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Abstract. A traditionally desired goal when designing auction mech-
anisms is incentive compatibility, i.e., ensuring that bidders fare best
by truthfully reporting their preferences. A complementary goal, which
has, thus far, received significantly less attention, is to preserve privacy,
i.e., to ensure that bidders reveal no more information than necessary.
We further investigate and generalize the approximate privacy model for
two-party communication recently introduced by Feigenbaum et al. [8].
We explore the privacy properties of a natural class of communication
protocols that we refer to as “dissection protocols”. Dissection protocols
include, among others, the bisection auction in [9, 10] and the bisection
protocol for the millionaires problem in [8]. Informally, in a dissection
protocol the communicating parties are restricted to answering simple
questions of the form “Is your input between the values α and β (under
a pre-defined order over the possible inputs)?”.
We prove that for a large class of functions called tiling functions, which
include the 2nd-price Vickrey auction, there always exists a dissection
protocol that provides a constant average-case privacy approximation ra-

tio for uniform or “almost uniform” probability distributions over inputs.
To establish this result we present an interesting connection between the
approximate privacy framework and basic concepts in computational ge-
ometry. We show that such a good privacy approximation ratio for tiling
functions does not, in general, exist in the worst case. We also discuss
extensions of the basic setup to more than two parties and to non-tiling
functions, and provide calculations of privacy approximation ratios for
two functions of interest.
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1 Introduction

Consider the following interaction between two parties, Alice and Bob. Each of
the two parties, Alice and Bob, holds a private input, xbob and yalice respectively,
not known to the other party. The two parties aim to compute a function f of the
two private inputs. Alice and Bob alternately query each other to make available
a small amount of information about their private inputs, e.g., an answer to a
range query on their private inputs or a few bits of their private inputs. This
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process ends when each of them has seen enough information to be able to
compute the value of f(xbob, yalice). The central question that is the focus of
this paper is:

Can we design a communication protocol whose execution reveals, to both
Alice and Bob, as well as to any eavesdropper, as little information as
possible about other the other’s private input beyond what is necessary
to compute the function value?

Note that there are two conflicting constraints: Alice and Bob need to communi-
cate sufficient information for computing the function value, but would prefer not
to communicate too much information about their private inputs. This setting
can be generalized in an obvious manner to d > 1 parties party1, party2, . . . , partyd
computing a d-ary f by querying the parties in round-robin order, allowing each
party to broadcast information about its private input (via a public communi-
cation channel).

Privacy preserving computational models such as the one described above
have become an important research area due to the increasingly widespread usage
of sensitive data in networked environments, as evidenced by distributed com-
puting applications, game-theoretic settings (e.g., auctions) and more. Over the
years computer scientists have explored many quantifications of privacy in com-
putation. Much of this research focused on designing perfectly privacy-preserving
protocols, i.e., protocols whose execution reveals no information about the par-
ties’ private inputs beyond that implied by the outcome of the computation.
Unfortunately, perfect privacy is often either impossible, or infeasibly costly to
achieve. To overcome this, researchers have also investigated various notions of
approximate privacy [7, 8].

In this paper, we adopt the approximate privacy framework of [8] that quanti-
fies approximate privacy via the privacy approximation ratios (Pars) of protocols
for computing a deterministic function of two private inputs. Informally, Par
captures the objective that an observer of the transcript of the entire protocol
will not be able to distinguish the real inputs of the two communicating par-
ties from as large a set as possible of other inputs. To capture this intuition, [8]
makes use of the machinery of communication-complexity theory to provide a
geometric and combinatorial interpretation of protocols. [8] formulates both the
worst-case and the average-case version of Pars and studies the tradeoff between
privacy preservation and communication complexity for several functions.

