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Abstract—In this paper, we study the problem of subtle
signal discoveries in unaligned DNA and protein sequences.
Motifs, also known as approximate common substrings,
are good examples of subtle signals in DNA and protein
sequences. The problem of motif identification in DNA and
protein sequences has been studied for many years in the
literature. Major hurdles at this point include computational
complexity and reliability of the searching algorithms. We will
develop a self-organizing neural network for solving the prob-
lem of motif identification in DNA and protein sequences. Our
network contains several layers with each layer performing
classifications at different level. The top layer divide the input
space into a small number of regions and the bottom layer
classifies all input patterns into motifs and non-motif patterns.
Depending on the number of input patterns to be classified,
several layers between the top layer and the bottom layer are
needed to perform intermediate classification. We maintain a
low computational complexity through the use of the layered
structure so that each pattern’s classification is performed
with respect to a small subspace of the whole input space.
We also maintain a high reliability using our self-organizing
neural network since the network will grow as needed to make
sure all input patterns are considered and are given the same
amount of attention. Finally, simulation results show that
our algorithm significantly outperforms existing algorithms,
especially in the reliability aspect. Our algorithm can identify
motifs with higher accuracy than existing algorithms.
Keywords: Subtle signal, motif finding, self-organize,

neural network, unsupervised, DNA.

I. INTRODUCTION

DNA, RNA and protein sequences can be thought of

as being composed of motifs interspersed in relatively

unconstrained sequence. A motif is a short stretch of a

molecule that forms a highly constrained sequence [2]. The

expression of a motif can be in one of the following three

forms

1) Use an actual sequence as the description of a motif.

Such a sequence is also called a consensus sequence.

Each position of the consensus sequence is the letter

that appears most frequently in all known examples

of that motif, e.g., ACTTATAA and AGTTATAA
are two examples of consensus sequence of a motif.

2) Use a more complicated expression to show all

possible letters for each position of a motif. For

example, the expression

A − [CG] − T − T − [AC] − [TCG] − A − A (1)

indicates that AGTTCTAA and ACTTAGAA are
two of the possible occurrences.

3) Use a more biologically plausible representation to

describe a motif. In this case, a probability matrix

can be used to assign a different probability to each

possible letter at each position in the motif [3].

For example, Table I shows a probability matrix

representation of the motif given by (1). This matrix

representation not only gives the possibility of which

letter can appear in each position of the motif, but

also shows the probability of their appearances. For

example, the sixth position of this motif will have

letters C, G, and T appearing with probabilities of
20%, 30%, and 50%, respectively.

TABLE I

FREQUENCY OF EACH LETTER APPEARS IN EVERY POSITION OF A

MOTIF

1 2 3 4 5 6 7 8

A 1.0 0.0 0.0 0.0 0.67 0.0 1.0 1.0

C 0.0 0.5 0.0 0.0 0.33 0.2 0.0 0.0

G 0.0 0.5 0.0 0.0 0.0 0.3 0.0 0.0

T 0.0 0.0 1.0 1.0 0.0 0.5 0.0 0.0

Generally speaking, the subtle signal finding problem in

DNA sequences can be described as follows: Given a set

of unaligned DNA or protein sequences, project the length

of motifs and locate all motifs with the projected length

that these sequences hold. It is not necessary for all the

sequences to have the same motif. Some sequences may

have more than one repetitions of a motif and some motifs
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may not show up in every sequence. The appearances of the

same motif in the sequences are not necessarily the same.

A subsequence is determined to be a motif if it matches

a possible appearance indicated by (1) or by the matrix

representation in Table I. Obviously, information provided

in Table I is more than that in (1). Here the frequency

or probability of letters in each position of a motif is in

[0, 1]. Usually the frequency of the letter that appeared
most frequently should be larger than 40% [27].

