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Abstract

Reconstruction Sibling Relationships is an important
problem with applications in conservational biology. A
number of methods have been proposed for this prob-
lem, and biologists today find it challenging to consoli-
date different reconstructions into one solution. Towards
this end, consensus based methodology has been pro-
posed recently to combine different results. In this pa-
per we study the use of different consensus techniques,
including strict consensus, voting consensus, majority
consensus, to realize a single solution. We also discuss
the relative merits of different consensus techniques and
extend their use to data sets with genotyping errors. We
explain the implications of Mirkin’s impossibility results
in context of the siblings reconstruction problem.

Introduction
Siblings Reconstruction is an important problem in
Population Biology, with applications in a number of
areas. In recent years there has been a boost in the
genotyping methods and the cost has reduced consid-
erably. This opens the possibilities of investigating
many fundamental biological phenomena, including be-
havior, mating systems, heritabilities of adaptive traits,
kin selection, and dispersal patterns. There are a num-
ber of methods (Almudevar 2003; Wang 2004; Beyer
and May 2003; Smith, Herbinger, and Merry 2001;
C.Thomas and G.Hill 2002; Berger-Wolf et al. 2005;
2007) for Sibship Reconstruction. With the number of
methods growing it is becoming harder for the biolo-
gists to come up with a unified view of the popula-
tion. There seem to be no existing methods (Blouin
2003) that are able to combine different results into
one representative solution. We recently proposed a
distance-based solution (Sheikh et al. ). In this paper
we present different approaches to consensus for recon-
structing sibling relationships and discuss their effec-
tiveness for combining different solutions. We also dis-
cuss the implications of Mirkin’s impossibility results
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in the context of the siblings reconstruction problem.
We conclude with how these consensus methods can be
used to reconstruct siblings relationships in presence of
genotyping errors.

Consensus Methods
The idea behind consensus methods is to combine dif-
ferent solutions to the same problem into one solution,
i.e., group decision making. Group decision making is
as old and as ubiquitous as human societies. The for-
mal theory of voting and social choice dates back to the
eighteenth century members of the French Academy of
Sciences, Marquis de Condorcet (de Caritat marquis de
Condorcet 1785) and de Borda (de Borda 1784). The
modern developments in the field date back to Ken-
neth J. Arrow’s seminal doctoral thesis (Arrow 1963)
in 1951.

In the past fifteen years the mathematical and com-
putational techniques developed in the context of group
choice and consensus decisions have started to be ap-
plied to biological problems, mainly in systematics,
taxonomy, and phylogenetics (Bininda-Emonds 2001).
Many computational approaches to biological problems
result in multiple answers either from the same or dif-
ferent methods. In absence of a verifiable true answer,
as is common in biological problems, one may apply a
consensus method to combine these solutions into one
representative answer. The mathematical and compu-
tational field of BIOCONSENSUS explores different op-
tions for combining biological data (e.g. phylogenetic
trees), establishes a formal framework to develop new
consensus methods that stress various aspects of the
data, compare their relative merits, and evaluate their
practical performance. Our solution is based on using
such methods to tolerate genotyping errors.

Definitions
Siblings: a group of individuals that share at least one

parent. When they share both parents they are called
full siblings, and when they share exactly one of the



parents they are called half siblings. In this paper
when we refer to siblings we mean mean full siblings.

Locus: the location of a gene on a chromosome.

Allele: one of the different versions of the same gene
found at the same locus but in homologous chromo-
somes or in different individuals.

Genetic marker: a set of alleles of genes used as exper-
imental probes to keep track of an individual.

Diploid individual is one having two alleles (not nec-
essarily different) for each locus.

Homozygous individual is one having two identical al-
leles at a particular genetic locus.

Heterozygous individual is one having two different
alleles at a particular genetic locus.

Allele frequency: the fraction of all the alleles of a
gene in a population that are of one type.

Genotype: the actual alleles present in an individual;
the genetic makeup of an organism.

