Online Real-Time Preemptive Scheduling of Jobs with Deadlines on
Multiple Machines*

Bhaskar DasGupta’ and Michael A. Palis
Department of Computer Science
Rutgers University
Camden, NJ 08102, USA
Email: {bhaskar,palis}@crab.rutgers.edu

June 13, 2000

Abstract

In this paper, we derive bounds on performance guarantees of online algorithms for real-time
preemptive scheduling of jobs with deadlines on K machines when jobs are characterized in terms
of their minimum stretch factor « (or, equivalently, their maximum execution rate r = 1/«).
We consider two well known preemptive models that are of interest from practical applications:
the hard real-time scheduling model in which a job must be completed if it was admitted for
execution by the online scheduler, and the firm real-time scheduling model in which the scheduler
is allowed not to complete a job even if it was admitted for execution by the online scheduler.
In both models, the objective is to maximize the sum of execution times of the jobs that were
executed to completion, preemption is allowed, and the online scheduler must immediately
decide, whenever a job arrives, whether to admit it for execution or reject it. We measure
the competitive ratio of any online algorithm as the ratio of the value of the objective function
obtained by this algorithm to that of the best possible offline algorithm. We show that no online
algorithm can have a competitive ratio greater than 1 — (1/«a) + ¢ for hard real-time scheduling
with K > 1 machines and greater than 1 — (3/(4[a])) + ¢ for firm real-time scheduling on
a single machine, where € > 0 may be arbitrarily small, even if the algorithm is allowed to
know the value of a in advance. On the other hand, we exhibit a simple online scheduler that
achieves a competitive ratio of at least 1 — (1/«) in either of these models with K machines.
The performance guarantee of our simple scheduler shows that it is in fact an optimal scheduler
for hard real-time scheduling with K machines. We also describe an alternative scheduler for
firm real-time scheduling on a single machine in which the competitive ratio does not go to zero
as a approaches 1. Both of our schedulers do not know the value of « in advance.

1 Introduction

The need to support applications with real-time characteristics, such as speech understanding and
synthesis, animation, and multimedia, has spurred research in operating system frameworks that

*A preliminary version of this paper will appear in 3rd International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), September 2000.
TResearch supported by NSF Grant CCR-9800086.

provide quality of service (QoS) guarantees for real-time applications that run concurrently with
traditional non-real-time workloads [8, 9, 11, 12, 13, 14, 19, 22, 23, 24, 27]). In such a framework, a
real-time application negotiates with the resource manager a range of “operating levels” at which
the application can run depending on the availability of resources. Based on the current state of
the system, the resource manager may increase or decrease the application’s operating level within
this pre-negotiated range. As an example, consider an application that displays video frames over
a network link. Such an application may require a nominal rate of 30 frames/second, but if it is
not possible to achieve this rate, the rate may be reduced to 15 frames/second by skipping every
other frame and still achieve reasonable quality. If there are still inadequate system resources, the
rate may be further reduced to say 7.5 frames/second (by skipping every fourth frame). However,
below this minimum rate the application would produce completely inadequate performance and
hence should not be run.

In this paper, we consider the problem of scheduling real-time jobs for the case when the job’s
"operating level” is characterized by its stretch factor, which is defined as ratio of its response
time (i.e., total time in the system) to its execution time. Specifically, we consider the problem of
scheduling a set of n independent jobs, J = {Ji, Ja, ..., J,} on K machines My, Ms, ..., M. Each
job J; is characterized by the following parameters: its arrival time a(J;), its execution time e(J;, j)
on machine Mj;, and its stretch factor a(J;) (a(J;) > 1), or equivalently its rate r(J;) = 1/a(J;)
(0 < r(J;) <1). The parameter «(J;) determines how late J; may be executed on machine Mj;
specifically, J; must be completed no later than its deadline d(.J;) = a(J;) +e(J;, j)a(J;) on machine
M;. A valid schedule for executing these jobs is one in which each job J; is scheduled on at most one
machine, each machine M; executes only one job at any time and a job is executed only between
its arrival time and its deadline. Preemption is allowed during job execution, i.e., a job may be
interrupted during its execution and its processor may be allocated to another job. However,
migration of jobs is not allowed, i.e., once a job is scheduled to run on a specific machine, it can
only be executed on that machine.

We are interested in online preemptive scheduling algorithms based on two real-time models.
In the hard real-time model, every job that is admitted by the system must be completed by its
deadline or the system will be considered to have failed. This in contrast to a soft real-time
system [20] that allows jobs to complete past their deadlines with no catastrophic effect except
possibly some degradation in performance. In [1] Baruah et. al considered a special case of a
soft real-time system, called a firm real-time system, in which no “value” is gained for a job that
completes past its deadline. We consider both the hard and firm real-time models in this paper.
In both cases, we are interested in online scheduling algorithms that maximizes the wutilization,
which is defined as the sum of the execution times of all jobs that are completed by their deadlines.
Notice that in the hard real-time model, the scheduler must only admit jobs that are guaranteed to
complete by their deadlines. In contrast, in the firm real-time model, the scheduler may admit some
jobs that do not complete by their deadlines, but such jobs do not contribute to the utilization
of the resulting schedule. We measure the performance of the online algorithm in terms of its
competitive ratio, which is the ratio of the utilization obtained by this algorithm to that of the best
possible offline algorithm.

