
Multi-phase Algorithms for Throughput Maximization for

Real-Time Scheduling∗

Piotr Berman†

Department of Computer Science & Engineering

Pennsylvania State University

University Park, PA 16802

Email: berman@cse.psu.edu

Bhaskar DasGupta‡

Department of Computer Science

Rutgers University

Camden, NJ 08102

Email: bhaskar@crab.rutgers.edu

August 17, 2005

Abstract

We consider the problem of off-line throughput maximization for job scheduling on one
or more machines, where each job has a release time, a deadline and a profit. Most of the
versions of the problem discussed here were already treated by Bar-Noy et al. [3]. Our main
contribution is to provide algorithms that do not use linear programming, are simple and much
faster than the corresponding ones proposed in [3], while either having the same quality of
approximation or improving it. More precisely, compared to the results of in Bar-Noy et al.
[3], our pseudo-polynomial algorithm for multiple unrelated machines and all of our strongly-
polynomial algorithms have better performance ratios, all of our algorithms run much faster, are
combinatorial in nature and avoid linear programming. Finally, we show that algorithms with
better performance ratios than 2 are possible if the stretch factors of the jobs are bounded; a
straightforward consequence of this result is an improvement of the ratio of an optimal solution of
the integer programming formulation of the JISP2 problem (see [16]) to its linear programming
relaxation.

1 Introduction

We consider the problem of scheduling jobs with profits and time constraints which we define as
(for example) in Bar-Noy et al. [3]. We have jobs J1, J2, . . . , Jn that can be performed on machines
M1, M2, . . . , Mk. The job Ji has profit wi ≥ 0, a release time ri, a deadline di and a length (execution
time) li,j for each machine Mj . A schedule is a set of triples (j, m, s) where such a triple schedules
job Jj to be executed on machine Mm starting at time s, and thus ending at time s + lj,m. A

∗A preliminary version of this paper will appear under the title ‘‘Improvements in Throughput Maximization

for Real-Time Scheduling’’ in 32nd Annual ACM Symposium on Theory of Computing, May 2000.
†Supported in part by NSF grant CCR-9700053 and National Library of Medicine grant LM05110.
‡Supported in part by NSF grant CCR-9800086.

1

schedule is valid if each job is scheduled at most once, time intervals [s, s + lj,m) defined by the
triples with the same m are pairwise disjoint (each machine Mj can execute only one job at the
time) and for each such interval [s, s + lj,m) ⊆ [rj , dj) (a job can be executed only between its
release time and its deadline). The throughput of a schedule is the sum of profits of the scheduled
jobs, and the goal is to maximize the throughput. For the case of one machine, a schedule can
be viewed as a set of pairs (j, s) and we refer to the respective problem with the acronym TMP,
for the throughput maximization problem. The machines are called identical if li,j is simply equal
to lj , i.e. a job has the same execution time on every machine; we use TMPk-id to denote the
throughput maximization problem for k identical machines. In the remaining case, we say that
the machines are unrelated and use the acronym TMPk-un. Notice that preemption of jobs is not
allowed. Following the nomenclature of Bar-Noy et al. [3], we distinguish between the case when
the job parameters are positive integers (the corresponding algorithms are pseudo-polynomial time)
as opposed to when these parameters are arbitrary real numbers (the corresponding algorithms are
strongly-polynomial time).

Another characterization of the job scheduling problem is relevant to adaptive rate-controlled
scheduling for multimedia and other applications [14, 11, 17]. There each job Ji = (wi, ri, di, li,j)
is represented as Ji = (wi, ri, αi,j , li,j), where αi,j = (di − ri)/li,j is the rate or stretch factor for Ji

on machine Mj . An efficient approximation algorithm for this case should take into consideration
the values of various αi,j ’s in that the performance ratio of such algorithms should depend on the
αi,j ’s.

Here is a brief history of the throughput maximization problem; the reader is referred to the
paper [3] for more detailed discussions. TMP, the problem for a single machine, is NP-hard even
when all the jobs are released at the same time [15]; however this special case has a fully polynomial-
time approximation scheme. The preemptive version of TMP was studied by Lawler [9], who
has found a pseudo-polynomial time algorithm, as well as polynomial time algorithms for two
important special cases. Kise, Ibaraki and Mine [7] presented solutions for the special case when
the release times and deadlines are similarly ordered. On-line versions of the problem for preemptive
and nonpreemptive cases were considered, among others, in [1, 8, 10]. Some recent papers that
considered various problems related to stretch factors of jobs are [4, 5, 12].

The following notations and terminology is used for the rest of this paper. An interval is a set
of the form [a, b) = {x ∈ R : a ≤ x < b}; a and b are called the beginning and the ending of the
interval, respectively. Note that [a, b) is empty if b ≤ a. When our discussion concerns a set of
positive integers, then for two positive integers k and l, the notation [k, l] (resp., [k, l)) denotes the
integer interval [k, l+1)∩N (resp., [k, l)∩N). Let t denote the latest job deadline. The performance
ratio of an approximation algorithm for the throughput maximization problems is the ratio of the
throughput of an optimal schedule to that of the approximation algorithms.

