
Chapter 8

OPPORTUNITY COST ALGORITHMS FOR
COMBINATORIAL AUCTIONS

Karhan Akcoglu�

Department of Computer Science
Yale University
New Haven, CT 06520-8285, USA.

karhan.akcoglu@yale.edu

James Aspnes†

Department of Computer Science
Yale University
New Haven, CT 06520-8285, USA.

aspnes-james@cs.yale.edu

Bhaskar DasGupta‡

Department of Computer Science
Rutgers University
Camden, NJ 08102, USA.

bhaskar@crab.rutgers.edu

Ming-Yang Kao§

Department of Computer Science
Northwestern University
Evanston, IL 60201
USA

kao@cs.northwestern.edu

�Supported in part by NSF Grant CCR-9896165.
†Supported in part by NSF Grant CCR-9820888.
‡Supported in part by NSF Grant CCR-9800086.
§Research supported in part by NSF grants CCR-9531028 and CCR-9974871.

143



144 COMPUTATIONAL METHODS IN ECONOMICS AND FINANCE

Abstract Two general algorithms based on opportunity costs are given for approximating a
revenue-maximizing set of bids an auctioneer should accept, in acombinatorial
auction in which each bidder offers a price for some subset of the available goods
and the auctioneer can only accept non-intersecting bids. Since this problem is
difficult even to approximate in general, the algorithms are most useful when the
bids are restricted to be connected node subsets of an underlyingobject graph
that represents which objects are relevant to each other. The approximation ra-
tios of the algorithms depend on structural properties of this graph and are small
constants for many interesting families of object graphs. The running times of
the algorithms are linear in the size of thebid graph, which describes the conflicts
between bids. Extensions of the algorithms allow for efficient processing of ad-
ditional constraints, such as budget constraints that associate bids with particular
bidders and limit how many bids from a particular bidder can be accepted.

Keywords: combinatorial auction, winner determination, budget constraints, object graphs,
bid graphs, graph connectivity, computational hardness, approximation algo-
rithms, opportunity costs

1. Introduction

Auctions are arguably the simplest and most popular means of price determi-
nation for multilateral trading without intermediary market makers [Clearwa-
ter, 1996, Hendricks and Paarsh, 1995, McMillan and McAfee, 1987, Wilson,
1992]. This paper considers the setting where there are (1) a group of compet-
ing bidders who bid to possess the auctionobjects and (2) anauctioneer who
determines which bidders win which objects.

For the case of allocating a single object to one of many bidders, there is a
wealth of literature on the following four widely used forms of auction [Hen-
dricks and Paarsh, 1995, McMillan and McAfee, 1987, Milgrom and Weber,
1982]. In anEnglish auction or ascending bid auction, the price of an object
is successively raised until only one bidder remains and wins the object. In
a Dutch auction, which is the converse of an English auction, an initial high
price is subsequently lowered until a bidder accepts the current price. In a
first-price sealed-bid auction, potential buyers submit sealed bids for an object.
The highest bidder is awarded the object and pays the amount of her bid. In
a second-price sealed-bid auction, the highest bidder wins the object but pays
a price equal to the second-highest bid. In all these forms of auction, the auc-
tioneer can determine the winning bid in time linear in the number of bids in a
straightforward manner.

For the case of allocating multiple objects to multiple bidders [Chen et al.,
2000, Gale, 1990, Hausch, 1986, Kao et al., 1999, Krishna and Rosenthal, 1996,
Palfrey, 1980],combinatorial auctions are perhaps the most important form of
auctions in the Internet Age, where bidders are increasingly software agents.
Oftentimes a bid by an agent is a subset of the auction objects, and the agent
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needs the entire subset to complete a task. Different bids may share the same
object, but the winning bids must not share any object [McAfee and McMillan,
1996]. Combinatorial auctions were first proposed by Rassentiet al. [Rassenti
et al., 1982] as one-round mechanisms for airport time slot allocation. Banks
et al. [Banks et al., 1989], DeMartiniet al. [DeMartini et al., 1999], and Parkes
and Ungar [Parkes and Ungar, 2000] formulated multiple-round mechanisms.
It is in generalNP-hard for the auctioneer to even approximately, let alone
precisely, determine a set of winning bids of a combinatorial auction which
maximizes the revenue of the auction (see, e.g., Theorem 5). To address this
severe computational difficulty, Rothkopfet al. [Rothkopf et al., 1998] placed
constraints on permissible bids. Lehmannet al. [Lehmann et al., 1999] and
Fujishimaet al. [Fujishima et al., 1999] considered approximation algorithms.
Sandholm and Suri [Sandholm and Suri, 2000] designedanytime algorithms,
which return a sequence of monotonically improving solutions that eventually
converges to optimal. Many other approaches are described in a recent survey
by de Vries and Vohra [de Vries and Vohra, 2000].

In this paper, we propose a general framework to exploit topological struc-
tures of the bids to determine the winning bids with a provably good approxi-
mation ratio in linear time. The following discussion uses the sale of a car as a
light-hearted example to explain our computational problems and key concepts.

Imagine that we are in the business of auctioning used cars. If we insist on
selling each car as a unit, we can sell each car to the highest bidder. If we are
willing to sell parts of the car, we can still sell each part to the highest bidder.
But suppose that some bidders are only interested in buying several parts at
once: Alice may not want to buy a tire unless she can get the wheel that goes
with it, while Bob might only be interested in both rear wheels and the axle
between them. How do we decide which of a set of conflicting bids to accept?

