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Abstract Two general algorithms based on opportunity costs are given for approximating a
revenue-maximizing set of bids an auctioneer should acceptgomainatorial
auction in which each bidder offers a price for some subset of the available goods
and the auctioneer can only accept non-intersecting bids. Since this problem is
difficult even to approximate in general, the algorithms are most useful when the
bids are restricted to be connected node subsets of an undeolyjiexy graph
that represents which objects are relevant to each other. The approximation ra-
tios of the algorithms depend on structural properties of this graph and are small
constants for many interesting families of object graphs. The running times of
the algorithms are linear in the size of thid graph, which describes the conflicts
between bids. Extensions of the algorithms allow for efficient processing of ad-
ditional constraints, such as budget constraints that associate bids with particular
bidders and limit how many bids from a particular bidder can be accepted.

Keywords:  combinatorial auction, winner determination, budget constraints, object graphs,
bid graphs, graph connectivity, computational hardness, approximation algo-
rithms, opportunity costs

1. Introduction

Auctions are arguably the simplest and maost popular means of price determi-
nation for multilateral trading without intermediary market makers [Clearwa-
ter, 1996, Hendricks and Paarsh, 1995, McMillan and McAfee, 1987, Wilson,
1992]. This paper considers the setting where there are (1) a group of compet-
ing bidders who bid to possess the auctiobjects and (2) anauctioneer who
determines which bidders win which objects.

For the case of allocating a single object to one of many bidders, there is a
wealth of literature on the following four widely used forms of auction [Hen-
dricks and Paarsh, 1995, McMillan and McAfee, 1987, Milgrom and Weber,
1982]. In anEnglish auction or ascending bid auction, the price of an object
is successively raised until only one bidder remains and wins the object. In
a Dutch auction, which is the converse of an English auction, an initial high
price is subsequently lowered until a bidder accepts the current price. In a
first-price sealed-bid auction, potential buyers submit sealed bids for an object.
The highest bidder is awarded the object and pays the amount of her bid. In
a second-price sealed-bid auction, the highest bidder wins the object but pays
a price equal to the second-highest bid. In all these forms of auction, the auc-
tioneer can determine the winning bid in time linear in the number of bids in a
straightforward manner.

For the case of allocating multiple objects to multiple bidders [Chen et al.,
2000, Gale, 1990, Hausch, 1986, Kao et al., 1999, Krishna and Rosenthal, 1996,
Palfrey, 1980]combinatorial auctions are perhaps the most important form of
auctions in the Internet Age, where bidders are increasingly software agents.
Oftentimes a bid by an agent is a subset of the auction objects, and the agent
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needs the entire subset to complete a task. Different bids may share the same
object, but the winning bids must not share any object [McAfee and McMillan,
1996]. Combinatorial auctions were first proposed by Rasseali [Rassenti

et al., 1982] as one-round mechanisms for airport time slot allocation. Banks
et al. [Banks et al., 1989], DeMartirgt al. [DeMartini et al., 1999], and Parkes

and Ungar [Parkes and Ungar, 2000] formulated multiple-round mechanisms.
It is in generalNP-hard for the auctioneer to even approximately, let alone
precisely, determine a set of winning bids of a combinatorial auction which
maximizes the revenue of the auction (see, e.g., Theorem 5). To address this
severe computational difficulty, Rothkogf al. [Rothkopf et al., 1998] placed
constraints on permissible bids. Lehmaetral. [Lehmann et al., 1999] and
Fujishimaet al. [Fujishima et al., 1999] considered approximation algorithms.
Sandholm and Suri [Sandholm and Suri, 2000] desigastime algorithms,

which return a sequence of monotonically improving solutions that eventually
converges to optimal. Many other approaches are described in a recent survey
by de Vries and Vohra [de Vries and Vohra, 2000].

In this paper, we propose a general framework to exploit topological struc-
tures of the bids to determine the winning bids with a provably good approxi-
mation ratio in linear time. The following discussion uses the sale of a car as a
light-hearted example to explain our computational problems and key concepts.

Imagine that we are in the business of auctioning used cars. If we insist on
selling each car as a unit, we can sell each car to the highest bidder. If we are
willing to sell parts of the car, we can still sell each part to the highest bidder.
But suppose that some bidders are only interested in buying several parts at
once: Alice may not want to buy a tire unless she can get the wheel that goes
with it, while Bob might only be interested in both rear wheels and the axle
between them. How do we decide which of a set of conflicting bids to accept?

We will assume that our only goal is to maximize our total revenue. Then
we can express this problem as a simple combinatorial optimization problem.
We have some univer€ of objects, and our buyers supply us with a Aetf
bids. Thei-th bid consists of a subsét of O and a priceg that the buyer is
willing to pay for all of the objects irs. We would like to choose a collection
of bidsB C A that yields the best possible total price while beaogsistent,
in the sense that no two seksandA; in B overlap.

As the auctioneer, we can construdtid graph G whose nodes are the bids
and which has an edge between any two bids that share an object. Then, a set
of consistent bids is simply an independent sebjn.e., a set of nodes no two
of which are connected by an edge. Each node is given a weight equal to the
value of the bid it represents.

Sadly, this means that the problem of finding the most valuable consistent
set of bids is a thinly-disguised version of the maximum weight independent
set problem, which is not onlMP-hard, but cannot be approximated to within
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a ratioO(n'~¢) for ann-node graph unles&PP = NP [Hastad, 1999}. Even

for the simplest case when all node weights are one, the maximum weight
independent set problemi&-hard even when every vertex has degree at most

d foranyd > 3, and in fact cannot be approximated within a raticfdér some

€ > 0unles$ = NP[Alonetal., 1995]. The bestknown algorithm (for arbitrary

d) achieves an approximation within a factor @fd/loglogd) [Halldrsson

and Radhakrishnan, 1994]. As a result, it seems hopeless if we model our
combinatorial auction problem as an independent set problem unless we exploit
the topological structure of the underlying bid graph.