To solve our scheduling problems, we will first discuss a more abstract problem, called the
interval selection problem or ISP, which can be formulated as follows. For each integer i ∈ [1, n] we
are given a family of integer intervals Si and a number wi > 0, so that selecting any integer interval
[d, e) from Si yields a profit wi. Our task is to select at most one interval from each set, so that the
selected intervals are disjoint and the sum of profits is maximum. This problem was studied in the
context of scheduling by Bar-Noy et al. [3] who described an algorithm with performance ratio 2.
However, their algorithm utilizes linear programming, and therefore is much less efficient than the
two-phase algorithm (2PA) proposed by Berman, Miller and Zhang in [6] (in that paper, a more
general version of ISP is discussed).

In this paper we show that 2PA can be used to provide pseudo-polynomial time algorithms for

2

Pseudo-polynomial algorithm

Bar-Noy et al. [3] This paper

ratio time—Ω ratio time—O

TMP 2 LP(tn, t + n) + t2n2 2 tn log log t

TMPk-un 3 LP(tnk, tk + n) + t2n2k 2 tnk log log(tk)

TMPk-id
(k+1)k

(k+1)k−kk LP(tnk, tk + n) + t2n2k (k+1)k

(k+1)k−kk tnk log log t

Strongly polynomial algorithm

Bar-Noy et al. [3] This paper

ratio time—Ω ratio time—O

TMP 3 LP(n4, n3)+n8 2
1−ε

n2

ε

TMPk-un 4 LP(n4k, n3k) + n8k 2
1−ε

n2

ε

TMPk-id
(2k+1)k

(2k+1)k−(2k)k LP(n4k, n3k) + n8k (k+1)k

(k+1)k−(k+ε)k

kn2

ε

Table 1: Comparison of our algorithms with those of Bar-Noy et al. [3]. LP (a, b) denotes the
time required to solve a linear-programming problem with a variables and b inequalities, t denotes
the latest deadline of any job in the pseudo-polynomial case, n denotes the number of jobs, k > 1
denotes the number of machines and 0 < ε < 1 is an arbitrary value.

all versions of scheduling problems discussed in Bar-Noy et al. [3] with better running times and
better or same approximation ratios, and that it can be modified to provide strongly polynomial
algorithms for these problems with both better running times and better approximation ratios.
We also present a 2/(1 + 1/(2⌊α⌋+1 − 2 − ⌊α⌋))-approximation algorithm for the special case of
the TMP problem when the stretch factor αi of each job Ji is at most α, which is better than
the 2-approximation algorithm previously known. Table 1 above summarizes our main results and
compares them with the corresponding ones in [3]. We also note that a more recent paper of Bar-
Noy et. al. [2] has somewhat comparable results, using a more general local-ratio technique. In a
nutshell, the local-ratio approach makes it easier to extend the results to a larger class of problems,
while the approach of this paper allows to obtain better approximation ratios in several important
cases.

3

(* definitions *)
interval is a quadruple of the following kind:

(family, value, beginning, ending);
L is sequence that contains an interval (i, wi, d, e)

for every integer i ∈ [1, n] and every [d, e) ∈ Si,
L is sorted so the value of ending is non-decreasing;

S is an initially empty stack that stores intervals;
TOTAL(c) returns the sum of values of those intervals on S

that have ending > c;
total(i, c) returns the sum of values of those intervals on S

that have ending ≤ c and family = i;
(* evaluation phase *)

for (each (i, w, d, e) from L)
{ v ← w − total(i, d)− TOTAL(d);

if (v > 0)
push((i, v, d, e),S);

}
(* selection phase *)

for (each integer i ∈ [1, n]) done[i] ← false;
occupied ← t;
while (S is not empty)
{ (i, v, d, e) ← pop(S);

if (not done[i] and e ≤ occupied)
insert (i, [d, e)) to the solution,
done[i] ← true, occupied ← d;

}

Figure 1: TPA, the two-phase algorithm for ISP

2 Two-phase Algorithm for ISP

Figure 1 shows 2PA for ISP, where we assume that the input consists of families of interval sets,
S1, . . . , Sn that are contained in [1, t) and the notation (i, [d, e)) denotes the interval [d, e) ∈ Si.
Before characterizing the approximation properties of this algorithm, we will analyze its correctness
and the running time. Let N denote the total number of intervals in the input.

Lemma 1 2PA returns a correct solution to ISP problem in time

O(N(1 + min{log N, log log t})).

Proof. To show that the algorithm is correct we need to prove that it selects at most one
interval from each family and that the selected intervals are disjoint. Both properties are ensured
by the selection phase. Once a interval from family Si is selected, done[i] is reset from false to
true, thus preventing the future selections from Si. Moreover, in each iteration of the selection
phase [occupied,t) contains all the selected intervals, and the algorithm never selects a set that
overlaps [occupied,t), thus the selected intervals are disjoint.

4

It is easy to see that for each of N intervals in the input the algorithm performs only con-
stant number of operations, which are elementary except for the computation of total(i, d) and
TOTAL(d) in the evaluation phase. We need to show how these functions can be computed in
O(min{log N, log log t}) time.

First, we show how to compute total(i, d) efficiently. Looking at 2PA it follows that we need
to maintain, for each i ∈ [1, n], a data structure Di for the endings of all the intervals belonging to
Si in the stack such that the following two operations can be performed:

Insert(i, v, d, e): Insert the ending e of the interval [d, e) belonging to Si with value v in Di.

Query(i, v, d, e): Given the interval [d, e) belonging to Si, find the sum of the values of all endings
b in Di with b ≤ d.