We will assume that our only goal is to maximize our total revenue. Then
we can express this problem as a simple combinatorial optimization problem.
We have some universeO of objects, and our buyers supply us with a setA of
bids. Thei-th bid consists of a subsetAi of O and a pricepi that the buyer is
willing to pay for all of the objects inSi. We would like to choose a collection
of bidsB � A that yields the best possible total price while beingconsistent,
in the sense that no two setsAi andAj in B overlap.

As the auctioneer, we can construct abid graph G whose nodes are the bids
and which has an edge between any two bids that share an object. Then, a set
of consistent bids is simply an independent set inG, i.e., a set of nodes no two
of which are connected by an edge. Each node is given a weight equal to the
value of the bid it represents.

Sadly, this means that the problem of finding the most valuable consistent
set of bids is a thinly-disguised version of the maximum weight independent
set problem, which is not onlyNP-hard, but cannot be approximated to within
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a ratioO�n1�ε� for ann-node graph unlessZPP � NP [Håstad, 1999].1 Even
for the simplest case when all node weights are one, the maximum weight
independent set problem isNP-hard even when every vertex has degree at most
d for anyd � 3, and in fact cannot be approximated within a ratio ofdε for some
ε�0 unlessP �NP [Alon et al., 1995]. The best known algorithm (for arbitrary
d) achieves an approximation within a factor ofO�d� log logd� [Halld́orsson
and Radhakrishnan, 1994]. As a result, it seems hopeless if we model our
combinatorial auction problem as an independent set problem unless we exploit
the topological structure of the underlying bid graph.

Using ideas from the interval selection algorithm of Berman and DasGupta
[Berman and DasGupta, 2000], we describe in Section 2 a linear-time im-
provement of the greedy algorithm, called theopportunity cost algorithm, for
approximating maximum weight independent sets in ordered graphs.2 We then
describe a similar algorithm called thelocal ratio opportunity cost algorithm,
based on ideas from the resource allocation algorithms of Bar-Noyet al. [Bar-
Noy et al., 2000]. Both algorithms produce the same output, but the first has a
more iterative structure and is easier to implement while the second has a more
recursive structure and is easier to analyze.

These opportunity cost algorithms distinguish themselves from the straight-
forward greedy algorithm by taking into account the cost of excluding previ-
ously considered neighbors of a chosen node. Since this accounting requires
propagating information only between neighbors, it increases the running time
by at most a small constant factor, and yet in many cases produces a great
improvement in the approximation ratio. The quality of the approximation de-
pends on the local structure of the ordered input graphG. For each nodev in G,
we examine all of its successors (adjacent nodes that appear later in the order-
ing). The maximum size of any independent set amongv and its successors is
called thedirected local independence number at v; we will write it asβ�v�. The
maximum value ofβ�v� over all nodes in the graph will be written asβ�G�,3 and
is thedirected local independence number of G. Our algorithms approximate
a maximum weight independent set to within a factor ofβ. By comparison,
the greedy algorithm approximates a maximum weight independent set within
a ratio of the maximum size of any independent subset of both the predecessors
and the successors of any node, which in general can be much larger thanβ (see
Section 2).

1The fact that the bid graph is defined by the intersections of a collection of sets does not by itself help; any
graph can be defined in this way.
2These are graphs in which the nodes have been assigned an order; as we will see in Section 3.5, the choice
of order for a given bid graph can have a large effect on how good an approximation we can get.
3Or simplyβ whenG is clear from the context.
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These new approximation results are useful only if we can exhibit interesting
classes of graphs for whichβ is small. Graphs that can be oriented so thatβ� 1
have been extensively studied in the graph theory literature; these are known
aschordal graphs, and are precisely those graphs that can be represented as
intersection graphs of subtrees of a forest, a class that includes both trees and
interval graphs (more details are given in Section 3.1). We give additional
results showing how to compute upper bounds onβ for more general classes of
graphs in Sections 3.2 and 3.3.

Among these tools for boundingβ, one of particular interest to our hypo-
thetical combinatorial auctioneer is the following generalization of the fact that
intersection graphs of subtrees haveβ equal to one. Suppose that we have an
object graph whose nodes are objects and in which an edge exists between any
two objects that are relevant to each other in some way. (In the car example,
there might be an edge between a wheel and its axle but not between a wheel
and the hood ornament.) We demand that the objects in each bid begermane in
the sense that they must form a connected node subset of the object graph. For
many sparse object graphs, the intersection graph of all connected sets of ver-
tices can be ordered so that a later set intersects an earlier set only if it intersects
a “frontier set” that may be much smaller than the earlier set. It is immediate
that β for the intersection graph is bounded by the size of the largest frontier
set (more details are given in Lemma 5). Examples of such graphs are those of
low treewidth (Theorem 4) and planar graphs (Corollary 1).

In Section 4 we show how to handle more complex constraints on acceptable
sets of bids. We investigate scenarios where bids are grouped by bidder, and
that each bidder is limited to some maximum number of winning bids (an
unweighted budget constraint), or some maximum total cost of winning bids (a
weighted budget constraint). By charging later bids an approximate opportunity
cost for earlier bids in the same budget groups, we can solve these problems
approximately with ratioβ� 1 with unweighted constraints and 2β� 3 for
weighted constraints. The results for unweighted budget constraints can be
further generalized for more complicated constraints.

Finally, in Section 5 we discuss some open problems suggested by the current
work.

2. Simple combinatorial auctions

In this section, we describe our algorithms for approximating the maximum
weight independent set problem, the opportunity cost algorithm and the local
ratio opportunity cost algorithm . Both algorithms return the same approxima-
tion.
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2.1 The opportunity cost algorithm

Given an input graph with edge setE, we will write u� v if uv � E and call
u a predecessor of v andv a successor of u. The set of all predecessors ofu
will be written asδ��u� and the set of all successors asδ��u�.

