
The Inverse Protein Folding Problem on 2D and 3D Lattices∗

Piotr Berman†

Department of Computer Science & Engineering

Pennsylvania State University

University Park, PA 16802

Email: berman@cse.psu.edu

Bhaskar DasGupta‡

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607-7053

Email: dasgupta@cs.uic.edu

Dhruv Mubayi§

Department of Mathematics, Statistics & Computer Science

University of Illinois at Chicago

Chicago, IL 60607-7045

Email: mubayi@math.uic.edu

Robert Sloan

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607-7053

Email: sloan@cs.uic.edu

György Turán

Department of Mathematics, Statistics & Computer Science

University of Illinois at Chicago

Chicago, IL 60607-7045

Email: gyt@uic.edu

Yi Zhang¶

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607-7053

Email: yzhang3@cs.uic.edu

November 4, 2005

Abstract

In this paper we investigate the inverse protein folding (IPF) problem under the Canonical
model on 3D and 2D lattices [13, 26]. In this problem, we are given a contact graph G = (V,E)
of a protein sequence that is embeddable in a 3D (respectively, 2D) lattice and an integer
1 ≤ K ≤ |V |. The goal is to find an induced subgraph of G of at most K vertices with the
maximum number of edges. In this paper, we prove the following results:

∗A preliminary version of this paper without many proofs appeared in 15th Annual Combinatorial Pattern Match-
ing Symposium, LNCS 3109, C. S. Sahinalp, S. Muthukrishnan and U. Dogrusoz (editors), pp. 244-253, July 2004.

†Supported by NSF grant CCR-O208821.
‡Supported by NSF grants CCR-0296041, CCR-0206795 and CCR-0208749.
§Supported by NSF grant DMS-9970325.
¶Supported in part by NSF grant CCR-0208749.

1

• An earlier proof of NP-completeness of the IPF problem on 3D lattices [13] is based on the
NP-completeness of the IPF problem on the 2D lattices. However, the reduction was not
correct and we show that the IPF problem for 2D lattices can be solved in O(K|V |) time.
But, we show that the IPF problem on 3D lattices is indeed NP-complete by a providing
a different reduction from a different NP-complete problem.

• We design a polynomial-time approximation scheme for the IPF problem on 3D lattices
using the shifted slice-and-dice approach in [6, 18, 19], thereby improving the previous best
polynomial-time approximation algorithm which had a performance ratio of 1

2
[13].

1 Introduction and Problem Definitions

In protein structure studies the single most important research problem is to understand how
protein sequences fold into their native 3D structures, e.g.. see [3, 5, 7, 9, 13–17, 22, 23, 27, 28].
This problem can be investigated at two complementary levels. At a lower level, one wishes to
determine how an individual protein sequence folds. The problem of using sequence input to
generate 3D structure output is referred to as the ab initio protein structure prediction problem
and has been shown to be NP-hard [3, 5, 7]. At a higher level, one wants to analyze the protein
landscapes, i.e. the relationship between the space of all protein sequences and the space of native
3D structures. A formal framework for protein landscape is established by a model that relates
protein sequences S to protein structures P . Typically this is given by a real-valued function
Φ : S × P → R that models the “fit” of a sequence s ∈ S to a structure p ∈ P with respect to
the principles of statistical mechanics. A functional relationship between sequences and structures
is obtained by minimizing Φ with respect to the structures, i.e. structure q fits sequence s if
Φ(s, q) = minp∈P Φ(s, p). Typically the values of Φ are assumed to model notions of free energy and
the minimization is supposed to provide approximations to the most probable structure obtained
from thermodynamical considerations.

The exact nature of Φ depends on the particular model but, for any given specification, there is
natural interest in the fine-scale structure of Φ. For example, one might ask whether a certain kind
of protein structure is more likely to be the native structure of a diverse collection of sequences
(thus making structure prediction from sequences difficult). One approach to investigating the
structure of Φ is to solve what is called the inverse protein folding (IPF) problem: given a target
3D structure as input, return a fittest sequence with respect to Φ. Three criteria have been proposed
for evaluation of the fitness of the protein sequence with respect to the target structure: (a) the
sequence should fold to the target structure, (b) there should be no degeneracy in the ground state
of the sequence and (c) there should be a large gap between the energy of the sequence in the target
structure and the energy of the sequence in any other structure. Some researchers [28] have proposed
weakening condition (b) by requiring that the degeneracy of the sequence be no greater than the
degeneracy of any other sequence that also folds to the target structure. The IPF problem has
been investigated in a number of studies [4, 8, 10, 13, 20, 24–26, 28]. The computational complexity
of IPF in its full generality as described above is unknown but conjectured to be NP-hard; the
currently best known algorithms are by exhaustive search or Monte Carlo simulations.

One possible mode of handling the IPF problem is by defining a heuristic sequence design (HSD)
problem where a simplified pair-wise interaction function is used to compute the landscape function
Φ. The implicit assumption is that a sequence that satisfies the HSD problem also solves IPF.
Several quantitative models have been proposed for the HSD problem in the literature [8, 25, 26].
This paper is concerned with the Canonical model of Shahknovich and Gutin [26]. This model is
specified by (1) a geometric representation of a target protein structure with n amino acid residues,
(2) a binary folding code in which the amino acids are classified as hydrophobic (H) or polar (P)
[9, 21], and (3) a fitness function Φ defined in terms of the target structure that favors sequences

2

with a dense hydrophobic core and penalizes those with many solvent-exposed hydrophobic residues.
To design a sequence S, we must specify which residues are H and which ones are P . Thus, S is
a sequence of n symbols each of which is either H or P . In the Canonical model, a H-H residue
contact1 is given a value of −1 and all other contacts are given the value of 0. To prevent the
solution from being an all H sequence, the number of H residues in S is limited by fixing an upper
bound λ of the ratio between H and P amino acids. This gives rise to the following special case of
the densest subgraph problem on K vertices:

Definition 1
(a) A d-dimensional lattice is a graph G(n, d) = (V (n, d), E(n, d)) with V (n, d) = ×d

i=1{−n,−n +

1, . . . , n− 1, n} for some positive integer n and E(n, d) = {{(i1, · · · , id), (j1, · · · , jd)} :
∑d

k=1 |ik −
jk| = 1} (X × Y denote the Cartesian product of two sets X and Y).

(b) A 2D sequence (resp. 3D sequence) S = (V, E) is a graph that is a simple path in G(n, 2)
(resp. G(n, 3)) for some n; the contact graph of such a 2D sequence (resp. 3D sequence) S is a
graph Ḡ = (V̄ , Ē) where Ē consists of all edges {u, v} ∈ E(n, 2) (resp. {u, v} ∈ E(n, 3)) such that
u, v ∈ V and {u, v} 6∈ E and V̄ is the set of end points of the edges in Ē.