We will maintain, for each ending e already inserted in Di, the quantity esum which is sum of values
of all the endings not to its right in Di. Notice that when we insert an ending e in Di, no endings
in Di is to the right of e (since we scan the endings in 2PA in left to right order).

If log N ≤ log log t, then both these operations can be easily implemented in O(log N) time. Di

consists of a sorted list of all the endings of intervals belonging to Si already inserted. The Insert
operation simply appends the new ending e with value v to the end of Di (unless it is already
there) and updates the value of esum to be v + e′sum where e′ was the most recent ending inserted
in Di (if e was already there, we simply update esum to be its old value plus v). For the Query
operation, we need to do a binary search on Di in O(log N) time and retrieve the value of e′sum for
the appropriate ending e′ found by the search.

If log N > log log t, these operations can be implemented by using the van Emde Boas tree as
described in [13]. Remember that our universe consists of integers in [1, t]. While inserting e with
value v, we first check if e is already in Di. If so, we update esum to be the sum of its old value
plus v. Otherwise, we find the leftmost neighbour of e, say e′, and update esum to be the sum of
e′sum and v. While doing a Query, we find the leftmost neighbour w of d in Di (which could be d
or less), and simply retrieve the value of wsum. As a result, we achieve a time of O(log log t) per
Insert and Query operation.

The implementation of TOTAL(d) is very similar. Now, we need to maintain a single data
structure D for all the endings currently in the stack such that the following operations can be
implemented efficiently.

Insert(v, d, e): Insert the ending e of the interval [d, e) with value v in D.

Query(d, e): Given the interval [d, e), find the sum of the values of all endings b in D with b > d.

If we now additionally store the sum of all values currently in D in a variable β, then the answer to
Query(d, e) is β minus sum of the values of all endings b in D with b ≤ d. Hence, the same techniques
described previously can be used to implement theses operations in O(min{log N, log log t}) time.
❑

Now, we prove the performance ratio of 2PA. The next lemma will characterize the status of S

at the end of the evaluation phase.

Lemma 2 Consider a feasible solution A to the input ISP instance and the set of intervals S in
the stack at the end of the evaluation phase. Let

• Si be the set of entries of S with family = i;
• Sa,b be the set of entries of S with a < ending ≤ b;

5

• S
a,b
i be Sa,b ∩ Si;

• SA be the union of S
0,d
i ’s for (i, [d, e)) ∈ A;

• V (X) be the sum of values of intervals in the set X;
• P (A) be the sum of profits wi for (i, [d, e)) ∈ A;

Then V (S) + V (SA) ≥ P (A).

Proof. Because the intervals in A are disjoint,
∑

(i,[d,e))∈A

V (Sd,e) ≤ V (S).

Therefore if suffices to show that for every (i, [d, e)) ∈ A we have

V (Sd,e) + V (S0,d
i) ≥ wi.

Let S′ be the content of the stack at the time when the evaluation phase starts the processing of
(i, wi, d, e). At that time we compute v = wi − total(i, d) − TOTAL(d). Note that total(i, d) =

V (S0,d
i), and since all entries of S′ have ending ≤ e, we also have TOTAL(d) = V (S′

d,e). Conse-
quently, if v ≤ 0, then

wi ≤ total(i, d) + TOTAL(d) = V (S0,d
i) + V (S′d,e)

≤ V (S0,d
i) + V (Sd,e).

On the other hand, if v > 0, then we push (i, v, d, e) onto S and

V (Sd,e) ≥ V (S′d,e) + v

≥ V (S′d,e) + wi − V (S′d,e)− V (S0,d
i)

= wi − V (S0,d
i)

❑

The next lemma shows how the profit of the solution that is found in the selection phase can
be determined from the status of the stack at the end of the evaluation phase.

Lemma 3 The sum of profits of the intervals selected during the selection phase is at least V (S).

Proof. With each interval inserted to the solution during the selection phase we can associate a
set of stack entries. It suffices to show that (a) the sum of values of entries associated with (i, [d, e))
is at least wi, and (b) each stack entry is associated with at least one element of the solution.

To describe the association rule, observe that if (i, [d, e)) is selected, then for some v > 0 the
quadruple (i, v, d, e) was pushed onto S during the evaluation phase; in turn, v was computed by
subtracting from wi the sum of values of all the stack entries that have family = i and ending ≤ d
(represented as total(i, d)) or have d < ending ≤ e (represented as TOTAL(d)). We associate with
(i, [d, e)) all the stack entries that were involved in the computation of v and (i, v, d, e) itself; by
the very definition, wi is the sum of their values.

Observe that we associate a stack entry (i′, v′, d′, e′) not in the solution with an element of the
solution, say (i, [d, e)), if and only if one of the following holds true: (i) i′ = i, so we set done(i′) =
true, or (ii) e′ > d, so occupied becomes d < e′. Thus if in the selection phase we have top of the
stack (i′, v′, d′, e′) that has not been associated with a solution element, we include (i′, [d′, e′)) in
the solution and associate (i′, v′, d′, e′) with (i′, [d′, e′)). Therefore each entry of S has to associated
with an element of the solution. ❑

Now we can prove our first theorem.

6

Theorem 4 2PA solves ISP problem in time O(N min{log N, log log t}) with approximation ratio
at most 2, where there are N intervals in the input.

