Information Processing Letters 33 (1989,/90) 35-44
North-Holland

27 Qctober 1989

" AN APPROXIMATE ALGORITHM FOR THE MINIMAL VERTEX NESTED

"POLYGON PROBLEM

_Bhaskar DASGUPTA *
CMC Lid, R & D, Secunderabad 500 003, India

C.E. VENI MADHAVAN

. Department of Computer Science and Automarion, Indian Institute of Science, Bangaiore 560 012, India

- Communicated by R. Wilhelm
Received 11 July 1989
Revised 12 June 1989

R L L
P,
T LT,

Given two simple polygons, the Minimal Veriex Nested Polygon Problem is one of finding a polygon nested between the
given polygons having the minimum number of vertices. In this paper, we suggest efficient approximate algorithms for
interesting special cases of the above using the shortest-path finding graph algorithms.

h Keywords: Computational geometry, graphs, shortest paths

1. Introduction

Given two simple polygons P and ¢ having p
and ¢ sides respectively, with Q inside P, the
Minimal Vertex Nested Polygon Problem (MVNP
problem, for short) is the one of finding a polygon
K of k sides nested between P and Q such that,
for any other polygon L of { sides nested between
P and Q, k < i When both P and @ are convex,
Aggarwal et al [1] give an O((p + g) time ap-
proximate algorithm and an O({ p + ¢)log k) time
exact algorithm. For the general case when both P
and @ are arbitrary simple polygons, Suri and
O’Rourke [9] give an O{p + ¢)*) time exact al-
gorithm. We consider the following special cases:

(A) When both P and @ are rectilinearly con-
vex (not necessarily rectilinear) polygons, we sug-
gest an O(n log n + ¢) time approximate solution

* Present affiliation: Computer Science Department, The
Pennsylvania State University, Univeryity Park, PA 16802,
USA.

-

for the problem, where n=p+ g and e is the
number of edges of the visibility graph associated
with this problem, ¢ = O(n + n? — nk).

(B) When P is rectilinearly convex and ¢ is an
arbitrary simpie polygon, we suggest an O{n +
m log m + e) time approximate solution for the
problem, where n=p+q, m=p+gq’, qg" the
number of vertices in the rectilinear convex hull of
0, and e is the number of edges of the visibility
graph associated with this problem, e = O(m + m?
— mk).

In both cases above the approximate polygon
may have at most 2k vertices.

We also show that for the special case when Q
is a linearly separable x-convex (or y-convex)

‘polygon, g’ is constant on the average, thereby

greatly reducing the average size of the visibility
graph for special cases of case (B) above. In fact,
the result 4" = O(1) on the average is proved for a
separable monotone polygon, i.e. the direction of
monotonicity need not be horizontal or vertical
only.

35

Volume 33, Number 1

The MVNP problem has interesting applica-
tions in motion planning in robotics and in VLSI
designs. For example, the problem of moving a
point object or a circle through a channel with a
minimum number of bends is nothing but the
MVNP problem. In [7) Maddila discusses al-
gorithms for moving an object through an L-
shaped corridor infinite in both directions. The
rectilinearly convex case of the MVNP: problem
solves the case of moving a point or circular object
through a channel composed of successive L-
shaped corridors.

2. Preliminaries

A simple polygen P is a sequence of vertices
and edges such that the edges form a cycle and no
two nonconsecutive edges intersect. We denote the
interior and boundary of P by int{ P) and bd(P)
respectively. We use the term polygon to mean a
simple polygon only,

A polygon is rectilinear if its sides are horizon-
tal or vertical only. A polygon P is x-conpex
{ y-convex) if the intersection of any horizontal
(resp. vertical) segment with int{ #) is a connected
(possibly empty) segment. A polygon which is
both x-convex and y-convex is a rectilinearly con-
vex (RC, for short) polygon. An RC polygon need
not be rectilinear. An RC polygon which is also
rectilinear is a rectilinear and rectilinearly convex
(RRC, for short) polygon. The rectilinear convex
Aull (RC hull, for short) of a polygon P, denoted
by RCH(P), is the minimal RC polygon contain-
ing P.