Problem 1 (DS Problem) The Densest Subgraph (DS) problem has a graph G = (V, E) and
a positive integer K as inputs, and the goal is to find a V ′ ⊆ V with |V ′| ≤ K that maximizes
|{(u, v) ∈ E : u, v ∈ V ′}|.

Problem 2 (IPFC2/IPFC3 Problems) The IPF problem for the Canonical model on a 2D
(resp. 3D) Euclidean lattice, denoted by IPFC2 (resp. IPFC3), is an instance of the DS prob-
lem when the input graph G is the contact graph realized by a 2D (resp. 3D) sequence.

Once a solution to the IPCF2/IPCF3 problem is obtained, we can simply label the vertices in
V ′ by H and the rest of the vertices by P to obtain a solution to the original protein sequence
design problem.

References [1, 2] consider the DS problem for general graphs. Hart [13] considers both IPFC2

and IPFC3 problems, provides approximation algorithm for IPFC3 with an approximation ratio of
1
2 and an almost optimal algorithm for IPFC2. The following property of the contact graph of a
2D/3D sequence is easy to observe [13]:

the contact graph G for a 2D sequence (resp. 3D sequence) is a graph that is a subgraph
of the 2D lattice (respectively, 3D lattice) with at most two vertices of degree 3 (resp.
5) and all other vertices of degree at most 2 (resp. 4).

1.1 Basic Definitions and Notations

We will use the following notations, definitions and conventions consistently throughout the rest
of the paper. G is the given input graph in our problems. V (H) (resp. E(H)) is the vertex set
(resp. edge set) of any graph H. For two graphs G1 and G2, G1 ∪ G2 denotes the graph with
V (G1∪G2) = V (G1)∪V (G2) and E(G1∪G2) = E(G1)∪E(G2). HS is the subgraph of H induced
by the vertex set S, i.e., V (HS) = S and E(HS) = {(x, y) ∈ E(H) | x, y ∈ S}. n0(H), n1(H) and
n2(H) denote the number of vertices in the connected components of a graph H with zero, one or
two cycles, respectively. H\S denotes the graph obtained from a graph H by removing the vertices
in S and all the edges incident to these vertices in S. For a vertex (x, y, z) of the 3D lattice, x,

1A contact in a conformation p1, p2, . . . , pn correspond to monomers i and j where |j − i| > 1 and the Eucildean
distance between pi and pj is 1.

3

y and z are the 1st, 2nd and 3rd coordinate, respectively. [i, j] and [i, j) denote the set of integers
{i, i + 1, i + 2, . . . , j} and {i, i + 1, i + 2, . . . , j − 1}, respectively. OPT(G, K) denote the number of
edges in an optimal solution to the IPFC2 or IPFC3 problem. A δ-approximate solution (or simply
a δ-approximation) of a maximization problem is a solution with an objective value no smaller than
δ times the value of the optimum; an algorithm of performance or approximation ratio δ produces
an δ-approximate solution. A polynomial-time approximation scheme (PTAS) for a maximization
problem is an algorithm that, for any given constant ε > 0, runs in polynomial time and produces
an (1− ε)-approximate solution.

For subsequent usage, we state the General Knapsack (GK) problem and its known pseudo-
polynomial-time solution. An input to this problem consists of a positive integer b and a collection
of sets of objects A0,A1, . . . ,Am where each a ∈ ∪m

i=0Ai has a size (positive integer) s(a) and
a value (positive integer) v(a). The goal is to select a subset of objects A′ ⊆ ∪m

i=0Ai such that
∑

a∈A′ s(a) ≤ b, |A′ ∩Ai| ≤ 1 for each i ∈ [0, m] and the total value of selected objects
∑

a∈A′ v(a)
is maximized. A special case of the GK problem is the subset-sum problem wherein we wish to
find any subset A′ such that

∑

a∈A′ s(a) = b. The GK problem or the subset-sum problem is NP-
complete; however a O(|∪m

i=0Ai|b) pseudo-polynomial time algorithm via dynamic programming to
solve the problem can be designed [12]; in fact this algorithm provides a solution for every instance
A0,A1, . . . ,Am,b′ of the problem for all 0 ≤ b′ ≤ b.

1.2 Our Results

Our results are as follows:

(I) There exists an O(K|V (G)|) time algorithm that solves the IPFC2 problem (see Section 2).

(II) The IPFC3 decision problem is NP-complete (see Section 3.1).

(III) For the IPFC3 problem we can design a PTAS, i.e. for any given constant ε > 0, we can
design a O(K|V (G)|) time algorithms with a performance ratio of 1− ε (see Section 3.2).

1.3 Summary of Algorithmic Techniques Used

• The polynomial-time algorithm in Result (I) uses the polynomial-time Generalized Knapsack
problem, the special topology of the input contact graph as mentioned at the end of the
introduction and the fact that the range of Φ are small integers.

• The NP-completeness reduction in Result (II) uses the NP-completeness reduction in [11]
from the maximum clique problem to the densest subgraph problem on general graphs. The
challenging and tedious parts in our reduction is to make sure that the reduction works for
the special topology of our input contact graph and that such a contact graph can in fact be
realized by a 3D sequence.

• The PTAS in Result (III) is designed using the shifted slice-and-dice approach in [6, 18, 19].

1.4 Difference Between the Canonical and the Grand Canonical Model

To avoid possible confusion due to similar names, we would like to point out that the Canonical
model considered in this paper is neither the same nor a subset of the Grant Canonical (GC) model
for the protein sequence design problem [20, 25]. The GC model is defined by a different choice of

the energy function Φ. In particular, let SH to denote the set of numbers i such that the ith position
in S is equal to H. Then, Φ is defined by the equation Φ(S) = α

∑

i,j∈SH ,i<j−2 g(dij)+β
∑

i∈SH
si,

4

where α < 0, β > 0, si is the area of the solvent-accessible contact surface for the residue (in Å), dij is

the distance between the residues i and j (in Å) and g =

{

1/[1 + exp(dij − 6.5)] when dij ≤ 6.5
0 when dij > 6.5

is a sigmoidal function. The scaling parameters α and β have default values −2 and 1
3 , respectively.

2 The IPFC2 Problem

In [13] Hart provided a proof of NP-completeness of IPFC2. Unfortunately, the proof was not correct
because the reduction from the Knapsack problem was pseudo-polynomial time and Knapsack
problem is not strongly NP-complete. We show in the following lemma that IPFC2 can indeed be
solved in polynomial time.

Lemma 2 There exists an O(K|V (G)|) time algorithm that solves the IPFC2 problem.