1.1 Economic Motivation

The original motivation of this line of research, as explained in [8], comes from
privacy concerns in auction theory. A traditionally desired goal when designing
an auction mechanism is to ensure that it is incentive compatible, i.e., bidders
fare best by truthfully reporting their preferences. More recently, attention has
also been given to the complementary goal of preserving the privacy of the bid-
ders (both with respect to each other and to the auctioneer/mechanism). Take,
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for example, the famous 2nd-price Vickrey auction of an item. Consider the
ascending-price English auction, i.e., the straightforward protocol in which the
price of the item is incrementally increased, bidders drop out when their value
for the item is exceeded until the identity of winner is determined, and the win-
ner is then charged the second-highest bid. Intuitively, this protocol reveals more
information than what is absolutely necessary to compute the outcome, i.e., the
identity of the winner and the second-highest bid. Specifically, observe under
the ascending-price English auction not only will the value of the second-highest
bidder be revealed, but so will the values of all other bidders but the winner.

Can we design communication protocols which implement the 2nd-price Vick-
rey auction in an (approximately) privacy-preserving manner? Can we design
such protocols that are computationally- or communication-efficient? These sort
of questions motivate our work. We consider a setting that captures applications
of the above type, and explore the privacy-preservation and communication-
complexity guarantees achievable in this setting.

2 Summary of Our Contributions

Any investigation of approximate privacy for multi-party computation starts by
defining how we quantify approximate privacy. In this paper, we use the com-
binatorial framework of [8] for quantification of approximate privacy for two
parties via Pars and present its natural extension to three or more parties. Of-
ten, parties’ inputs have a natural ordering, e.g., the private input of a party
belongs to some range of integers {L,L+1, . . . ,M} (as is the case when comput-
ing, say, the maximum or minimum of two inputs). When designing protocols for
such environments, a natural restriction is to only allow the protocol to ask each
party questions of the form “Is your input between the values α and β (under
this natural order over possible inputs)?”. We refer to this type of protocols as
dissection protocols and study the privacy properties of this natural class of pro-
tocols. We note that the bisection and c-bisection protocols for the millionaires
problem and other problems in [8], as well as the bisection auction in [9, 10], all
fall within this category of protocols. Our findings are summarized below.

Average- and worst-case Pars for tiling functions for two party compu-
tation. We first consider a broad class of functions, namely the tiling functions,
that encompasses several well-studied functions (e.g., Vickrey’s second-price auc-
tions). Informally, a two-variable tiling function is a function whose output space
can be viewed as a collection of disjoint combinatorial rectangles in the two-
dimensional plane, where the function has the same value within each rectangle.
A first natural question for investigation is to classify those tiling functions for
which there exists a perfectly privacy-preserving dissection protocol. We observe
that for every Boolean tiling functions (i.e., tiling functions which output binary
values) this is indeed the case. In contrast, for tiling functions with a range of just
three values, perfectly privacy-preserving computation is no longer necessarily
possible (even when not restricted to dissection protocols).

We next turn our attention to Pars. We prove that for every tiling function
there exists a dissection protocol that achieves a constant Par in the average
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case (that is, when the parties’ private values are drawn from an uniform or al-
most uniform probability distribution). To establish this result, we make use of
results on the binary space partitioning problems studied in the computational
geometry literature. We complement this positive result for dissection proto-
cols with the following negative result: there exist tiling functions for which no
dissection protocol can achieve a constant Par in the worst-case.

Extensions to non-tiling functions and three-party communication.We
discuss two extensions of the above results. We explain how our constant average-
case Par result for tiling functions can be extended to a family of “almost”
tiling functions. In addition, we consider the case of more than two parties.
We show that in this setting it is no longer true that for every tiling function
there exists a dissection protocol that achieves a constant Par in the average
case. Namely, we exhibit a three-dimensional tiling function for which every
dissection protocol exhibits exponential average- and worst-casePars, even when
an unlimited number of communication steps is allowed.

PARs for the set covering and equality functions. [8] presents bounds on the
average-case and the worst-casePars of the bisection protocol— a special case of
dissection protocols — for several functions. We analyze the Pars of the bisection
protocol for two well-studied Boolean functions: the set-covering and equality

functions; the equality function provides a useful testbed for evaluating privacy
preserving protocols [3] [11, Example 1.21] and set-covering type of functions are
useful for studying the differences between deterministic and non-deterministic
communication complexities [11]. We show that, for both functions, the bisection
protocol fails to achieve good Pars in both the average- and the worst-case.