Given a polygon P, a chain from point s on
bd(P) to point ¢ on bd(P), denoted by ch(s,), is
a subset of bd(P) composed of all edges of P
from s to ¢ in counterclockwise order. Hence,

bd(P) =ch(s, t) Uch(r, s)

for all 5,1 €bd(P), s+ ¢. A point ¢ on bd(P) is
said to be visible from a point 5 on bd(P) if the
line segment from s to ¢ does not intersect ch(s, t)
or ch{t, s). A chain C is monotone with respect to
a line / if a line orthogonal to ! intersects C at at
most one point, A simple polygon is monotone if

36

 INFORMATION PROCESSING LETTERS

* 27 October 1989

Fig. 1. Linearly separable monotone polygon.

its boundary can be decomposed into two chains
C, and C, monotone with respect to the same
line. A monotone polygon is linearly separable 1*
its boundary can be decomposed into two chains
C, and ¢, monotone with respect to the same line
! such that C, and C. lie on opposite sides of &
(Fig. 1).

© 3. Basic algorithm

First, we consider a very special case of the
MVNP problem when both P and @ are RRC
polygons. We show later how to extend this al-
gorithm for the other cases of MVNP problem, i.e.
when P and @ are both RC or Q is arbitrary
simple and P is RC. We describe below the basic
algorithm.

~ Algorithm 3.1

Input: Two RRC polygons P and @, with Q
inside P,

Output: The approximation to the actual
minimal nested polygon between P and Q.

Algorithm:

Step 1: Divide the region int{ P) — int{Q) into
a number of rectangular slabs §, 5,...., 5, by
extending the horizontal edges of P and Q (Fig.
2). Here, §, is the topmost or bottommost slab
and slabs are labelled starting from §, in clock-

B Yolume 33, Number 1

= £

Sz

2

8y

* Fig. 2. Division of int(P)—int(Q) into slabs S,. S;...., S..

wise or counterclockwise order. The bottom (resp.
top) of a slab §;, denoted by B, (resp. T,), is that
portion of its bottommost (resp. topmost) horizon-
tal edge which does not belong to bd(P) or bd(Q)
(Fig. 3).

Step 2: Construct a directed cyclic graph G =
(V. E) showing the visibilities of slabs. Hence,
V={S|1<i<t} and E={(S, S)|j=>i §, is
visible from §;}. Slab §; is visible from slab §, if
we can draw a straight line from some point of 7,
to some point of T, which does not intersect any
of the sides of S, to S;_, belonging to bd(P) or
bd(Q); this straight line is called a visibility fine
from S, to §;. Note that adjacent slabs are always
visible and hence there is always one directed
cycle in G.

Step 3: Find the shortest directed cycle in G
from §, to S; where §, is the bottommost (or
topmost) slab. Construct the polygon correspond-
ing to this path. This gives an approximate solu-
tion.

) Fig. 3. B, and T, shown dotted.

"INFORMATION PROCESSING LETTERS

27 October 1989
4. Analysis of Algorithm 3.1

We omit the simple proofs of the following two
propositions.

Proposition 4.1. When both P and Q are RC poly-
gons, the minimal polygon K is also RC.

Proposition 4.2. The minimal polygon K is RC even
if only the outer polygon P is RC.

Lemma 4.3. Let k’ be the number of edges in the
shortest cycle of G in Algorithm 3.1 from S| to §,.
Let k be the number of vertices in the actual minimal
vertex nested polygon K. Then k' < k < 2k’.

Proof. This follows from the following observa-
tions.

(1) Consider any three consecutive slabs Sps
S,, 8., r>q>p, in the shortest cycle found by
Algorithm 3.1. So, S, is visible from $,, and S,
from S,. If at least one visibility line from S, 0§,
intersects at least one visibility line from S, to §,
inside int(P} — int{), then we can go from S, to
S, in one bend (Fig. 4); otherwise, we take two
bends (Fig. 5).

\

2

37

Yolume 33, Number 1

Fig. 5.

(2) In view of observation (1) above, k < 2k’.
(3) k’ <k since a minimal nested polygon de-
fines a cycle of length at most k. O

Lemma 4.4. The approximate polygon as generated
by Algorithm 3.1 may have at most 2k vertices.