Proof. Our lemma can be proved by using additional arguments in Proposition 2 of [13]2. Since
G has at most two vertices of degree 3 and remaining vertices of degree at most 2, G has at most
one connected component with two cycles and remaining connected components with at most one
cycle. Thus, OPT(G, K) ≤ 1

2 (2(K − 2) + 6) = K +1. Using depth-first-search (DFS), one can find
the connected components of G in O(|V (G)| + |E(G)|) = O(|V (G)|) time. Classify a connected
component of G as of the ith type if it contains exactly i cycles for 0 ≤ i ≤ 2. These components
have the following properties:

• G has at most one component of the 2nd type. Moreover, such a component C consists of two
cycles C1 and C2 that either share one simple path of one or more edges or are connected by one
simple path of one or more edges. Define a partial cover3 of C to be either an empty set or consists
of a connected subgraph of C that contains at least one of C1 or C2 but not both; a partial cover
of C with x vertices has therefore exactly x edges.

• All but two of the connected components of G of the 1st type are simple cycles; define a partial
cover of a simple cycle to be the entire simple cycle. The at most two remaining connected com-
ponents which are not simple cycles consist of a simple cycle C with a simple path attached to one
vertex of C; define a partial cover of such a component to be either an empty set or a connected
subgraph of it that contains the cycle C.

The above observations lead us to the following cases:

Case 1: K ≥ n2(G) + n1(G). Then, an optimal solution contains all vertices in connected
components of G of the 1st and the 2nd type. Moreover, if K > n2(G) + n1(G), we create a
sorted list T of the connected components of the 0th type in decreasing order of their number
of vertices, greedily pick all vertices in connected components from T from the beginning until
our total number of vertices y exceed K. If y > K we greedily remove y − K vertices from the
last connected component selected from T such that the remaining vertices from this component
form a connected subgraph of the component. Suppose that we selected from t 0th type connected
components. Then, our solution has (n2(G) + n1(G) + 1) + (K − (n2(G) + n1(G))− t) = K + 1− t
edges. On the other hand, OPT(G, K) ≤ K + 1 − t since it must use vertices from at least t 0th

type components.

Case 2: n2(G) ≤ K < n2(G) + n1(G). We select all the n2(G) vertices in the components of
the 2nd type. If K > n2(G), then it suffices to select an additional K − n2(G) vertices from the

2Hart [13] showed that an almost optimal bound of 1+OPT(G, K) can be achieved in O(|V (G)|) time.
3Partial covers should not be confused with the usual vertex covers for graphs despite similarity of names.

5

components of the 1st type. Let C1 and C2 be those at most two connected components of G of the
1st type that are not simple cycles (one or both of C1 and C2 may be empty), and let C3, C4, . . . , Cp

be the remaining connected components of the 1st type (
∑p

i=1 |V (Ci)| = n1(G)). Let

L = {ℓ | ℓ = αℓ + βℓ, C1 and C2 has partial covers with αℓ and βℓ vertices, respectively}

We use the dynamic programming algorithm for the subset-sum problem to determine, for all ℓ ∈ L,
if there is a subset of indices {i1, i2, . . . , it} ⊆ [3, p] such that

∑t
j=1 |V (Cij)| = K−n2(G)− ℓ. Since

K − n2(G)− ℓ ∈ [0, n1(G)] for any ℓ ∈ L, the total time taken is O(p(K − n1(G))) = O(K|V (G)|).
There are now two subcases:

Case 2.1: there is such a subset of indices corresponding to some ℓ ∈ L. Then, our
solution includes the additional K − n2(G) − ℓ vertices of Ci1 , . . . , Cit , a partial cover of C1 of αℓ

vertices and a partial cover of C2 of βℓ vertices. This is an optimal solution since it has K + 1
edges.

Case 2.2: there is no such subset of indices. Our solution has to include at least two vertices
of degree 1 (corresponding to the two end vertices of a path resulting from at least one simple cycle
could not be covered completely) and we need to minimize the number of such vertices. We create
a sorted list T of C1, C2, C3, C4, . . . , Cp in decreasing order of their number of vertices, greedily
pick all vertices in each connected subgraph from T from the beginning until our total number of
vertices y exceed K, and then greedily remove K − y vertices from the last connected component
selected from T such that the remaining vertices from this component form a connected subgraph
of the component. This is an optimal solution since we select exactly two vertices of degree 1.

Case 3: K < n2(G). This case implies that G has one connected component C of the 2nd

type, all connected components of G of the 1st type are simple cycles and K − 1 ≤OPT(G, K) ≤
K. Let C1, C2, . . . , Cp be the connected components of G of the 1st type. We use the dynamic
programming algorithm for the subset-sum problem to determine in O(pK) = O(K|V (G)|) time,
for all 0 ≤ α < n2(G) such that C has a partial cover of α vertices, if there is a subset of indices
{i1, i2, . . . , it} ⊆ [1, p] such that

∑t
j=1 |V (Cij)| = K − α. Now, again, there are two subcases.

Case 3.1: there is such a subset of indices corresponding to some α. Then, our solution
includes the K−α vertices of Ci1 , . . . , Cit and a partial cover of C of α vertices. This is an optimal
solution since it has K edges.

Case 2.2: there is no such subset of indices. This implies that OPT(G, K) = K − 1. We
select any connected subgraph of C containing K vertices. ❑

3 The IPFC3 Problem

In the first subsection, we show that the IPFC3 problem is NP-complete even though the IPFC2

problem is not. In the second subsection, we show how to design a PTAS for the IPFC3 problem
using the shifted slice-and-dice technique.

3.1 NP-completeness Result for IPFC3

Theorem 3 The IPFC3 problem is NP-complete.

Proof. It is trivial to see that IPFC3 is in NP. To show NP-hardness, we provide a reduction from
the CLIQUE problem on graphs whose goal is to decide, for a given graph G and an integer k, if

6

there is a complete subgraph (clique) of G of k vertices. Let us denote by 3DS problem the DS
problem on graphs with a maximum degree of 3. We will use a minor modification of a reduction
of Feige and Seltser [11] from the CLIQUE problem to the the 3DS problem along with additional
arguments. Consider an instance (G, k) of the CLIQUE problem where V (G) = (v1, . . . , vn) with
|V (G)| = n. We can assume without loss of generality that n is an exact power of 2, n is sufficiently
large and the vertex vn has zero degree4. Let t1 ≪ t2 ≪ t3 ≪ t4 ≪ t5 ≪ t6 be six sufficiently large
polynomials in n; for example, t1 = n20 and ti = t2i−1 for i ∈ [2, 6] suffices. From G, we construct an
instance graph H of the 3DS problem using a minor modification of the construction in Section 3
of Feige and Seltser [11] as follows:

• Replace each vertex vi by a simple cycle of “cycle” edges

Ci = {vi
1, v

i
2}, {v

i
2, v

i
3}, . . . , {v

i
2nt4−1, v

i
2nt4}, {v

i
2nt4 , v

i
1} ∈ E(H)

on the 2nt4 new “cycle” vertices vi
1, v

i
2, . . . , v

i
2nt4
∈ V (H).