3 Summary of Prior Related Works

3.1 Privacy-preserving Computation

Privacy-preserving computation has been the subject of extensive research and
has been approached from information-theoretic [3], cryptographic [5], statisti-
cal [12], communication complexity [13, 16], statistical database query [7] and
other perspectives [11]. Among these, most relevant to our work is the approxi-
mate privacy framework of Feigenbaum et al. [8] that presents a metric for quan-
tifying privacy preservation building on the work of Chor and Kushilevitz [6] on
characterizing perfectly privately computable computation and on the work of
Kushilevitz [13] on the communication complexity of perfectly private computa-
tion. The bisection, c-bisection and bounded bisection protocols of [8] fall within
our category of dissection protocol since we allow the input space of each party
to be divided into two subsets of arbitrary size. There are also some other for-
mulations of perfectly and approximately privacy-preserving computation in the
literature, but they are inapplicable in our context. For example, the differential
privacy model (see [7]) approaches privacy in a different context via adding noise
to the result of a database query in such a way as to preserve the privacy of the
individual records but still have the result convey nontrivial information,
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3.2 Binary space partition (Bsp)

Bsps present a way to implement a geometric divide-and-conquer strategy and
is an extremely popular approach in numerous applications such as hidden sur-
face removal, ray-tracing, visibility problems, solid geometry, motion planning
and spatial databases. However, to the best of our knowledge, a connection be-
tween Bsps bounds such as in [2, 4, 14, 15] and approximate privacy has not been
explored before.

4 The Model and Basic Definitions

4.1 Two-party Approximate Privacy Model of [8]

We have two parties party1 and party2, having binary strings x1 and x2 respec-
tively, which represents their private values in some set U in. The common goal
of the two parties is to compute the value f(x1, x2) of a given public-knowledge
function f . Before a communication protocol P starts, each partyi initializes its
“set of maintained inputs” U in

i to U in. In one step of communication, one party
transmits a bit indicating in which of two parts of its input space its private in-
put lies. The other party then updates its set of maintained inputs accordingly.
The very last information transmitted in the protocol P contains the value of of
f(x1, x2). The final transcript of the protocol is denoted by s(x1, x2).

Denoting the domain of outputs by U out, any function f : U in×U in 7→ U out

can be visualized as
∣

∣U in
∣

∣×
∣

∣U in
∣

∣ matrix with entries from U out in which the first
dimension represents the possible values of party1, ordered by some permutation
Π1, while the second dimension represents the possible values of party2, ordered
by some permutation Π2, and each entry contains the value of f associated with
a particular set of inputs from the two parties. This matrix will be denoted
by AΠ1,Π2

(f), or sometimes simply by A. We present the following definitions
from [8, 11].

Definition 1 (Regions, partitions) A region of A is any subset of entries in
A. A partition of A is a collection of disjoint regions in A whose union is A.

Definition 2 (Rectangles, tilings, refinements) A rectangle in A is a sub-
matrix of A. A tiling of A is a partition of A into rectangles. A tiling T1 of A
is a refinement of another tiling T2 of A if every rectangle in T1 is contained in
some rectangle in T2.

Definition 3 (Monochromatic, maximal monochromatic and ideal mo-
nochromatic partitions) A region R of A is monochromatic if all entries in
R are of the same value. A monochromatic partition of A is a partition with only
monochromatic regions. A monochromatic region of A is a maximal monochro-
matic region if no monochromatic region in A properly contains it. The ideal
monochromatic partition of A consists of the maximal monochromatic regions.

Definition 4 (Perfect privacy) Protocol P achieves perfect privacy if, for ev-
ery two sets of inputs (x1, x2) and (x′

1, x
′
2) such that f(x1, x2) = f(x′

1, x
′
2), it
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holds that s(x1, x2) = s(x′
1, x′

2). Equivalently, a protocol P for f achieves
perfectly privacy if the monochromatic tiling induced by P is the ideal monochro-
matic partition of A(f).