Given a directed acyclic graphG0 � �V0�E0�with weights weight�v� for each
v in V , the opportunity cost algorithm,������, proceeds in two stages:

OC1 Traversing the nodes according to the topological order ofG0, compute a
value value�u� for each nodeu. This value represents an estimate of the
gain we expect by includingu in the independent set; it is computed by
taking the weight ofu and subtracting off anopportunity cost consisting
of the values of earlier positive-value nodes that conflict withu. Formally,
let

value�u� � weight�u�� ∑
v�u

max�0�value�v��� (8.1)

OC2 Processing the nodes in reverse topological order, add any node with
non-negative value to the desired independent setB and discard its pre-
decessors. Formally, let

select�u� � �value�u�� 0�� ��v � δ��u� : �select�v��� (8.2)

The output of the algorithm is the setB defined as allu for which select�u� is
true. This setB is clearly independent. In Section 2.3, we examine how close
B is to optimal.

2.2 The local ratio opportunity cost algorithm

The local ratio technique can be used to recursively find approximate solu-
tions to optimization problems over vectors in�n , subject to a set of feasibility
constraints. It was originally developed by Bar-Yehuda and Even [Bar-Yehuda
and Even, 1985], and later extended by Bafnaet al. [Bafna et al., 1999], Bar-
Yehuda [Bar-Yehuda, 2000], and Bar-Noyet al. [Bar-Noy et al., 2000].

Let w � �n be aweight vector. LetF be a set of feasibility constraints. A
vectorx � �n is a feasible solution to a given problem�F�w� if it satisfies all
the constraints inF. Thew-weight of a feasible solutionx is defined to be the
dot-productw � x; for r � 1, x is anr-approximation with respect to�F�w� if
r �w � x � w � x�, wherex� is a feasible solution maximizing thew-weight. An
algorithm is said to have anapproximation ratio of r if it always returns an
r-approximate solution.

Lemma 1 (Local Ratio Lemma [Bar-Yehuda and Even, 1985]). Let F be
a set of feasibility constraints. Let w, w1 and w2 be weight vectors such that
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w � w1�w2. If x is an r-approximation with respect to �F�w1� and �F�w2�,
then x is an r-approximation with respect to �F�w�.

We now describe the local ratio opportunity cost algorithm,���������.
Given a directed acyclic graphG0 � �V0�E0� with weights weight�v� for each
v � V0, we pass�G0�weight���� to the following recursive procedure. This
procedure takes as input a graphG and a weight functionw and proceeds as
follows:

LR1 Delete all nodes inG with non-positive weight. Let this new graph be
G2.

LR2 If G2 has no nodes, return the empty set.

LR3 Otherwise, select a nodeu with no predecessors inG2, and decompose
the weight functionw asw � w1�w2, where

w1�v� �

�
w�u� if v � 	u
�δ��u�,
0 otherwise,

andw2 � w�w1.

LR4 Solve the problem recursively using�G2�w2� as input. LetB2 be the
approximation to a maximum weight independent set returned by this
recursive call.

LR5 If B2�	u
 is an independent set, returnB �B2�	u
. Otherwise, return
B � B2.

Theorem 1. ������ and ��������� return the same approximation to a
maximum weight independent set.

Proof. Consider a recursive callC of ���������. Let u be the node that is
selected to be processed in step LR3. All ofu’s predecessors in the original
graphG0 have either been processed in a previous step LR3 or deleted in some
step LR1. Therefore, the current weight ofu, w�u�, as seen by the recursive
call C, is just value�u�, as defined in step OC1 of������. Furthermore, we
add nodeu to our independent set in step OC2 if and only if we addu to our
independent set in step LR5.

2.3 Approximation ratios

Theorem 2. ������ and ��������� return a β�G�-approximation to a
maximum weight independent set. Furthermore, there exist weights for which
this bound is tight.
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Proof. We will prove the result for���������. The full result follows from
Theorem 1. Clearly, the returned set of nodesB is an independent set. By
Lemma 1, we need to show thatB is aβ-approximation with respect tow1 and
w2. We will prove this by induction on the recursion. The base case of the
recursion is trivial, since there are no positive weight nodes.

For the inductive step, assume thatB2 is aβ-approximation with respect to
w2. ThenB is also aβ-approximation with respect tow2 sincew2�u� � 0 and
B � B2�	u
.

To show thatB is aβ-approximation with respect tow1, we will derive an
upper boundβw�u� on the maximumw1-weight independent set and a lower
boundw�u� on thew1-weight of anyu-maximal independent set of nodes. A
u-maximal independent set of nodes either containsu or addingu to it vio-
lates the property that it is an independent set. Ourw1 performance bound is
βw�u��w�u� � β. Note that onlyu and its successor nodes will have a nonzero
contribution tow1-weight.

The total weight of a maximumw1-weight independent set is at mostβ�u�w�u�

β�G�w�u� � βw�u�. The total weight of anyu-maximal independent set is at
leastw�u�, since any such set contains at least one element ofu�δ��u�, and
all such nodes are assigned weightw�u�. Since the algorithm always chooses
a u-maximal set, itsw1 performance bound isβ.

To show the bound is tight, pick somev that maximizesβ�v�, and assign it
weight 1 and all of its successors weight 1� ε, whereε � 0. Let every other
node inG have weight 0. When we run������, the value ofv will be 1,
the value of each of its successors will be�ε, and the value of any other node
is irrelevant because it has zero weight. Thus������ returns a set of total
weight 1 but the maximum weight independent set has total weight at least
β�u� � �1� ε�.

2.4 Running time

Theorem 3. The running times of both ������ and ��������� are linear
in the size of the input graph G0.