References [10], [21], [25] presented an unsupervised

learning method for finding contiguous motifs. This kind

of motifs has some biological properties of interest such

as being DNA binding sites for a regulatory protein. The

work in [10], [21], [25] showed that unsupervised learning

method is a good approach for dealing with the problem

of finding motifs. An algorithm called MEME is proposed

in [1] for identifying contiguous motifs. This algorithms is

an extension to the expectation maximization algorithm for

motif finding. In this paper, we will develop an algorithm

based on a new structure of self-organizing neural networks

and we will compare the performance of our algorithm

with that of [1]. The signal finding problem described in

[27] projects the length of motifs as well as the maximum

number of letters that can be mismatched in a pattern. In

this case, the target patterns to be found are described

by a given length and by how many letters that can be

mismatched.

II. SELF-ORGANIZING NEURAL NETWORKS FOR

MOTIF IDENTIFICATION

A. Subsequences and Encoding

We consider the case where all motifs to be identified

from a given set of DNA or protein sequences have the

same length. In general, the consensus sequence of a motif

and the motif itself are not known a priori and we have
to obtain them by using identification algorithms. What

one obtains after the use of identification algorithms are

specific appearances of a motif, usually with a few mis-

matched letter positions comparing to the motif consensus

sequence. For a given set of DNA or protein sequences,

in order to identify motifs in these sequences, we have to

specify the maximum number of letter mismatches that can

be tolerated (comparing to the consensus form) in addition

to projecting the length of motifs to be found.

Test patterns, which we call input sequences or input

patterns, can be obtained from the given set of DNA or

protein sequences once the projected length of motifs is

given. Figure 1 shows a sketch of how input patterns

are obtained from a DNA sequence. In the figure, the

projected length of motifs is seven. All subsequences of

seven connected letters obtained using a sliding window

(see Figure 1) from the given DNA or protein sequences

will form the set of input patterns. For a DNA sequence

Original DNA sequence:    GAGAATGCTATTC ......  AGTTCGATCCA
Input pattern #1:

Input pattern #3:
Input pattern #2:

Input pattern #4:

GAGAATG
AGAATGC

GAATGCT
AATGCTA

....

Input pattern #W−M+1: CGATCCA

Fig. 1. An illustration on how to obtain input patterns (M = 7) from
a given DNA sequence

TABLE II

ENCODER TABLE FOR DNA LETTERS

Standard 1 1 0 0

A 1 1 0 1

C 1 1 1 0

G 1 0 0 0

T 0 1 0 0

of length W , we can obtain W − M + 1 input patterns if
the projected length of motifs is M .
Letters used in DNA or protein sequences will be

encoded using binary numbers. All letters will be encoded

using binary code with the same length, for example, four

for DNA and RNA sequences and 20 for protein sequences.

Table II shows an example of binary codes designed for

DNA sequences. There are four letters in this case and

each letter is encoded by flipping one bit of the standard

code ‘1 1 0 0’. Letters coded this way will have exactly

the same Hamming distance between any pair of letters

which is an important desired feature. Also, the scheme

shown in Table II can also guarantee that ones and zeros

will appear on average the same number of times.

B. A New Structure of Self-Organizing Neural Networks

This subsection describes the structure of our self-

organizing neural networks for subtle signal discovery. The

basic structure forms the subnetworks used in our self-

organizing neural networks and contains two layers, i.e.,

an input layer and an output layer. The number of output

neurons of a subnetwork is the same as the number of

categories classified by this subnetwork and the number

of input neurons equals the projected length of motifs.