Proof. By Lemma 1, 2PA a valid solution in time O(N(1 + min{log N, log log t})). Let V be
the total profit of this solution and A be an optimal solution. By Lemma 3, V ≥ V (S), and by
Lemma 2, 2V ≥ V (S) + V (SA) ≥ P (A). ❑

3 ISP and Throughput Maximization

In this section, we show how to use the ISP to provide efficient solutions for the Throughput
Maximization problems for both the pseudo-polynomial and the strongly-polynomial case.

3.1 Pseudo-polynomial Algorithms

We use the same notations as defined in Section 1.

Theorem 5 There is an pseudo-polynomial algorithm for TMP with an approximation ratio of 2
that runs in O(tn log log t) time.

Proof. Given a TMP instance I, we can define an ISP instance T1(I)by having the same profit
coefficients wi, and the families of integer intervals indicating the time intervals during which a job
may be executed:

Si = {[si, si + li) : ri ≤ si and si + li ≤ di}

Notice that there are at most N = tn intervals in our collection and that log log t ≤ log log N . In
turn, a solution A of T1(I) yields the schedule {(i, s) : (i, [s, s + li)) ∈ A}. This translation, in
conjunction with 2PA from Figure 1, proves the theorem. ❑

Notice that the algorithm in Theorem 5 is pseudo-polynomial since N , the total number of
intervals in T (I), is not a polynomial function of n, but rather of the largest coefficient t of the input.
Still, this algorithm achieves the same approximation ratio as the pseudo-polynomial algorithm
of Bar-Noy et al. [3], which starts from solving a linear program with at least N variables followed
up by a costly post-processing, and thus takes at least Ω(N2) time.

In the special case when the profits of all the jobs J1, J2, . . . , Jn are identical, 2PA as applied
above in Theorem 5 reduces to the algorithm 1-GREEDY of [3], and hence the tightness of the
performance ratio of in Theorem 5 follows from that of 1-GREEDY as described in [3]. One may be
tempted to try to improve the performance ratio by running it twice, once in left-to-right order of
endings and another time in right-to-left order of endings, and take the better of the two solutions.
The following example illustrates that the performance ratio will still be 2 in the worst case. There
are 2n−1 jobs J1, J2, . . . , Jn and J ′

1, J
′
2, . . . , J

′
n−1, all with profit 1. Let the notation (p, q, r) denote

a job with release time p, deadline q and length r and let 0 < ε < 1 be any arbitrary constant.
Then, Ji = (2i− 1, 2i, 1) and J ′

i = (2i− 1− ε, 2i + 2 + ε, 1). The optimal schedule schedules all the
2n− 1 jobs whereas both runs of 2PA will only schedule n− 1 jobs J ′

1, J
′
2, . . . , J

′
n−1 plus either the

job Jn (for left-to-right order) or the job J1 (for right-to-left order). Note that maximum stretch
factor in the above example, 3 + 2ε, is only slightly more than 3.

Theorem 6 There is a pseudo-polynomial algorithm for TMPk-un with an approximation ratio of
2 which runs in O(tnk log log(tk)) time.

7

Proof. Consider an instance I of TMPk-un problem. We can define the corresponding instance
T2(I) of ISP by setting

Si = {[si, si + li,m) + (m− 1)t : m ∈ [1, k], ri ≤ si and ri + li,m ≤ di}

where [d, e) + c denotes [d + c, e + c). Notice that we have at most N = tnk intervals in our
collection, each contained in [1, tk). Now, a solution A of T2(I) yields the schedule {(i, m, s) : s ≤
t and (i, [s, s + li,m) + (m− 1)t) ∈ A}. ❑

Notice that the algorithm in Theorem 6 has a better performance ratio then the ratio 3 algorithm
of Bar-Noy et al. [3]. Next, we consider the case when all the k > 1 machines are identical.

Theorem 7 There is a pseudo-polynomial algorithm for TMPk-id with an approximation ratio of
(k+1)k

(k+1)k−kk which runs in O(tnk log log t) time.

Proof. Let T1(I) be as described in Theorem 5. We solve an instance I of TMPk-id by running
k iterations of 2PA:

J ← T1(I)
for (each integer m ∈ [1, k])
{ create solution A by running 2PA on J ;

for (each (i, [d, e)) ∈ A)
insert (i, m, d) to the solution,
remove Si and wi from J ;

}

Correctness of the algorithm is obvious, as in each iteration 2PA assures that the jobs assigned to
a particular machine are executed during disjoint time intervals. By removing the interval families
of the jobs already scheduled, we also assure that each job is scheduled at most once. The time
taken is also clearly O(tnk log log t), since the selected jobs and their profits can be removed in
O(tn) time after each iteration of 2PA .

Let us rescale the profits of the jobs so that the profit of the optimum solution is 1. Let Pm be
the profit of the jobs scheduled in the fist m iterations of 2PA. Our goal is to show that

1
Pk
≤ (k+1)k

(k+1)k−kk ≡ Pk ≥ 1−
(

k
k+1

)k

≡ 1− Pk ≤
(

k
k+1

)k

Obviously, P0 = 0, so 1− P0 = 1. Thus it suffices to show that for j ∈ [1, k]

1− Pj ≤
k

k + 1
(1− Pj−1) ≡ Pj − Pj−1 ≥

1

k + 1
(1− Pj−1)

The left-hand side of the last inequality is the sum of profits of the jobs scheduled in the jth

iteration. Expression (1−Pj−1) on the right-hand side is a lower bound on the optimum profit that
can be interpreted as follows: the optimum profit for the initial input J is 1, if we delete from this
schedule all jobs that were scheduled in the previous j − 1 iterations (and thus were deleted from
J), the remaining profit is at least 1 − Pj−1. Therefore it suffices to show that in an iteration we
produce a schedule for one machine that has profit at most k + 1 times smaller than the optimum
schedule for k machines.