Proof. ������ computes value�v� for each nodev in time proportional to
its indegree, and computes select�v� for each node in time proportional to its
outdegree, for a total time ofO��V0�� �E0��. In the case of���������, a
recursive call is made at most once for each node in the graph, and definingw1

andw2 in each call takes time proportional to the node’s outdegree, for a total
running time ofO��V0�� �E0��.
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3. Properties of β
For anyv, β�v� is at most the larger of 1 or the outdegree ofv. Thus,β�G�

is at most the larger of 1 or the maximum degree ofG. In many cases we can
use the structure ofG to get a much better bound.

3.1 Graphs with β� 1

Graphs with orientations for whichβ � 1 can be characterized completely.
These are thechordal graphs, also known astriangulated graphs orrigid circuit
graphs. The defining property of a chordal graph is that no cycle of length 4 or
more appears as an induced subgraph. A succinct discussion of these graphs,
including a variety of characterizations as well as several examples of interesting
families of chordal graphs, can be found in [Grötschel et al., 1988, pp. 280–
281]. For our purposes the most useful of these characterizations are stated in
the following lemma:

Lemma 2. Let G be an undirected graph. Then the following properties of G
are equivalent:

1 G is chordal.

2 G is the intersection graph of subtrees of a forest.

3 G has an ordering G� for which the successors of any node form a clique.
Such an ordering is called a perfect elimination ordering. Restated in
terms of β, G has an ordering G� for which β�G�� � 1.

Proof. See [Gr̈otschel et al., 1988, pp. 280-281].

Chordal graphs can be recognized and ordered using a specialized version
of breadth-first search inO��V �� �E�� time as shown by Roseet al. [Rose et al.,
1976], and their maximum cardinality independent sets can be computed in
O��V �� �E�� time as shown by Gavril [Gavril, 1972]. Gavril’s algorithm is
essentially the same as step OC1 of the opportunity cost algorithm; it chooses
all nodes with positive value and works because the sets	v : u � v
 for each
u in the independent set form a clique covering. However, this algorithm does
not deal with weights.

Special cases of graphs withβ� 1 include trees, interval graphs, and disjoint
unions of cliques. The last are particularly nice:

Lemma 3. Let G be a disjoint union of cliques. Then everyorientation G� of
G has β�G�� � 1.

Proof. For eachu in G�, δ��u� is a clique.
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3.2 Graphs with larger β values

For general graphs, we cannot computeβ even approximately. However, we
can bound theβ values of many graphs using the tools in this section. We begin
(Lemma 4) by describing howβ is affected by simple operations like taking
unions and subgraphs; after building up some additional machinery, we show
how to find orientations with lowβ for graphs with low treewidth (Theorem 4)
and planar graphs (Corollary 1).

Lemma 4. Let G be a directed graph.

1 If G � G1�G2, then β�G�
 β�G1��β�G2�.

2 If G is a node-induced subgraph4 of H, then β�G�
 β�H�.

Proof. Let u be a node ofG. Let δ��u�, δ�1 �u�, δ�2 �u�, andδ�H�u� be the set of
all successors ofu in G, G1, andG2, respectively. LetA be any independent
subset ofδ��u�. Then

1 �A� 
 �A�δ�1 �u��� �A�δ�2 �u�� 
 β�G1��β�G2�, and

2 A is an independent subset ofδ�H�u�, implying �A� 
 β�H�.

Lemma 5. Let G be the intersection graph of a set system A whose union is
O. Let G be ordered by an ordering � such that for each A � A there exists
a “frontier set” SA � O of size at most k, so that if A � B and A�B �� /0, then
SA�B �� /0. Then β�G�
 k. (Note that SA need not be contained in A.)

Proof. Let B1� � � � �Bl be some independent set of successors ofA. Under the
conditions of the lemma eachBi intersectsSA. But since theBi do not themselves
intersect, each must intersectSA in a distinct element. Thus there are at mostk
of them.

The converse of the lemma does not hold. Instead, its proof shows that the
clique covering number χ of δ��A� (defined as the minimum size of any set of
cliques whose union isδ��A�) is at mostk, since the set of allB that intersect
SA at any particular element form a clique. Note thatany directed acyclic graph
in whichχ�δ��v�� is bounded can be represented as an intersection graph with
small frontier sets as in Lemma 5,5 in general the independence number of
δ��v� may be smaller than the clique covering number.

4A node-induced subgraph G of a graphH is a subgraph with the property that for any two verticesu�v in
G, if uv is an edge inH, it is also an edge inG.
5The trick is to add a new common element to all members of each clique, and letSA be the set of all such
new elements for the cliques that coverδ��A�.
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WhenA consists of connected node subsets of some graphH, we can obtain
good orderings of the intersection graphG of A by exploiting the structure of
H.

We start by reviewing the definition of treewidth. Atree decomposition of an
undirected graphH � �V�E� consists of a treeT and a family of setsV � 	Vt

wheret ranges over nodes ofT , satisfying the following three properties:

1
�

t�T Vt �V .

2 For every edgeuv in E, there is someVt that contains bothu andv.

3 If t2 lies on the unique path fromt1 to t3 in T , thenVt1 �Vt3 �Vt2.

The width of a tree decomposition�T�V � is max�Vt � � 1. The treewidth
tw�H� of a graphH is the smallest width of any tree decomposition ofH.

In the proof of Theorem 4, we will make heavy use of a technical lemma of
Robertson and Seymour [Robertson and Seymour, 1986], which concerns the
effect of removing some nodet from T . Their Lemma 2.3 implies that ifx�x�

are not inVt , then eitherx andx� are separated inH by Vt or x andx� are in the
same branch (connected component) ofT � t. We will call this theseparation
lemma.