Using ideas from the interval selection algorithm of Berman and DasGupta
[Berman and DasGupta, 2000], we describe in Section 2 a linear-time im-
provement of the greedy algorithm, called tmportunity cost algorithm, for
approximating maximum weight independent sets in ordered gfaplesthen
describe a similar algorithm called thecal ratio opportunity cost algorithm,
based on ideas from the resource allocation algorithms of BareNaly [Bar-

Noy et al., 2000]. Both algorithms produce the same output, but the first has a
more iterative structure and is easier to implement while the second has a more
recursive structure and is easier to analyze.

These opportunity cost algorithms distinguish themselves from the straight-
forward greedy algorithm by taking into account the cost of excluding previ-
ously considered neighbors of a chosen node. Since this accounting requires
propagating information only between neighbors, it increases the running time
by at most a small constant factor, and yet in many cases produces a great
improvement in the approximation ratio. The quality of the approximation de-
pends on the local structure of the ordered input gi@pkor each nodgin G,
we examine all of its successors (adjacent nodes that appear later in the order-
ing). The maximum size of any independent set amoagd its successors is
called thedirected local independence number at v; we will write itasB(v). The
maximum value oB(v) over all nodes in the graph will be written &G) 2 and
is thedirected local independence number of G. Our algorithms approximate
a maximum weight independent set to within a factofBofBy comparison,
the greedy algorithm approximates a maximum weight independent set within
a ratio of the maximum size of any independent subset of both the predecessors
and the successors of any node, which in general can be much larg@n(temn
Section 2).

1The fact that the bid graph is defined by the intersections of a collection of sets does not by itself help; any
graph can be defined in this way.

2These are graphs in which the nodes have been assigned an order; as we will see in Section 3.5, the choice
of order for a given bid graph can have a large effect on how good an approximation we can get.

30r simply 3 whenG is clear from the context.
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These new approximation results are useful only if we can exhibit interesting
classes of graphs for whighis small. Graphs that can be oriented so fhatl
have been extensively studied in the graph theory literature; these are known
aschordal graphs, and are precisely those graphs that can be represented as
intersection graphs of subtrees of a forest, a class that includes both trees and
interval graphs (more details are given in Section 3.1). We give additional
results showing how to compute upper boundgdor more general classes of
graphs in Sections 3.2 and 3.3.

Among these tools for bounding, one of particular interest to our hypo-
thetical combinatorial auctioneer is the following generalization of the fact that
intersection graphs of subtrees hgsequal to one. Suppose that we have an
object graph whose nodes are objects and in which an edge exists between any
two objects that are relevant to each other in some way. (In the car example,
there might be an edge between a wheel and its axle but not between a wheel
and the hood ornament.) We demand that the objects in each balrbane in
the sense that they must form a connected node subset of the object graph. For
many sparse object graphs, the intersection graph of all connected sets of ver-
tices can be ordered so that a later set intersects an earlier set only if it intersects
a “frontier set” that may be much smaller than the earlier set. It is immediate
that 3 for the intersection graph is bounded by the size of the largest frontier
set (more details are given in Lemma 5). Examples of such graphs are those of
low treewidth (Theorem 4) and planar graphs (Corollary 1).

In Section 4 we show how to handle more complex constraints on acceptable
sets of bids. We investigate scenarios where bids are grouped by bidder, and
that each bidder is limited to some maximum number of winning bids (an
unweighted budget constraint), or some maximum total cost of winning bids (a
weighted budget constraint). By charging later bids an approximate opportunity
cost for earlier bids in the same budget groups, we can solve these problems
approximately with ratio3 + 1 with unweighted constraints an@ 2- 3 for
weighted constraints. The results for unweighted budget constraints can be
further generalized for more complicated constraints.

Finally, in Section 5 we discuss some open problems suggested by the current
work.

2. Simple combinatorial auctions

In this section, we describe our algorithms for approximating the maximum
weight independent set problem, the opportunity cost algorithm and the local
ratio opportunity cost algorithm . Both algorithms return the same approxima-
tion.
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2.1 The opportunity cost algorithm

Given an input graph with edge g8t we will write u — vif uv € E and call
u a predecessor of v andv a successor of u. The set of all predecessors wf
will be written asd™ (u) and the set of all successors&su).

Given a directed acyclic grafh = (Vo, Eo) with weights weightv) for each
vinV, the opportunity cost algorithni)pcosT, proceeds in two stages:

OC1 Traversing the nodes according to the topological ord&s,afompute a
value valug(u) for each nodes. This value represents an estimate of the
gain we expect by including in the independent set; it is computed by
taking the weight ofi and subtracting off anpportunity cost consisting
of the values of earlier positive-value nodes that conflict witRormally,
let

valugu) = weight(u) — Z max(0, valug(v)). (8.1)

v—u

OC2 Processing the nodes in reverse topological order, add any node with
non-negative value to the desired independenBsand discard its pre-
decessors. Formally, let

selecfu) = [valug(u) > O] A [Vv € &' (u) : ~selectv)]. (8.2)

The output of the algorithm is the d8tdefined as alli for which selectu) is
true. This seB is clearly independent. In Section 2.3, we examine how close
B is to optimal.