8

Consider an instance I of TMPk-id and an optimum schedule B with profit V (B). Then we
can form k solutions for T1(I) that correspond to schedules for each machine: A(m) = {(i, [s, s +
li]) : (i, m, s) ∈ B}. Recall Lemma 2 and its notation. Because the sets of jobs scheduled on
various machines are disjoint, we have

∑k−1
m=0 V (SA(m)) ≤ V (S). The claim of Lemma 2 states that

V (S) + V (SA(m)) ≥ V (A(m)). By adding all such inequalities we get

(k + 1)V (S) ≥ kV (S) +
k−1
∑

m=0

V (SA(m)) ≥
k−1
∑

m=0

V (A(m)) = V (B).

By Lemma 3, the profit obtained by this run of 2PA is at least V (S), which in turn is at least
V (B)/(k + 1). ❑

Notice that the algorithm in Theorem 7 has the same performance ratio as in Bar-Noy et al.
[3], but the algorithm in Bar-Noy et al. [3] takes at least Ω(t2n2k) time in the worst case.

3.2 Strongly Polynomial Algorithms

The algorithms for TMP, TMPk-id and TMPk-un presented in the previous section are pseudo-
polynomial, because all of them start from forming an instance of ISP with N intervals, where N
is pseudo-polynomial. However, the families of intervals in an ISP instance that is formed have
a very regular definition, and therefore 2PA can be accelerated with approximation ratios that
are arbitrarily close to the ratios of the pseudo-polynomial algorithms of the previous section. In
particular, we have the following theorem where 0 < ε < 1 is any value. Notice all the ratios and
running times are better than the corresponding ones in Bar-Noy et al. [3].

Theorem 8 There is an approximation algorithm for the TMP (respectively, TMPk-id, TMPk-un)
problem with approximation ratio 2/(1− ε) (respectively, (k + 1)k/((k + 1)k − (k + ε)k), 2/(1− ε))
which runs in O(n2/ε) (respectively, O(kn2/ε), O(n2/ε)) time.

Proof. We use the notations in Section 2. As a first step, we will modify 2PA so that the number
of stack operations will be proportional to n, the number of families of intervals (and the number
of jobs in the original scheduling problems). In particular, we will change the condition for pushing
an interval from

if (v > 0) push((i, v, d, e),S);
to

if (v > εwi) push((i, v, d, e),S);

We will call the modified algorithm ε-2PA.
Observe that the size of stack S at the end of the evaluation phase of ε-2PA is at most ⌊ε−1⌋n:

each entry of S has value > εwfamily , thus when we evaluate some (i, wi, [d, e]) and S contains j
entries with family = i, then the computed v is smaller than (1− jε)wi, and if j = ⌊ε−1⌋n then

v < (1− jε)wi < (1− (ε−1 − 1)ε)wi = εwi

and thus v is too small to push a new entry onto S. We can conclude that the running time of the
selection phase of ε-2PA is O(n/ε). Now, we show that if I is an instance of TMP with n jobs, we
can implement the evaluation phase of ε-2PA to run in time O(n2/ε) on input T1(I).

9

Notice that we need to design a data structure such that every time we need to find a new
entry to push to the stack S, we will find it in O(n) time. To design our data structure, we need
to inspect how the value of v is computed for (i, wi, e− li, e). We can compute v by starting with
the expression wi − V (S), and then adding the value of all intervals on S that have family 6= i and
ending ≤ e− li. When we add a new entry to S, we need to update V (S).

Let q = ⌊ε−1⌋n and assume that the entries of S occupy array positions S[1] to S[q], with
top(S)≤ q denoting the top of S at any moment. Let V denote the sum of all values in S at any
moment. We also maintain, for each Ji, an array left[i, 1 : q] of size q such that left[i, j] stores the
sum of values of all intervals that have family 6= i and ending ≤ S[j].ending, and a pointer r[i] to
the most recent entry visited in left[i, 1 : q] (left[i, r[i]]= ∞ will indicate that no further interval
of Ji is available for further consideration). The array element end[i] stores, for each job Ji, the
earliest ending that gives a positive value (end[i]= ∞ indicates that no further instance of Ji can
be under consideration). Assume for convenience that left[i, 0] is 0 for all i and S[0].ending is 1.
We initialize V← 0, top(S)← 0 and r[i]← 0 for all i. Now, we find an entry with a positive value
of v and earliest ending in the following way:

for (each integer i ∈ [1, n])
{

end[i]← ∞ ; p← r[i]
while (p ≤ top(S) and left[i, p]<V-(1-ε)wi)

p← p + 1;
if (S[p].ending> di or p >top(S))

left[i, p]← ∞
else

{
val[i]← left[i, p]− (V − wi) ;
end[i]← s[p].ending+li ;
r[i]← p ;

}
}

let end[j] be min1≤i≤n{end[i]}

if (end[j]=∞) algorithm terminates
else (j, val[j], S[r[j]].ending, S[r[j]].ending + lj)

should be pushed to S

and while pushing (j, val[j], S[r[j]].ending, S[r[j]].ending+lj) to S we perform the following updates:

push (j, val[j], S[r[j]].ending, S[r[j]].ending + lj) to S

V← V + val[j]
for (each integer i ∈ [1, n])

if (i 6= j) left[i,top(S)]← left[i,top(S)−1]+val[j]
else left[i,top(S)]← left[i,top(S)−1]

Each of the O(n/ε) push takes O(n) time. Each of the O(n/ε) minimum computation also takes
O(n) time. Moreover, since the values of r[i] are increasing and at most O(n/ε), it is easy to see
that the total time for all the remaining operations is also O(n2/ε).