Theorem 4. If G is an intersection graph of connected node subsets A of some
graph H with treewidth k, then there is an orientation G� of G with β�G��
 k�1.
Given A � 	Ai
 and a tree decomposition �T�V � 	Vt
� of H, this orientation
can be computed in time O�∑i �Ai�� �T ��∑t �Vt ��, which is linear in the size of
the input.

Proof. Let �T�V � be a tree decomposition ofH with width k. We will use this
tree decomposition to construct an ordering of the connected node subsets of
H, with the property that ifA � B then eitherA�B � /0 or B intersects some
frontier setSA with at mostk�1 elements. The full result then follows from
Lemma 5.

Choose an arbitrary rootr for T , and lett1� t2 if t1 is an ancestor oft2 in the
resulting rooted tree. Extend the resulting partial order to an arbitrary linear
order. For each connected node subsetA of H, let tA be the greatest node inT
for whichVtA intersectsA. Given two connected node subsetsA andB of H, let
A � B if tA � tB and extend the resulting partial order to any linear order.

OrderingT can be done inO��T �� time using depth first search. We can then
compute the maximum node inT containing each node ofH in time O�∑t Vt�
by considering eachVt in order. The final step of ordering theAi in the given set
systemS takesO�∑i �Ai�� time, since we must examine each element of each
Ai to find the maximum one. The total running time is thus linear in the size of
the input.
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Suppose thatA
 B in this ordering, and thatA�B �� /0. We will show that
B intersectsVtA , and thus thatVtA is our desired frontier setSA.

There are two cases:

1 If tA � tB, we are done.

2 If tA � tB, the situation is more complicated. Letp be the parent oftA
(which exists becausetA is not the greatest element in the tree ordering).
We haveA�Vp � /0 sincep � tA. SinceA is a connected set, it cannot
be separated without removing any of its nodes; thus using separation
lemma, every element ofA is in the same branch ofT � p, which consists
precisely of the subtree ofT rooted attA.

Now B contains at least one nodex in the vertex set of an element of the
subtree rooted attA, and at least one nodex� in VtB , which is not in this
subtree becausetB � tA. Again applying the separation lemma, either one
of x�x� is in VtA or B is separated byVtA . In the latter caseB intersectsVtA
sinceB is also connected.

Applying Theorem 4 to planar graphs gives:

Corollary 1. If G is the intersection graph of a family A of connected node
subsets of a planar graph H with n nodes, then there is an orientation G�

of G with β�G�� � O�
�

n�. Given H, a data structure of size O�n� can be
precomputed in time O�n logn� that allows this orientation G� to be computed
for any A � 	Ai
 in time O�∑i �Ai��.
Proof. Reed [Reed, 1992] gives a recursiveO�n logn� algorithm for computing
tree decompositions of constant-treewidth graphs based on a linear time algo-
rithm for finding approximate separators for small node subsets. Replacing this
separator-finding subroutine with the linear time algorithm of Lipton and Tar-
jan [Lipton and Tarjan, 1979] gives anO�n logn� time algorithm for computing
a tree decomposition of a planar graph. Since each separator has size at most
k � O�

�
n�, the resulting tree decomposition has width at most 4k � O�

�
n� by

Theorem 1 of [Reed, 1992].
Since all we need to compute a good ordering ofA is the ordering of then

nodes, we can compute this ordering as described in the proof of Theorem 4 and
represent it inO�n� space by assigning each node an index in the range 1 ton.
OrderingA then takes linear time as described in the proof of Theorem 4.

3.3 Examples

Applying the results of Sections 3.1 and 3.2 gives:



Opportunity cost algorithms for combinatorial auctions 155

1 A linear-time algorithm for finding a maximum weight independent set of
an interval graph, sinceβ�G� � 1 by Lemma 2, and since chordal graphs
can be recognized and ordered in linear time using the work of Roseet
al. [Rose et al., 1976].

While the maximum independent set problem is easily solved for this
case (for example, by using the linear time interval graph recognition
algorithm of Hsu and Ma [Hsu and Ma, 1999] followed by a simple
application of dynamic programming) this is an example of how our
general method yields good algorithms as special cases.

2 As another special case, a 2-approximation algorithm for interval selec-
tion of Berman and DasGupta [Berman and DasGupta, 2000]. Here in-
tervals are partitioned into groups and we must choose non-overlapping
intervals with at most one per group. The bid graphG is of the form
G1�G2 whereG1 is an interval graph andG2 is a disjoint union of
cliques, one for each group. Thusβ�G� � 2 by Lemmas 2, 3, and 4.

3 Suppose that interval selection is generalize so that instead of having just
one partition of the intervals into groups, we have two such partitions,
and we continue to require that at most one interval from each group
is selected. An example might be when each interval has both a single
potential buyer and a single potential seller (so that the first partition
divides intervals among buyers and the second divides intervals among
sellers), and each buyer can buy only one interval while each seller can
sell only one interval. Our results give a 3-approximation algorithm for
this “double auction” interval selection problem; it is the same as the
previous case except the graph is nowG1�G2�G3 whereG2 andG3,
representing the buyer and seller constraints, are both disjoint unions of
cliques.

4 In general, a mechanism for takingany bid graph withβ � k and adding up
to m such unique-selection constraints to get a�k�m�-approximation al-
gorithm by repeated applications of Lemmas 3 and 4. As an example, we
get a 3-approximation algorithm for maximum weight three-dimensional
matching, which corresponds to adding 3 unique-selection constraints to
a bid graph with no edges.