• Replace each edge {vi, vj} ∈ E(G) with i < j by a simple path of “path” edges

P ij = {{vi
(n+j)t4

, uij
1 }, {u

ij
1 , uij

2 } . . . , {uij
kt5−1, u

ij
kt5
}, {uij

kt5
, vj

(n+i)t4
}} ⊆ E(H)

of kt5 + 2 > 2nkt4 vertices between vi
(n+j)t4

and vj
(n+i)t4

where uij
1 , uij

2 , . . . , uij
kt5
∈ V (H) are

the new “path” vertices.
• Finally, we add a set of s additional separate connected components Q1, Q2, . . . , Qs, which

will be specified later, such that all vertices in ∪s
i=1Qi are of degree at most 2, no Qi is an

odd cycle and ∪s
i=1|V (Qi)| is a polynomial in n.

Let K = 2nkt4 +
(

k
2

)

kt5 and m = 2nkt4 +
(

k
2

)

(kt5 + 1). The same proof in Feige and Seltser [11]
works to show that, for any selection of Q1, . . . , Qs, there exists a subgraph with K vertices and at
least m edges in H if and only if G has a clique of k vertices. Thus, to complete our reduction, we
need to show the following:

Step 1 (embedding H in the 3D lattice) H can be embedded in the 3D lattice.
Step 2 (realizing H as a contact graph) For some choice of Q1, Q2, . . . , Qs H is the contact

graph of a 3D sequence S.

Below we provide these two steps.

Step 1 (embedding H in the 3D lattice):

We show that H is a subgraph of a 3D lattice (V (poly(n), 3), E(poly(n), 3)) when poly(n)
denotes a polynomial in n. It is trivial to see that a connected component with no vertex of degree
greater than 2 that is not an odd cycle is a subgraph of the 3D lattice, so we concentrate on the
graph H ′ = H\ (∪s

i=1Qi). We use the following notations in the rest of the proof:

• (x1, y1, z1)→ (x2, y2, z2) denotes a path of |x1 − x2|+ |y1 − y2|+ |z1 − z2| edges from vertex
(x1, y1, z1) to vertex (x2, y2, z2) in the 3D lattice in which all edges that connect vertices that
differ in their ith coordinates precede all edges that connect vertices that differ in their jth

coordinates if i < j.
• For 1 ≤ i < j ≤ n, define δij by 2δij = kt5 − (j − i)(t4 + t3)− 2jt2 − 2it1. Note that δij is a

positive even integer since n is a sufficiently large power of 2.

We embed H ′ in the 3D lattice as follows (see Figure 1):

4The degree assumption for vn helps us to design the sequence S whose contact map will correspond to the graph
H for the 3DS problem that we generate from an instance of the CLIQUE problem.

7

• Cycle vertex vi
j of Ci (for j ∈ [1, 2nt4]) are mapped to

f(vi
j) =

{

(it3, j, 0) if j ∈ [1, nt4]
(it3 + 1, j − nt4, 0) if j ∈ [nt4 + 1, 2nt4]

Edges of Ci (for each i ∈ [1, n]) are mapped to the cycle consisting of the set of edges




⋃

j∈[1,2nt4]\{nt4}

{f(vi
j), f(vi

j+1)}



 ∪ {f(vi
1), f(vi

nt4+1)} ∪ {f(vi
nt4), f(vi

2nt4)}

• The path vertices and edges in each path P ij are mapped to the 3D lattice as:

(xij
1 , yij

1 , 0)→ (xij
2 , yij

1 , 0)→ (xij
2 , yij

1 , δij + 1)→ (xij
2 , yij

2 , δij + 1)
↓

(xij
4 , yij

2 , 0)← (xij
3 , yij

2 , 0)← (xij
3 , yij

2 , δij + 1)

where xij
1 = it3 + 1, yij

1 = jt4, xij
2 = i(t3 + t2) + jt1, yij

2 = it4. xij
3 = j(t3 + t2) + it1, and

xij
4 = jt3 + 1. The number of edges |P ij | of the path is precisely

(it2 + jt1 − 1) + δij + 1 + (j − i)t4 + ((j − i)(t3 + t2) + (i− j)t1)
+δij + 1 + (jt2 + it1 − 1) = kt5 + 1

j

Pi j
Pi j

and edges for
Cycle vertices

and edges for
Cycle vertices

and edges for
Cycle vertices

Cycle vertices that never participate in any

Cycle vertices that may participate in some

path parallel to the first coordinate axis
path parallel to the second coordinate axis
path parallel to the third coordinate axis

C C Ci i+1

Figure 1: Pictorial illustrations of embeddings of cycle Ci and path P ij .

We also need to show that no two distinct vertices of H ′ are mapped to the same vertex in the
3D lattice. For this purpose, the following proposition and its corollary would be very useful.

Proposition 4 Consider two numbers x = α0 +
∑5

i=1 αiti and y = β0 +
∑5

i=1 βiti, where αi, βi ∈
[0, 4n2] for i ∈ [0, 5]. Then, x = y if and only if αi = βi for all i.

Proof. Each αi and βi can be represented as a 2 + 2 log2 n bit binary number (possibly with
leading zeros) and multiplying αi or βi by ti adds log2 ti ≫ 2 + 2 log2 n trailing zeros to the binary
representation of αi or βi. ❑

8

Corollary 5 For two distinct edges {vi, vj}, {vi′ , vj′} ∈ E(G), δij 6= δi′j′.

Proof. Notice that 2j, j − i ∈ [0, 2n] ⊂ [0, 4n2]. Thus, δij 6= δi′j′ because either j 6= j′ or, if j = j′

then i 6= i′ and thus j − i 6= j − i′. ❑

It is obvious that no two cycle vertices are mapped to the same vertex in the 3D lattice and
it is also easy to verify no path vertex is identical to any cycle vertex (since n(t1 + t2) < t3). We
show below that mappings of no two distinct paths P ij and P i′j′ share any path vertices:

• Any path vertex u on the subpath (xij
1 , yij

1 , 0)→ (xij
2 , yij

1 , 0)→ (xij
2 , yij

1 , δij+1) and (xij
3 , yij

2 , δij+

1) → (xij
3 , yij

2 , 0) → (xij
4 , yij

2 , 0) is not the same as any path vertex v in P i′j′ because either
i 6= i′ or j 6= j′ and thus we can use Proposition 4 (if necessary) to show that either the 1st

coordinate or the 2nd coordinate of u and v are distinct.
• Any path vertex u on the subpath (xij

2 , yij
1 , δij + 1)→ (xij

2 , yij
2 , δij + 1)→ (xij

3 , yij
2 , δij + 1) is

not the same as any path vertex v in P i′j′ because δi,j > 0 and δi,j 6= δi′,j′ by Corollary 5.