10

Now it remains to find the approximation ratios that result from applying ε-2PA. The analysis
that we have performed for 2PA can be largely repeated. In particular, Lemma 3 still applies, so it
remains to characterize V (S) at the end of the evaluation phase. By inspecting the proof of Lemma
2 one can see that the lower estimate of V (Sd,e) + V (Si) must be decreased by v in the case when
the evaluation phase computes v to be positive, and yet it does not push (i, v, d, e) onto S; because
in this case we have v ≤ εwi, we decrease the estimate of Lemma 2 to

V (S) + V (SA) ≥ (1− ε)V (A)

As a result, if we have an instance I of TMP and apply ε-2PA to T1(I), then we obtain
approximation ratio 2/(1 − ε) and the running time of n2/ε. Similarly, if I was an instance of
TMPk-id, and x is the profit of an optimum schedule on k machines, then a run of ε-2PA on T1(I)
returns a schedule for one machine with profit at least x(1− ε)/(k + 1), and by iterating ε-2PA for
k times we get a ratio of

(k + 1)k

(k + 1)k − (k + ε)k
.

in time O(kn2/ε).
A modification similar to TMP can be applied to the algorithm for TMPk-un to run in O(n2/ε+

kn) = O(n2/ε) time with a performance ratio of 2/(1− ε). ❑

4 Scheduling with Bounded Stretch Factor

In this section, we consider TMP restricted to cases when di− ri ≤ αli for some fixed upper bound
of the stretch factor α ≥ 1. These cases are interesting because of their applications to adaptive
rate-controlled scheduling [14, 11, 17] as discussed in the introduction. For α ≤ 2, the problem is
solvable in polynomial time [3]. For α > 2, we can obtain approximation ratios below 2 using a
variation of algorithm 2PAas shown in the theorem below. In particular, for α < 3 (case of a = 2
in the theorem), the approximation ratio in Theorem 9 is 8

5 , and for α < 4 (case of a = 3 in the
theorem), the approximation ratio is 11

6 . The case of a = 2 in the theorem improves the ratio of
an optimal solution of the integer programming formulation of the JISP2 problem (see [16]) to its
corresponding linear programming relaxation from 3

5 to 5
8 .

Theorem 9 Assume that the stretch factor of each job is at most α and let a = ⌊α⌋. Then, there
is a pseudo-polynomial time algorithm for the TMP problem which runs in O(atn log log t) time
with performance ratio

2

1 + 1
2a+1−2−a

Proof. We need the following notation. If (i, s) belongs to an optimum schedule A, then we say
that job Ji is scheduled optimally with parameter τi = (s− ri)/li. Moreover, we will view a stack
entry (i, [d, e)) as an attempt to schedule job Ji with parameter β = (d− ri)/li. Clearly, β ≤ α− 1.

One can see that in Lemma 2’ the set S
0,d
i consist of attempts to schedule job Ji with parameter

β ≤ τi − 1.
Before we proceed further, let us observe that if ⌊α⌋ = 1, then SA must be empty, and thus

algorithm 2PA guarantees the optimum profit, or the fraction of optimum profit equal to (1 +
(21+1 − 2− 1)−1)/2.

11

(* definitions *)
use the definitions of 2PA;
pastS is an initially empty set of intervals;
pasttotal(i, c) returns the sum of values of those intervals

on pastS that have ending > c and family = i;
for (j ← 0; j < a; j ← j + 1)
{ (* evaluation phase *)

S ← empty stack;
for (each (i, w, d, e) from L)
{ v ← w − total(i, d)− TOTAL(d)− pasttotal(i, d);

if (v > 0)
push((i, v, d, e),S);

}
(* selection phase *)

for (each integer i ∈ [1, n]) done[i]← false;
occupied ← t;
solution(k)← ∅;
while (S is not empty)
{ (i, v, d, e)← pop(S);

if (not done[i] and e ≤ occupied)
insert (i, [d, e)) to solution(k),
done[i] ← true, occupied ← d;

}
pastS← pastS ∪ S;

}

Figure 2: Forward passes of the algorithm for a bounded stretch factor in Section 4

Our idea is simple. By Lemma 2, in the worst case we obtain the total profit that is equal to
the optimum profit, minus the values of the attempts to schedule jobs with parameters that are
smaller by at least 1 than the optimal ones. Suppose that we obtained exactly half of the optimum
profit. This would mean that all our attempts to schedule a job had parameters that were by at
least 1 too low. We could try to run our algorithm again, but if in the current run we had an
attempt to schedule job Ji with parameter γ, in the next run we will prohibit scheduling Ji with
parameter lower than γ + 1.