For a given set of jobs J = {J1,J2,...,Jy}, an important parameter of interest in adaptive
rate-controlled scheduling is their mazimum execution rate r(J) = max{r(J;) | 1 < i < n} (or,

equivalently, their minimum stretch a(J) = min{a(J;) | 1 < ¢ < n}). In fact, it is not difficult
to see that without any bound on the execution rates of jobs no online algorithm for the hard
real-time scheduling model has a competitive ratio greater than zero in the worst case (unless
additional assumptions are made about the relative execution time of the jobs [18]). However,
natural applications in rate-controlled scheduling leads to investigation of improved bounds on the
competitive ratios of online algorithms with a given a priori upper bound on the execution rates
of jobs. Because the stretch factor metric has been widely used in the literature (e.g., see [6, 7,
21]), we choose to continue with the stretch factor characterization of jobs (rather than the rate
characterization) in the rest of the paper and present all our bounds in terms of the stretch factors
of jobs.

The scheduling problem for jobs with deadlines (both preemptive and non-preemptive versions)
has a rather rich history. Below we just provide a synopsis of the history, the reader is referred to
a recent paper such as [4] for more detailed discussions. The offline non-preemptive version of the
problem for a single machine is NP-hard even when all the jobs are released at the same time [25];
however this special case has a fully polynomial-time approximation scheme. The offline preemptive
version of the scheduling problem was studied by Lawler [17], who found a pseudo-polynomial time
algorithm, as well as polynomial time algorithms for two important special cases. Kise, Ibaraki
and Mine [15] presented solutions for the special case of the offline non-preemptive version of the
problem when the release times and deadlines are similarly ordered. Two recent papers [3, 5]
considered offline non-preemptive versions of the scheduling problems on many related and/or
unrelated machines and improved some of the bounds in a previous paper on the same topic [4, 26].
On-line versions of the problem for preemptive and nonpreemptive cases were considered, among
others, in [2, 16, 18]. Baruah et. al. [2] provide a lower and upper bound of 1/4 for one machine
and an upper bound of 1/2 for two machines on the competitive ratio for online algorithms for
firm real-time scheduling. Lipton and Tomkins [18] provide an online algorithm with a competitive
ratio of O(1/(log A)**¢) for scheduling intervals in the hard real-time model, where A is the ratio
of the largest to the smallest interval in the collection and ¢ > 0 is arbitrary, and show that no
online algorithm with a competitive ratio better than O(1/logA) can exist for this problem. Some
other recent papers that considered various problems related to stretch factors of jobs (such as
minimizing the average stretch factor during scheduling) are [6, 7, 21].

The following notations and terminologies are used in the rest of paper. Ax denotes an on-
line preemptive scheduling algorithm for K machines and O PTk is an optimal offline preemptive
scheduling algorithm for K machines. When K = 1, we will simply denote them by A and OPT,
respectively. Unless otherwise stated, n denotes the number of jobs. For a given set of jobs 7,
Ui, (J) (respectively, Uopr, (J)) denotes the processor utilization of Ag (respectively, of OPT).
We say that an online scheduler Ax has competitive ratio p(Ax,«),0 < p(Ax,a) < 1, if and only
if

Uag (\-7)
Uopry(T)

for every job set J with a(J) > «. Finally, Ax has a time complexity of O(m) if and only if each

> p(AKv Oé)

decision of the scheduler can be implemented in time O(m). Our main results are as follows:

e In Section 2, we show that p(Ax,a) < 1 — (1/a) + ¢ for hard real-time scheduling, and
p(A,a) < 1—3/(4[a]) + € for firm real-time scheduling, where ¢ > 0 may be arbitrarily

small.

e In Section 3, we design a simple O(n) time online scheduler Ax with p(Ax,a) > 1 — (1/«)
for either the hard real-time or the firm real-time scheduling model.

e In Section 4, we describe an online scheduler for firm real-time scheduling on a single machine
in which the competitive ratio does not go to zero as a approaches one.

Notice that the upper and (almost matching) lower bounds for the competitive ratio for hard
real-time scheduling for K machines is independent of K. This should be contrasted with the offline
case where the competitive ratio may decrease with increase in K if the machines are related [3, 4, 5].
Also notice that the performance guarantee of our simple scheduler shows that it is in fact an optimal
scheduler for hard real-time scheduling with K machines. Finally, both the schedulers described in
Sections 3 and 4 do not need to know the value of « in advance.

2 Upper Bounds of the Competitive Ratio

In this section, we prove upper bounds of the competitive ratio for hard real-time scheduling with
K machines and firm real-time scheduling for a single machine. We need the following simple
technical lemma which applies to both hard and firm real-time scheduling.

Lemma 1 Assume that o > 1 is an integer and we have a set of a jobs, each with stretch factor
a, execution time x > 0, and the same arrival time t. Then, it is not possible to execute all these
« jobs, together with another job of positive execution time, during the time interval [t,t + ax], in
either the hard or the firm real-time scheduling model.

Proof. The common deadline of all these « jobs is t + ax. Since each job has execution time z,
the lemma follows. a

2.1 Hard Real-Time Scheduling for K Machines

Theorem 2 For every o« > 1, every K > 1, any arbitrarily small € > 0, and for any online
preemptive scheduling algorithm A, p(Ax,a) <1—(1/a)+e.