5 An algorithm tok-approximate a maximum weight independent set of
any subgraph of ak-dimensional rectangular grid. Orient each edge to
leave the point whose coordinates have a smaller sum, givingβ
 k.

6 A linear-time algorithm for 2-approximating a maximum weight inde-
pendent set of the intersection graph of intervals on a cycle. This follows
from Lemma 5: order connected node subsets by inclusion, extend to
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a linear order�, and observe that ifA � B and A intersectsB then B
intersects one ofA’s two endpoints.6

7 An algorithm for intersection graphs of bounded-height rectangles in a
discrete 2D grid. Order the rectangles by their largestx-coordinate, and
make the rightmost grid points of each rectangle be its frontier set in the
sense of Lemma 5. If each rectangle is at mosth tall, there are at mosth
grid points in each frontier. This generalizes in the obvious way to higher
dimensions given bounds on all but one of the coordinates, in which case
the approximation ratio becomes the product of the bounds.

3.4 Hardness of computing β
The difficulty of even approximating the independence number of a graph

extends to the directed local independence number.

Theorem 5. Any algorithm that can approximate β�G� for an n-node directed
acyclic graph G with a ratio of f �n� can be used to approximate the size α�H� of
a maximum independent set of an undirected n-node graph H with ratio f �n�1�.
Thus by Håstad’s bound on approximating a maximum clique [Håstad, 1999],
we cannot approximate β by O�n1�ε� unless ZPP � NP.

Proof. Given an undirectedn-node graphH, construct an�n�1�-node directed
acyclic graphG by (a) directing the edges ofH in any consistent order, and (b)
adding a new source nodes to H with edges froms to every node inH.

Let I be an independent set inH. Then every node inI is a successor
of s in G, and furthermore these nodes are all independent. It follows that
β�G�� β�s�� α�H�.

Conversely, ifI� is an independent set of successors of some nodev in H, it
cannot contains (sinces is not a successor of any node), and thusI� is also an
independent set inH. So we haveα�H�� β�G�.

3.5 Effects of node ordering

The performance of the opportunity cost algorithm is strongly sensitive to
the order in which the nodes are processed, as this affects the value ofβ�u�
for each nodeu. For many of the examples given in the Section 3.3, a good
ordering is provided by the structure of the problem. But what happens in a
general graph?

6One can do better by breaking the cycle to reduce it to a standard interval graph problem (see, for example,
the approach taken by [Bar-Noy et al., 2000]), but the 2-approximation shows how one can still do reasonably
well with our general algorithms������ and���������.
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Theorem 6. For any graph G with given weights, there exists an orientation G�

of G for which both������ and��������� output a maximum independent
set of G.

Proof. LetA be any independent set inG. Choose the ordering so that all nodes
in A precede all nodes not inA. Then for anyu � A, u has no predecessors in
the oriented graph and value�u� � weight�u�.

Let A� be the independent set computed by the algorithm. Ifu is in A but not
A�, it must have a successorv in A��A with non-negative value. Since the value
of eachv is its weight less the weight of all its neighbors inA, the total weight
of all elements ofA��A must exceed the total weight of all elements inA�A�,
and we have weight�A�� �weight�A��A��weight�A��A��weight�A�A���
weight�A��A� � weight�A�.

In a sense what Theorem 6 shows is that finding a good ordering of a general
graph is equivalent to solving the maximum weight independent set problem.
This is not surprising since evaluatingβ�u� for even a single nodeu requires
solving this problem. It follows that to get small approximation ratios we really
do need to exploit some special property of the given graph.

In the other direction, we can show that there exist orderings that are not very
good:

Theorem 7. If all nodes in a graph G have distinct weights, orienting G in
order of decreasing weight causes ������ and ��������� to return the
same independent set as the greedy algorithm.

Proof. We will prove the result for������; by Theorem 1 the same result
holds for���������.

Letπorder the nodes in order of decreasing weight. Let us show by induction
on π that if the greedy algorithm chooses a nodev, then value�v� � weight�v�;
but if the greedy algorithm does not choosev, then value�v�� 0. Suppose we
are processing some nodev and that this induction hypothesis holds for all nodes
previously processed. If the greedy algorithm picksv, then allv’s predecessors
were not chosen and have negative value, and value�v� � weight�v�. If the
greedy algorithm does not pickv, it is because it chose someu � v; now
value�v� 
weight�v��value�u� � weight�v��weight�u�� 0.

Since the only nodes with non-negative weights are those chosen by the
greedy algorithm,������ selects them as its output.

4. Auctions with budget constraints

Consider the following bidding scenarios:

1 A bidder whose car has broken down wants to buy either a new engine,
a new car, or an umbrella and a taxi ride home, but doesn’t particularly
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care which. However, she has no interest in winning more than one of
these bids.

2 Another bidder wants to buy at most three 1968 Volkswagen Beetle hood
ornaments, but she would like to bid on all that are available so as not to
miss any.

3 Yet another bidder has only $100 in cash, but would like to place multiple
bids totaling more than $100, with the understanding that she can only
win bids up to her budget.

Despite their superficial differences, all of these examples can be represented
by the auctioneer asbudget constraints, in which bids in some group consume
a common scarce resource. We would like to extend our algorithms to handle
such constraints, which are natural in real-world bidding situations.

The first scenario is an example of a1-of-n constraint, where at most one of a
set ofn bids can be accepted. This special case can be handled by modifyingG
by forming a clique out of all bids in each setSi; under the assumption that theSi

are disjoint, this increasesβ by at most 1 (using Lemmas 3 and 4). The second
scenario depicts a more generalk-of-n constraint. We show in Sections 4.1 and
4.2 how to handle such constraints by extending our algorithms to account for
the possible revenue loss from bids that cannot be selected because a budget
constraint has been exceeded. Again, the approximation ratio rises by 1. We
refer to both 1-of-n andk-of-n constraints asunweighted budget constraints, as
each bid consumes a single unit of the budget.