Definition 5 (Worst case and average case Par of a protocol P ) Let
RP (x1, x2) be the monochromatic rectangle containing the cell A(x1, x2) induced
by P , RI(x1, x2) be the monochromatic region containing the cell A(x1, y1) in
the ideal monochromatic partition of A, and D be a probability distribution over
the space of inputs. Then P has a worst-case Par of αworst and an average case
Par of αD under distribution D provided3

αworst = max
(x1,x2)∈U in×U in

|RI(x1, x2) |

|RP (x1, x2)|
and αD =

∑

(x1,x2)∈U in×U in

Pr
D

[x1 & x2]

∣

∣RI(x1, x2)
∣

∣

|RP (x1, x2)|

Definition 6 (Par for a function) The worst-case (average-case) Par for a
function f is the minimum, over all protocols P for f, of the worst-case (average-
case) Par of P .

Extension to Multi-party Computation In the multi-party setup, we have d > 2
parties party1, party2, . . . , partyd computing a d-ary function f : (U in)d 7→ U out.
Now, f can be visualized as

∣

∣U in
∣

∣ × · · · × |U in| matrix AΠ1,...,Πd
(f) (or, some-

times simply by A) with entries from U out in which the ith dimension represents
the possible values of partyi ordered by some permutation Πi, and each entry of
A contains the value of f associated with a particular set of inputs from the d
parties. Then, all the previous definitions can be naturally adjusted in the obvi-
ous manner, i.e., the input space as a d-dimensional space, each party maintains
the input partitions of all other d− 1 parties, the transcript of the protocol s is
a d-ary function, and rectangles are replaced by d-dimensional hyper-rectangles
(Cartesian product of d intervals).

4.2 Dissection Protocols &Tiling Functions for 2-party Computation

Often in a communication complexity settings the input of each party has a nat-

ural ordering, e.g., the set of input of a party from
{

0, 1
}k

can represent the num-
bers 0, 1, 2, . . . , 2k − 1 (as is the case when computing the maximum/minimum
of two inputs, in the millionaires problem, in second-price auctions, and more).
When designing protocols for such environments, a natural restriction is to only
the allow protocols such that each party asks questions of the form “Is your
input between a and b (in this natural order over possible inputs)?”, where

a, b ∈
{

0, 1
}k

. Notice that after applying an appropriate permutation to the
inputs, such a protocol divides the input space into two (not necessarily equal)
halves. Below, we formalize these types of protocols as “dissection protocols”.

3 The notation Pr
D

[E ] denotes the probability of an event E under distribution D.
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Definition 7 (contiguous subset of inputs) Given a permutation Π of
{0, 1}k, let ≺Π denote the total order over {0, 1}k that Π induces, i.e., ∀ a, b ∈
{0, 1}k, a ≺Π b provided b comes after a in Π. Then, I ⊆ {0, 1}k contiguous

with respect to Π if ∀ a, b∈I, ∀ c∈
{

0, 1
}k

: a ≺Π c ≺Π b =⇒ c ∈ I.

Definition 8 (dissection protocol) Given a function f : {0, 1}k × {0, 1}k 7→
{0, 1}t and permutations Π1, Π2 of {0, 1}k, a protocol for f is a dissection pro-
tocol with respect to (Π1, Π2) if, at each communication step, the maintained
subset of inputs of each partyi is contiguous with respect to Πi.

Observe that every protocol P can be regarded as a dissection protocol with
respect to some permutations over inputs by simply constructing the permu-
tation so that it is consistent with the way P updates the maintained sets of
inputs. However, not every protocol is a dissection protocol with respect to spe-
cific permutations. Consider, for example, the case that both Π1 and Π2 are the
permutation over {0, 1}k that orders the elements from lowest to highest binary
values. Observe that a protocol that is a dissection protocol with respect to these
permutations cannot ask questions of the form “Is your input odd or even?”, for
these questions partition the space of inputs into non-contiguous subsets with
respect to (Π1, Π2).

A special case of interest of the dissection protocol is the “bisection type”
protocols that have been investigated in the literature in many contexts [8, 10].