Problem Statement
We now restate the sibling reconstruction problem as
defined in (Berger-Wolf et al. 2007). Given a genetic
(microsatellite) sample from a population of n diploid
individuals of the same generation, U , the goal is to re-
construct the full sibling groups (groups of individuals
with the same parents). We assume no knowledge of
parental information.

Formally, we are given a set U of n individual mi-
crosatellite samples from l genetic loci

U = {X1, ...Xn}, where Xi = (< ai1, bi1 >, ..., < ail, bil >)

and aij and bij are the two alleles of the individual i at
locus j.

The goal is to find a partition of individuals P1, ...Pm
such that

∀1 ≤ k ≤ m,∀Xu, Xv ∈ Pk : Parents(Xu) = Parents(Xv)

Notice, here that we have not defined the function
Parents(x). This is biological objective. We will dis-
cuss computational approaches to achieve a good esti-
mate of the biological sibling relationship.

2-Allele and 4-Allele Properties
Mendelian genetics lay down a very simple rule for in-
heritance of diploid organisms: a child inherits one al-
lele from each of its parents for each gene. This in-
troduces two overlapping necessary (but not sufficient)
constraints on full siblings groups: 4-allele property and
2-allele property (Berger-Wolf et al. 2005).

4-Allele Property: The total number of distinct alleles
occurring at any locus in a sibling group may not ex-
ceed 4.

Formally, a set S ⊆ U has the 4-allele property if

∀1 ≤ j ≤ l :

∣∣∣∣∣⋃
i∈S
{aij , bij}

∣∣∣∣∣ ≤ 4. (1)

The 4-allele property is effective for identifying sib-
ling groups where the data are mostly heterozygous.
Generally, as in Table 1, a set consisting of any two
individuals satisfies the 4-allele property. The set of
individuals 1, 3 and 4 from Table 1 satisfies the 4-
allele property. However, the set of individuals 2, 3
and 5 fails to satisfy it as the alleles occurring at the
first locus are {12, 31, 56, 44, 51}.

2-Allele Property: In every sibling group there exists
a swapping of individual alleles within a locus such
that the number of distinct alleles on each side at this
locus does not exceed 2.
2-Allele property is clearly more strict than 4-allele
property. Looking at the Table 1, our previous 4-
allele set of individuals 1, 3 and 4 fails to satisfy the
stricter 2-allele property as the alleles appearing on
the left side at locus 1 { 44, 31, 13 } are more than
two. Moreover, there is no swapping of alleles that
will bring down the number of alleles on each side
to two: the 1st and 4th individuals with alleles 44/44
and 13/13 already fill the capacity.

Individual Alleles (a/b) at Locus 1 Locus 2
Radish 1 44/44 55/23
Radish 2 12/56 14/31
Radish 3 31/44 55/14
Radish 4 13/13 31/23
Radish 5 31/51 14/31

Table 1: An example of input data for the sibling re-
construction problem. The five individuals have been
sampled at two genetic loci. Each allele is represented
by a number. Same numbers represent the same alleles.

Consensus Methods for Siblings
Reconstruction

Recall that for a population of individuals U =
{X1 . . . Xn} the goal of a siblings reconstruction prob-
lem is to find a partition of the population into sibling
groups S = {P1 . . . Pm} where and all individuals are
covered ⋃

1≤j≤m

Pj = U

with no overlap
∀j, k Pj ∩ Pk = ∅

It is well-known that a partition defines an equiva-
lence relationship. Two individuals are equivalent if
they are in the same partition of the solution S.
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Xi ≡S Xj ⇐⇒ ∃Pk ∈ S s.t. Xi ∈ Pk ∧Xj ∈ Pk
We are now ready to give the definition of a consen-

sus method.
Definition 1 A consensus method for sibling groups is
a computable function f that takes k solutions S =
{S1, ..., Sk} as input and computes one final solution.