2.2 Thelocal ratio opportunity cost algorithm

Thelocal ratio technique can be used to recursively find approximate solu-
tions to optimization problems over vectorsifh subject to a set of feasibility
constraints. It was originally developed by Bar-Yehuda and Even [Bar-Yehuda
and Even, 1985], and later extended by Baéhal. [Bafna et al., 1999], Bar-
Yehuda [Bar-Yehuda, 2000], and Bar-Neyal. [Bar-Noy et al., 2000].

Letw € R" be aweight vector. LetF be a set of feasibility constraints. A
vectorx € R" is afeasible solution to a given probleni{F,w) if it satisfies all
the constraints ifr. Thew-weight of a feasible solutiox is defined to be the
dot-productw- x; for r > 1, x is anr-approximation with respect to(F,w) if
r-w-x>w-x*, wherex* is a feasible solution maximizing the-weight. An
algorithm is said to have aapproximation ratio of r if it always returns an
r-approximate solution.

Lemma 1 (Local Ratio Lemma [Bar-Yehuda and Even, 1985]). Let F be
a set of feasibility constraints. Let w, wy and w, be weight vectors such that



Opportunity cost algorithms for combinatorial auctions 149

w=w; +W,. IfXisan r-approximation with respect to (F,w) and (F,w,),
then x is an r-approximation with respect to (F,w).

We now describe the local ratio opportunity cost algoritink-OPcosT.
Given a directed acyclic grapB = (Vo, Eog) with weights weightv) for each
v € Vo, we pass(Gp,weight(-)) to the following recursive procedure. This
procedure takes as input a graBhand a weight functionv and proceeds as
follows:

LR1 Delete all nodes i with non-positive weight. Let this new graph be
Go.

LR2 If G, has no nodes, return the empty set.

LR3 Otherwise, select a nodewith no predecessors i, and decompose
the weight functiorw asw = w; + w,, where

Wa(v) = w(u) if ve {u}Uudt(u),
o otherwise,

andw, = w —wj.

LR4 Solve the problem recursively usiri@,w») as input. LetB, be the
approximation to a maximum weight independent set returned by this
recursive call.

LR5 If BoU{u} is an independent set, retusn= B, U {u}. Otherwise, return
=B..

Theorem 1. Orcost and LR-OPcosT return the same approximation to a
maximum weight independent set.

Proof. Consider a recursive call of LR-OpcosT. Letu be the node that is
selected to be processed in step LR3. Allus predecessors in the original
graphGg have either been processed in a previous step LR3 or deleted in some
step LR1. Therefore, the current weightwfw(u), as seen by the recursive
call C, is just valugu), as defined in step OC1 @pcost. Furthermore, we

add nodeu to our independent set in step OC2 if and only if we add our
independent set in step LR5. O

2.3 Approximation ratios

Theorem 2. Opcost and LR-OPcosT return a 3(G)-approximation to a
maximum weight independent set. Furthermore, there exist weights for which
this bound is tight.
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Proof. We will prove the result fol.R-OprcosT. The full result follows from
Theorem 1. Clearly, the returned set of nodess an independent set. By
Lemma 1, we need to show thatis aB-approximation with respect o and

wy. We will prove this by induction on the recursion. The base case of the
recursion is trivial, since there are no positive weight nodes.

For the inductive step, assume tiiatis a B-approximation with respect to
w,. ThenB is also af-approximation with respect t sincew,(u) = 0 and
B cByU {U}

To show thatB is a-approximation with respect ta, we will derive an
upper boundBw(u) on the maximunws-weight independent set and a lower
boundw(u) on thews-weight of anyu-maximal independent set of nodes. A
u-maximal independent set of nodes either contairs addingu to it vio-
lates the property that it is an independent set. @userformance bound is
Bw(u)/w(u) = B. Note that onlyu and its successor nodes will have a nonzero
contribution tow;-weight.

The total weight of a maximunw, -weightindependent setis at m@sgt) w(u) <
B(G)w(u) = Bw(u). The total weight of any-maximal independent set is at
leastw(u), since any such set contains at least one elementid (u), and
all such nodes are assigned weiglft)). Since the algorithm always chooses
au-maximal set, itsvy performance bound B.

To show the bound is tight, pick somvehat maximizeg(v), and assign it
weight 1 and all of its successors weight £, wheree > 0. Let every other
node inG have weight 0. When we ru®pcosT, the value ofv will be 1,
the value of each of its successors will be, and the value of any other node
is irrelevant because it has zero weight. TKMBCOST returns a set of total
weight 1 but the maximum weight independent set has total weight at least

Bu)-(1-e). O

24 Running time

Theorem 3. Therunning times of both Opcost and LR-OpPcosT are linear
in the size of the input graph G,.

Proof. OpcosT computes valugy) for each noder in time proportional to

its indegree, and computes sel@gtfor each node in time proportional to its
outdegree, for a total time @(|\| + |Eo|). In the case oLLR-OrcosT, a
recursive call is made at most once for each node in the graph, and defining
andw, in each call takes time proportional to the node’s outdegree, for a total
running time ofO(|Vo| + |Eo|)- O
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3. Propertiesof

For anyv, B(v) is at most the larger of 1 or the outdegreevofThus,B(G)
is at most the larger of 1 or the maximum degre&ofin many cases we can
use the structure @& to get a much better bound.