Proof. Since k" < k and a cycle of length k’ can
produce a polygon of at most 2k’ vertices (ob-
servation (1) in Lemma 4.3), the approximate
polygon may have at most 2k vertices. 0

Lemma 4.5. The graph G =(V, E) as constructed
in Algorithm 3.1 may have O(n + n* — nk) edges,
where n=p + q and k is the number of vertices of
the actual minimal polygon K.

Proof. Let the slabs in Algorithm 3.1 be
S1 Sy,..., 8,. Obviously, 1< 3(p + g). We define
the visibility length VL, of a slab S, as 1{S;]8S; is
visible from §;, j>i}|. Obviously, 1 < VL, <1 —
1 for 1 €/ <t. Now, since adjacent slabs are al-
ways visible and X is the actual minimal polygon,
VL, must satisfy the inequality 2(— VL,) + 1 > k,
since we can move from S; to S;+v, directly
through one edge and then traverse adjacent slabs

38

INFORMATION PROCESSING LETTERS

27 October 1989

with a maximum of 2 vertices at each of the
remaining 2(¢ — VL,) slabs by observation (1) of
Lemma 4.3. Hence,

' 4
|E| =) VL,=0(n+n*-nk). O

i=1

Lemma 4.6. Algorithm 3.1. takes O(n log n + ¢)
time where n=p + q and e = O(n + n® — nk).

Proof. Step 1 takes O(n) time. We show in Section
5 that Step 2 takes O(e) time. Step 3 takes
O(|V | log |V |+|E|) time [2] and since |V | =
O(n) and |E|=O(n+ n?— nk), the result fol-
lows. DO

5. Visibility calculations

The most difficult part of Algorithm 3.1 is to
determine if S; is visible from S, j> i. Let

!
|E|=e= Y VL,=0(n+ n?— nk).

i=]

Our aim is to suggest an algorithm of O(e) time
for constructing the graph G of Algorithm 3.1. For
this, we need a few basic concepts stated below.

An algorithm is given by Lee [5] for calculating
visibility of a simple polygon P from an internal
point u. It uses a stack and defines two kinds of
blocking vertices. Suppose that we are looking at
visibility from «. Look at three consecutive vertices
Ui_1s U, U;4q Oon bd(P) in counterclockwise order.
Suppose v;_,v;v;,, takes a right turn and v, , is
not visible from u (Fig. 6). Then, join w, and
extend it to intersect bd(P) at some point v,.
Then, obviously the region R bounded by the line
v;v;» and the portion of bd(P) from from v, to v,
in counterclockwise direction direction (shaded in
Fig. 6) is invisible from u. v, is the lookahead
vertex of u, denoted by LV(u), and the region R
is the lookahead region of u, denoted by LR(u).
Similarly, for left turns we define the backtracking
vertex v; of u, denoted by BV(u), and the back-
tracking region R’ of u, denoted by BR(u) (Fig.
6).

Volume 33, Number 1 INFORMATION PROCESSING LETTERS 27 October 1989

s

j-1

N

Fig. 6.

Now, consider visibility of a polygon P from
an edge wv of P. Without any loss of generality,
let uv be the bottommost edge and u be to the
right of v. Then the following observations are
true (Fig. 7):

(1) LR(v) and BR(u) are invisible from the
edge vu;

(2) LR(u) and BR(v) may be partly or com-
pletely visible from the edge vu.

LR BR(u)

Fig. 7.

Fig. 8.

39

Volume 33, Number 1

After removing LR(v) and BR(u), if LR(%) or
BR(v) do not overlap, then they must be visible
from the edge vu. Problems arise when one of
them (or a part of it) is contained in the other.
Without any loss of generality, let BR(v) € LR(u)
(Fig. 8(a)). Let v, and u, be BV(v) and LV(u)
respectively. So v, is not visible from u. Now, we
obtain a chain of all visible vertices of v between
u, and v, such that any three consecutive vertices
in the chain form a right turn. Let w be the vertex
preceeding v, in the chain (Fig. 8(a)). We join wy,
and extend it to intersect bd(P) at v;.. Then the
region R, formed by the portion of bd(P) from v;
to v, clockwise and the line v,v; is invisible from
the edge ou (Fig. 8(a)). Similarly, the case of
LR(u) € BR(v) is illustrated in Fig. 8(b). In this
case, the region R, is invisible from the edge vu.

