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Abstract—With the proliferation of location-based services,
mobile devices, and embedded wireless sensors, more and more
applications are being developed to improve the efficiency of the
transportation system. In particular, new applications are arising
to help vehicles locate open parking slots. Nevertheless, while
engaged in driving, travelers are better suited being guided to
an ideal parking slot, than looking at a map and choosing which
slot to go to. Then the question of how an application should
choose this ideal parking slot becomes relevant.

Vehicular parking can be viewed as vehicles (players) com-
peting for parking slots (resources with different costs). Based
on this competition, we present a game-theoretic framework to
analyze parking situations. We introduce and analyze parking
slot assignment games and present algorithms that choose park-
ing slots ideally in competitive parking simulations. We also
present algorithms for incomplete information contexts and show
how these algorithms outperform even algorithms with complete
information in some cases.

I. INTRODUCTION

Finding parking can be a major hassle for drivers in some

urban environments. For example in [1], studies conducted

in 11 major cities revealed that the average time to search

for curbside parking was 8.1 minutes and cruising for these

parking slots accounted for 30% of the traffic congestion in

those cities on average. Even if the average time to find parking

was smaller, it would still account for a large amount of

traffic. Suppose that the average time to find parking were

3 minutes (as opposed to 8.1), each parking slot would still

generate 1,825 vehicle miles traveled (VMT) per year [2].

That number would of course be multiplied by the number of

parking slots in the city. For example, in a city like Chicago

with over 35,000 curbside parking slots [3], the total number

of VMT becomes 63 million VMT per year due to cruising

while searching for parking. Furthermore, this would account

for waste of over 3.1 million gallons of gasoline and over

48,000 tons of CO2 emissions.

The advent of wireless sensors that can be embedded on

parking slots has enabled the development of applications that

help mobile device users find available parking slots around

their locations. A prime example of this type of application is

SFPark [4]. It uses sensors embedded in the streets of the city

of San Francisco, that can tell if a slot is available. When a

user wants to find a parking slot in some area of the city, the

application shows a map with marked locations of the open

parking slots in the area.

While this type of application is useful for finding the open

parking slots around you, it does raise some safety concerns

for travelers. The drivers have to shift their focus from the

road, to the mobile device they are using. Then they have to

look at the map and make a choice about which parking slot

to choose from all the available slots that are shown on the

map. It would be better (safer) if the app just guided the driver

to an exact location where they are most likely to find an open

parking slot. Then the question arises, which algorithm should

the mobile app use to choose such an ideal parking location?

Our main concern in this work is to answer the preceding

question. Parking can be viewed as a continuous query sub-

mitted by mobile devices to obtain information about spatial

resources (parking slots). A mobile user wants to know which

is the parking slot to visit in order to minimize various pos-

sible utilities like: distance traveled, walking distance to their

destination, or monetary price of the parking slot. However,

parking is also competitive in nature because after making a

choice to visit a particular slot, the success in obtaining that

slot will depend on if any other vehicles closer to that slot also

made the same choice. This competition for resources (slots)

lends itself for modeling this situation in a game-theoretic

framework. We then present parking slot assignment games

(PSAG) for studying competitive parking situations.

Two categories of PSAG will be considered in this work,

complete and incomplete information PSAG. For the complete

information PSAG, we relate the problem of finding the

Nash equilibrium to the Stable Marriage problem [5]. We

show the equivalency of Nash equilibria and Stable Marriage

assignments for instances of PSAG.

For the incomplete information PSAG, the model that is

most realistic and directly applicable to real-life application

of parking slot choice, we present a gravitational approach

for choosing parking. The Gravity-based Parking algorithm

(GPA) is presented for this model. We evaluate the merits

of the algorithm through simulation by comparing it to an

algorithm that uses complete information and in which users

follow their Nash equilibrium strategies. So in essence, we

are comparing an algorithm that uses incomplete information

against one that uses complete information. Our results show

that in many instances, the GPA actually outperformed the

Nash equilibrium on average in terms of driving time to park.

The results also held when considering more general costs that
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included both driving and walking times. This type of analysis

tests the value of having complete information for the parking

problem. In various cases, our algorithm showed improvement

of over 30% compared to the Nash equilibrium algorithm. This

improvement amounts to savings of up to 930,000 gallons of

gasoline and over 14,000 tons of CO2 emissions per year in

a major city like Chicago.