31 Graphswithp=1

Graphs with orientations for whicB= 1 can be characterized completely.
These are thehordal graphs, also known agangulated graphs origid circuit
graphs. The defining property of a chordal graph is that no cycle of length 4 or
more appears as an induced subgraph. A succinct discussion of these graphs,
including a variety of characterizations as well as several examples of interesting
families of chordal graphs, can be found in §@&chel et al., 1988, pp. 280—
281]. For our purposes the most useful of these characterizations are stated in
the following lemma:

Lemma 2. Let G be an undirected graph. Then the following properties of G
are equivalent:

1 Gischordal.
2 Gistheintersection graph of subtrees of a forest.

3 Ghasanordering G for which the successors of any node forma clique.
Such an ordering is called a perfect elimination ordering Restated in
terms of 3, G has an ordering G’ for which B(G') = 1.

Proof. See [Gbtschel et al., 1988, pp. 280-281]. O

Chordal graphs can be recognized and ordered using a specialized version
of breadth-first search i@(|V |+ |E|) time as shown by Ros# al. [Rose et al.,
1976], and their maximum cardinality independent sets can be computed in
O(|V| + |E]) time as shown by Gauvril [Gavril, 1972]. Gauvril’s algorithm is
essentially the same as step OCL1 of the opportunity cost algorithm; it chooses
all nodes with positive value and works because the 8ets1 — v} for each
uin the independent set form a clique covering. However, this algorithm does
not deal with weights.

Special cases of graphs wfth= 1 include trees, interval graphs, and disjoint
unions of cliques. The last are particularly nice:

Lemma 3. Let G be a disjoint union of cliques. Then everyorientation G of
GhasB(G) =1

Proof. For eachuin G, d*(u) is a clique. O
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3.2 Graphswith larger g values

For general graphs, we cannot compieven approximately. However, we
can bound th@ values of many graphs using the tools in this section. We begin
(Lemma 4) by describing ho@ is affected by simple operations like taking
unions and subgraphs; after building up some additional machinery, we show
how to find orientations with lovs for graphs with low treewidth (Theorem 4)
and planar graphs (Corollary 1).

Lemma4. Let G be a directed graph.
1 1fG=G1UGy, then B(G) < B(G1) +B(G2).
2 If Gisanode-induced subgraplt of H, then B(G) < B(H).

Proof. Letu be a node ofs. Letd" (u), 8] (u), 85 (u), andd; (u) be the set of
all successors df in G, G1, andG,, respectively. LeA be any independent
subset o®* (u). Then

1 |Al < JANS] (u)] +]AN3; (u)] < B(Gy) +B(Gz), and
2 Ais an independent subset&f(u), implying |A| < B(H).
O

Lemma 5. Let G be the intersection graph of a set system A whose union is
O. Let G be ordered by an ordering < such that for each A € A there exists
a“frontier set” S\ C O of size at most k, so that if A < Band ANB #0, then
SaNB# 0. Then B(G) < k. (Note that Sy need not be contained in A.)

Proof. LetB;y,...,B; be some independent set of successorA. dfnder the
conditions of the lemma eaéhintersect§&,. Butsince thd3; do notthemselves
intersect, each must intersesitin a distinct element. Thus there are at nlost
of them. O

The converse of the lemma does not hold. Instead, its proof shows that the
clique covering number % of 3" (A) (defined as the minimum size of any set of
cligues whose union i&"(A)) is at mostk, since the set of aB that intersect
Sa at any particular element form a clique. Note thay directed acyclic graph
in whichX (3" (v)) is bounded can be represented as an intersection graph with
small frontier sets as in Lemma>5n general the independence number of
ot (v) may be smaller than the clique covering number.

4A node-induced subgraph G of a graphH is a subgraph with the property that for any two vertiogsin
G, if uvis an edge iH, it is also an edge .

5The trick is to add a new common element to all members of each clique, afidkethe set of all such
new elements for the cliques that co®&r(A).
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WhenA consists of connected node subsets of some griapte can obtain
good orderings of the intersection gra@tof A by exploiting the structure of
H.

We start by reviewing the definition of treewidth.tree decomposition of an
undirected graphH = (V, E) consists of a tre& and a family of setY = {\{}
wheret ranges over nodes @f, satisfying the following three properties:

1 UteTVt =V.
2 For every edgev in E, there is som#{ that contains botln andv.
3 If tp lies on the unique path fromto tz in T, then\t, "M, C .

The width of a tree decompositiofiT,V ) is max{| — 1. Thetreewidth
tw(H) of a graphH is the smallest width of any tree decompositiorHof

In the proof of Theorem 4, we will make heavy use of a technical lemma of
Robertson and Seymour [Robertson and Seymour, 1986], which concerns the
effect of removing some nodegrom T. Their Lemma 2.3 implies that i, X
are not inVt, then eithex andx are separated iH by \f or x andx are in the
same branch (connected component] eft. We will call this theseparation
lemma.

Theorem 4. If Gisanintersection graph of connected node subsets A of some
graphH withtreewidthk, thenthereisan orientation G of Gwith3(G') <k-+ 1.
Given A = {A} and a tree decomposition (T,V = {\{}) of H, this orientation
can be computed intime O(3; |A| + | T| + 3¢ [M]), which islinear in the size of
the input.

Proof. Let(T,V ) be a tree decomposition bf with width k. We will use this

tree decomposition to construct an ordering of the connected node subsets of
H, with the property that ifA < B then eitherAN B =0 or B intersects some
frontier setS, with at mostk 4+ 1 elements. The full result then follows from
Lemma 5.

Choose an arbitrary rootfor T, and let; > t, if t; is an ancestor d§ in the
resulting rooted tree. Extend the resulting partial order to an arbitrary linear
order. For each connected node suldsef H, letty be the greatest node h
for which\4, intersectsA. Given two connected node subsatandB of H, let
A < Bif ta < tg and extend the resulting partial order to any linear order.