INFORMATION PROCESSING LETTERS

27 October 1989

All the above concepts are taken from [3].

Based on the above concepts, we propose an
incremental algorithm to calculate visibilities of
slabs. Starting from a slab S;, we calculate visibil-
ities of slabs S, ,, S;;3,..., in that order from S;
and terminate as soon as we find a slab S;, j>1,
such that S; is not visible from §,.

Consider an edge vuC 7; from which we are
calculating visibilities. We make the following ob-
servations.

(1) Let LV(v) € bd(P) and let it be v,. We join
vv, and extend it. Let extended vv, intersect a
vertical side a of P in the next slab (Fig. 9(a)). Let
v;- be the topmost point of a. Then v, becomes
the new LV(u). Obviously, extended ov; cannot
intersect a horizontal edge of P before a. Other-
wise, let extended vv; intersect a horizontal edge b

Fig. 9.

Volume 33, Number 1

of Q (Fig. 9(b)), and let b belong to slab S,. Then
only slabs up to §;_, are visible from edge vu.
Obviously, extended vu; cannot intersect a vertical
edge of Q before b. When extended vv; does not
intersect an edge of P or Q in the next slab, v,
continues to be LV(v).

(2) Observations similar to (1) above are true
for BR(u) also.

(3) Let BV(u)< bd(@) and let it be v, (Fig.
9(c)). Suppose extended vy, intersects a horizontal
edge a of O and v, is the rightmost endpoint of a
(Fig. 9(c)). Then, v,; becomes new BV(v). Obvi-
ously, extended vv; cannot intersect a vertical edge
of Q before a. Otherwise, suppose extended vy,
intersects a vertical edge b of P (Fig. 9(d)). Let x
be the topmost and rightmost corner point of the
slab §; to which the edge b belongs. Three cases
are possible: the whole of LR(u) or a part of it is
a subset of BR(v), or LR(u) and BR(v) are dis-
joint. Suppose the part of LR(#) which is a subset

INFORMATION PROCESSING LETTERS

27 October 1989

of BR(v) starts at slab S,, k > j. Then we scan the
edges of P and Q from S, to S; successively
finding a chain of vertices visible with respect to
bd(P) only such that any three consecutive vertices
in the chain form a right turn. Note that whether
vertices are visible from » with respect to bd(F)
only can be calculated incrementally because since
P and @ are both RRC polygons, we will never
use a stack as in [5]. Let v, be the vertex preceed-
ing x in the chain. Then, join v, x and extend it
downwards to intersect vu at v” (Fig. 9(d)). Now
we redefine v’ as the new extreme point v and v;
as the new BV(v). If LR(«) N BR(v) =@, we take
slab S, as the slab containing v;. However, for
repeated applications of this step we will not start
scanning from S, every time as stated in observa-
tion (5) below, but only initially will we start from
Sy

(4) Observations similar to (3) above are true
for LV(u) also.

Fig. 10. Hlustration of visibility calculations. Symbois: v, (u;): lookahead (backtracking) vertex of v (u); ¢; (u;): backtracking

(lookahead) vertex of v (u); v (v'): redefined v; (v). Explanation: (a) S, is visible from 5,, v; redefined by case (1); (b) S, is

visible from §,, o; redefined by case (3); (¢) S, is visible from §,, v redefined by case (3); (d) S is visible from S,, ¢ redefined by
case (3); (e) S is visible from S, but §; is not visible from S, by case (1) and the algorithm stops.

41

Yolume 33, Number 1

{5) If observations (3) and (4) above are ap-
plied repeatedly, then the ith application of the
particular observation scans the boundaries of P
and Q, if necessary, starting from the edges of P
and Q which were scanned last in the most recent
previous application of the same observation, This
is because since we are redefining u and o, the
points on the boundaries of P and @ already
scanned cannot become BV{v) or LV(u) after-
wards.

(6) The repeated applications of the above ob-
servations must terminate either from observa-
tions (1) or (2) or from observations (3) or (4)
when redefined « and v cross each other.

(7) The vistbility calculation never examines
more than O(VL,) slabs from a slab S,. Hence, in
view of observation (5) above, the total time taken
for visibility calculation of this slab is O(VL,)
only.