Proof. For later usage in the proof, we need the following inequality: for any a > 1,

This is true since 1a2 <QT_1¢>a2+a—1Za<:>a221.

a—1

It is sufficient to prove the theorem for all € < 1/a. The proof proceeds by exhibiting explicitly
a set of jobs J with stretch factor at least o for which p(Ax,a) < 1—(1/a)+ ¢ for any scheduling
algorithm Ag. All jobs in the example have stretch factor . Furthermore, any job J in our
example has the same execution time on all machines, hence we will simply use the notation e(.J)
instead of e(.J, 7). We break the proof into two cases depending on whether « is an integer or not.

Case 1: « is an integer. Let a = ﬁas) and 0 < 6 < % be any value. Note that a > a > 1.

The strategy of the adversary is as follows:

(a) At time 0, the adversary generates a job Jy with e(Jy) = 1 and a(Jy) = a. Ax must accept
this job because otherwise the adversary stops generating any more jobs and the competitive ratio
is zero.

(b) At time 47, for 1 < i < K — 1, the adversary stops (does not generate any more jobs) if Ax
did not accept J;_1; otherwise it generates a job J; with e(.J;) = 255 37— () and a(J;) = a.
Notice that e(J;) > 1 for all 0 <i < K.

First, we note that Ag is forced to accept all the jobs. Otherwise, if Ax did not accept job J;
(for some 1 < i < K — 1), then since OPTk can execute all of the jobs Jy, J1, Jo, ..., J; (each on a
different machine), we have

i—1
_ Yioeld)) 1 1 a—1
p(Ak, o) = Zoe(J)_l—i— EeA _1+i§ . =1-(1/a)+e¢
>oelds) -l

as promised. Next, we show that Ax cannot execute two of these jobs on the same machine.
Suppose that job J; (i > 0) is the first job that is executed on the same machine executing another
job Ji for some k < i. We know that J; arrives after Ji. Hence, if J; has to execute to completion
on the same machine together with Ji, then we must have e(J;) < (o — 1)e(J). However,

i—1
2 1 a2

e(JZ) = a_1 Ze(Jj) > 0
=0

1e(Jk) > (a—1)e(Jg) > (a—1)e(Jg)

Hence, if Ay, still did not give up, it must be executing all the K jobs, each on a different machine.

(c) Now, the adversary generates a new set of aK jobs. Each job arrives at the same time d K, has
the same stretch factor a, and the same execution time e = z(3X ;! e(J;)) where = > 2a. Notice
that none of the previous K jobs finished on or before the arrival of these new set of jobs since
0K < 1 and e(J;) > 1 for all i. Hence, by Lemma 1 at most (o — 1) new jobs can be executed
by Ax on a single machine. Hence, U(Ax) < 5 e(J;) + K(a — 1)e. The optimal scheduling
algorithm O PTk will on the other hand reject all previous K jobs and accept all the new aK jobs.
Thus, U(OPTk) > Kae and hence

Ua < SEVe(J;) + K(a—1)e 1+ K(a—1)x
Uopr — Kae - Kox

<1—(1/a)+e

where the last inequality follows from the fact that = > 2a > ¢.

Case 2: « is not an integer. Let p = |«a] > 1; thus a > p > 1. The strategy of the adversary is
as follows.

(a) First, as in Case 1, the adversary first generates the following jobs. At time 0, the adversary
generates a job Jy with e(Jy) =1 and «(Jp) = o and at time 61, for 1 < i < K — 1, the adversary
stops (does not generate any more jobs) if Ax did not accept J;_1; otherwise it generates a job J;
with e(J;) = 25 Y41 e(J;) and a(J;) = a. The same argument as in Case 1 indicates that Ak
must schedule all these jobs, each on a separate machine.

1 1 e(Ji) 2
(b) Let f > max { ==L (p) maxg<;<i—1 {e(Ji)—((l/oc)—l—s) Z;;l o } e p} be a positive

integer. Now, at time 0K, the adversary generates a job Jx with e(Jx) = [(a — p)e(Jy) and

a(Jg) = a and at time 0i, for K +1 < i < 2K — 1, the adversary stops (does not generate any
more jobs) if Ax did not accept J;_1; otherwise it generates a job J; with e(J;) = f(a —p)e(Ji—k)
and a(J;) = a.

First, note that it is possible to execute all the 2K jobs by executing jobs J; and Jx.;, for
0 <i < K —1, on the same machine. Since the jobs J; and Jx4; are released d K time apart, after
J; finishes execution, the time left for Jx4; to complete its execution is

__ v
B(a —p)

which is sufficient for its execution. Next, note that Ax must accept all the new K jobs. If Ag

ae(Jr1i) —e(Ji) + 0K > (04) e(Jr+i) > e(Jx+i)

did not accept Jg+i, for some 0 < ¢ < K — 1, then since the adversary can execute all the jobs
Ji, Jo, ..., Jk i, we have

Us < Lo o))
Uopr — ZK'“ e(J;)
Bla—p) Y1y elJ; +foeu>

ﬂ(a_p)z; OE(J +Z] it1 E(J)
o (Bla=p)~Del)

Bla—p) 2o el D ot el)

< 1- g((j(o;)gf(())6(6‘8) since f(a—p) > 2
= 1= ((ﬂé?a pp) < .i(Je(J)
< 1—-(1/a)+e¢ since B(a —p) > e(J;)/(e(J;) — (1 /) +) Zf JLe(gy)

Hence, after this step, Ax must be executing all the 2K jobs presented to it.