OrderingT can be done iO(|T|) time using depth first search. We can then
compute the maximum node T containing each node &f in time O(5; )
by considering eacf in order. The final step of ordering tiAgin the given set
systemS takesO(Y;|A|) time, since we must examine each element of each
A to find the maximum one. The total running time is thus linear in the size of
the input.
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Suppose tha < B in this ordering, and thadn B # 0. We will show that
B intersects4,, and thus that, is our desired frontier S&h.
There are two cases:

1 If ta =tg, we are done.

2 If ta < tg, the situation is more complicated. Lptbe the parent of
(which exists becaudg is not the greatest element in the tree ordering).
We haveANV, = 0 sincep > ta. SinceAis a connected set, it cannot
be separated without removing any of its nodes; thus using separation
lemma, every element @fis in the same branch @f— p, which consists
precisely of the subtree df rooted atp.

Now B contains at least one nodén the vertex set of an element of the
subtree rooted df, and at least one nodéin Vi, which is not in this
subtree becaudg > ta. Again applying the separation lemma, either one
of x,X is in\4, or Bis separated by,,. In the latter cas8 intersects/,
sinceB is also connected.

O

Applying Theorem 4 to planar graphs gives:

Corallary 1. If G isthe intersection graph of a family A of connected node
subsets of a planar graph H with n nodes, then there is an orientation G
of G with B(G') = O(y/n). Given H, a data structure of size O(n) can be
precomputed in time O(nlogn) that allows this orientation G to be computed
for any A = {Ai} intime O(3;|Ai).

Proof. Reed [Reed, 1992] gives a recurs@élogn) algorithm for computing

tree decompositions of constant-treewidth graphs based on a linear time algo-
rithm for finding approximate separators for small node subsets. Replacing this
separator-finding subroutine with the linear time algorithm of Lipton and Tar-
jan [Lipton and Tarjan, 1979] gives &nlogn) time algorithm for computing

a tree decomposition of a planar graph. Since each separator has size at most
k= O(4/n), the resulting tree decomposition has width at méstO(,/n) by
Theorem 1 of [Reed, 1992].

Since all we need to compute a good orderingh\df the ordering of the
nodes, we can compute this ordering as described in the proof of Theorem 4 and
represent it ir0(n) space by assigning each node an index in the rangenl to
OrderingA then takes linear time as described in the proof of Theorem#.

3.3 Examples
Applying the results of Sections 3.1 and 3.2 gives:
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1 Alinear-time algorithm for finding a maximum weight independent set of
an interval graph, sincg(G) = 1 by Lemma 2, and since chordal graphs
can be recognized and ordered in linear time using the work of Bose
al. [Rose et al., 1976].

While the maximum independent set problem is easily solved for this
case (for example, by using the linear time interval graph recognition
algorithm of Hsu and Ma [Hsu and Ma, 1999] followed by a simple

application of dynamic programming) this is an example of how our
general method yields good algorithms as special cases.

2 As another special case, a 2-approximation algorithm for interval selec-
tion of Berman and DasGupta [Berman and DasGupta, 2000]. Here in-
tervals are partitioned into groups and we must choose non-overlapping
intervals with at most one per group. The bid graplis of the form
G1 UGy whereG; is an interval graph ané, is a disjoint union of
cliques, one for each group. ThA&G) = 2 by Lemmas 2, 3, and 4.

3 Suppose that interval selection is generalize so that instead of having just
one partition of the intervals into groups, we have two such partitions,
and we continue to require that at most one interval from each group
is selected. An example might be when each interval has both a single
potential buyer and a single potential seller (so that the first partition
divides intervals among buyers and the second divides intervals among
sellers), and each buyer can buy only one interval while each seller can
sell only one interval. Our results give a 3-approximation algorithm for
this “double auction” interval selection problem; it is the same as the
previous case except the graph is nGywJ G, U Gz whereG, and Gg,
representing the buyer and seller constraints, are both disjoint unions of
cliques.

4 Ingeneral, amechanism for takiagy bid graph with3 = kand adding up
to msuch unique-selection constraints to gét a m)-approximation al-
gorithm by repeated applications of Lemmas 3 and 4. As an example, we
get a 3-approximation algorithm for maximum weight three-dimensional
matching, which corresponds to adding 3 unique-selection constraints to
a bid graph with no edges.

5 An algorithm tok-approximate a maximum weight independent set of
any subgraph of &dimensional rectangular grid. Orient each edge to
leave the point whose coordinates have a smaller sum, g/idx.

6 A linear-time algorithm for 2-approximating a maximum weight inde-
pendent set of the intersection graph of intervals on a cycle. This follows
from Lemma 5: order connected node subsets by inclusion, extend to
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a linear order<, and observe that iA < B and A intersectsB thenB
intersects one oi’s two endpoints.

7 An algorithm for intersection graphs of bounded-height rectangles in a
discrete 2D grid. Order the rectangles by their largespordinate, and
make the rightmost grid points of each rectangle be its frontier set in the
sense of Lemma 5. If each rectangle is at niostl], there are at most
grid points in each frontier. This generalizes in the obvious way to higher
dimensions given bounds on all but one of the coordinates, in which case
the approximation ratio becomes the product of the bounds.

34 Har dness of computing B

The difficulty of even approximating the independence number of a graph
extends to the directed local independence number.

