constant.
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(b) Since OPT(I ′) = n − αn we must have c′ ≥ n − αn. Thus, if c′ = n − αn + x

(for some x) is the number of parents in a solution of the instance I ′ after
preprocessing then number of triangles in the solution of the instance I of TP
is given by c = n − c′ = αn − x and thus |c − OPT (I)| = |c′ − OPT (I ′)|.

Now, we describe the reduction.
Our first set of loci are as follows. The index of a locus, which we call the

“coordinate”, is defined by an “origin” node u. Thus, we will have |V | such loci,
one for every node u. The respective label of an individual v at this coordinate is
the distance (number of edges in a shortest path) from u to v.

Our second set of loci are as follows. We have such a locus for every set of three
vertices {u, v, w} that does not form a triangle. Thus, we will have O(|V |3) such
loci. Since the three vertices do not form a triangle, at least one pair of them, say
u and v, are not connected by an edge. As a result, the set of vertices {u, v, x} do
not form a triangle for any other vertex x �∈ {u, v}. Our goal is to ensure that the
vertices u, v and w cannot be a sibling group while not disallowing any other sibling
groups that can be formed by a triangle in the graph. This is easy to do. Put the
label 1 in this locus for the individual u, label 2 for individual v and label 3 for all
other individuals.

First we need to check that Property (1) holds. The following is true with respect
to the first set of loci. Consider a triangle {u, v, w}, any locus (coordinate) � and
assume that u has the minimum label value of L, i.e., it is nearest to the origin node
that defined �. Then labels of v and w are at least L and at most L + 1, hence u, v

and w have at most two labels at �. The second set of loci never disallows a sibling
group corresponding to a triangle, so the property is not violated by them either.

The construction of the second set of loci implies that Property (2) is true.
Finally, we need to verify Property (3). There are three cases to verify.
First, consider the case when we have two sibling groups correspond to two

triangles T1 = {u, v, w} and T2 = {p, q, r} in G. Note that since nodes in G have a
maximum degree of 4, any node of one triangle can be connected to at most two
nodes in the other triangle.

The locus � defined by the origin node u has a label 0 for u and a label 1 for v

and w. Thus, the sibling set {u,v,w} can be generated only by a pair of parents,
say A and B, each of which has the alleles {0, 1} in locus �.

Since u is connected to at most two nodes in T2, it is not connected to a node
in T2, say r. Then, r must have a label x ≥ 2 in locus �. Thus, neither A nor B can
be a parent of the sibling group {p,q, r} since x �∈ {0, 1}.

Second, consider the case when the we have two sibling groups corresponding to
a triangle T = {u, v, w} and a pair P = {p, q}. Consider the locus defined by the
origin node u. We have a label 0 for u and a label 1 for v and w in this locus. Thus,
the sibling set {u,v,w} can be generated only by a pair of parents, say A and B,
each of which has the alleles {0, 1} in this locus. If node u is not connected to both
nodes p and q then one of the nodes which is not connected to u, say p, must have
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a label x ≥ 2 in this locus. Thus, neither A nor B can be a parent of the sibling
group {p,q} since x �∈ {0, 1}. Otherwise, it must be the case that u is connected to
both p and q.

Repeating the same argument with q as the origin node and then r as the origin
node shows that the only case that remains to be considered is when each of u, v

and w is connected to both the nodes p and q. But, then the induced subgraph of
G with vertices u, v, w, p and q is a 5-clique. Since every node in G has a degree
of no more than 4, this implies that G has more than one connected component,
contradicting the fact that G was a connected graph.

Finally, consider the case when we have two sibling groups corresponding to
two pairs P1 = {u, v} and P2 = {p, q}. Since we have preprocessed the solution of
MIN-PARENTn,� or equivalently have a maximal set of triangles for the solution
of TP, node u is not connected to at least one node in P2, say p. The locus defined
by the origin node u has a label 0 for u and a label 1 for v, but has a label x ≥ 2
for p. Thus, the sibling set {u,v} can be generated only by a pair of parents, say A

and B, each of which has the alleles {0, 1} in the corresponding locus, but neither
A nor B can be a parent of the sibling group {p,q} since x �∈ {0, 1}.