An example of repeated applications of the
above observations for a slab is shown in Fig. 10,

We formally present the algorithm below.

Algorithm 5.1 (Visibility calculations)

Step 1. For each slab S, 1 i<, a perform
Step 2.

Step 2: Repeatedly calculate (recalculate)
LV{u), LV(v), BV(u), BV{v) etc. based on ob-
servations (1)-(5) above. Terminate visibility
calculations based on observations (6) above.

In view of observation (7) above, Algorithm 5.1
takes O(L;., VL)) time, ie. O(| E]) time, when

G ={(VF, E}is the graph of Algorithm 3.1.

6. Extension of Algorithm 3.1 to various cases

6.1. P and Q are both RC (not necessarily RRC)
polygons

This is a straightforward extension of Al-
gorithm 3.1. In Fig. 11 we consider the case when
both P and @ are RC (but not RRC) polygons.
The slabs are formed by drawing horizontal lines
from vertices of P and Q. Now the slabs are
trapezoidal in nature. In the visibilities calcula-
tions of Section 5, instead of vertical edges we

42

 INFORMATION PROCESSING LETTERS

27 October 1989

Fig. 11. Division of int{ P)—int{(Q) into slabs when P and @
are RC polygons.

" may now have stanted edges, but the visibility

calcolation procedure remains similar if we treat
the slanted edges in a way similar to vertical
edges.

6.2. Pis RC and Q is an arbitrary simply polygon

By Proposition 4.2, for the minimal vertex
nested polygon between P and Q is also the
minimal vertex nested polygon between P and
RCH(Q). RCH(Q) can be constructed in O{q)
time by easily modifving the existing algorithm for
computing the convex hull of a simpile polygon as
proposed by Lee [6] and also described in [8]. Let
¢’ be the number of vertices in RCH(Q@). So now
Step 3 of Algorithm 3.1 takes

O(mlogm+ |E|)
time, where m=p + ¢’ and
[E| =0(m+m?—mk).

Step 1 takes O(m) time and Step 2 takes (| E|)
time. Hence, the total time taken by Algorithm 3.1
is obviously

O(ntmlogm+ | E)).
" Lemma 6.1. When Q is a linearly separable mono-

tone polygon, RCH(Q) has only a constant number
of vertices on the average.

Volume 33, Number 1

Proof. Without any loss of generality, let the di-
rection of monotonicity of Q be vertical, i.e. Q is
a separable x-convex polygon. The boundary of Q
can be decomposed into two chains, the right
chain C, and the left chain C,, such that C; and
C, are monotone with respect to some vertical line
and lie on the opposite sides of the line (Fig. 12).
The vertices of @ having extreme y-coordinate
values are assumed to belong to chain C, for
concreteness. So, for an average analysis, one of
the chains, say C,, can be chosen arbitrarily over
the whole real plane (as long as it is x-convex).
Let / be the vertical line passing through the
leftmost point in C, and /; and /, be horizontal
lines passing through the vertices of Q with ex-
treme y-coordinates (Fig. 12). Then, the chain C,
may consist of points belonging to the region H of
the real plane bounded by lines /, /, and !/
(shown shaded in Fig. 12). This selection of points
on C, as above preserves the property of sep-
arability of the two chains.

For the average-case analysis, the following as-
sumptions are made. The x-coordinates of points
on the chains are chosen from the total real line
(for chain C,) or from a subset of the real line (for
chain C,) randomly and independently with uni-
form distribution. Furthermore, since the polygon
Q is x-convex, chains C, or C, may consist of
points (x;, »),.-.,(x,, ¥} in which the sequence
(¥1---» ¥,), with each y, is chosen from the total
real line (for chain C,) or from a subset of the real

Fig. 12. Decomposition of a separable x-convex polygon into

two chains C, and C,. C, consists of points (p;,..., pg) and

C, consists of points (pyg,..-, P14)- Ps is the leftmost point of
Cy.

INFORMATION PROCESSING LETTERS

27 October 1989

xy.vy)

(x3.v3

(xg.v4/

(x5.v5/

(xg.vg!