Theorem 5. Any algorithm that can approximate (3(G) for an n-node directed
acyclicgraph Gwitharatio of f(n) can beused to approximatethesizea(H ) of
amaximumindependent set of an undirected n-nodegraph H withratio f (n+1).
Thus by Hastad’s bound on approximating a maximum clique [ Hastad, 1999],
we cannot approximate 3 by O(n'~¢) unless ZPP = NP.

Proof. Given an undirected-node grapiH, construct arin+ 1)-node directed
acyclic graphG by (a) directing the edges éf in any consistent order, and (b)
adding a new source noddo H with edges frons to every node irH.

Let | be an independent set iH. Then every node in is a successor
of sin G, and furthermore these nodes are all independent. It follows that
B(G) > B(s) > a(H).

Conversely, ifi’ is an independent set of successors of some maaléd, it
cannot contairs (sincesis not a successor of any node), and thisalso an
independent set iAl. So we havex(H) > B(G). O

35 Effects of node ordering

The performance of the opportunity cost algorithm is strongly sensitive to
the order in which the nodes are processed, as this affects the va@i{a)of
for each nodau. For many of the examples given in the Section 3.3, a good
ordering is provided by the structure of the problem. But what happens in a
general graph?

60ne can do better by breaking the cycle to reduce it to a standard interval graph problem (see, for example,
the approach taken by [Bar-Noy et al., 2000]), but the 2-approximation shows how one can still do reasonably
well with our general algorithm®pcost andLR-OPCOST.
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Theorem 6. For any graph G with given weights, there exists an orientation G
of G for which both OrcosT and LR-OPcoST output a maximum independent
set of G.

Proof. LetAbe any independent set@ Choose the ordering so that all nodes
in A precede all nodes not il. Then for anyu € A, u has no predecessors in
the oriented graph and val(tg = weight(u).

Let A’ be the independent set computed by the algorithra.idfin A but not
A, it must have a successoin A — Awith non-negative value. Since the value
of eachv is its weight less the weight of all its neighborsAnthe total weight
of all elements oA — Amust exceed the total weight of all element\in A,
and we have weigh\) = weight(A' — A) + weight A’ N A) > weight A—A') +
weight A'N A) = weight(A). O

In a sense what Theorem 6 shows is that finding a good ordering of a general
graph is equivalent to solving the maximum weight independent set problem.
This is not surprising since evaluatifigu) for even a single noda requires
solving this problem. It follows that to get small approximation ratios we really
do need to exploit some special property of the given graph.

In the other direction, we can show that there exist orderings that are not very
good:

Theorem 7. If all nodes in a graph G have distinct weights, orienting G in
order of decreasing weight causes OpcosT and LR-OPCOST to return the
same independent set as the greedy algorithm.

Proof. We will prove the result folOpcosT; by Theorem 1 the same result
holds forLR-OpPcosT.

Letttorder the nodes in order of decreasing weight. Letus show by induction
onTtthat if the greedy algorithm chooses a nagéhen valugv) = weight(v);
but if the greedy algorithm does not chooséhen valu¢v) < 0. Suppose we
are processing some nodand that this induction hypothesis holds for all nodes
previously processed. If the greedy algorithm piekthen allv's predecessors
were not chosen and have negative value, and (alue weightv). If the
greedy algorithm does not pick it is because it chose some— v; now
valugv) < weight(v) — valuglu) = weight(v) — weight(u) < 0.

Since the only nodes with non-negative weights are those chosen by the
greedy algorithmQPcosT selects them as its output. O

4, Auctionswith budget constraints
Consider the following bidding scenarios:

1 A bidder whose car has broken down wants to buy either a new engine,
a new car, or an umbrella and a taxi ride home, but doesn'’t particularly
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care which. However, she has no interest in winning more than one of
these bids.

2 Another bidder wants to buy at most three 1968 Volkswagen Beetle hood
ornaments, but she would like to bid on all that are available so as not to
miss any.

3 Yetanother bidder has only $100 in cash, but would like to place multiple
bids totaling more than $100, with the understanding that she can only
win bids up to her budget.

Despite their superficial differences, all of these examples can be represented
by the auctioneer asudget constraints, in which bids in some group consume
a common scarce resource. We would like to extend our algorithms to handle
such constraints, which are natural in real-world bidding situations.

The first scenario is an example of-@f-n constraint, where at most one of a
set ofn bids can be accepted. This special case can be handled by modifying
by forming a clique out of all bids in each s&tunder the assumption that t§e
are disjoint, this increasgsby at most 1 (using Lemmas 3 and 4). The second
scenario depicts a more genekadf-n constraint. We show in Sections 4.1 and
4.2 how to handle such constraints by extending our algorithms to account for
the possible revenue loss from bids that cannot be selected because a budget
constraint has been exceeded. Again, the approximation ratio rises by 1. We
refer to both 1-ofr andk-of-n constraints aanweighted budget constraints, as
each bid consumes a single unit of the budget.

Weighted budget constraints, exemplified by the third scenario, are more
complicated. With such constraints, we must ensure that the sum of the weights
of accepted bids in some growgis at most some bounll A complication
arises because a maximal allowed set of bids might only fill half of a budget
limit. We describe in Section 4.3 additional modifications to our algorithms,
which give a performance bound o 2 3 (Theorem 10).