Weighted budget constraints, exemplified by the third scenario, are more
complicated. With such constraints, we must ensure that the sum of the weights
of accepted bids in some groupS is at most some boundb. A complication
arises because a maximal allowed set of bids might only fill half of a budget
limit. We describe in Section 4.3 additional modifications to our algorithms,
which give a performance bound of 2β�3 (Theorem 10).

4.1 Unweighted budget constraints

Suppose the bids are partitioned into groupsS1� � � � �Sr and that no more than
ki bids may be selected fromSi, for 1
 i 
 r. For each bidu, let g�u� denote
the index of the group to whichu belongs and letSu � Sg�u� andku � kg�u�.
	
��
������������ is an extension of������ to handle unweighted

budget constraints. It has a similar two-step structure.
In the first step, like OC1, we traverse the nodes in topological order and

compute a value for each node. We must extend the definition of value for each
node to account for thepossible revenue loss from previously processed bids
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that may not be selected in the second step because of the budget constraint:

value�u� � weight�u�� ∑
v�u

max�0�value�v�� (8.3)

� 1
ku
� ∑

v�Su��u��v�u

max�0�value�v���

where the notationv � u means thatv has already been processed (beforeu).
Note that the inclusion ofu in the set of winning bids does not necessarily
preclude previously processed bids inSu from also being selected—they may
also be selected if the budgetku allows. The coefficient1ku

scales the opportunity
cost to account for this fact.

In the second step, like OC2, we traverse the bid graph in reverse topological
order, selecting nodes of positive value whose addition to those already selected
does not violate the independence or budget constraints.
	
��
��������������� solves the same problem using the local ratio

technique. It follows the same structure as���������. We begin by deleting
all non-positive weight nodes from the graph. If any nodes remain, we select
a nodeu with no predecessors, and decompose the weight function intow �
w1�w2. This time, the decomposition must account for bids that are in the
same budget group. We define

w1�v� �

���
��

w�u� if v � 	u
�δ��u�,
1
ku

w�u� if v � Su�	u
,
0 otherwise,

and recursively solve the problem usingw2 as the weight function. After the
recursive call, we must decide if we should addu to the set of winning bidsB2.
In ���������, we addedu to B2 if and only if B2�	u
 was an independent
set. In this algorithm, we must also ensure that the budget constraints are
satisfied before addingu to B2. We say that a set of bids isfeasible if they form
an independent set and the budget constraints are satisfied.

Theorem 8. Given a directed bid graph G, a partition of the nodes of G into
nonempty subsets S1� � � � �Sr, and an unweighted budget constraint ki for each
Si,

1 	
��
������������ and 	
��
��������������� return the
same approximation to a revenue maximizing set of bids.

2 	
��
������������and	
��
��������������� �β�G��1�-
approximate an optimal set of bids.

3 	
��
������������ and	
��
��������������� both run in
time linear in the size of G.
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Proof. The proof that both algorithms return the same approximation is similar
to the proof of Theorem 1.

The proof of the approximation ratio follows the same structure as the proof
of Theorem 2. We prove the result for	
��
���������������. By
Lemma 1, we need only show that the returned set of bidsB is a �β� 1�-
approximation with respect tow2 andw1. We do this using induction on the
recursion. The fact thatB is a�β�1�-approximation with respect tow2 follows
trivially from the inductive assumption.

In the case ofw1, we will derive an upper boundU on the maximumw1-
weight of a set of feasible bids and a lower boundL on thew1-weight of any
u-maximal set of bids. Au-maximal set of bids either containsu or addingu to
it would violate the feasibility constraints. In the case of a set of feasible bids,
its totalw1-weight is at mostβ�u�w�u�� ku

ku
w�u�
 w�u��β�1� �U , since the

only nonzero contribution tow1-weight comes fromδ��u� andSu. In the case
of a u-maximal set of bids, ifu cannot be added to the set, then either (1) a
successor ofu is already in the set, in which case the totalw1-weight is at least
w�u�, or (2) the budget constraint is exceeded, in which case the totalw1-weight
is at leastw�u�. Therefore, thew1-weight of these bids is at leastw�u� and the
w1 performance bound is

U
L

�
w�u��β�1�

w�u�
� β�1�

The proof of the running time is similar to the proof of Theorem 3. All of the
steps that	
��
������������ and	
��
��������������� share
with ������ and��������� take linear time.	
��
������������
adds the cost of computing the last term in (8.3). Storing∑v�Si

max�0�value�v��
in a variable∆Si for eachSi allows this term to be computed in timeO�1� for
each node, with an additionalO�1� cost per node to update the appropriateSi.
The same technique allows budget constraints to be tested inO�1� time per
node during the second step. Thus the additional time is linear.

The corresponding modification to	
��
��������������� similarly
adds only linear time. Rather than updating the weight of each nodev before
each recursive call, we will compute the “current” weight of each nodev as it is
required, subtracting off the total weight∆Sv of all previously-processed nodes
in Sv as in	
��
������������.

4.2 Overlapping unweighted constraints

The analysis in Section 4.1 assumes that the budget constraints partition
the bids. For some applications (e.g., bids involving matching up buyers with
sellers), we may have overlapping constraints. Overlapping constraints may
also be used to handle bids for identical items in limited supply, by grouping
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all bids asking for copies of the same item together. The algorithms described
above can be generalized to handle overlapping constraints.