Step 2 (realizing H as a contact graph):

We can design a sequence S in three stages as follows:

Stage 1: For each i ∈ [1, n], we design a sequence whose contact graph consists of the “cycle” edges
(

⋃

j∈[1,nt4−1]{(it3, j, 0), (it3, j + 1, 0)}
)

∪
(

⋃

j∈[nt4+1,2nt4−1]{(it3 + 1, j − nt4, 0), (it3 + 1, j − nt4 + 1, 0)}
)

∪

{(it3, 1, 0), (it3 + 1, 1, 0)} ∪ {(it3, nt4.0), (it3, 2nt4, 0)}, the first and the last path edge of each path
P ij for all {vi, vj} ∈ E(G) with i < j and some additional connected components that are part of
Q1, . . . , Qs.

P
path parallel to the second coordinate axis
path parallel to the first coordinate axis

path parallel to the third coordinate axis
i j

Pi j

Additional connected components (edges)

Contact graph Sequence

endpoint

never participate in

endpoint

Cycle vertices that

any

Cycle vertices that

some
may participate in

Figure 2: Embedding the cycle edges and the first and last edges of each path.

Let Ji be the set of indices such that the edge {vi, vj} is in E(G). Note that, by our construction,
if i < j then the path P ij begins at (it3 + 1, jt4, 0) whereas if i > j then the path P ij ends at
(it3 + 1, jt4, 0), jt4 (for all j) is a positive even integer since n is a sufficiently large power of 2 and
any two indices in Ji differ by at least t4.

9

For each j ∈ [1, nt4], let Sij be the sequence given by5

(it3 − 1, 1, 0)→ (it3, 1, 0)→ (it3, 1, 1)→ (it3 + 1, 1, 1) if j = 1
↓

(it3 + 2, 1, 0)← (it3 + 1, 1, 0)

(it3 + 2, nt4, 0)→ (it3 + 1, nt4, 0)→ (it3 + 1, nt4, 1) if j = nt4
↓

(it3 − 1, nt4, 0)← (it3, nt4, 0)← (it3, nt4, 1)

(it3 − 1, j, 0)→ (it3 + 2, j, 0) if j ≡ 1 (mod 2) and j − 1 6∈ Ji

(it3 − 1, j, 0)→ (it3 + 1, j, 0)→ (it3 + 1, j, 1) if j ≡ 1 (mod 2) and j − 1 ∈ Ji

(it3 + 2, j, 0)→ (it3 − 1, j, 0) if j ≡ 0 (mod 2) and j, j − 2 6∈ Ji

(it3 + 1, j, 1)→ (it3 + 1, j, 0)→ (it3 − 1, j, 0) if j ≡ 0 (mod 2) and j − 2 6∈ Ji

(it3 + 2, j, 0)→ (it3 + 2, j, 1)→ (it3 + 1, j, 1) if j ∈ Ji

↓
(it3 − 1, j, 0)← (it3 + 1, j, 0)

Then, our desired sequence Si is given by Si,1 → Si,2 → · · · → Si,nt4 . We refer to (it3− 1, 1, 0) and
(it3 − 1, nt4, 0) as the as the two endpoints of this Si. See Figure 2 for a pictorial illustration.

Stage 2: For each {vi, vj} ∈ E(G) with i < j, we design a sequence T ij , whose contact graph real-

izes the path edges of P ij excluding the first and the last edges, namely the edges (xij
1 +1, yij

1 , 0)→

(xij
2 , yij

1 , 0)→ (xij
2 , yij

1 , δij +1)→ (xij
2 , yij

2 , δij +1)→ (xij
3 , yij

2 , δij +1)→ (xij
3 , yij

2 , 0)→ (xij
4 +1, yij

2 , 0)
and some additional connected components that are part of Q1, . . . , Qs.

A path in which adjacent vertices differ in exactly the same ith coordinate, such as (x, y, z)→
(x+1, y, z)→ (x+2, y, z)→ · · ·, can be realized (with additional connected components of vertices
of degree no greater than 2) as a contact graph of a sequence that also varies one of the remaining
two coordinates, e.g. see Figure 3. Similarly, a path that can be partitioned into two such subpaths
in two different coordinates, such as (x, y, z) → (x + 100, y, z) → (x + 100, y + 50, z), can also
be realized (with additional connected components of vertices of degree no greater than 2) by the
concatenation of two such above sequences with a corner gadget, e.g. see Figure 3. Using this
approach, it is possible to design in a straightforward but extremely tedious manner the sequence
T ij . We refer to (xij

1 + 2, yij
1 , 0) and (xij

4 + 2, yij
2 , 0) as the two endpoints of T i,j .

Stage 3: Now we connect the endpoints of the subsequences Si’s and T i,j ’s without introducing
any crossings such that a complete sequence S is obtained. Let (α1, α2), (α3, α4), . . . , (α2r−1, α2r)
be the endpoints of the r subsequences for the Si’s and T i,j ’s. We connect α2i and α2i+1 (for
i ∈ [1, r)) as α2i = (x, y, 0) → (x, y,−it6) → (x′, y,−it6) → (x′, y′,−it6) → (x′, y′, 0) = α2i+1. The
additional connected components created are added to Q1, Q2, . . . , Qs. ❑

Corollary 6 The 3DS problem is NP-complete even if G is a subgraph of the 3D lattice.

5We make use of our assumption that the vertex vn has zero degree and thus the vertex (it3 + 1, nt4.0) cannot
participate in any path P ij , and, by construction, the vertex (it3 + 1, 1.0) does not participate in any P ij either.

10

Contact graph

(possible straight line gadgets)
or or or

a path parallel to the first coordinate axis

a path parallel to the second coordinate axis

a path parallel to the third coordinate axis

Contact graph

Sequence

(possible corner gadgets)or
Sequence

Figure 3: Some components of a sequence to embed the path P ij excluding its first and last edges.

3.2 An Approximation Scheme via Shifted Slice-and-dice

All the graphs discussed in this section are subgraphs of the 3D lattice. For notational conve-
nience and simplifications we assume, without loss of generality, that our input graph G satis-
fies V (G) ⊆ ×3

i=1[0, ni) for some n1, n2, n3 with |V (G)| ≥ max{n1, n2, n3}. We classify an edge
{(i1, i2, i3), (j1, j2, j3)} ∈ E(G) as horizontal, vertical or lateral if i1 6= j1, i2 6= j2 or i3 6= j3, re-
spectively. Let E–, E| and E/ be the set of horizontal, vertical and lateral edges in an optimal
solution.

Theorem 7 For every ε > 0, there is an O
(

K
ε3 21/ε3

|V (G)|
)

time algorithm that returns a solution

of the IPFC3 problem with at least (1− ε)OPT(G, K) edges.

Proof. We use the shifted slice-and-dice technique of [6, 18, 19]. For convenience, we use the
following notations:

• νj =
⌊

nj−1
ℓ

⌋

for j ∈ [1, 3],

• κ1 = [iℓ + α,min{(i + 1)ℓ, n1} + α) κ2 = [jℓ + α,min{(j + 1)ℓ, n2} + α) and κ3 = [kℓ +
α,min{(k + 1)ℓ, n3}+ α) for some specified values i, j, k and number α.

We first need the following definition.