II. RELATED WORK

Approaches for monitoring and sensing open parking slots

have been presented recently. In this paper, we have assumed

that these works exist and that vehicles can receive information

about open parking slots at any time. In [6], ultrasonic sensor

technology is used to determine the spatial dimensions of open

parking slots. Wireless sensors are used in [7] to track open

parking slots in a parking facility. These works show how one

can detect open slots. In [8], detection is coupled with sharing

of the parking slot information in a mobile sensor network.

These mobile sensors generate a map view of parking slot

availability. The value of having this parking information is

tested in a P2P environment in [9] where through simulations it

is shown how vehicles with access to data about open parking

slota have an advantage over vehicles that don’t.

Work has been performed on dissemination of reports of

open parking slots [10]. In [10], a parking choice algorithm

is presented that chooses parking slots based on a relevance

metric that includes the age of the open parking report. Their

work assumes that a driver knows the expected time a slot

will remain available from now, and it knows how long it

will take to travel there. In our context, it is as if a driver

d knows what is the probability that another driver will get

there before d. This is a strong assumption that we do not make

in our work. Furthermore, the focus of [10] was on peer-to-

peer (P2P) dissemination of parking reports. Wireless Ad-hoc

networking is also used in [11] to search for open parking

slots. They present an algorithm based on the time-varying

Traveling Salesman Problem to compute a tour of the open

slots in order for each vehicle to search for parking in the order

of the computed tour. Like in [10], their approach depends on

knowing the probability that the parking slot will still be open

after some time. Furthermore, in [12], the relevance of parking

reports in a Vehicular Ad-hoc Network is studied.

In [13] and [14], reservation systems for parking slots are

studied. These systems attempt to circumvent the competition

for parking slots by using reservations. In our work we analyze

parking competition by using game theory. Indeed existing

parking systems are competitive rather than reservation-based.

In [15], parking slot assignment games were introduced. To

our knowledge, it is the first treatment of vehicular parking

modeled as a competitive game. The PSAG was introduced

but only considering user costs to be travel distances. In this

work we will consider general cost functions when analyzing

PSAG (travel distances, walking distances, price, etc.). The

Gravity-based Parking algorithm (GPA) was also introduced

in [15] and was evaluated against a greedy scheme that always

chose closest slots to park. In this work we will evaluate

GPA against Nash equilibrium strategies that use complete

information (knowledge of locations of all other vehicles).

III. GENERAL SETUP AND NOTATION

The general setup of the parking problem is as follows:

• There are two types of objects as follows.

– A set of n vehicles V = {v1, v2, . . . , vn}.

– A set of m open parking slots S = {s1, s2, . . . , sm}.

• dist : (V ∪S)×S → R is a distance function. It denotes

the distance between a vehicle and a slot, or the distance

between two slots.

• cost : V ×S → R is a cost function. It denotes the cost of

a slot sj ∈ S to a vehicle vi ∈ V . This cost is a general

cost. It could include the distance from the vehicle to

the slot, dist(vi, sj), the walking distance from sj to vi’s

destination, and/or other utilities that vi cares about when

choosing a slot.

• Each vehicle is assumed to be moving independently of

all other vehicles at a fixed velocity. Without loss of

generality, we assume that the speeds of all vehicles are

the same1.

• A valid assignment of vehicles to slots is one where each

vehicle is assigned to exactly one slot. It can be defined

as a function g : V → S, where g(v) is the assigned slot

for vehicle v ∈ V .2

• The cost of an assignment g for a vehicle v ∈ V , Cg(v),
is defined as cost(v, g(v)) if of all players assigned to

slot g(v), v is the closest to it.

If some other vehicle assigned to g(v) is closer to it than

v, then v’s cost based on g is Cg(v) = cost(v, g(v))+α,

where α is a penalty for not obtaining a parking slot.

• The total cost of an assignment g, Cg , is defined as:

Cg =
∑

v∈V

Cg(v) (1)

IV. PARKING SLOT ASSIGNMENT GAMES

One could define a model in which a centralized authority

was in charge of assigning the vehicles to slots. This authority

would be looking to minimize some system-wide objectives

(optimizing social welfare). In the transportation literature this

is usually called a system optimal assignment. In [15], we

show how this system optimal assignment can be computed

in polynomial time. Even though this centralized model shows

good computational properties, it is difficult to justify in real

life to distributed mobile users that make their own choices.

This is because optimizing social welfare may imply that some

travelers will incur a greater cost for the good of others.

We then model parking as a competitive game in which

individual, selfish players are competing for the available slots.