(c) Now, similar to as in (c) in Case 1, the adversary generates a new set of aK jobs. Each job
arrives at the same time 20K, has the same stretch factor «, and the same execution time e =
(X2 e(J;)) where > 2a. In a manner similar to Case 1, it can be shown that at most (v — 1)
new jobs can be executed by Ax on a single machine. Hence, U(Ax) = Z?fo_l e(J;) + K(a—1)e.
The optimal scheduling algorithm OPTy will on the other hand reject all previous 2K jobs and
accept all the new aK jobs. Thus, U(OPTk) = Kae and hence

Ua < ST e(J;) + K(a—1)e 1+ Ka—-1)x
Uopr — Kae - Kox

<1-(1/a)+e

where the last inequality follows from the fact that = > 2a > ¢. a

2.2 Firm Real-Time Scheduling For a Single Machine

Theorem 3 For every a > 1, any arbitrarily small e > 0, and for any online preemptive scheduling
algorithm A, p(A,a) <1—3/(4[a]) + €.

Proof. Our proof follows an approach similar to the one in [2] in which they prove an upper
bound of 1/4 on the competitive ratio for a single machine. First, we need the following technical

lemma.

Lemma 4 Let {x;}i>1 be the sequence defined by the recurrence relation

1 ifi=1
zi=1{ -1 ifi=2
c(wi—1 —xi—p) ifi>2

where ¢ > 1 is a real number. Furthermore, let So =0 and S; = 23':1 xj, for i > 1. The following
properties hold for the sequence {x;}:

(a) For everyi>1,S; =cx;_.

(b) For everyi > 1, 4“'—51";,#“ L — =l
i+1 c

(c) For every c < 4, there exists a finite integer m > 0 such that Tpy—1 > Tp,.

Proof. Property (a) is proved by straightforward induction on ¢, and property (b) follows from
property (a). Property (c) was proved by Baruah et. alin [2]. O

We now continue with the proof of Theorem 3. Let 5 = [«], and for a given value of ¢, let m be
an integer such that property (c) of Lemma 4 is satisfied. The adversary generates a job sequence
consisting of two types of jobs:

(1) Major jobs. These jobs have stretch 3 and are released by the adversary at times t1, to, . . ., ty,.
At time ¢;, the adversary releases exactly 3 major jobs each of length z;, where {z;} is the
sequence defined in Lemma 1 with ¢ = 4/(1 + 48¢). Note that these jobs have a common
deadline d; = t; + Bx;. The adversary chooses the release times such that ¢t{ = 0 and
tis1 = d; — 60 for 1 <4 < 'm, where § is arbitrarily small.

(2) Baits. The adversary also generates a sequence of small jobs (called baits) each of length §
and stretch 3. The baits are released one at a time every § time units beginning at time 0.

Henceforth we will refer to the time interval [¢;,t,11) as epoch i and to the major jobs released
at time t; as the major jobs of epoch i.

At time 0, the adversary starts off by releasing the major jobs of epoch 1 and starting the bait
sequence. In general, during the current epoch ¢, the adversary does the following in response to
the actions of online algorithm A:

(1) We say that A takes the bait in epoch i if A chooses to execute a bait anytime during epoch
i. In this case, the adversary immediately stops generating new jobs (major jobs and baits).
On the other hand, if A does not take the bait, the adversary continues the bait sequence
and releases the major jobs of epoch i+ 1 at time #;41.

(2) We say that A completes epoch i if throughout the time interval [t;, d;] A executes only the
major jobs of epoch i. In particular, it does not switch to a major job of epoch i +1 (released
at time t;11) during the time interval [t;11,d;). In this case, the adversary stops generating
new jobs after time d;.

(3) We say that A abandons epoch i if during the time interval [t;, ;1) A executes only the major
jobs of epoch i, then switches to a major job of epoch ¢ + 1 sometime during the interval
[ti+1,d;) (possibly by aborting a currently executing major job of epoch 7). In this case, the
adversary continues the bait sequence and releases the next set of major jobs at the start of
the next epoch.

The adversary continues generating new jobs, if necessary, but eventually ends the job sequence
at time t,, with the release of the major jobs of epoch m.

We now prove that the online algorithm A achieves a competitive ratio of atmost 1—3/(43) +e.
The proof breaks down into the following three cases:

Case 1. A abandons epochs 1,2, ...,k — 1 then takes the bait in epoch kK < m. Then A must have
executed at most 8 — 1 major jobs of each epoch ¢, 1 < 1 < k. On the other hand, an optimal
offline scheduler attains a utilization of 35S) by executing the bait sequence from time 0 till time
then executing all § major jobs of epoch k. Thus,

U _(B-DSe_, 1, 3
Uopr BSk B 43

Case 2. A abandons epochs 1,2,...,k — 1 then completes epoch & < m. Then A must have
executed at most 8 — 1 major jobs of epoch i, 1 < i < k, at most 3 jobs of epoch k, and at most
B —1 major jobs of epoch k+1. On the other hand, an optimal offline scheduler attains a utilization
of BSk+1 by executing the bait sequence from time 0 till time tx4; then executing all § jobs of
epoch k + 1. Thus,