The input patterns are obtained from the given DNA or

protein sequences by taking all subsequences with the

same length as the length of projected motifs (often in

terms of the number of binary digits after encoding). Each

output neuron represents a category that has been classified

by a subnetwork and each output category is represented

by the connection weights from all input neurons to

the corresponding output neuron. Subnetworks perform

functions of classification in a hierarchical manner. The

first subnetwork is placed at the top level and it performs

a very rough classification, e.g., divide the input space

into 4–8 categories. The second subnetwork is placed at

the next level and it usually divides the input space into
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Fig. 2. Structure of the self-organizing neural networks

16–32 categories which indicates a slightly more detailed

classification of the input space. The last subnetwork in

our self-organizing neural network will be placed at the

lowest level and it classifies all the input patterns into

either a motif or a non-motif category with one or a few

patterns. Typically, the number of output neurons will be

large for the last subnetwork and gradually reduced to a

small number for the first subnetwork. Figure 2 shows the

structure of our self-organizing neural network with three

subnetworks. In the structure shown in the figure, there

are four input neurons and three subnetworks. The first

subnetwork has 2 output neurons, the second subnetwork

has 3 output neurons, and the third subnetwork has 4

output neurons. Each of the output neurons represents a

category that has been created and it is represented by

the connection weights to the output neuron. The output

category α of the first subnetwork contains two patterns (a
and b) and the other contains one pattern (c). The output
category a of the second subnetwork contains two patterns
(1 and 2) and the other two categories each contains

just one pattern. The output categories 1 and 2 of the

third subnetwork represent two motifs while categories 3

and 4 are not motifs (if we desire to have at least three

appearances for each motif identified).

C. Rules for Weight Update and Output Node Creation

When an input pattern is applied to our self-organizing

neural network, it will be classified to an output category

by every subnetwork. An output category of a lower level

subnetwork is said to belong to an output category of a

higher level subnetwork if one or more input patterns are

classified to belong to these two output categories. The

connection weights for each category of the last subnet-

work (at the lowest level) are calculated as the center of the

category, i.e., the geometric center of all input patterns that

are currently classified into the category associated with the

corresponding output neuron. The connection weights for

an output category of all other subnetworks (except the last

subnetwork) are calculated as the geometric center of all

categories from the lower level of subnetwork that belong

to this category.

When a new input pattern is applied to a subnetwork,

its classification to an output category of every subnetwork

involves the following two steps.

1) The distance between the input pattern and each

output category is calculated by comparing the input

pattern with the connection weights from the input

neurons to that category. The minimum of these

distances is determined and thus a winning category

is also determined. This step works similarly to

the winner-take-all networks [16]. These winning

neurons form the tree of classification as in Figure 2.

For the example network shown in Figure 2, an input

pattern will be first compared to the two categories

{α} and {β} at the first level. At the next level, it
will be either compared to {a, b} or {c} depending
on which of the two output categories at the first

level becomes the winning category.

2) Within the winning category, the similarity of all pat-

terns in this category including the new pattern will

be calculated and compared to a threshold value. If

the similarity value is less than the threshold, the new

pattern will be classified into the winning category.

Otherwise, the new pattern cannot be classified into

the winning category.

Assume that there are a total of L subnetworks for
l = 1, 2, · · · , L. Assume that there are M input neurons

and the lth subnetwork has Nl output neurons. The patterns

obtained form the given DNA or protein sequences are

used as input sequences to each subnetwork of our self-

organizing neural network and the outputs of the last sub-

network correspond to classifications of all subsequences

into motifs and non-motif categories. The projected length

of motif sequences possibly existing in the input sequences

is the same as M .

We denote the input patterns as xi, i = 1, 2, · · · .
Suppose that t input patterns have been presented to the
network and have been classified. When a new input

pattern, i.e., the (t+1)st pattern xt+1, is introduced to the

lth subnetwork, the distances from the new input pattern
to those categories of the lth subnetwork that belong to the
(l − 1)st winning category W l−1

q is calculated as

yl
n =

M∑
m=1

|xt+1
m − wl

mn|, for n ∈ W l−1
q

where xt+1
m is themth component of the input pattern xt+1

and wl
mn is the connection weight of the lth subnetwork

from the mth input neuron to the nth output neuron after
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the presentation of the tth input sequence. Denote

yl
q = min

n∈W l−1
q

{yl
n}

i.e., the qth output category of the lth subnetwork is the
winning category that has the smallest distance to the

new input pattern. Assume that the qth output category
of the lth subnetwork contains pl

q patterns from the (l −
1)st subnetwork. Within this winning category q, we will
calculate the similarity value of all the pl

q + 1 patterns
including the new input pattern. The similarity value of

a group of patterns is calculated as the maximum of the

pairwise distance between all pairs of patterns in the group.