Definition 9 (bisection, c-bisection and bounded-bisection protocols)
For a constant c ∈

[

1
2 , 1

)

, a dissection protocol with respect to the permutations
(Π1, Π2) is called a c-bisection protocol provided at each communication step
each partyi partitions its input space of size z into two halves of size c z and
(1 − c) z. A bisection protocol is simply a 1

2 -bisection protocol. For an integer
valued function g(k) such that 0 ≤ g(k) ≤ k, bounded-bisectiong(k) is the pro-
tocol that runs a bisection protocol with g(k) bisection operations followed by a
protocol (if necessary) in which each partyi repeatedly partitions its input space
into two halves one of which is of size exactly one.

Definition 10 (tiling and non-tiling functions) A function f : {0, 1}k ×
{0, 1}k 7→ {0, 1}t is called a tiling function with respect to two permutations
(Π1, Π2) of {0, 1}k if the monochromatic regions in AΠ1,Π2

(f) form a tiling,
and the number of monochromatic regions in this tiling is denote by rf (Π1, Π2).
Conversely, f is a non-tiling function if f is not a tiling function with respect
to every pair of permutations (Π1, Π2) of {0, 1}k.

Note that a function f that is tiling function with respect to permutations
(Π1, Π2) may not be a tiling function with respect to a different set of per-
mutations (Π ′

1, Π
′
2). Also, a function f can be a tiling function with respect to

two distinct permutation pairs (Π1, Π2) and (Π ′
1, Π

′
2) with a different number

of monochromatic regions. Thus, indeed we need Π1 and Π2 in the definition of
tiling functions and rf .
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Extensions to Multi-party Computation For the multi-party computation model
involving d > 2 parties, the d-ary tiling function f has a permutation Πi of
{0, 1}k for each ith argument of f (or, equivalently for each partyi). A dissection
protocol is generalized to a “round robin” dissection protocol in the following
manner. In one “mega” round of communications, parties communicate in a fixed
order, say party1, party2, . . . , partyd, and the mega round is repeated if necessary.
Any communication by any party is made available to all the other parties. Thus,
each communication of the dissection protocol partitions a d-dimensional space
by an appropriate set of (d− 1)-dimensional hyperplanes, where the missing di-
mension in the hyperplane correspond to the index of the party communicating.

5 Two-party Dissection Protocol for Tiling Functions

5.1 Boolean Tiling Functions

Lemma 1 Any Boolean tiling function f : {0, 1}k × {0, 1}k 7→ {0, 1} with re-
spect to some two permutations (Π1, Π2) can be computed in a perfectly privacy-
preserving manner by a dissection protocol with respect to (Π1, Π2).

Remark 1. The claim of Lemma 1 is false if f outputs three values.

5.2 Average and Worst Case Par for Non-Boolean Tiling Functions

Let f : {0, 1}k × {0, 1}k 7→ {0, 1}t be a given tiling function with respect to
permutations (Π1, Π2). Neither the c-bisection nor the bounded-bisection pro-
tocol performs well in terms of average Par on arbitrary tiling functions. In this
section, we show that any tiling function f admits a dissection protocol that has
a small constant average case Par. Moreover, we show that this result cannot
be extended to the case of worst-case Pars.

Constant Average-case Par for Non-Boolean Functions Let Du de-
note the uniform distribution over all input pairs. We define the notion of a
c-approximate uniform distribution D∼ c

u ; note that D∼ 0
u ≡ Du.

Definition 11 (c-approximate uniform distribution) A c-approximate uni-
form distribution D∼ c

u is a distribution in which the probabilities of the input
pairs are close to that for the uniform distribution as a linear function of c,
namely max(x,y), (x′,y′)∈{0,1}k×{0,1}k

∣

∣Pr D
∼ c
u

[x&y]− Pr D
∼ c
u

[x′ &y′]
∣

∣ ≤ c 2−2k.

Theorem 1
(a) A tiling function f with respect to permutations (Π1, Π2) admits a dissec-
tion protocol P with respect to the same permutations (Π1, Π2) using at most
4 rf (Π1, Π2) communication steps such that αD

∼ c
u

≤ 4 + 4 c.