Suppose we have a family ofr sets of bidsS � 	S1� � � � �Sr
, that each bid
appears in at mostt of these sets, and that at mostki bids may be accepted from
setSi.

In ��������

��	
��
������������, when computing the value of
a nodeu, we need to account for the possible revenue loss from nodes in each
set thatu belongs to:

value�u� � weight�u�� ∑
v�u

max�0�value�v��

� ∑
1�i�r�u�Si

�
1
ki ∑

v�Su�v�u

max�0�value�v��

�
�

The rest of the algorithm is the same as	
��
������������.
In��������

��	
��
���������������, the only change from	
�

��
��������������� is in the decomposition of the weight function. We
decompose it as

w1�v� �

���
��

w�u� if v � 	u
�δ��u�,
∑1�i�r�u�v�Si

1
ki

w�u� if someSi contains bothu andv,

0 otherwise.

Theorem 9. Given a directed bid graph G � �V�E�, a family of nonempty
node subsets S1� � � � �Sr, where each node appears in at most t of the Si, and an
unweighted budget constraint ki for each Si,

1 ��������

��	
��
������������ and ��������

��	
�

��
��������������� return the same approximation to a revenue
maximizing set of bids.

2 ��������

��	
��
������������ and ��������

��	
�

��
��������������� �β�G�� t�-approximate an optimal set of
bids.

3 ��������

��	
��
������������ and ��������

��	
�

��
��������������� run in time O��V �t � �E��.

Proof. Similar to the proof of Theorem 8. The additionalO��V �t� term comes
from having to apply up tot budget constraints to each node; since∑i �Si� 
 �V �t,
this term also covers the cost of reading theSi from the input and initializing
the variables for each subset.
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4.3 Weighted budget constraints

Suppose that bids are partitioned into groupsS1� � � � �Sr and that the total
value of the winning bids from groupi can be no more thanbi. For each bidu,
let g�u� denote the index of the group to whichu belongs and letSu � Sg�u� and
bu � bg�u�.

This case is more complicated than the unweighted case. The difficulty arises
when estimating a lower bound on thew1-weight of au-maximal set of bidsS.
If u cannot be added to the set because the budget constraint will be exceeded,
thew1-weight ofS can be as small asε, if w1�u� � bu.

We will describe changes required to��������� to handle this case. Cor-
responding changes can be made to������. We will run variations of the
algorithm twice, once for theheavy bids v with w�v� � 1

2bv and once for the
light bidsv with w�v�
 1

2bv. We then return the better of the two solutions.
In ��������
���������������, we put an unweighted budget con-

straint of 1 on each bidder and run	
��
���������������.

Lemma 6. ��������
��������������� �β�1�-approximates an opti-
mal set of heavy bids.

Proof. Since each heavy bid consumes more than half a bidder’s budget, each
bidder can win at most one bid. This is just a simple unweighted budget con-
straint and can be solved as described in Section 4.1 for a performance bound
of β�1.

In �
������
���������������, when decomposing the weight func-
tion, we set

w1�v� �

���
��

w�u� if v � 	u
�δ��u�,
2
bu

w�v�w�u� if v � Su�	u
,
0 otherwise.

Before addingu to the winning set of bidsB2, we must ensure that it does not
conflict with other bids inB2 and that the weighted budget constraint is not
violated. The rest of the algorithm is identical to���������.

Lemma 7. �
������
��������������� �β�2�-approximates an opti-
mal set of light bids.

Proof. This proof uses the same structure and notation as the proof of The-
orem 8. An upper boundU on thew1-revenue of any feasible set of bids is
w�u��β�2�. With regards to au-maximal set of bids, ifu cannot be added to
the set because the budget constraintbu will be exceeded, the existing bids in the
set must have weight at leastbu�2, sincew�u�
 bu�2. A lower boundL on the
w1-revenue of anyu-maximal set of bids is thereforew�u�. The performance
bound of this algorithm isUL � β�2, as claimed.
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Theorem 10. Given a directed bid graph G, a partition of the nodes of G into
nonempty subsets S1� � � � �Sr, and a weighted budget constraint bi for each Si,

1 ��
������������ and ��
��������������� return the same
approximation to a revenue maximizing set of bids.

2 ��
������������ and ��
���������������

�2β�G��3�-approximate an optimal set of bids.

3 ��
������������ and��
��������������� run in time linear
in the size of G.

Proof. The sum of the optimal revenues for the heavy and light bids is at least
equal to the optimum revenue among all bids. From Lemmas 6 and 7, the
better of the two solutions will be within a factor of 2β�3 of the optimum for
the general problem.

For the running time, observe that decomposing the bids into heavy and
light bids takes linear time, that��������
������������ and������
��
���������������are equivalent to	
��
������������and	
�
��
��������������� and thus take linear time by Theorem 8, and that
�
������
������������ and�
������
��������������� can be
made to run in linear time using techniques similar to those used for	
�

��
������������ and	
��
���������������.

5. Further Research

This paper opens up several directions for further research. An immedi-
ate open problem is whether overlapping weighted budget constraints can be
processed as efficiently as their unweighted counterparts are processed in The-
orem 9.

It would be of importance to compare the performance of our algorithms and
others in practice. The comparison could be conducted on simulations, but it
would be more useful to analyze the performance on real auction data.

As the examples of car sales and land sales demonstrate, topological struc-
tures exist in actual bids. Another good example is the ongoing FCC auction of
airwaves [McAfee and McMillan, 1996], where each trading area is an auction
object, the trading areas form a plane graph, and many of the bidders prefer
to acquire contiguous trading areas. It would be useful to examine past auc-
tions to determine whether similar connectivity structures exist and how such
structures affect the computational complexity of bidding strategies and winner
determination.
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