To make this idea precise, we need to consider the fact that algorithm 2PA allows to make
partial attempts, i.e. attempts with values lower than the profit of the respective job. Thus a
partial attempt must be followed with a partial prohibition. More concretely, when in a run of 2PA
we calculate a value of a possible attempt to schedule Ji with parameter γ, we subtract the value
of attempts (i.e. stack entries) with overlapping time intervals (TOTAL(d) in Figure 1), the values
of attempts to schedule Ji with parameter β ≤ γ − 1 (total(i, d) in Figure 1), and, to express our
partial prohibition, the values of attempts to schedule Ji that were made in the previous runs with
parameter β > γ − 1, (pasttotal(i, d) in Figure 2).

With this modified way evaluating intervals, we run 2PA a times, and then we make separate
a runs after reversing the direction of the time. The latter means that instead of considering all
possible scheduling attempts in the order of increasing terminations, we consider them in the order
of decreasing starts, and the notions of TOTAL, total and prohibition are changed symmetrically.

12

After we are done with all 2a runs, we choose the best of their solutions.
To analyze this new algorithm, we first show the following lemma.

Lemma 10 The sum of V (SA) over all 2a passes of the algorithm from Fig. 2 is at most (a −
1)P (A).

Proof. Consider an interval (i, [d, d + li)) ∈ A. The components of the sum of V (SA) over all

2a passes that are sums of values of intervals with family = i in forward passes are equal to S
0,d
i .

Because there cannot be any scheduling attempts with ending lower than the release time plus the
length, ri + li, these components are equal to S

ri+li,d
i . In the backward passes, we remap the time

interval [0, t] into [−t, 0]. This changes (i, [d, d + li)) into (i, (−d − li,−d])) and the release time
from ri to −di. Therefore in the backward passes the components of the sum of V (SA)’s that are

sums of values of intervals with family = i are equal to V (S−di+li,−d−li
i). It suffices to show that

the sum of all these components is at most (a− 1)wi.
To make the reasoning simpler, let us rescale the time and profits in such a way that li = 1. Now

we know that di − ri < a + 1 and the components in question are equal to are equal to V (Sri+1,d
i)

in the forward passes and V (S−di+1,−d−1
i). Recall that Sa,b is the set of intervals from S at the end

of the evaluation phase that have ending in time segment (a, b]. The sum of the lengths of time
segments discussed here is (d−ri−1)+(−d−1−(−di+1)) = d−ri−1−d−1+di−1 = di−li−3 ≤ α−3.
Actually, this sum can be larger: an empty time segment can appear to have a negative length,
down to −1 (e.g. if d = ri, the forward time segment has length −1). In any case, after we round
both of these lengths up (or change a negative “length” of −1 into 1), the sum is is smaller than
α− 1, and because it is integer, it is at most a− 1. Consequently, we can cover both intervals with
a − 1 intervals of the form [a, a + 1). Therefore it suffices to show that in the forward passes the
sum of V (Sa,a+1

i) is at most wi (by symmetry, this statement will hold for the backward passes).
The latter statement is rather obvious. Assume that at some point in the execution of the forward
passes we have stack S′, V (S′a,a+1

i = x and the sum of V (Sa,a+1
i)’s from the previous passes is y.

Suppose that at this point we evaluate (i, [e−1, e) for some e ∈ (a, a+1]. Then TOTAL(e−1) ≥ x
and pasttotal(i, e− 1) ≥ y, and consequently, the computed value is at most wi − x− y. It is easy
to see that the sum of the positive values cannot exceed wi. ❑

For a particular forward pass of our algorithm, define pastSA to be the union of pastS
d,t
i ’s for

(i, [d, d + li)) ∈ A. Observe that if in this pass the evaluation phase ends with S, then for the next
pass we have

pastSA ← pastSA ∪ (S− SA).

Now we can paraphrase the reasoning from the proof of Lemma 2. The evaluation phase considers
every (i, [d, d + li)) ∈ A, and enforces the following:

wi ≤ V (Sd,d+li) + V (S0,d
i) + V (pastS

d,t
i) ≡

V (Sd,d+li) ≥ wi − V (S0,d
i)− V (pastS

d,t
i).

By adding these inequalities for all (i, [d, d + li)) ∈ A, we get

V (S) ≥ P (A)− V (SA)− V (pastSA)

. Let us rescale the profits so P (A) = 1, and let us introduce πj , ρj and σj so that the last inequality
can be rewritten as follows for the pass number j:

ρj ≥ 1− σj − πj

13

Our observation about the evolution of pastSA can be rewritten as π0 = 0 and

πj+1 = πj + ρj − σj

Let us assume that the sum of V (SA) over the forward passes a is at most (a− 1)/2 (if not, then
it is true for the second set of a runs). We define δ = (2a+1 − 2 − a)−1. This assumption can be
rewritten as

∑a
j=1 σj ≤ (a − 1)/2. We need to show that for certain j we have ρj ≥ (1 + δ)/2.

We prove it by the way of contradiction. Assume that for j = 1, . . . , a a runs this sum is below
(1 + δ)/2. This assumption implies the following for j = 1, . . . , a:

πj ≤ (2j − 1)δ and σj > (1− (2j+1 − 1)δ)/2.