(b) For all 0 ≤ c < 9/8, there exists a tiling function f : {0, 1}k × {0, 1}k 7→
{0, 1}2 such that, for any two permutations (Π1, Π2) of {0, 1}k, every dissection
protocol with respect to (Π1, Π2) using any number of communication steps has
αD

∼ c
u

≥ (11/9) + (2/81)c.
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Proof. We only provide the proof of (a); a proof of the other part can be found
in the full version of the paper. Let S = {S1, S2, . . . , Srf

} be the set of rf =
rf (Π1, Π2) ideal monochromatic rectangles in the tiling of f induced by the
permutations (Π1, Π2) and consider a protocol P that is a dissection protocol
with respect to (Π1, Π2). Suppose that the ideal monochromatic rectangle Si ∈ S
has yi elements, and P partitions this rectangle into ti rectangles Si,1, . . . , Si,ti

having zi,1, . . . , zi,ti elements, respectively. Then, it follows that

αDu
=

∑

(x1,x2)∈U×U

Pr
Du

[x1 & x2]

∣

∣RI(x1, x2)
∣

∣

|RP (x1, x2)|

=

rf
∑

i=1

ti
∑

j=1

∑

(x1,x2)∈Si,j

Pr
Du

[x1 & x2]
yi
zi,j

=

rf
∑

i=1

ti
∑

j=1

yi
22k

=

rf
∑

i=1

ti yi
22k

Similarly, it follows that

αD
∼ c
u

≤
∑rf

i=1

∑ti
j=1

∑

(x1,x2)∈Si,j

1+c
22k

× yi

zi,j
=

∑rf

i=1

∑ti
j=1

(1+c) yi

22k
=

∑rf

i=1
(1+c) ti yi

22k
.

A binary space partition (Bsp) for a collection of disjoint rectangles in the
two-dimensional plane is defined as follows. The plane is divided into two parts
by cutting rectangles with a line if necessary. The two resulting parts of the
plane are divided recursively in a similar manner; the process continues until at
most one fragment of the original rectangles remains in any part of the plane.
This division process can be naturally represented as a binary tree (Bsp-tree)
where a node represents a part of the plane and stores the cut that splits the
plane into two parts that its two children represent and each leaf of the Bsp-tree
represents the final partitioning of the plane by storing at most one fragment of
an input rectangle. The size of a Bsp is the number of leaves in the Bsp-tree.

Fact 1 [4]4 Assume that we have a set S of disjoint axis-parallel rectangles in
the plane. Then, there is a Bsp of S such that every rectangle in S is partitioned
into at most 4 rectangles.

Consider the dissection protocol corresponding to the Bsp in Fact 1. Then,

using maxi{ti} ≤ 4 we get αD
∼ c
u

≤
∑rf

i=1
4 (1+c) yi

22k = 4 (1 + c). The number of
communication steps in this protocol is the height of the Bsp-tree, i.e., ≤ 4rf .

Large Worst-case Par for Non-Boolean Functions Can one extend the
results of the last section to show that every tiling function admits a dissection
protocol that achieves a good Par even in the worst case? We answer this ques-
tion in the negative by presenting a tiling function for which every dissection
protocol has large worst-case Par.

Theorem 2 Let k > 0 be an even integer. Then, there exists a tiling function
f : {0, 1}k × {0, 1}k 7→ {0, 1}3 with respect to some two permutations (Π1, Π2)
such that, for any two permutations Π ′

1 and Π ′
2 of {0, 1}k, every dissection

protocol for f with respect to (Π ′
1, Π

′
2) has αworst > 2k/2 − 1.

4 The stronger bounds by Berman, DasGupta and Muthukrishnan [2] apply to average

number of fragments only.
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6 Extensions of the Basic Two-party Setup

6.1 Non-tiling Functions

A natural extension of the class of tiling functions involves relaxing the constraint
that each monochromatic region must be a rectangle.

Definition 12 (δ-tiling function) A function f : {0, 1}k×{0, 1}k 7→{0, 1}t is a
δ-tiling function with respect to permutations (Π1, Π2) of {0, 1}k if each maximal
monochromatic region of AΠ1,Π2

(f) is an union of at most δ disjoint rectangles.

Proposition 1 For any δ-tiling function f with respect to (Π1, Π2) with r max-
imal monochromatic regions, there is a dissection protocol P with respect to
(Π1, Π2) using at most 4rδ communication steps such that αD

∼ c
u

≤ (4 + 4c) δ.