For the winning category q determined above, we cal-
culate the distances from the new input pattern to all other

patterns in the category as

dl
j =

M∑
m=1

∣∣xt+1
m − el+1

mj

∣∣ , j = 1, 2, · · · , pq,

where

el+1
mj =




xj
m, if l = L and xj

m belongsto the
category q of the (l − 1)st level

wl+1
mj , if 1 ≤ l < L and wl+1

mj belongs to
thecategory q of the lth level.

(2)

We then perform the following threshold tests. If

max
1≤j≤pq

{dl
j} < ρl (3)

then this new input pattern will be classified into the

category q of the lth subnetwork. Otherwise, the new input
pattern cannot be classified into any existing category at

this level. The threshold value ρl in (3) will be determined

later and it takes different values for different subnetwork.

We note that all pairwise distances in this category will be

less than the threshold ρl if (3) is satisfied for the new input

pattern since all other patterns are previously classified into

this category using the same threshold test.

We describe in the following some more details about

our calculation procedure.

a) We start from the top level, i.e., the first subnetwork,

and work down the level one by one, when classify-

ing a new input pattern. After a winning category has

been determined at the lth level, the input pattern will
only be compared to those patterns at the (l + 1)st
level that are classified to belong to the winning

category at the lth level and are denoted by W l
q .

b) If the threshold tests in (3) are successful for l =
1, 2, · · · , L, we perform the following updates for
the Lth subnetwork:

wL
mq :=

1
pL

q + 1

pL
q +1∑
j=1

xj
m

=
1

pL
q + 1

[
pL

q × wL
mq + xt+1

m

]
, m = 1, 2, · · · ,M,

pL
q := pL

q + 1,

where xpL
q +1 indicates the new input pattern xt+1

for convenience. We perform the following updates

for the rest of subnetworks:

wl
mq :=

1
pL

q

pL
q∑

j=1

wl+1
mj ,

m = 1, 2, · · · ,M, l = L − 1, L − 2, · · · , 2, 1.

c) If the threshold tests in (3) are successful for l =
1, 2, · · · , L1, where L1 < L, we will add an output
neuron to subnetworks L1 + 1, L1 + 2, · · · , L. Each
of these newly added categories will contain only

one pattern and the weights of the new categories

are chosen as

wl
mn = xt+1

m , m = 1, 2, · · · ,M,

n = Nl + 1, l = L1 + 1, L1 + 2, · · · , L.

We also update the number of output neurons for

these subnetworks as

Nl := Nl + 1, pl
Nl

= 1, l = L1 + 1, L1 + 2, · · · , L.

In this case, it is not necessary to perform threshold

tests for subnetworks L1+1, L1+2, · · · , L anymore.
For subnetworks 1, 2, · · · , L1, we will perform the

following updates:

pL1
q := pL1

q + 1

wl
mq :=

1
pl

q

pl
q∑

j=1

wl+1
mj ,

m = 1, 2, · · · ,M, l = L1, L1 − 1, · · · , 2, 1.

D. Order Randomization of Input Patterns

The classification of an input pattern to a category using

the present self-organizing neural networks will be affected

by the order in which input patterns are presented to the

network. Since the center of each category is affected by

the locations of all its members, when a new member is

introduced, or the location of an old member is updated,

the center of the category under consideration will change.

Figure 3(a) shows a case when an input pattern fails to be

classified into a category to which it most likely belongs.

The area covered by the category C is not all covered
by the larger category Q. When the new input pattern is
presented, it will first try to see if it can be classified to the

category represented by the large circle Q. If the matching
fails, then it stops searching the lower level categories.