The implication goes through the mathematical induction. The basis is that π0 = 0. Then in
the inductive step we can estimate

σj ≥ 1− ρj = πj > 1− (1 + δ)/2− (2j − 1)δ =

(2− 1− δ − (2j+1 − 2)δ)/2 = (1− (2j+1 − 1)δ)/2

and
πj+1 = πj + ρj − σj < (2j − 1)δ + (1 + δ)/2− (1− (2j+1 − 1)δ)/2 =

(2j − 1)δ + 2j+1δ/2 = (2j+1 − 1)δ.

After this induction, we can derive our contradiction:

a
∑

j=1

σj−1 >

a
∑

j=1

(1− (2b − 1)δ)/2 =

a

2
−

δ

2

a
∑

j=1

(2j − 1) =
a− δ(2a+1 − 2− a)

2
=

a− 1

2

while we assumed that this sum is at most (a− 1)/2. ❑

Using ε-2PA instead of 2PA in a manner similar to that in the proof of Theorem 8, we can also
devise a strongly polynomial algorithm for this case whose performance ratio is arbitrarily close to
that in Theorem 9.

5 Conclusion and Open Problems

We have shown simple combinatorial algorithms that in some cases match, and in other cases exceed
the performance of LP based algorithms of Bar-Noy et al. [3]. Our algorithms can be viewed as a
proper extension of the greedy algorithms that can be used when every job has the same profit.

A major open problem is to bring the approximation ratio for TMP below 2. One can also point
out several problems of more modest scope. Can we improve the running time of our algorithms,
mainly 2PA and ε-2PA? Is the performance ratio proven for the algorithms for bounded stretch
factor optimal?

14

6 Acknowledgments

The authors would like to thank Sefi Naor and Baruch Schieber for their useful discussion and
explanations, Amos Fiat and Gerhard Woeginger for organizing Dagstuhl workshop on online al-
gorithms where some of these discussions took place, Michael A. Palis for pointing out applications
of stretch factors to adaptive rate-controlled scheduling, as well as NSF and NLM for providing the
financial support for this research.

References

[1] Baruah S., G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha and F. Wang,
On the competitiveness of on-line real-time scheduling, Real-Time Systems 4, 125-144, 1992.

[2] Bar-Noy, A., R. Bar-Yehuda, A. Freund, J. (S.) Naor and B. Schieber, A Unified Approach
to Approximating Resource Allocation and Scheduling, to appear in Proc. 32nd ACM STOC,
May 2000.

[3] Bar-Noy, A., S. Guha, J. (S.) Naor and B. Schieber, Approximating the throughput of multiple
machines in real-time scheduling, Proc. 31st ACM STOC, 622-631, 1999. Full version available
at Prof. Amotz Bar-Noy’s web-site http://www.eng.tau.ac.il/~amotz/.

[4] Becchetti, L., S. Leonardi and S. Muthukrishnan, Scheduling to Minimize Average Stretch
without Migration, Proc. 11th Annual ACM-SIAM Symp. on Discrete Algorithms, 548-557,
2000.

[5] Bender, M., S. Chakrabarti and S. Muthukrishnan, Flow and Stretch Metrics for Scheduling
Continuous Job Streams, Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, 1999.

[6] Berman, P., Z. Zhang, J. Bouck and W. Miller, Large aligning two fragmented sequences,
manuscript, submitted for journal publication.

[7] Kise H., T. Ibaraki and H. Mine, A solvable case of one machine scheduling problems with
ready and due dates, Operations Research 26, 121-126, 1978.

[8] Koren G. and D. Shasha, An optimal on-line scheduling algorithm for overloaded real-time
systems, SIAM J. on Computing 24, 318-339, 1995.

[9] Lawler, E. L., A dynamic programming approach for preemptive scheduling of a single machine
to minimize the number of late jobs, Annals of Operations Research 26, 125-133, 1990.

[10] Lipton, R. J. and A. Tomkins, Online interval scheduling, Proc. 5th Annual ACM-SIAM Symp.
on Discrete Algorithms, 302-311, 1994.

[11] Liu, H. and M. E. Zarki, Adaptive source rate control for real-time wireless video transmission,
Mobile Networks and Applications 3, 49-60, 1998.

[12] Muthukrishnan, S., R. Rajaraman, A. Shaheen abd J. E. Gehrke, Online Scheduling to Min-
imize Average Stretch, Proc. 40th Annual IEEE Symp. on Foundations of Computer Science,
433-443, 1999.

[13] Overmars, M. H., Computational geometry on a grid: an overview, Theoretical Foundations
of Computer Graphics and CAD, NATO ASI Series F40, Edited by R. A. Earnshaw, Springer-
Verlag Berlin Heidelberg, 167-184, 1988.

15

[14] Rajugopal, G. R. and R. H. M. Hafez, Adaptive rate controlled, robust video communication
over packet wireless networks, Mobile Networks and Applications 3, 33-47, 1998.

[15] Sahni, S, Algorithms for scheduling independent tasks, JACM 23, 116-127, 1976.

[16] Spieksma, F. C. R., On the approximability of an interval scheduling problem, Journal of
Scheduling 2, 215-227, 1999 (preliminary version in the Proceedings of the APPROX’98 Con-
ference, Lecture Notes in Computer Science, 1444, 169-180, 1998).

[17] Yau, D. K. Y. and S. S. Lam, Adaptive rate-controlled scheduling for multimedia applications,
Proc. IS&T/SPIE Multimedia Computing and Networking Conf., San Jose, CA, January 1996.

16