6.2 Multi-party Computation

How good is the average Par for a dissection protocol on a d-dimensional tiling
function? For a general d, it is non-trivial to compute precise bounds because
each partyi has her/his own permutationΠi of the input, the tiles are boxes of full
dimension and hyperplanes corresponding to each step of the dissection protocol
is of dimension exactly d− 1. Nonetheless, we show that the average Par is very
high for dissection protocols even for 3 parties and uniform distribution, thereby
suggesting that this quantification of privacy may not provide good bounds for
three or more parties.

Theorem 3 There exists a tiling function f : {0, 1}k × {0, 1}k × {0, 1}k 7→{0, 1}3k

such that, for any three permutations Π1, Π2, Π3 of {0, 1}k, every dissection pro-
tocol with respect to (Π1, Π2, Π3) must have αDu

= Ω
(

2k
)

.

Proof. In the sequel, for convenience we refer to 3-dimensional hyper-rectangles
simply by rectangles and refer to the arguments of function f via decimal equiv-
alent of the corresponding binary numbers. The tiling function for this theorem
is adopted from an example of the paper by Paterson and Yao [14, 15] with ap-
propriate modifications. The three arguments of f are referred to as dimensions
1, 2 and 3, respectively. Define the volume of a rectangle R = [x1, x

′
1]× [x2, x

′
2]×

[x3, x
′
3] ⊆ {0, 1, . . . , 2k − 1}3 as Volume(R) = max{0, Π3

i=1(x
′
i − xi + 1)}, and let

[∗] denote the interval
[

0, 2k − 1
]

. We provide the tiling for the function f :

– For each dimension, we have a set of Θ
(

22k
)

rectangles; we refer to these
rectangles as non-trivial rectangles for this dimension.
• For dimension 1, these rectangles are of the form [∗]× [2y, 2y]× [2z, 2z]
for every integral value of 0 ≤ 2y, 2z < 2k.

• For dimension 2, these rectangles are of the form [2x, 2x] × [∗] × [2z +
1, 2z + 1] for every integral value of 0 ≤ 2x, 2z + 1 < 2k.

• For dimension 3, these rectangles are of the form [2x+1, 2x+1]× [2y+
1, 2y + 1]× [∗] for every integral value of 0 ≤ 2x+ 1, 2y + 1 < 2k.

– The remaining “trivial” rectangles are each of unit volume such that they
together cover the remaining input space.
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Let Snon−trivial be the set of all non-trivial rectangles. Observe that:

– Rectangles in Snon−trivial are mutually disjoint since any two of them do not
intersect in at least one dimension.

– Each rectangle in Snon−trivial has a volume of 2k and thus the sum of their
volumes is Θ

(

23k
)

.

It now follows that the number of monochromatic regions is O
(

23k
)

. Suppose
that a dissection protocol partitions, for i = 1, 2, . . . , |Snon−trivial|, the ith non-
trivial rectangle Ri ∈ Snon−trivial into ti rectangles Ri,1, Ri,2, . . . , Ri,ti . Then,

αDu

def
=

∑

(x,y,z)∈

{0,1}k×{0,1}k×{0,1}k

Pr
Du

[x& y& z]

∣

∣RI(x, y, z)
∣

∣

|RP (x, y, z)|
≥

|Snon−trivial|
∑

i=1

ti
∑

j=1

∑

(x,y,z)∈Ri,j

Pr
Du

[x& y& z]
Volume (Ri)

Volume (Ri,j)

=
∑|Snon−trivial|

i=1

∑ti
j=1

2k

23k
=

∑|Snon−trivial|
i=1

(

ti/2
2k
)

Thus, it suffices to show that
∑|Snon−trivial|

i=1 ti = Ω
(

23k
)