Ua < (8—1)Sk—1 + B + (8 — Dzpga
Uopr ~ BSk+1
 BSk41— Sk—1 — k11
B BSk+1
_ 1 Ske1t T
BSk+1
= 1- ! by Lemma 4(b)
Bc
3 4
= 1- 10 +e for ¢ = 1743
Case 3. A abandons epochs 1,2,...,m — 1 and completes epoch m. Then A must have executed

at most 5 — 1 major jobs of each epoch i, 1 < i < m, and at most # major jobs of epoch m. On the
other hand, an optimal offline scheduler attains a utilization of 5.5, by executing the bait sequence
from time 0 till time ¢, then executing all 5 major jobs of epoch m. Thus,

Ua < (ﬁ — 1)Sm—1 + ﬁxm _ ﬁSm - Sm—l _1_ Sm—l
Uopr — BSm S BSm

Since ¢ =4/(1 + 4f¢) < 4, then by Lemma 4(c) and by choice of m, we have x,,,—1 > x,,. Now,

Tm-12>Tm & Smo1+Tm-12>Sm-1+Tn,

& eSp—1+ crpm_1 > ¢Sy,
& eSpo1+Sm > eSp, by Lemma 4(a)
& cSpo1 > (c—1)Sy,
- Sm_1 > c— 1'
'm c
Therefore, - . ;
c—
UoﬁT =1 Be :1_R+5
since ¢ = 1+i6ﬂ. a

3 An Online Scheduler for Both Models

In this section, we exhibit a simple O(n) time online scheduler of K machines, where n is the
total number of jobs, that achieves a competitive ratio of at least 1 — (1/«) for either hard or
firm real-time scheduling. The online scheduler Ag is based on the EDF (Earliest Deadline First)
scheduling algorithm [10]. When a job J arrives, Ax first runs an admission test on the machines
My, My, ..., Mg, in any predetermined order, to check if all previously admitted jobs that have
not yet completed, plus job J, can be completed by their respective deadlines on some machine
M;. If so Ag admits J on machine M, otherwise it rejects J. Admitted jobs in each machine
are executed by Ax in nondecreasing order of their deadlines. Thus, preemptions may occur: a
currently executing job will be preempted in favor of a newly admitted job with an earlier deadline.
The preempted job resumes execution when there are no more admitted jobs with earlier deadlines.

The details of the scheduling algorithm of A are as follows. Ax maintains a queue Q); of jobs
that have been admitted but have not yet completed on machine M;. Each job in the queue Q;
contains three information: (1) its job number, (2) its deadline, and (3) its remaining execution
time (i.e., its execution time minus the processor time that it has consumed so far). The jobs in the
queue are ordered by nondecreasing deadlines. Thus, if the machine M; is busy, then it is executing
the job at the head of the queue @; (which has the earliest deadline) and the remaining execution
time of this job decreases as it continues to execute. The job is deleted from @); when its remaining
execution time becomes zero, and the job (if any) that becomes the new head of the queue Q; is
executed next on M;.

Here are more implementation details of the scheduling algorithm A for the machine M;. When
a new job J arrives, if the job is already not scheduled in one of the machines Mi, Mo, ..., M;_;
(for j > 1) then Ak inserts J in its proper position in @); (such that the deadlines of jobs in Q; are
ordered by nondecreasing deadlines), with its remaining execution time initially set to its (total)
execution time (if there are jobs in @; with the same deadline as J then J is inserted after these
jobs). Then Ak performs the following admission test to determine whether to admit or reject J
on machine M;:

reject = FALSE;
J’ = 7J;
repeat
s = sum of the remaining execution times of all jobs
in the queue up to and including job J’;
if s > d(J’) then reject = TRUE
else J’ = next job in the queue after J’;
until (J’ = NULL or reject = TRUE);

That is, reject is set to TRU E if admission of J will cause J or some job with a deadline later
than J to miss its deadline (note that jobs with deadlines earlier than J will not be delayed by
J and hence need not be checked in the admission test). If reject = TRUE, then J is deleted
from @; and is rejected. Otherwise, J is admitted and retains its position in the queue @);. If the
position of J is not at the head of the queue, then Ax continues execution of the current job at
the head of the queue (); on machine M;. However, if J is positioned at the head of the queue @)},
then the current job is preempted and J begins execution on M;. Clearly, the total time taken by
the online scheduler over all machines when a new job arrives is O(n).

As a final note, it may happen that several jobs may arrive simultaneously; in this case, Ax
processes these jobs in any arbitrary order.

Before proceeding further, we first introduce some notations to simplify the equations that will
be presented shortly. Let X be a set of jobs. We shall use X |<4 (X |s>q) to denote the subset of
jobs in X whose deadlines are < d (respectively, > d). Additionally, we slightly abuse notation by
using e(X, j) to denote the sum of the execution times of all jobs in X on machine M;.

Finally, the following inequality will be used later:

Fact 1 ‘gi—g > % whenever u < v and a > b.