Any game has three essential components: a set of players, a

1Otherwise, we simply need to rescale the distances for each vehicle in our
algorithmic strategies.

2Based on this definition, there is a difference between where a vehicle is
assigned and where a vehicle parks. If more than one vehicle is assigned to
the same slot, then the closest one to it will park there. The others are left
without parking. This will always happen when n > m.
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set of possible strategies for the players and a payoff function

(cost function) [16]. The payoff function determines what is

the cost to each player based on a given strategy profile. If

there are n players in the game then a strategy profile is an n-

tuple in which the ith coordinate represents the strategy choice

of the ith player. It basically represents the choices made by

the n players.

In our case for the parking problem, we can define the

parking slot assignment game (PSAG) as follows:

• The set of players in PSAG is V (the vehicles) and the

set of available strategies to each player is S (the slots).

• The payoffs (costs) for each player in this game can be

defined by the Cg function introduced in section III. Let

A = (sv1 , sv2 , . . . , svn) be the strategy profile chosen by

the players, i.e. slot svi
is the chosen slot by vehicle vi,

1 ≤ i ≤ n. Let g(vi) = svi
, then the cost for any player

vi will be Cg(vi).
• For this game, the penalty of not finding a parking slot,

α, will be defined as a large constant quantity.

V. NASH EQUILIBRIUM FOR PSAG

In this section we introduce the Nash equilibrium for PSAG

and establish its relationship with the Stable Marriage problem.

The Nash equilibrium [17] is the standard desired strategy that

is used to model the individual choices of players in a game. It

defines a situation in which no player can decrease its cost by

changing strategy unilaterally. The standard definition of Nash

equilibrium translates to the following definition for PSAG:

Definition 1 (Nash Equilibrium for PSAG): Let

A = (sv1 , sv2 , . . . , svn
) be a strategy profile for the PSAG.

Let A∗
i = (sv1 , sv2 , . . . , svi−1 , s

∗
vi

, svi+1 , . . . , svn−1 , svn), for

s∗vi
�= svi . Let g be the assignment function obtained from

strategy profile A and g∗i be the assignment function obtained

from strategy profile A∗
i . Then strategy profile A is a Nash

equilibrium strategy for the players if Cg(vi) ≤ Cg∗i (vi) for

all i and any s∗vi
�= svi

.

A∗
i is the strategy profile obtained by only player vi chang-

ing strategy from svi to any s∗vi
�= svi for any 1 ≤ i ≤ n. If the

condition in the definition holds then it means that no player

can improve by him alone deviating from the Nash equilibrium

strategy. For the remainder of the paper, equilibrium and Nash
equilibrium will be used interchangeably.

A. Stable Marriage Problem

The stable marriage problem has been studied in many

different contexts independent of parking [5], [18]. It is a

classical matching problem between two sets of objects (or

agents). One of the sets is called the men and the other set

is called the women. Each man has a preference order on the

women and each woman has a preference order on the men.

Definition 2 (Stable Marriage [5]): An assignment of men

to women is called unstable if there are men m and m′,
assigned to women w and w′ respectively, but m′ prefers w
over w′ and w prefers m′ over m. A stable matching is an

assignment of men and women that is not unstable.

B. Stability of Marriage for Parking

We can translate the stable marriage problem to the parking

problem and use it to compute the Nash equilibrium for PSAG.

We can say that the men are the set of vehicles (V ) and the

women are the set of parking slots (S). The preference order of

each vehicle will naturally be determined by the cost function

since the objective of each vehicle is to minimize this cost.

Then, a vehicle v ∈ V will prefer a slot s ∈ S over another

s′ ∈ S if cost(v, s) < cost(v, s′). Analogously, we will say

that the preference order for the slots will be determined by

the dist function. This setup leads to the following theorem:

Theorem 3: Suppose that the vehicles’ preference order is

determined by the cost function and the slots’ preference order

is determined by the dist function. Then an assignment g is a

Nash equilibrium if and only if g is a stable marriage between

the vehicles and slots.

Proof: Omitted for space considerations.

By the equivalency obtained between the Nash equilibrium

for PSAG and stable assignments in PSAG, one can compute

an equilibrium by finding a stable assignment between the

vehicles and slots. One can use the Gale-Shapley deferred

acceptance algorithm [5] to compute the equilibrium. This

algorithm is an iterative procedure that runs in O(n2) time.

It can be shown that for some cases, like when cost = dist
and all distances are distinct, the equilibrium will be unique.