4.1 Unweighted budget constraints

Suppose the bids are partitioned into gro@ps. ., S and that no more than
ki bids may be selected fro®, for 1 <i <r. For each bid, let g(u) denote
the index of the group to which belongs and le® = Sy andk, = ky(y)-
UNWEIGHTED-OPCOST is an extension oOpcosT to handle unweighted
budget constraints. It has a similar two-step structure.
In the first step, like OC1, we traverse the nodes in topological order and
compute a value for each node. We must extend the definition of value for each
node to account for thpossible revenue loss from previously processed bids
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that may not be selected in the second step because of the budget constraint:

valugu) = weightu) — z max(0, value(v)) (8.3)
1
——- max(0, valug\v)),
Ky vesu—%},vw

where the notatiow < u means thav has already been processed (befaye
Note that the inclusion ofi in the set of winning bids does not necessarily
preclude previously processed bids3nfrom also being selected—they may
also be selected if the buddgtllows. The coefficier% scales the opportunity
cost to account for this fact.

In the second step, like OC2, we traverse the bid graph in reverse topological
order, selecting nodes of positive value whose addition to those already selected
does not violate the independence or budget constraints.

UNWEIGHTED-LR-OPCOST solves the same problem using the local ratio
technique. Itfollows the same structureld3-OprcosT. We begin by deleting
all non-positive weight nodes from the graph. If any nodes remain, we select
a nodeu with no predecessors, and decompose the weight functionniato
w1 +Wsp. This time, the decomposition must account for bids that are in the
same budget group. We define

w(u) if ve {uludt(u),
wi(v) = { ew(u) ifve s —{u},
0 otherwise,

and recursively solve the problem using as the weight function. After the
recursive call, we must decide if we should ad the set of winning bid8,.

In LR-OpcosT, we addedi to B, if and only if B, U {u} was an independent

set. In this algorithm, we must also ensure that the budget constraints are
satisfied before addingto B,. We say that a set of bidsfieasible if they form

an independent set and the budget constraints are satisfied.

Theorem 8. Given a directed bid graph G, a partition of the nodes of G into
nonempty subsets S, ...,S, and an unweighted budget constraint k for each

S,

1 UNWEIGHTED-OPCOST and UNWEIGHTED-LR-OPCOST return the
same approximation to a revenue maximizing set of bids.

2 UNWEIGHTED-OPcosTand UNWEIGHTED-LR-OPrcosT (B(G) +1)-
approximate an optimal set of bids.

3 UNWEIGHTED-OPcoST and UNWEIGHTED-LR-OPcosT both runin
timelinear in the size of G.



160 COMPUTATIONAL METHODSIN ECONOMICS AND FINANCE

Proof. The proof that both algorithms return the same approximation is similar
to the proof of Theorem 1.

The proof of the approximation ratio follows the same structure as the proof
of Theorem 2. We prove the result f&fNWEIGHTED-LR-OPcosT. By
Lemma 1, we need only show that the returned set of Bids a (B + 1)-
approximation with respect ta, andw;. We do this using induction on the
recursion. The fact thd is a(B+ 1)-approximation with respect i@ follows
trivially from the inductive assumption.

In the case ofwv;, we will derive an upper bound on the maximunmn,-
weight of a set of feasible bids and a lower boundn thew; -weight of any
u-maximal set of bids. Au-maximal set of bids either containgor addingu to
it would violate the feasibility constraints. In the case of a set of feasible bids,
its totalwy-weight is at mosp(u)w(u) + %w(u) <w(u)(B+1) =U, since the
only nonzero contribution tas-weight comes frond* (u) andS,. In the case
of a u-maximal set of bids, iu cannot be added to the set, then either (1) a
successor afiis already in the set, in which case the totelweight is at least
w(u), or (2) the budget constraint is exceeded, in which case thetetetight
is at leastv(u). Therefore, thew-weight of these bids is at leas{u) and the
w;y performance bound is

U wu@@+l
E —W —B+1.

The proof of the running time is similar to the proof of Theorem 3. All of the
steps thatUNWEIGHTED-OPcoST and UNWEIGHTED-LR-OPcosT share
with OpcosT and LR-OpPcosT take linear time. UNWEIGHTED-OPCOST
adds the cost of computing the last termin (8.3). Std¥ipg, max(0, valugv))
in a variableAg for each§ allows this term to be computed in tin@(1) for
each node, with an addition@l(1) cost per node to update the appropri@te
The same technique allows budget constraints to be testé@{lintime per
node during the second step. Thus the additional time is linear.

The corresponding modification IONWEIGHTED-LR-OPcOST similarly
adds only linear time. Rather than updating the weight of each naedore
each recursive call, we will compute the “current” weight of each noakeit is
required, subtracting off the total weighy, of all previously-processed nodes
in S, as INUNWEIGHTED-OPCOST. O

4.2 Overlapping unweighted constraints

The analysis in Section 4.1 assumes that the budget constraints partition
the bids. For some applications (e.g., bids involving matching up buyers with
sellers), we may have overlapping constraints. Overlapping constraints may
also be used to handle bids for identical items in limited supply, by grouping
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all bids asking for copies of the same item together. The algorithms described
above can be generalized to handle overlapping constraints.

Suppose we have a family ofsets of bidsS ={S,...,S}, that each bid
appears in at mostof these sets, and that at migdtids may be accepted from
setS.

In OVERLAPPING-UNWEIGHTED-OPCOST, when computing the value of
a nodeu, we need to account for the possible revenue loss from nodes in each
set thatu belongs to:

valugu) = weightu) — z max(0, valug(v))

v—u

1
— Z (E g max(O,vaIue(v))).
1<i<rues§ VE],,V<U

The rest of the algorithm is the samel@swWEIGHTED-OPCOST.

In OVERLAPPING-UNWEIGHTED-LR-OPcOsT, the only change frorty N-
WEIGHTED-LR-OPcosT is in the decomposition of the weight function. We
decompose it as

w(u) if ve {u}udt(u),
Wi (V) = ¢ S1cicruves gW(U) if someS contains bothu andy,
0 otherwise.