f : S∗ → S

Strict Consensus
Definition 2 A strict consensus (McMorris, Meronik,
and Neumann 1983) C is a partitioning of sibling
groups where two individuals are together only if they
were in the same partition for all solutions:

C = {PC,1 . . . PC,m}
where:

Xj ≡C Xk ⇐⇒ ∀Si ∈ S Xj ≡Si Xk

Note that the strict consensus defines a true equiva-
lence relation and, thus, is a transitive function:

Xi ≡C Xj and Xj ≡C Xk ⇒ Xi ≡C Xk

Any individual that is not consistently placed into a
partition in all solutions will be added as a singleton.
Such a consensus solution is reliable for the individuals
that have been placed together in a group, but there may
be a lot of singleton sibling groups.

As we will see later, strict consensus is good as a
baseline as it ensures Pareto optimality. However it re-
sults in too many singletons and scattered sibgroups,
therefore has limited application on its own.

Majority Consensus
Definition 3 A majority consensus C is a partitioning
of sibling groups where two individuals are together
only if they were in the same partition for all solutions.

Majority consensus may lead to violation of the tran-
sitive property of equivalence relationships. Violation
of this property also means that there is no partitioning
of individuals and consequently no siblings reconstruc-
tion. Therefore some refinement of the basic definition
is need to produce a partitioning of individuals. Such
a refinement may be useful in practice for combining
solutions from different algorithms.

Voting Consensus
One form of Majority Consensus would be to have the
solutions vote on all pairs of individuals. If a majority
of votes put two individuals together, then the sibgroups
containing those individuals should be merged. While
this does produce a partition of individuals, it does not
account for the other individuals in the sibgroups being
merged.

Distance-based consensus
For a distance based consensus, we start with a strict
consensus of the solutions and search for the nearest
good solution. In order to search for such a solution we
need quantitative measures to 1) assess quality of a solu-
tion, fq , and 2) calculate the pairwise distance between
solutions, fd. Assume that we have the two functions
fq and fd.

fq : S → R

fd : S × S → R

Since we start with a strict consensus C the partitions
in the solution cannot be refined any further. Therefore
to improve the solution, we use the operations of merg-
ing two sets. The following monotonic property must
be obeyed by any improved solution C′:

∀Xi, Xj ∈ U Xi ≡C Xj =⇒ Xi ≡C′ Xj . (2)

Thus, given a solution C, we look for an improved
solution C′ that minimizes fd(C, C′) and maximizes
fq(C′). To combine the two objectives we can formulate
the following optimization problems:

1. Maximize fq with an upper bound on fd
2. Minimize fd with a lower bound on fq
3. Maximize/Minimize some (linear) combination of fd

and fq
We have shown all of these problems to be NP-Hard

in general for arbitrary fq and fd (Sheikh et al. ).

Theorem 1 Let C be a collection of sibling groups and
k ∈ R. Let S be the set of all solutions that are an
improvement of C and are obtainable from C by merg-
ing sibling sets. The problem of finding an improved
solution C′ ∈ S such that

fq(C′) = max
S∈S

fd(C,S)≤k

fq(S)

is NP-hard.

Theorem 2 Let C be a collection of sibling groups and
k ∈ R. Let S be the set of all solutions that are an
imporvement of C and are obtainable from C by merg-
ing sibling sets. The problem of finding an imporved
solution C′ ∈ S such that

fd(C, C′) = min
S∈S

fq(S)≥k

fd(C, S)

is NP-hard.

Lastly, if no exact combination of fq and fd is speci-
fied, objective 3 is unattainable as well.
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Theorem 3 Let C be a collection of sibling groups. Let
S be the set of all solutions that are an improvement of
C and are obtainable from C by merging sibling sets and
let g(fq, fd) be a (linear) combination of the functions
fq and fd. The problem of finding an improved solution
C′ ∈ S such that

g(fd(C, C′), fq(C′)) = OPT
S∈S
{g(fd(C, S), fq(S))}

is NP-hard.
Distance based consensus seems to be an ideal

ground ensuring Pareto optimality, and parsimony can
be enforced using the quality measures. However, the
problem is computationally intractable, therefore we
propose greedy heuristics.