. Let Q be the set of max-
imal monochromatic rectangles produced the partitioning of the entire protocol.
Consider the two entries px,y,z = (2x + 1, 2y, 2z + 1) and p′x,y,z = (2x, 2y, 2z).
Note that px,y,z belongs to a trivial rectangle since their third, first and second
coordinate does not lie within any non-trivial rectangle of dimension 1, 2 and 3,
respectively, whereas p′x,y,z belongs to the non-trivial rectangle [∗]× [2×(8y), 2×
(8y)]× [2×(8z), 2×(8z)] of dimension 1. Thus, px,y,z and p′x,y,z cannot belong to

the same rectangle in Q. Let T =
⋃
{

{p 8x,8y,8z, p
′
8x,8y,8z} | 64 < 16x, 16y, 16z <

2k − 64
}

. Clearly, |T | = Θ
(

23k
)

. For an entry (x1, x2, x3), let its neighborhood
be defined by the ball Nbr(x1, x2, x3) = { (x′

1, x
′
2, x

′
3) | ∀i : |xi − x′

i| ≤ 4 }. Note
that Nbr(p 8x,8y,8z) ∩ Nbr(p 8x′,8y′,8z′) = ∅ provided (x, y, z) 6= (x′, y′, z′). Next,
we show that, to ensure that the two entries p 8x,8y,8z and p′8x,8y,8z are in two
different rectangles in Q, the protocol must produce an additional fragment of
one of the non-trivial rectangles in the neighborhood Nbr(p 8x,8y,8z); this would
directly imply

∑

i ti = Ω
(

23k
)

.
Consider the step of the protocol before which p 8x,8y,8z and p′8x,8y,8z were

contained inside the same rectangle, namely a rectangle Q that includes the
rectangle [16x, 16x + 1] × [16y, 16y] × [16z, 16z + 1], but after which they are
in two different rectangles Q1 = [a′1, b

′
1] × [a′2, b

′
2] × [a′3, b

′
3] and Q2 = [a′′1 , b

′′
1 ] ×

[a′′2 , b
′′
2 ] × [a′′3 , b

′′
3 ]. Remember that both Q1 and Q2 must have the same two

dimensions and these two dimensions must be the same as the corresponding
dimensions of Q. The following cases arise.
Case 1(split via the 1st coordinate): [a′2, b

′
2]=[a′′2 , b

′′
2 ] ⊇ [16y, 16y], [a′3, b

′
3] =

[a′′3 , b
′′
3 ] ⊇ [16z, 16z+1], b′1=16x and a′′1 =16x+1. Then, a new fragment of a non-

trivial rectangle of dimension 2 is produced at [16x, 16y, 16z] ∈ Nbr(p 8x,8y,8z).
Case 2(split via the 2nd coordinate): [a′1, b

′
1] = [a′′1 , b

′′
1 ] ⊇ [16x, 16x+ 1] and

[a′3, b
′
3] = [a′′3 , b

′′
3 ] ⊇ [16z, 16z + 1]. This case is not possible.

Case 3(split via the 3rd coordinate): [a′1, b
′
1]=[a

′′
1 , b

′′
1 ]⊇ [16x, 16x+1], [a′2, b

′
2]=

[a′′2 , b
′′
2 ]⊇ [16y, 16y], b′3=16z and a′′3=16z+1. Then, a new fragment of a non-trivial

rectangle of dimension 1 is produced at [16x, 16y, 16z] ∈ Nbr(p 8x,8y,8z).
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7 Analysis of the Bisection Protocol for Two Functions

Let x = (x1, x2, . . . , xn) ∈ {0, 1}k and y = (y1, y2, . . . , yn) ∈ {0, 1}k. The func-
tions that we consider are the following:

set-covering: f∧,∨(x,y) =
∧n

i=1 (xi ∨ yi). To interpret this as a set-covering func-
tion, suppose that the universe U consists of n elements e1, e2, . . . , en and
the vectors x and y encode membership of the elements in two sets Sx and
Sy, i.e., xi (respectively, yi) is 1 if and only if ei ∈ Sx (respectively, ei ∈ Sy).
Then, f∧,∨(x,y) = 1 if and only if Sx ∪ Sy = U .

equality: f=(x,y) = 1 if xi = yi for all 1 ≤ i ≤ k, and f=(x,y) = 0 otherwise.

A summary of our bounds is as follows: for f∧,∨, αworst ≥ αDu
≥

(

3
2

)2k
; for f=,

αDu
= 2k − 2 + 21−k, and αworst = 22k−1 − 2k−1.
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