Proof. u<wvanda>b= ub<wva= ub+uv <va+uv = ub+v)<v(a+u) é%ﬁ‘éi—ﬁ. O

UAK(j)

Theorem 5 For every set of jobs J with a(J) = « and for every integer K > 1, Toree () 2
K

1= (1/e)

Proof. Let J = {Ji, Ja,...,Jn} be the set of n jobs. We wish to compare the schedule of Ax
with that of an optimal offline scheduler OPT. For a given machine M;, the schedule of Ax for
this machine produces an execution profile that consists of an alternating sequence of busy and idle
time intervals of M;. A busy time interval of M; corresponds to the case when the machine M;
is busy executing some job. Each busy interval (except the last) of M; is separated from its next
busy interval by an idle interval, during which the machine M; is not executing any job. Define a
busy time interval for the scheduler Ag to be a time interval during which all of its K machines are
busy; otherwise call it a non-busy time interval of Ag. Observe that any job that arrived during a
non-busy time interval of Ax must have been scheduled by Ag immediately, since at least one its
machines was not executing any job. In other words, any job that was rejected by Ax must have
arrived during a busy time interval of Ax.

10

Let By, Bo, ..., B, be the busy intervals of Ax. The jobs in J can then be partitioned into
the following disjoint subsets:

o 71,72, ..., Im, where J; is the set of jobs that arrive during busy interval B;.

e The remaining set J" = J — U",J; of jobs whose arrival time is during a non-busy time
interval of Ag. All jobs in J” were executed by Ag.

Let J' = U2, Ji. Let J}, (vespectively, J,pr,) be the set of jobs that were executed by Ag
(respectively, OPTk) from J'. We first claim that, to prove Theorem 5, it is sufficient to show
that

i) 1
Ty 2=) (1

Why is this so? Assume that OPTy executes a subset J,pp, of the jobs in J”. Hence,
Une () = elTi) + e("), Uort(T) = elTopry) + (T pry) and e(7”) = e(Thpr). Now, i
e(Jh,) = e(Tbpr,)s then clearly UAKi(‘@) > 1> 1~ (1/a). Otherwise, if e(J},.) < e(THpr,.);

Uap () e(Th,)
’ UOPTK(j) - e(jépTK)'

Now we prove that Equation 1. Let \ZAK and JiOPTK be the subsets of jobs in J; admit-
ted by Ax and OPTk, respectively. Obviously, since e(J4,.) = >ty e(JiAK) and e(JHpr,) =
i e(JOP K), it suffices to prove that, for each busy interval B; of Ax, 1 <i < m:

then by Fact 1

e(J. Ax
% >1-(1/a) @)
We now prove Equation 2. For notational convenience, we drop the subscript K from Ax and
OPTyg. Let Jf} (respectively, Ji%P T) be the subset of jobs in JA (respectively, JPFT) that were
scheduled on machine M;. Since e(J#) = ZJ 1 e(JA) and e(JOTT) = ZJ 1 e(JOPT) to prove

Equation 2 it is sufficient to show that

A
21— (1) ®)

i,J

We now prove Equation 3 for an arbitrary machine M;. For notational convenience, for a set
of jobs X we refer to e(X, j) simply by e(X). Let ¢ be the time at which busy interval B; begins;
thus, all jobs in J; ; have arrival times no earlier than ¢. Let X € J OPT 1y 4 job with the latest
deadline among all jobs in \70 PT —y "1 that was executed in machine M If there is no such job X,
then J;7 OPT C T A and Equation 3 trivially holds, hence we assume such an X exists. Also, assume
that e(J;f}) < e(JZf;P T, otherwise again Equation 3 trivially holds.

By the admission test, A rejected X for M; because its admission would have caused some job
Y (possibly X) on M; to miss its deadline d(Y); i.e

t+e(T5 l<ary) + e(X) > d(Y)

The term ¢ on the left hand side of the above equation is due to the fact that all jobs in \7/} have
arrival times no earlier than ¢ and hence cannot be executed before time ¢. Since jf} = Jf} l<a(y)
U T |sary), we get:

11

e(JT5) > d(Y) — e(X) — t+ e(T7j sary))- (4)

Now, since O PT must complete all jobs in Jigp T on M; no later than their deadlines, it should
be the case that t + e(JZ%PT |<a) < d for every d. In particular, when d = d(Y'), we have:

t+e(TGT |<ary) < d(Y)
Since JZ%PT = JZ%PT l<aqyy U JZ%PT |>a(yy, we get:
e(TGT) <d(Y) = t+ (TG |sap)

By definition, X has the latest deadline among all jobs admitted by OPT but rejected by A on
machine M;. Also, by the admission test, Y is either X or some other job admitted by A with
deadline d(Y) > d(X). It follows that jigp e Jf} |>a(y)- The above equation then becomes:

(TG < d(Y) = t+ e(Ti5 [saryy)- ()

From Equations 4 and 5 we get:

e(J:5) . d(Y) = e(X) =t +e(T |saw))
e(JGFT) d(Y) =t + (TS |sary)
a(Y) +e(Y)a(Y) — e(X) — t + e(T7 |arr))
a(Y) +e(Y)(Y) =t + e(T5 [sary))

aV)~t+e(T) ‘
S+ elY) - o

a(Y)—t+e(T7 [=a(v)
S e(Y)

e(Y) — Z(()f,%
e(

Y) , by Fact 1

__dX)
a(Ye(Y)'

We now show that e(X)/a(Y) <e(Y)/a. If X =Y, then e(X)/a(Y) =e(Y)/a(Y) <e(Y)/a,

since a(Y') > . If X # Y, then Y is some job previously admitted by A on machine M; such that
a(Y) <a(X) and d(Y) > d(X). Thus:

aY)+e¥Y)aY) > a(X)+e(X)a(X)
= eMaY) > (a(X)—a(Y))+e(X)a(J)
= eY)a(Y) > e(X)a(X),since a(X)—a(Y) >0
= e(Y)a(Y) > e(X)aq,since a(X) > a.
Hence, it follows that e(X)/a(Y) < e(Y)/a. We therefore conclude that e(e%ifﬁ';) >1-— % >
1-1 ’ O

12

4 An Combined Scheduler for Firm Real-Time Scheduling on a
Single Machine

The competitive ratio 1 — (1/«a) for the scheduler described in Section 3 approaches zero as «
approaches one. For the case of firm real-time scheduling on a single machine, this can be avoided
by combining our scheduler with the version 2 of the T'D; scheduler (Figure 2) of [2].