However, the center of circle Q may be different for
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different trials depending on the order in which input

patterns are presented. If the new input pattern illustrated in

Figure 3 is presented earlier, it might have the opportunity

to be classified to category Q. Figure 3(b) shows such a
case where the center of circle Q is different.

New input pattern New input pattern

Q Q

(a) (b)

A

B
B

A
C

C

Fig. 3. (a) A new input pattern fails to be classified into category C.
(b) The classification succeeded in a different trial.

In our approach, the order in which the input patterns are

presented to the network will be chosen randomly. To avoid

the problem shown in Figure 3(a), we will perform multiple

trials with randomly selected order of presentation for the

whole set of input patterns. For each trial, we may get

slightly different categories and slightly different results in

identified motifs. After the learning procedure of each input

cycle, we may get a certain number of output categories

in the lowest subnetwork. Some of these categories are

kept for the next cycle. For each category, the number

of patterns classified in the category decides whether this

category is subject to be kept. If the following condition

for the qth category is satisfied,

pL
q >= λ,

we will keep this category, where λ is determined by the
problem, e.g., λ = 3.
After picking out these categories, we use them to initial-

ize the network in the next cycle in the lowest subnetwork.

After that, we use the lowest subnetwork to initialize all

other subnetworks. Following the two steps we mentioned

in the last section, we build categories from subnetwork

to subnetwork till the initialization of the network for this

input cycle is done.

In each input cycle after the first one, we validate every

input patterns before we put it into the network. It is

necessary for us to see if this pattern is already classified

in any category exists. If the result is positive, we will skip

this input pattern. We do this in order to prevent classifying

the same pattern into more than one categories.

III. SIMULATION RESULTS

We consider an example in this section to show the

applicability of the present results.

Example 1: In this example, following [28], we gener-
ate i.i.d. samples of DNA sequences with certain lengths.

Motifs with random mismatch letters at randomly chosen

positions are implanted in these sequences. The perfor-

mance of the algorithm is defined as follows:

Perf =
|R ∩ T |
|R ∪ T | (4)

where R is the motif set generated and T is the motif
set identified. In the figures shown in this section, the

horizontal axis represents the percentage of mismatch of

the motifs (i.e., ε/M , where ε is the number of letters
that is tolerable as a representation of a motif), and the

vertical axis indicates the performance averaged over 8

such simulations.

Figures 4 to 5 show the performances of the system on

finding signals with length of 13 and 17. From the figures

we can see that the results are still acceptable even with the

mismatch letters up to 30%. After that, the performances

drops sharply. The reason of the sharp drop is because that

for the 4 letter DNA case, the total number of randomly

generated sequences is not large enough, which makes the

generated patterns to be often similar to the noise. We have

to say thirty percent of mismatch is beyond the need for

further study. Comparing to the results obtained in [1] and

[23], our simulation results can find motifs with at least one

mismatch letter more than the other two algorithm. We can

conclude that our algorithm outperforms the MEME and

Gibbs algorithms. In this simulation example, we generated

10 DNA sequences with 200 letters in each sequence. The

computation time of our algorithm is 3 minutes. Compared

with MEME (15 minutes) and Gibbs (12 minutes), our

algorithm performs in a faster speed.
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Fig. 4. Comparison results for motif length = 13

IV. CONCLUSIONS

In this paper, we studied the problem of subtle signal

discoveries in unaligned DNA and protein sequences. We

developed a self-organizing neural network structure for

solving the problem of motif identification in DNA and
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Fig. 5. Comparison results for motif length =17

protein sequences. Our network contains several layers

with each layer performing classifications at different level.

Our algorithm has a low computational complexity through

the use of the layered structure so that each pattern’s

classification is performed with respect to a small subspace

of the whole input space. Our algorithm also has a high

reliability using since the self-organizing neural network

will grow as needed to make sure all input patterns are

considered and are given the same amount of attention. We

compare our algorithm with other existing algorithms and

show that our algorithm significantly outperforms existing

algorithms, especially in the reliability aspect.
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