Definition 8 For a given positive integer (partition length) ℓ > 0 and three positive integers (shifts)

0 ≤ α, β, γ < ℓ, an (α, β, γ)-shifted ℓ-partition of G, denoted by Πα,β,γ
ℓ [G] is the subgraph of G in

which V (Πα,β,γ
ℓ [G]) = V (G) and E(Πα,β,γ

ℓ [G]) is exactly

E(G) ∩
(

⋃ν1

i=0

⋃ν2

j=0

⋃ν3

k=0{ {(x, y, z), (x′, y′, z′)} | x, x′ ∈ κ1 & y, y′ ∈ κ2 & z, z′ ∈ κ3 }
)

See Figure 4 for a simple illustration of the above definition.
Let ℓ = ⌈1/ε⌉. It is trivial to compute the Πα,β,γ

ℓ [G]’s for all 0 ≤ α, β, γ < ℓ in O(ℓ3|V (G)|)

time. For each Πα,β,γ
ℓ [G], OPT(Πα,β,γ

ℓ [G], K) can be calculated in O(K2ℓ3 |V (G)|) time since:

• For each i ∈ [0, ν1], j ∈ [0, ν2] and k ∈ [ν3], the subgraph Gi,j,k,α,β,γ of Πα,β,γ
ℓ [G] induced

by the set of vertices V (Gi,j,k,α,β,γ) = V (G) ∩ {x, y, z | x ∈ κ1 & y ∈ κ2 & z ∈ κ3} is

11

(1,0,0)-shifted 2-partition of GG (0,0,0)-shifted 2-partition of G

Figure 4: Illustration of Definition 8 for a G embeddable in the 2D lattice (i.e., n3 = 2).

not connected by any edge of Πα,β,γ
ℓ [G] to any remaining vertex of Πα,β,γ

ℓ [G]. Thus, we can

compute OPT(Gi,j,k,α,β,γ , µ) for all 1 ≤ µ ≤ K by exhaustive enumeration in O(K2ℓ3) time.
Since there are at most |V (G)| Gi,j,k,α,β,γ ’s that are not empty, the total time for this step is

O(K2ℓ3 |V (G)|).
• We now use the dynamic programming algorithm for the General Knapsack (GK) prob-

lem. For each i ∈ [0, ν1], j ∈ [0, ν2] and k ∈ [0, ν3], we have a set of K objects Ai,j,k =
{a1

i,j,k, a
2
i,j,k, . . . , a

K
i,j,k} with s(aµ

i,j,k) = µ and v(aµ
i,j,k) =OPT(Gi,j,k,α,β,γ , µ) for µ ∈ [1, K],

and moreover we set b = K. We can solve this instance of the GK problem to deter-
mine in O(K|V (G)|) time a subset of indices {(i1, j1, k1), (i2, j2, k2), . . . , (it, jt, kt)} such that
∑t

p=1 |V (Gip,jp,kp,α,β,γ)| ≤ K and
∑t

p=1 |E(Gip,jp,kp,α,β,γ)| is maximized. Obviously,

OPT(Πα,β,γ
ℓ [G], K) =

∑t
p=1 |E(Gip,jp,kp,α,β,γ)|.

Our algorithm then outputs maxα,β,γOPT(Πα,β,γ
ℓ [G], K) as the approximate solution. Figure 5

illustrates the approach used in the above algorithm.
The total time taken by the algorithm is therefore O(K2ℓ3ℓ3|V (G)|) = O(K|V (G)|) since ε >

0 is a constant. We now show that maxα,β,γOPT(Πα,β,γ
ℓ [G], K) ≥

(

1− 1
ℓ

)

OPT(G, K) ≥ (1 −

ε)OPT(G, K). For each 0 ≤ α, β, γ < ℓ, let E–(α, β, γ) = E– − E(Πα,β,γ
ℓ [G]), E|(α, β, γ) =

E| − E(Πα,β,γ
ℓ [G]) and E/(α, β, γ) = E/ − E(Πα,β,γ

ℓ [G]). Now we observe the following:

• The sets E–(α, β, γ), E|(α, β, γ) and E/(α, β, γ) are mutually disjoint.
• For any e ∈ E– (respectively, e ∈ E|, e ∈ E/), |{E–(α, β, γ) | e ∈ E–(α, β, γ) }| ≤ ℓ2

(respectively, |{E|(α, β, γ) | e ∈ E|(α, β, γ) }| ≤ ℓ2, |{E/(α, β, γ) | e ∈ E/(α, β, γ) }| ≤ ℓ2).
We prove the case for e ∈ E– only; the other cases are similar. Suppose that e ∈ E–(α, β, γ)
for some α, β and γ. Then, e 6∈ E–(α′, β′, γ′) if α′ 6= α.

• Thus,
∑ℓ−1

α=0

∑ℓ−1
β=0

∑ℓ−1
γ=0 OPT(Πα,β,γ

ℓ [G], K) is at least

ℓ3OPT(G, K)−
∑ℓ−1

α=0

∑ℓ−1
β=0

∑ℓ−1
γ=0(E–(α, β, γ) + E|(α, β, γ) + E/(α, β, γ)

≥ ℓ3OPT(G, K)− ℓ2(|E–|+ |E||+ |E/|) ≥ ℓ3OPT(G, K)− ℓ2OPT(G, K)

Hence, maxα,β,γOPT(Πα,β,γ
ℓ [G], K) ≥OPT(G, K)− 1

ℓ OPT(G, K). ❑

Remark 1 The PTAS can be generalized in an obvious manner when the given graph is embeddable
in a d-dimensional lattice for d > 3; however the running time grows exponentially with d. We do
not describe the generalization here since it has no applications to the IPF problem.

12

(c’)

(a)

(a’)

(b)

(b’)

(c)

Figure 5: Illustration of the technique used in our algorithm for a G embeddable in the 2D lattice
with K = 6 and ℓ = 2. (a) and (a’) The given graph and an optimal solution with OPT(G, 6) = 5.
(b) Π0,0,0

2 [G]. (b’) OPT(Π0,0,0
2 [G], K) = 4. (c) Π1,0,0

2 [G]. (c’) OPT(Π1,0,0
2 [G], K) = 3.

Remark 2 The running time of the PTAS may be slightly improved with a more careful imple-
mentation of the shifted slice-and-dice technique.

Remark 3 It suffices to set ℓ = 3 to improve upon the 1
2 -approximation algorithm of Hart [13].

Acknowledgements

We would like to thank both the reviewers for their comments which improved the presentaion of
the paper.

References

[1] Y. Asahiro, K. Iwama,H. Tamaki and T. Tokuyama. Greedily Finding a Dense Subgraph,
Journal of Algorithms 34,203-221,2000.

[2] Y. Asahiro, R. Hassin and K. Iwama. Complexity of finding dense subgraphs, Discrete Applied
Mathematics 121, 15-26,2002.