Theorem 9. Given a directed bid graph G = (V,E), a family of nonempty
node subsets S, ..., S, where each node appears in at most t of the §, and an
unweighted budget constraint k for each S,

1 OVERLAPPING-UNWEIGHTED-OPCOST and OVERLAPPING-UN-
WEIGHTED-LR-OPCOST return the same approximation to a revenue
maximizing set of bids.

2 OVERLAPPING-UNWEIGHTED-OPcoOST and OVERLAPPING-UN-
WEIGHTED-LR-OPcosT (B(G)+t)-approximate an optimal set of
bids.

3 OVERLAPPING-UNWEIGHTED-OPcOST and OVERLAPPING-UN-
WEIGHTED-LR-OPcosT runintime O(|V|t + |E|).

Proof. Similar to the proof of Theorem 8. The additior®@{|V|t) term comes
from having to apply up tobudget constraints to each node; sfd& | < |V|t,
this term also covers the cost of reading h&om the input and initializing
the variables for each subset. O
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4.3 Weighted budget constraints

Suppose that bids are partitioned into grods..,S and that the total
value of the winning bids from groupcan be no more tham. For each bidl,
letg(u) denote the index of the group to whialbelongs and le§ = §;, and
by = byy)-

ThiéOJ(CZase is more complicated than the unweighted case. The difficulty arises
when estimating a lower bound on thve-weight of au-maximal set of bids.

If ucannot be added to the set because the budget constraint will be exceeded,
thew;-weight of Scan be as small &s if wy(u) = by,.

We will describe changes requiredli®-OpcosT to handle this case. Cor-
responding changes can be madeémcost. We will run variations of the
algorithm twice, once for thlaeavy bids v with w(v) > b, and once for the
light bidsv with w(v) < %b\,. We then return the better of the two solutions.

In HEAVY-WEIGHTED-LR-OPCOST, we put an unweighted budget con-
straint of 1 on each bidder and rifNWEIGHTED-LR-OPCOST.

Lemma6. HEAVY-WEIGHTED-LR-OPCOST (4 1)-approximates an opti-
mal set of heavy bids.

Proof. Since each heavy bid consumes more than half a bidder’s budget, each
bidder can win at most one bid. This is just a simple unweighted budget con-
straint and can be solved as described in Section 4.1 for a performance bound
of B+ 1. O

In LicET-WEIGHTED-LR-OPCOST, when decomposing the weight func-
tion, we set

w(u) if ve {u}udt(u),
wi(v) = ¢ Ew(v)w(u) if ve §—{u},
0 otherwise.

Before addingu to the winning set of bid8,, we must ensure that it does not
conflict with other bids inB, and that the weighted budget constraint is not
violated. The rest of the algorithm is identicallt&R-OPcosT.

Lemma 7. LiGHT-WEIGHTED-LR-OPCOST (3 + 2)-approximates an opti-
mal set of light bids.

Proof. This proof uses the same structure and notation as the proof of The-
orem 8. An upper bound on thews-revenue of any feasible set of bids is
w(u)(B+2). With regards to a-maximal set of bids, iti cannot be added to

the set because the budget constrajmtill be exceeded, the existing bids in the
set must have weight at ledst/2, sincew(u) < b,/2. A lower bound. on the
w;-revenue of any-maximal set of bids is thereforg(u). The performance
bound of this algorithm i#_l =B+ 2, as claimed. O
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Theorem 10. Given a directed bid graph G, a partition of the nodes of G into
nonempty subsets S, ..., S, and a weighted budget constraint h for each S,

1 WEIGHTED-OPcosT and WEIGHTED-LR-OPCOST return the same
approximation to a revenue maximizing set of bids.

2 WEIGHTED-OPcosT and WEIGHTED-LR-OPCOST
(2B(G) + 3)-approximate an optimal set of bids.

3 WEIGHTED-OPcoST and WEIGHTED-LR-OPcoOST runintimelinear
inthe size of G.

Proof. The sum of the optimal revenues for the heavy and light bids is at least
equal to the optimum revenue among all bids. From Lemmas 6 and 7, the
better of the two solutions will be within a factor of2- 3 of the optimum for

the general problem.

For the running time, observe that decomposing the bids into heavy and
light bids takes linear time, th&élEAVY- WEIGHTED-OPCOST and HEAVY-
WEIGHTED-LR-OPcCOST are equivalent t&/ NWEIGHTED-OPcosT andUN-
WEIGHTED-LR-OPcosT and thus take linear time by Theorem 8, and that
LIGHT-WEIGHTED-OPCOST andLIGHT- WEIGHTED-LR-OPCOST can be
made to run in linear time using techniques similar to those usedJfor
WEIGHTED-OPCOST and UNWEIGHTED-LR-OPCOST. ]

5. Further Research

This paper opens up several directions for further research. An immedi-
ate open problem is whether overlapping weighted budget constraints can be
processed as efficiently as their unweighted counterparts are processed in The-
orem 9.

It would be of importance to compare the performance of our algorithms and
others in practice. The comparison could be conducted on simulations, but it
would be more useful to analyze the performance on real auction data.

As the examples of car sales and land sales demonstrate, topological struc-
tures exist in actual bids. Another good example is the ongoing FCC auction of
airwaves [McAfee and McMillan, 1996], where each trading area is an auction
object, the trading areas form a plane graph, and many of the bidders prefer
to acquire contiguous trading areas. It would be useful to examine past auc-
tions to determine whether similar connectivity structures exist and how such
structures affect the computational complexity of bidding strategies and winner
determination.
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