Of course, if a is known to the online algorithm in advance, then combining the two algorithms
is easy: if a > 4/3, the scheduling algorithm of Section 3 is chosen; otherwise the T'D; scheduler
of [2] is chosen. This would ensure that the competitive ratio of the combined scheduler is at least
max{1/4,1— (1/a)}. The above discussion leads to the following simple corollary.

Corollary 6 If the value of a is known to the online scheduler in advance, then there is a scheduler
A with p(A,) > max{1/4,1— (1/a)}.

On the other hand, if the value of « is not be known to the online scheduler in advance, then a
different strategy needs to be used.

Theorem 7 FEwven if the value of o is not known in advance to the scheduler, it is possible to design
1-(1/a) ifa>4/3

a scheduler CS whose performance guarantee is given by p(CS,) > .
7/64 otherwise

Proof. We describe our combined scheduler CS below. First, we need to modify slightly the
constants of the T'Dq scheduler. The modified version 2 of the T'D; scheduler is shown below in
Figure 1 (we use the same notations as in [2] in this code).

[

whenever (idle && not-empty(Q)) {
Trun = dequeue(Q)§ Ploss = Urun;

w N

}

whenever (running && alarm(Q)) {
Thert = dequeue(Q);
update(A,un);
if (vrun < 67_4(A7’un + ploss))
{ Trun = lnext; }

N

~N &

AN N SN N N N /N
co ot
o rE=2C

Figure 1: Modified version 2 of the T'D; scheduler of [2]

The combined scheduler CS maintains ay,;,, the minimum stretch factor of all the jobs seen
so far. CS executes the scheduler of Section 3 unless «;,;, drops below a threshold, in which case
it starts executing the T'D; scheduler permanently. In particular, when a new job J arrives, CS
takes the following actions:

Case 1. If ap is already less than 4/3, then CS continues to execute T'D; and admits of rejects
J based on the T'D; strategy.

13

Case 2. Otherwise, if min{an, @(J)} > 4/3, then CS continues to execute the scheduler of
Section 3 and admits of rejects J based on the strategy described in Section 3.

Case 3. Otherwise, ayin > 4/3 and «(J) < 4/3. In that case, CS switches from the scheduler in
Section 3 to the T'D; scheduler. In particular, in the notations of [2] as used in Figure 1, vy,
is set to the sum of execution times of all jobs in the queue @ (since each of them is scheduled
for execution), piyss is set to vy, (since in the worst case each job in Q may be executed
outside the current interval in favor of future jobs), A, is set to (ﬁ%) Urun (since, by
Theorem 3, this is the maximum possible length of the current interval of an optimal schedule
executing all jobs that arrived during the current busy cycle), and all the jobs currently in
the queue @ together constitutes the set of running jobs Ty.,. Finally, lines (6)-(8) of the
code in figure 1 are executed to check if the newly arrived job J will preempt all the jobs in

Trun-

Now, we prove the performance guarantee of CS , as promised in Theorem 7. If o > 4/3, then
CS always executes the scheduler in Section 3 and hence, by Theorem 5, p(CS,a) > 1 — (1/a).
Otherwise, 1 < a < 4/3. As a result, on some input job .J, CS switches to the T'D; scheduler.
Moreover, all jobs before J had stretch factor no less than 4/3 and «(J) < 4/3. Let v > 4/3 be
the stretch factor of the set of jobs considered before J. Hence, before lines (6)-(8) of figure 1 in
Case 3 are executed, using Theorem 5 we have
1 1

1
=(1—-—-)A >=-—— (A > (A
Urun (7) run = (2 2’7> (run +ploss) = (run +ploss)/8 (6)

An inspection of the proof of Lemma 6 of [2] shows that, since 1/8 > 7/64, it suffices to show that
the invariant vyun > (Apun + Dloss)/8 is maintained whenever a preemption occurs during a time
interval (when time intervals are as defined in Definition 1 in [2]). This can be proved by induction
in a manner similar to as in [2] as shown below. We use the same notations as in [2]. The basis of

induction follows from the inequality 6 shown above. For general i,

virr > A — A

> Ajp1 — 80; + Ploss since v; > (A; + Pioss) /8
> Ai—f—l - %(Az + ploss) + Dioss since v; < 614(Az +ploss)
= Ai—i—l - %Az + (ploss/8)

> (Ai+1 +ploss)/8 since Ai—f—l —A; > %’Uz‘ >0

5 Acknowledgments

The first author would like to thank Piotr Berman and Marek Karpinski for useful discussions.

References

[1] Baruah, S., G. Koren, B. Mishra, A. Ragunathan, L. Rosier, and D. Sasha, On-line Schedul-
ing in the Presence of Overload, Proc. 32nd IEEE Symposium on Foundations of Computer
Science, 100-110, October 1991.