[3] J. Atkins and W. E. Hart. On the intractability of protein folding with a finite alphabet of
amino acids, Algorithmica, 25(2-3):279–294, 1999.

[4] J. Banavar, M. Cieplak, A. Maritan, G. Nadig, F. Seno, and S. Vishveshwara. Structure-based
design of model proteins, Proteins: Structure, Function, and Genetics, 31:10–20, 1998.

[5] B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is
NP-complete, Journal of Computational Biology, 5(1):27–40, 1998.

[6] P. Berman, B. DasGupta and S. Muthukrishnan. Approximation Algorithms For MAX-MIN

Tiling, Journal of Algorithms, 47 (2), 122-134, July 2003.

13

[7] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis. On the
complexity of protein folding, Journal of Computational Biology, 423–466, 1998.

[8] J. M. Deutsch and T. Kurosky. New algorithm for protein design, Physical Review Letters,
76:323–326, 1996.

[9] K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. Chan.
Principles of protein folding — A perspective from simple exact models, Protein Science,
4:561–602, 1995.

[10] K. E. Drexler. Molecular engineering: An approach to the development of general capabilities
for molecular manipulation, Proceedings of the National Academy of Sciences of the U.S.A.,
78:5275–5278, 1981.

[11] U. Feige and M. Seltser. On the densest k-subgraph problems. Technical Report # CS97-
16, Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Israel
(available online at http://citeseer.nj.nec.com/feige97densest.html).

[12] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

[13] W. E. Hart. On the computational complexity of sequence design problems, Proceedings of the
1st Annual International Conference on Computational Molecular Biology, 128–136, 1997.

[14] W. E. Hart and S. Istrail. Fast protein folding in the hydrophobic-hydrophilic model within
three-eighths of optimal, Journal of Computational Biology, 3(1):53–96, 1996.

[15] W. E. Hart and S. Istrail. Invariant patterns in crystal lattices: Implications for protein
folding algorithms (extended abstract), Lecture Notes in Computer Science 1075: Proceedings
of the 7th Annual Symposium on Combinatorial Pattern Matching, 288–303, 1996.

[16] W. E. Hart and S. Istrail. Lattice and off-lattice side chain models of protein folding: Lin-
ear time structure prediction better than 86% of optimal, Journal of Computational Biology,
4(3):241–260, 1997.

[17] V. Heun. Approximate protein folding in the HP side chain model on extended cubic lat-
tices, Lecture Notes in Computer Science 1643: Proceedings of the 7th Annual European
Symposium on Algorithms, 212–223, 1999.

[18] D. Hochbaum. Approximation Algorithms for NP-hard problems, PWS Publishing Company,
1997.

[19] D. S. Hochbaum and W. Mass. Approximation schemes for covering and packing problems in
image processing and VLSI, Journal of ACM, 32(1):130–136, 1985.

[20] J. Kleinberg. Efficient Algorithms for Protein Sequence Design and the Analysis of Certain
Evolutionary Fitness Landscapes., Proceedings of the 3rd Annual International Conference
on Computational Molecular Biology, 226-237, 1999.

[21] K. F. Lau and K. A. Dill. A lattice statistical mechanics model of the conformational and
sequence spaces of proteins, Macromolecules, 22:3986–3997, 1989.

[22] G. Mauri, G. Pavesi, and A. Piccolboni. Approximation algorithms for protein folding pre-
diction, Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
945–946, 1999.

14

[23] K. M. Merz and S. M. L. Grand, editors. The Protein Folding Problem and Tertiary Structure
Prediction, Birkhauser, Boston, MA, 1994.

[24] J. Ponder and F. M. Richards. Tertiary templates for proteins, Journal of Molecular Biology,
193:63–89, 1987.

[25] S. J. Sun, R. Brem, H. S. Chan, and K. A. Dill. Designing amino acid sequences to fold with
good hydrophobic cores, Protein Engineering, 8(12):1205–1213, Dec. 1995.

[26] E. I. Shakhnovich and A. M. Gutin. Engineering of stable and fast-folding sequences of model
proteins, Proc. Natl.Acad.Sci., 90:7195-7199, 1993.

[27] T. F. Smith, L. L. Conte, J. Bienkowska, B. Rogers, C. Gaitatzes, and R. H. Lathrop. The
threading approach to the inverse protein folding problem, Proceedings of the 1st Annual
International Conference on Computational Molecular Biology, 287–292, 1997.

[28] K. Yue and K. A. Dill. Inverse protein folding problem: Designing polymer sequences, Pro-
ceedings of the National Academy of Sciences of the U.S.A., 89:4163–4167, 1992.

15

APPENDIX

In this appendix, we provide more details about the sequence T ij in the proof of Theorem 3,
for each {vi, vj} ∈ E(G) with i < j, whose contact graph realizes the path edges of P ij excluding

the first and the last edges, namely the edges (xij
1 + 1, yij

1 , 0) → (xij
2 , yij

1 , 0) → (xij
2 , yij

1 , δij + 1) →

(xij
2 , yij

2 , δij + 1) → (xij
3 , yij

2 , δij + 1) → (xij
3 , yij

2 , 0) → (xij
4 + 1, yij

2 , 0) along with some additional
connected components that are part of Q1, . . . , Qs. We will use the following notations:

• A direction is an element of {X+, X−, Y +, Y −, Z+, Z−}. Directions d+ and d− are opposite of
each other for any d ∈ {X, Y, Z}.

• By k steps in the direction of X+ (resp. X−) from a vertex (x, y, z) we mean the path (x, y, z)→
(x + k, y, z) (resp. (x, y, z)→ (x− k, y, z)); k steps in the directions of Y +, Y −, Z+ and Z− from
(x, y, z) are analogously defined on the second and third coordinates of (x, y, z).

• (x1, y1, z1)
d1 ⇉

d2 (x2, y2, z2)
d1 denotes a sequence that starts at (x1, y1, z1), first goes one step in

the d1 direction, then goes one step in the d2 direction, two steps in the opposite of d1 direction,
one step in d2 direction, two steps in the d1 direction, one step in the d2 direction, two steps in the
opposite of d1 direction, . . ., until it reaches (x2, y2, z2).

• The notation (x1, y1, z1)
d1 =⇒ (x2, y2, z2)

d2 is defined as follows. For convenience we assume
x1 ≤ x2, y1 ≤ y2 and z1 ≤ z2; the definition is similar for other cases. (x1, y1, z1)

d1 =⇒ (x2, y2, z2)
d2

defined a sequence S whose contact graph H is as defined below and moreover any vertex (α, β, γ)
of S satisfies the relationship as described below for each corresponding H:

• if |x1 − x2| = 2, |y1 − y2| = 2 and |z1 − z2| = 0, H is (x1, y1, z1)→ (x2, y1, z1)→ (x2, y2, z2),
and x1 ≤ α ≤ x2, y1 ≤ β ≤ y2, z1 − 1 ≤ γ ≤ z1 + 1;

• if |x1 − x2| = 2, |y1 − y2| = 0 and |z1 − z2| = 2, H is (x1, y1, z1)→ (x2, y1, z1)→ (x2, y2, z2),
and x1 ≤ α ≤ x2, y1 − 1 ≤ β ≤ y1 + 1, z1 ≤ γ ≤ z2;

• if |x1 − x2| = 0, |y1 − y2| = 2 and |z1 − z2| = 2, H is (x1, y1, z1)→ (x1, y2, z1)→ (x2, y2, z2),
and x1 − 1 ≤ α ≤ x2 + 1, y1 ≤ β ≤ y2, z1 ≤ γ ≤ z2;

• otherwise, the notation is undefined.