Nevertheless, in general, by using the Gale-Shapley algorithm

one could compute a vehicle-optimal or a slot-optimal assign-

ment. A property of the vehicle-optimal assignment is that the

vehicles will prefer it over any other stable assignment.

VI. GRAVITATIONAL STRATEGIES FOR INCOMPLETE

INFORMATION CONTEXT

A. Incomplete Information PSAG

We’ve shown that one can compute the Nash Equilibrium

for PSAG by computing a stable marriage assignment between

the vehicles and the slots. But this equilibrium is applicable

only in a complete information setting. This is one where the

vehicles are aware of what their payoffs will be based on their

decisions and the decisions of others.

This complete information model is hard to justify in

practice because of privacy concerns. Not all vehicles will

be willing to share their location information at all times.

Furthermore, tracking the locations of vehicles at all times,

and sharing the locations of all of them with all the users of

a system so that they can have up-to-the-second location data

on all other potential parking competitors seems infeasible.

Then we wish to analyze PSAG in an incomplete informa-

tion context. In this context, the players have no knowledge

about the locations of the other players. Since they do not

have complete access to the distance function, dist, then they

have no way of knowing the payoff function for this game;

i.e. given a strategy profile, none of the players have a way of

knowing what its payoff will be.

In the incomplete information PSAG, players make some

prior probabilistic assumptions about the locations of the other
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vehicles in the game and the analysis is performed based on the

expectations given by the prior distributions. One can compute

the expected costs based on the distribution that is used to

denote the location of a vehicle. Then a player will be looking

to minimize its expected cost. In this context, the analysis will

compute the Nash equilibrium strategies for the players but

considering expected costs. This equilibrium is analogous to

the Nash equilibrium for PSAG (Def. 1) but instead of using

cost given by the cost functions (Cg), it uses expected cost.

For this work, each player will assume that other players are

distributed uniformly across the map. Unfortunately, comput-

ing the equilibrium for this incomplete information context is

difficult in general [15]. Then heuristics are needed to compute

ideal strategies for players in this more realistic model.

B. Gravity for Parking

The heuristic we want to introduce pushes vehicles towards

areas where they are most likely to find a parking slot. Since all

other vehicles are assumed to be distributed uniformly across

space, this will increase the probability of finding a parking

slot upon arrival to the area with a larger amount of available

slots. Also, we want the algorithm to take into account the

vehicle’s location and its proximity to the surrounding slots.

In [15], we proposed the Gravity-based Parking Algorithm

(GPA), which encompasses these desired properties.

In the GPA, slots are said to have a gravitational pull on

the vehicles. At any point in time, each slot has a gravitational

force on the vehicle that will depend on the distance from

the vehicle (magnitude) and location of the slot (direction).

So then for each slot, a force vector is generated around

the vehicle. Then, all of these vectors are added and the

vehicle moves in the direction of the resultant vector (total

gravitational force) for a specified time step. Then the process

is repeated at the beginning of each time interval.

The classical formula for gravitational force is F = Gm1m2
d2

where G is the gravitational constant, m1 and m2 are the

masses of the respective objects and d is the distance between

the objects. But for our purposes we can assume that the

masses of the objects are constant. We want to compute the

vector that represents total gravitational force generated by all

the available slots to a vehicle and use the direction of that

vector to move the vehicle in that direction. Then we consider

a more simplified formula for gravitational force, since all the

masses are constant, represented by:

F (v, s) = 1/dist(v, s)2 (2)

F (v, s) is the gravitational force generated by slot s towards

vehicle v. To consider general costs, this formula can be

generalized to:

F (v, s) = 1/cost(v, s)2 (3)

With formula (3), one will compute gravitational pull by

considering the general cost as the distance between the

vehicle and the slot.

C. Gravity-based Parking Algorithm (GPA)

Let z denote the velocity of each vehicle (in units/s), which

is constant for all vehicles. Each time step for the algorithm

will be 1 second. Each vehicle v will perform the following

steps in order to move one time-step at a time towards a

parking slot:

• Let S′ be the set of available slots (updated at every time

step). Then for each s ∈ S′ generate vector of magnitude

F (v, s) that starts at v’s location in direction of s.

• Add the computed force vectors and the result will be

the total gravitational force generated by all the available

slots on v.

• Move z units (velocity) in the direction given by the total

force vector. If the closest slot to v is at a distance less

than z then move straight to the closest slot.