14

2]

3]

[13]

[14]

[15]

Baruah S., G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha and F. Wang,
On the competitiveness of on-line real-time scheduling, Real-Time Systems 4, 125-144, 1992.

Bar-Noy, A., R. Bar-Yehuda, A. Freund, J. (S.) Naor and B. Schieber, A Unified Approach to
Approximating Resource Allocation and Scheduling, Proc. 32nd Annual ACM Symposium on
Theory of Computing, 735-744, May 2000.

Bar-Noy, A., S. Guha, J. (S.) Naor and B. Schieber, Approzimating the throughput of multiple
machines in real-time scheduling, Proc. 31st Annual ACM Symposium on Theory of Comput-
ing, 622-631, 1999.

Berman P. and B. DasGupta, Improvements in Throughput Mazimization for Real-Time
Scheduling, Proc. 32nd Annual ACM Symposium on Theory of Computing, 680-687, May
2000.

Becchetti, L., S. Leonardi and S. Muthukrishnan, Scheduling to Minimize Average Stretch
without Migration, Proc. 11th Annual ACM-SIAM Symp. on Discrete Algorithms, 548-557,
2000.

Bender, M., S. Chakrabarti and S. Muthukrishnan, Flow and Stretch Metrics for Scheduling
Continuous Job Streams, Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, 1999.

Brandt, S., G. Nutt, T. Berk, and M. Humphrey, Soft Real-Time Application Execution with
Dynamic Quality of Service Assurance, 1998 International Workshop on Quality of Service,
154-163, May 1998.

Compton, C. and D. Tennenhouse, Collaborative Load Shedding, Proc. Workshop on the Role
of Real-Time in Multimedia/Interactive Computing Systems, Dec. 1993.

Dertouzos, M., Control Robotics: the Procedural Control of Physical Processors, Proc. IFIP
Congress, 807-813, 1974.

Fan, C., Realizing a Soft Real-Tim Framework for Supporting Distributed Multimedia Appli-
cations, Proc. 5th IEEE Workshop on the Future Trends of Distributed Computing Systems,
128-134, August 1995.

Humphrey, M., T. Berk, S. Brandt, and G. Nutt, Dynamic Quality of Service Resource Man-
agement for Multimedia Applications on General Purpose Operating Systems, IEEE Workshop
in Middleware for Distributed Real-Time Systems and Services, 97-104, Dec. 1997.

Jones, M., J. Barbera III, and A. Forin, An Ouverview of the Rialto Real-Time Architecture,
Proc. 7th ACM SIGOPS European Workshop, 249-256, Sept. 1996.

Jones, M., D. Rosu, and M.-C. Rosu, CPU Reservations and Time Constraints: Efficient,
Predictable Scheduling of Independent Activities, Proc. 16th ACM Symposium on Operating
Systems Principles, Oct. 1997.

Kise H., T. Ibaraki and H. Mine, A solvable case of one machine scheduling problems with
ready and due dates, Operations Research 26, 121-126, 1978.

15

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[27]

Koren G. and D. Shasha, An optimal on-line scheduling algorithm for overloaded real-time
systems, STAM J. on Computing 24, 318-339, 1995.

Lawler, E. L., A dynamic programming approach for preemptive scheduling of a single machine
to minimize the number of late jobs, Annals of Operations Research 26, 125-133, 1990.

Lipton, R. J. and A. Tomkins, Online interval scheduling, Proc. 5th Annual ACM-STAM Symp.
on Discrete Algorithms, 302-311, 1994.

Liu, H. and M. E. Zarki, Adaptive source rate control for real-time wireless video transmission,
Mobile Networks and Applications 3, 49-60, 1998.

Mok, A., Fundamental Design Problems of Distributed Systems for the Hard Real-Time Enuvi-
ronment, Doctoral Dissertation, M.I.T., 1983.

Muthukrishnan, S.; R. Rajaraman, A. Shaheen abd J. E. Gehrke, Online Scheduling to Min-
imize Average Stretch, Proc. 40th Annual IEEE Symp. on Foundations of Computer Science,
433-443, 1999.

Nieh, J. and M. Lam, The Design, Implementation and Fvaluation of SMART: A Scheduler
for Multimedia Applications, Proc. 16th ACM Symposium on Operating Systems Principles,
Oct. 1997.

Nieh, J. and M. Lam, Integrated Processor Scheduling for Multimedia, Proc. 5th International
Workshop on Network and Operating System Support for Digital Audio and Video, April 1995.

Rajugopal, G. R. and R. H. M. Hafez, Adaptive rate controlled, robust video communication
over packet wireless networks, Mobile Networks and Applications 3, 33-47, 1998.

Sahni, S, Algorithms for scheduling independent tasks, JACM 23, 116-127, 1976.

Spieksma, F. C. R., On the approximability of an interval scheduling problem, Journal of
Scheduling 2, 215-227, 1999 (preliminary version in the Proceedings of the APPROX’98 Con-
ference, Lecture Notes in Computer Science, 1444, 169-180, 1998).

Yau, D. K. Y. and S. S. Lam, Adaptive rate-controlled scheduling for multimedia applications,
Proc. IS&T /SPIE Multimedia Computing and Networking Conf., San Jose, CA, January 1996.

16