5. A Simple Approximation Algorithm for MIN-PARENTn,�

Note that we do not need to know the value of a in the theorem below.

Observation 5.1. Let a be the maximum size of any sibling set. Then, for any
integer constant c > 0, MIN-PARENT admits an easy

(
a
c + ln c

)√
n-approximation

with polynomially many access to the oracle O (and, thus in polynomial time).

Proof. Our proof is similar to the analysis of a standard greedy algorithm for set
cover problems [11].

Suppose that we have a subset U ′ ⊂ U of the universe that is still not covered.
We can enumerate all subsets of U ′ of size at most c in O(nc) time and for each
subset query the oracle O to find if any of these subsets of individuals are full siblings
for the MIN-PARENTn,� problem. Thus we can assume that for every instance of
the problem, either the maximum sibling set size is below c and we can find such a
group of maximum size, or we can find a sibling set of size c. Our algorithm simply
selects such a set, removes the corresponding elements from U ′ and continues until
all elements of U are covered.

Obviously, all subsets of a sibling set are valid sibling sets too. Let OPT be the
minimum number of parents in an optimal solution of MIN-PARENTn,�. Consider
an optimum solution, make it disjoint by arbitrarily shrinking each full-sibling set
and let α be the number of sets in this partition. Obviously, α ≤ n/2. Since no two
full-sibling sets are produced by the same pair of parents (because of minimality),(OPT

2

) ≥ α which implies OPT >
√

2α. We distribute the cost of our solution
among the sets of the optimum. When a set with b elements is selected, we remove
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each of its element and charge the sets of the optimum 1/b for each removal. It
is easy to see that a set with a elements will get the sequence of charges with
values at most (1/c, . . . , 1/c︸ ︷︷ ︸

a−c times

, 1/(c − 1), 1/(c − 2), . . . , 1) and these charges add to

a
c − 1 +

∑c
i=1

1
i = a

c +
∑c

i=2
1
i < a

c + ln c. Thus, we use at most
(

a
c + ln c

)
α sibling

groups. Each sibling group can be generated by at most two new parents. Thus,
the total number of parents necessary to generated these sibling groups is at most(

a
c + ln c

)√
2α OPT <

(
a
c + ln c

)√
n OPT.

6. Inapproximability of FIND-MIN-PARENT

Lemma 6.1. For every constant 0 < ε < 1, FIND-MIN-PARENTn,� admits no
2logε n-approximation unless NP⊆DTIME(npoly log(n)).

Proof. We first need the MINREP problem which is defined as follows. We are
given a bipartite graph G = (A, B, E). We are also given a partition of A into
|A|/α equal-size subsets A1, A2, . . . , Aα and a partition of B into |B|/β equal-size
subsets B1, B2, . . . , Bβ . These partitions define a natural “bipartite super-graph”
H in the following manner. H has a “super-vertex” for every Ai (the left partition)
and a “super-vertex” for every Bj (the right partition). There exists an “super-
edge” between the super-vertex Ai and the super-vertex Bj if and only if there
exists u ∈ Ai and v ∈ Bj such that {u, v} is an edge of G. A pair of vertices u and
v “witnesses” a super-edge {Ai, Bj} provided a ∈ Ai, b ∈ Bj and the edge {a, b}
exists in G. A set of vertices S of G witnesses a super-edge if there exists at least
one pair of vertices in S that witnesses the super-edge. The goal of the MINREP
problem is to find A′ ⊆ A and B′ ⊆ B such that A ∪ B witnesses every super-edge
of H and the size of the solution, namely |A′| + |B′|, is minimum.