Satisfying the above constraints, the sequence (x1, y1, z1)
d1 =⇒ (x2, y2, z2)

d2 can be stated as:

• for x2 = x1 + 2 = x, y1 = y2 − 2 = y and z2 = z1 = z:

– if d1 ∈ {Y
+, Z−} and d2 ∈ {Z

+, X+, X−} then (x− 2, y, z)d1 =⇒ (x, y + 2, z)d2 is

(x− 2, y, z)→ (x− 2, y + 1, z)→ (x− 1, y + 1, z)→ (x− 1, y, z)
↓

(x, y + 1, z − 1)← (x, y + 1, z + 1)← (x, y, z + 1)← (x, y, z − 1)← (x− 1, y, z − 1)
↓
(x, y + 2, z − 1)→ (x, y + 2, z)

– if d1 ∈ {Y
−, Z+} and d2 ∈ {Z

+, X+, X−} then (x− 2, y, z)d1 =⇒ (x, y + 2, z)d2 is

(x− 2, y, z)→ (x− 2, y, z + 1)→ (x− 1, y, z + 1)→ (x− 1, y, z − 1)→ (x, y, z − 1)
↓

(x, y + 2, z)← (x, y + 2, z − 1)← (x, y + 1, z − 1)← (x, y + 1, z + 1)← (x, y, z + 1)

16

– if d1 = Z+ and d2 = Z−, the sequence is similar to the sequence for d1 = Z− and
d2 = Z+;

– if d1 ∈ {X
+, X−, Y +, Y −} and d2 = Z−, the sequence is symmetric to the sequence with

the same d1 and d2 = Z+.

• For other (x1, y1, z1) and (x2, y2, z2) satisfying that two of |x1−x2|, |y1− y2| and |z1− z2| are
2 and the third one is 0, we can easily make similar sequences as above and whose contact
graph is H.

With all these new notations, we can write sequence T ij whose contact graph realizes the path
edges of P ij excluding the first and the last edges:

• if y1 > y2 and δij is an odd number, T ij is (xij
1 + 2, yij

1 , 0)Y +

⇉
X+

(xij
2 − 2, yij

1 , 0)Y +

=⇒

(xij
2 , yij

1 , 2)X+

⇉
Z+

(xij
2 , yij

1 , δij − 1)X+

=⇒ (xij
2 , yij

1 − 2, δij +1)X+

⇉
Y −

(xij
2 , yij

2 +2, δij +1)X+

=⇒

(xij
2 +2, yij

2 , δij +1)Y −
⇉

X+

(xij
3 − 2, yij

2 , δij +1)Y −
=⇒ (xij

3 , yij
2 , δij − 1)X+

⇉
Z−

(xij
3 , yij

2 , 2)X+

=⇒

(xij
3 − 2, yij

2 , 0)Z−
⇉

X−
(xij

4 + 2, yij
2 , 0)Z−

.

• If y1 > y2 and δij is an even number, T ij is (xij
1 + 2, yij

1 , 0)Y +

⇉
X+

(xij
2 − 2, yij

1 , 0)Y +

=⇒

(xij
2 , yij

1 , 2)X+

⇉
Z+

(xij
2 , yij

1 , δij−2)X+ → (xij
2 +1, yij

1 , δij−2)→ (xij
2 +1, yij

1 , δij−1)→ (xij
2 , yij

1 , δij−

1)X−
=⇒ (xij

2 , yij
1 −2, δij +1)X+

⇉
Y −

(xij
2 , yij

2 +2, δij +1)X+

=⇒ (xij
2 +2, yij

2 , δij +1)Y −
⇉

X+

(xij
3 −

2, yij
2 , δij + 1)Y −

=⇒ (xij
3 , yij

2 , δij − 1)X+

⇉
Z−

(xij
3 , yij

2 , 3)X+

→ (xij
3 + 1, yij

2 , 3)→ (xij
3 + 1, yij

2 , 2)→

(xij
3 , yij

2 , 2)X−
=⇒ (xij

3 − 2, yij
2 , 0)Z−

⇉
X−

(xij
4 + 2, yij

2 , 0)Z−
.

• If y1 < y2 and δij is an odd number, T ij is (xij
1 + 2, yij

1 , 0)Y +

⇉
X+

(xij
2 − 2, yij

1 , 0)Y +

=⇒

(xij
2 , yij

1 , 2)X+

⇉
Z+

(xij
2 , yij

1 , δij − 1)X+

=⇒ (xij
2 , yij

1 +2, δij +1)X+

⇉
Y +

(xij
2 , yij

2 − 2, δij +1)X+

=⇒

(xij
2 +2, yij

2 , δij +1)Y +

⇉
X+

(xij
3 − 2, yij

2 , δij +1)Y +

=⇒ (xij
3 , yij

2 , δij − 1)X+

⇉
Z−

(xij
3 , yij

2 , 2)X+

=⇒

(xij
3 − 2, yij

2 , 0)Z−
⇉

X−
(xij

4 + 2, yij
2 , 0)Z−

.

• If y1 < y2 and δij is an even number, T ij is (xij
1 + 2, yij

1 , 0)Y +

⇉
X+

(xij
2 − 2, yij

1 , 0)Y +

=⇒

(xij
2 , yij

1 , 2)X+

⇉
Z+

(xij
2 , yij

1 , δij−2)X+

→ (xij
2 +1, yij

1 , δij−2)→ (xij
2 +1, yij

1 , δij−1)→ (xij
2 , yij

1 , δij−

1)X−
=⇒ (xij

2 , yij
1 + 2, δij + 1)X+

⇉
Y +

(xij
2 , yij

2 − 2, δij + 1)X+

=⇒ (xij
2 + 2, yij

2 , δij + 1)Y +

⇉
X+

(xij
3 −2, yij

2 , δij+1)Y +

=⇒ (xij
3 , yij

2 , δij−1)X+

⇉
Z−

(xij
3 , yij

2 , 3)→ (xij
3 +1, yij

2 , 3)→ (xij
3 +1, yij

2 , 2)→

(xij
3 , yij

2 , 2)X−
=⇒ (xij

3 − 2, yij
2 , 0)Z−

⇉
X−

(xij
4 + 2, yij

2 , 0)Z−.

17