These steps define the proposed heuristic for vehicles to

use in the incomplete information PSAG. The intuition behind

the algorithm is that a vehicle is better served moving towards

areas of higher density of parking slots when the force to closer

slots (determined by distance to them) is not strong enough.

VII. COMPARING GRAVITATIONAL STRATEGIES TO

COMPLETE INFORMATION NASH EQUILIBRIUM

In this section we will evaluate the GPA against the Nash

equilibrium with complete information. This will be done to

assess if one is better off in this parking application with the

locations of the other vehicles as opposed to not knowing the

locations and using the GPA to find parking. This evaluation

will be done through simulation.

A. Simulation Environment

The simulation tests the GPA with varying number of values

of n and m for the 2-dimensional Euclidean space in the

unit square. The unit square is first partitioned into 16 equal-

sized square regions. A random permutation of the regions

is generated (uniform distribution) and is used as the ranking

of the popularity of each region for available slots. Then the

number of parking slots per region is determined by using

the Zipf distribution based on the ranking of the region and

the skew parameter used for the Zipf distribution. Then for

each of the m slots a Zipf number between 1 and 16 is

generated to determine its region, then inside that region its

position is determined using the uniform distribution. The n
vehicles’ positions are generated using the uniform distribution

on the unit square. Destinations for each vehicle are generated

uniformly around each vehicle at a distance no larger than

0.2 units. These destinations will be used to compute walking

distances from the slots where they eventually park. The cost

metric to be used for testing will be one that includes driving

time and walking time.

After generating the vehicles and slots, the algorithms are

tested. The GPA is tested against the Nash equilibrium algo-

rithm with complete information. In this setting, the algorithm

for computing the equilibrium strategy that is used is the

Gale-Shapley deferred acceptance algorithm [5], [18]. This

method guarantees that m players will find parking based
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on the current configuration of the slots. For purposes of

the simulation, the remaining n − m players will not move

locations since they know that they will not park in any of

the currently available slots. For the GPA, vehicles move in a

step-by-step fashion as dictated by the steps delineated in sec.

VI-C. The simulation is run a second at a time so that vehicles

can recompute their total force vectors at each second.

When a vehicle reaches an open parking slot, the time it

took for it to find that slot is saved. Also, the walking distance

from that slot to the vehicle’s destination is saved. Then a

new slot is generated on a randomly chosen (Zipf distribution)

region. Also a new vehicle is generated at a random location

(uniform distribution). The simulation run stops when a given

time horizon of 3,600 seconds is surpassed.

The parameters of the simulation are: the number of vehicles

(n), number of slots (m), and the regional skew of the

Zipf distribution (k). The values that were tested for each

parameter are detailed in table I. For each configuration of

the parameters, 1000 different simulation runs were tested.

Parameter Symbol Range
Vehicles n {40}

Slots m {20,30,40}
Zipf Skew k {0, 0.5, 1, 1.5, 2, 2.5, 3}

TABLE I
PARAMETERS TESTED ON SIMULATION

B. Simulation Results

1) Driving Cost results: Figure 1 shows some of the results

of the simulation that was performed (for n = 40 and

m = 20). These results only take into account the driving

time to find a slot. They show that in cases where the regional

skew of the distribution of the slots is small, having the

complete information and computing the equilibrium strategy

is beneficial on the average.

However, for all cases with skew of 1 or higher, the GPA

actually outperformed the complete information equilibrium

on average. This means that acting as if you do not know the

locations of the other vehicles and using GPA to guide you

is actually better for those cases. Furthermore, the difference

in average time to park was more significant in the best case

for GPA than in the worst case. That is, the best case for

GPA was when the regional skew was 3 and the difference

in average time to park was around 20 seconds. But, GPA’s

worst case was when the regional skew was 0 (uniform), and

the difference was 8 seconds. So in the extreme cases, the

improvement for GPA was larger than for the equilibrium.

Figure 2 shows the results for all test cases of n = 40. It

shows the percent improvement of the GPA algorithm over the

complete information Nash equilibrium algorithm. This figure

shows that as the parking situation becomes more contentious,

i.e. the ratio of vehicles to slots is larger, the results of the

GPA improve. When the number of vehicles and slots are

equal, the improvements if any where marginal. This is to be

expected since in these situations, there is a slot for everyone

and since they have all the information available to them they

can choose one that is guaranteed to be there for them. Still,
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Fig. 1. Comparison between GPA and Compl. Info Nash Eq.
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Fig. 2. Percent Improvement of GPA over Compl. Info Nash Eq.

in less contentious situations (like when m = 30 and m =
40), GPA showed good improvements over the equilibrium

solution. Especially when the regional skew of the locations

of the slots was high.