1 (x3.v3
(x10¥10/ }
I

(xgp1v17/

(x12¥ 12

Fig. 13. RCH(C;) has points (xy, y1), (%2, y2h (x> M)

(x4, ya)r (X5, ¥s)s (x3. ;) (%3, ¥1)s (xgs o) (x3. »1)

(X11» ¥11)» (X120 Y12). %, X3 and x4 are the LR maxima, and

Xy3. X1, Xg and x, are the RL maxima of the sequence

(Xy,-.-2X12). Three new points (x;, y;) (x3, y;) and (x3, y3)

are introduced. The sequence (Jy,..., ¥z} is sorted for the
x-convexity requirement.

line (for chain C,), is necessarily sorted and a
sequence of r unsorted y-coordinate values can-
not form an x-convex chain. So we assume that
each such sorted sequence of r y-coordinate values
is equally likely to occur because we are interested
in x-convex polygons only. We also assume that
the x-coordinates of the points on the chain are
chosen independently of each other.

First we prove that RCH(C,) has only a con-
stant number of points on the average. RCH(C,)
contains all 5 points (x,, y,) where x, is an LR
maximum or RL maximum of the sequence
(xy,..., X,) [4] and possibly an additional set of at
most s points (x|, y{),....(x;, y;) newly in-
troduced (Fig. 13). Since } is the probability that
for any two randomly chosen numbers a and b, b
is greater than a, the average number of LR
maxima (or RL maxima) of the sequence

43

Volume 33, Number 1

(oo x,) S TG+ - + (D) = 0).
So, for a given set of r points (x, ¥),....(x,, }.)
in which the sequence (y,..., y,) is fixed and
sorted (due to the x-convexity requirement), the
average number of vertices in RCH{C,) is con-
stant for every possible set of » x-coordinate value
sequences. Finally, since all sorted y-coordinate
sequences of length r are equally likely, the aver-
age number of vertices in RCH{C(,) remains con-
stant.

A similar proof can be given for the other chain
C, by considering C, to consist of points belong-
ing to region H instead of the whole real plane.

0

7. Conclusions

In this paper we have proposed approximate
algorithms for special cases of the minimal vertex
nested polygon problem. Further investigations
may be carried out towards improving the nature
of approximation of Algorithm 3.1 and to extend
the algorithm for other types of polygons.

_Acknowledgmeuts

The authors wish to thank an anonymous
referee for his helpful comments and suggestions
during the initial review of this paper. The authors

 INFORMATION PROCESSING LETTERS

27 October 1989

“also wish to thank Mr. S.P. Pal and Mr. M.V,
_ Ramana for their critical remarks during develop-
ment of the algorithms.

. References

"[1] A. Aggarwal, H, Booth, J. O'Rourke, 5. Suri and C.Y. Yap,
Finding minimal convex nested polygons in: Proc s
ACM Symp. on Computational G try (1985) 296-304.

[2] M. Freedman and R. Tarjan, Fibonacci heaps and their
uses in improved network optimization algorithms, in: Proc.
25th Ann. IEEE Symp. on Foundations of Computer Science
{1984) 338-346.

[3] 5.K. Ghosh and RK. Shyamsundar, A linear time al-
gorithm for computing the polygon from an edge, in: Proc,
IEEE Conf. on Patiern Recognition and Image Processing
(1984},)

[4] D.E. Knuth, The Art of Computer Programming, Vol 3,
Sorting and Searching (Addison-Wesley, Reading, MA, -
1973).

[5] D.T. Lee, Visibility of a simple polygon, Compur. Vision,
Graphics Image Process. 22 (1983) 207-221.

i6] D.T. Lee, On finding the convex hull of a simple polygon,
Tech. Repost No., 80-03-FC-11, EE/CS Dept., Northwest-
ern Untv.; also in: Iniernat. J. Comput. Inform. Sci. 12 (2}
(1983) 87-98.

[7]1 5.R. Maddila and C.K. Yap, Moving a polygon around the
corner in a corridor, in: Proc. 2nd ACM Symp. on Compu-
tasional Geometry (1986) 187-192. i

[8] F.P. Preparata and M.I. Shamos, Computational Geome-
try — An Introduction (Springer, Berlin, 1985). g

[9] S.8uri and J. O'Rourke, Finding minimal nested polygons,
Tech. Report, The Johns Hopkins Univ,, Baltimore, MD,
1983,