For notation simplicity, let n = |A| + |B|. The following result is a consequence
of Raz’s parallel repetition theorem [8, 9]. Let L ∈ NP and 0 < ε < 1 be any fixed
constant. Then, there exists a reduction running in quasi-polynomial time, namely
in time npoly log(n), that given an instance x of L produces an instance of MINREP
such that if x ∈ L then MINREP has a solution of size at most at most α + β,
but if x �∈ L then MINREP has a solution of size at least (α + β) · 2logε n. Thus,
the above theorem shows that MINREP has no 2logε n-approximation under the
complexity-theoretic assumption of NP �⊆DTIME(npoly log(n)).

Let L be any language in NP. Use the above theorem to translate an instance x

of L to an instance of MINREP as described above. Now, we describe a translation
of this instance of MINREP to an instance of FIND-MIN-PARENTP,n,�.

We have a parent pv in P corresponding to every element v ∈ A∪B. We have an
individual sa,b in U for every edge {a, b} in G. Thus, the number of possible parents
in P is n and the number of individuals in U is O(n2). It therefore suffices to prove
a 2logε |P|-inapproximability since that implies as 2logε |U|-inapproximability.

Before describing our reduction, we need a generic construction of the following
nature to simplify our description. We are given two elements pu, pv ∈ P and an
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element sa,b ∈ U . We want to add a new locus with appropriate allele values to
ensure that sa,b cannot be a child of pu and pv, but no other parent-child relationship
is forbidden. This is easy to do. Put the alleles {a, b} in this locus for pu and
pv and put the alleles {a, c} in this locus for every individual (including sa,b) in
(P ∪U)\{pu, pv}. It follows that sa,b cannot be a child of pu and pv since c �∈ {a, b},
but no other child-parent combination is forbidden since {a, c} can be produced by
the Mendelian rule either from {a, b} and {a, c} or from {a, c} and {a, c}.

Now, we add additional loci to the individuals in U ∪P in the following manner
following the two rules:

Rule (�): For every edge {u, v} of G with u ∈ Ai and v ∈ Bj and for every pair of
vertices {a, b} such that {a, b} ∈ E \{ {y, z} | y ∈ Ai, z ∈ Bj , {y, z} ∈ E }
we add an additional locus using the generic construction to ensure that
sa,b cannot be a child of pu and pv.

Rule (��): For every pair of vertices u and v of G such that {u, v} �∈ E and for every
pair of vertices a and b of G such that {a, b} ∈ E, we add an additional
locus using the generic construction to ensure that the individual sa,b ∈
U cannot be a child of the parents pu and pv in P .

We build each individual in U∪P locus-by-locus in the above manner. Our partition
A of U to sibling groups is defined as follows: we have a sibling group Ai,j =
{{sa,b} | {a, b} witnesses the super-edge {Ai, Bj} } for every super-edge {Ai, Bj}.

First, we need to verify that each of our sibling set is indeed a sibling set.
Consider the sibling set Ai,j . Pick any u ∈ Ai and v ∈ Bj such that {u, v} ∈ E, i.e.,
{u, v} witnesses the super-edge {Ai, Bj}. We claim that pu and pv are the parents
for all individuals in Ai,j . Indeed, the two rules allow this.

Suppose that MINREP has a solution of size γ. This generates a set of γ parents
for FIND-MIN-PARENT in an obvious manner: for every vertex v in the solution
of MINREP we pick the individual pv in the solution of FIND-MIN-PARENT. If
the super-edge {Ai, Bj} is witnessed by the edge {u, v} in the solution of MINREP,
then the sibling set Ai,j is generated by the parents pu and pv.

Conversely, suppose that FIND-MIN-PARENT has a solution with γ parents.
We associate each parent pu to the corresponding vertex u of G in our solution
of MINREP. Consider a super-edge {Ai, Bj} and the associated sibling set Ai,j .
Suppose that pu and pv are the parents of this group. By Rule (��), {u, v} ∈ E. By
Rule (�), one of pu and pv, say pu, must be from Ai and the other one pv from Bj .
Thus, the edge {u, v} witnesses this super-edge.

Remark 6.2. The above reduction works even if one does not specify the set A of
sibling partition explicitly as part of input but allows all feasible partitions.
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