The improvements of the GPA algorithm, in terms of driving

time, in some cases were as large as 30% improvement.

A 30% improvement for the time taken to find a parking

slot (proportional to the tested distance traveled because of

constant velocity), would reduce vehicle miles traveled for a

city like Chicago by 18.9 million VMT (according to analysis

presented in sec. I). This gives a reduction of 930,000 gallons

of gasoline and of over 14,000 tons of CO2 emissions per year.

The GPA shows improvements over the equilibrium algo-

rithm even though it doesn’t have the luxury of complete

information. It would seem unexpected that the GPA could out-

perform a complete information algorithm. This phenomenon

can be explained by the fact that the Nash equilibrium does not

make any assumptions about future events and about where

will new slots most likely appear. These new slots arise in
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Fig. 3. Total Time Results - Driving and Walking Time (n = 40, m = 20)

the simulation to keep the ratio of vehicles to slots fixed.

Moreover, new slots also arise in the real world in usually

unpredictable locations that are distributed according to some

spatial probability distribution like the one we use in this paper.

The results of the simulation depend also on where future slots

will appear, and the GPA does a better job of predicting future

events on cases where the regional skew is high.

2) General Costs - Driving and Walking Time: Figure 3,

shows results for all test cases of n = 40 and m = 20 when

considering the total time (in seconds). Here total time means

the driving time plus the walking time. In our simulation we

saved the distances from the obtained parking slots to their

destinations for each parked vehicle. We assume that a vehicle

drives around an urban area at 20mph ≈ 30 ft/s. We also

assume that the average person walks at a pace of 5 ft/s. Then,

we compute the walking time by using a conversion factor of

30/5 = 6. Figure 3 shows how for all cases studied, the GPA

again has favorable results compared to the Nash equilibrium

in complete information. For this more general cost, the GPA

is comparable in performance to the Nash equilibrium even

for cases with small skew. So then the results are improved

when considering this new walking cost for the GPA since

the results for low regional skews were not favorable when

considering only driving distances.

VIII. CONCLUSION

In this paper our main goal was to analyze vehicular

parking. We presented two models that can be used to study

the parking problem in a game-theoretic framework. For the

complete information model, in which vehicles are aware

of the location and cost information of other players, we

presented an algorithm for computing the Nash equilibrium

for parking slot assignment games (PSAG). We established

the relationship between the parking problem and the stable

marriage problem. We also showed that the Nash equilibrium

was actually equivalent to a stable marriage between vehicles

and slots. For the incomplete information model, vehicles are

not aware of the locations of the other mobile users that are

also looking for parking. For this model we presented the

Gravity-based Parking Algorithm (GPA). The merits of the

GPA were tested using simulations. The simulations showed

that for most competitive situations, using the GPA actually

outperformed the Nash equilibrium algorithm that is used

with complete information. This means that an algorithm

that didn’t have the luxury of using complete information

actually outperformed one that did. The results also held when

considering more general costs that included both driving and

walking times.
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[13] J. Boehlé, L. Rothkrantz, and M. van Wezel, “Cbprs: A city based
parking and routing system,” ERIM Report Series Reference No. ERS-
2008-029-LIS, May 2008.

[14] T. Delot, N. Cenerario, S. Ilarri, and S. Lecomte, “A cooperative
reservation protocol for parking spaces in vehicular ad hoc networks,”
in Proc. of the 6th Int. Conference on Mobile Techonology, Application
and Systems, Nice, France, September 2009.

[15] D. Ayala, O. Wolfson, B. Xu, B. Dasgupta, and J. Lin, “Parking
slot assignment games,” in Proc. of the 19th Intl. Conf. on Advances
in Geographic Information Systems (ACM SIGSPATIAL GIS 2011),
Chicago, IL, November 2011.

[16] E. Rasmusen, Games and Information, 4th ed. Blackwell Publishing,
2006.

[17] J. Nash, “Equilibrium points in n-person games,” Proceedings of the
National Academy of Sciences, vol. 36, no. 1, pp. 48–49, 1950.

[18] A. Roth and M. A. O. Sotomayor, Two-sided Matching: A Study
in Game-theoretic Modeling and Analysis, ser. Econometric Society
monographs. Cambridge, UK: Cambridge University Press, 1990.

323232