Pairwise Greedy Consensus
Pairwise Greedy Consensus is a heuristic for distance-
based consensus, it works iteratively by merging the
closest pair of sibling groups. Some editing costs as-
sociated with different types of genotyping errors are
needed and we assume it is available to us in a ta-
ble costs. We define two functions to calculate the
distance fd: one calculates the alleles that needs to
be removed to add an individual to a group; and the
other calculates the shared alleles and allele pairs if no
changes are needed. The former is used when an in-
dividual cannot be assigned without violating 2-allele
property. The latter uses the same costs for calculating
the “new” alleles/allele pairs brought by a new individ-
ual in a sibgroup, and gives a negative value where a
higher value means more restrictions introduced to the
sibgroup. Also, we assume that we know what is the
maximum editing cost (maxedit) we can allow for an
individual to be assigned to a sibgroup. If it costs more
than that for all sibgroups, we would rather create a new
sibgroup.

This is done by calculating the fd distance for all
pairs of sibling groups at every iteration. The pair that
gives the smallest distance is merged and then all the
pairs are compared again. This continues until no group
of individuals can be merged without exceeding max-
imum editing cost per individual for some individual.
Both of these costs are input parameters. The quality

function fq is based on the parsimony assumption:
the number of sibgroups. The objective is to maximize:

fq = |U | − |C|
This method can perform well depending upon the

exact distance function, but it fails to maintain a control
on how groups are evolving over time and may allow
too much distance overall in both the solution and the
groups.

Sibgroup Greedy Consensus
Sibgroup Greedy Consensus is also a heuristics for
distance-based consensus, with a different use of the

distance function. It is similar to the Pairwise Greedy
Consensus, works by iteratively merging closest groups
(see (Sheikh et al. ) for details and performance anal-
ysis). Instead of just making a purely local decision,
a total merge cost is maintained for every sibgroup,
and is added to fd when comparing with another sib-
group. The pair that gives the least total merging cost
is merged, and the total cost for the merged group is
updated. This continues until the minimum distance is
greater than either the maximum editing cost per sibling
group or the average per individual distance exceeds
maximum average editing cost per sibling group. Both
of these costs are input parameters.

Even though this method is greedy, it maintains a
control on both inter-sibgroup and intra-sibgroup dis-
tance.

Impossibility Results
We now discuss the known impossibility results for
equivalence relationships, as they automatically apply
to siblings reconstruction. We first present the axioms
for rules on equivalence relations.

All of these are defined on consensus rules of the
form C : Sk → S on the set of equivalence relations
S = {S1, . . . , Sk} over elements of U .

Definition 4 Independence: ∀X ⊆ U ∧ ∀P, P ′ ∈ Sk :
[P |X = P ′|X ] =⇒ [C(P )|X = C(P ′)|X ].

The independence property implies that for any sub-
setX of individuals, for any pair of input profiles P, P ′.
If the restricted input profiles are same when restricted
to X , then the restriction of the consensus must also
produce the same equivalence relations when restricted
to X . This is a very desirable property for siblings re-
construction as sibling relationship between a set of in-
dividuals should not change with the context in which
they are observed.

Definition 5 Pareto Optimality: ∀x, y ∈ U ∧ ∀P =
(S1, . . . Sk) ∈ Sk : [∀i ∈ K : xEiy] =⇒ xC(P )y.

In context of siblings reconstruction, Pareto optimal-
ity means that if all solutions pair two individuals to-
gether, they MUST be together. In other words, the so-
lution is obtained by merging groups in the strict con-
sensus.

Definition 6 Oligarchy: A V ⊆ K exists such that
∀P = (S1 . . . Sk) ∈ Sk : C(P ) =

⋂
i∈V Si.

Oligarchy means that only a subset of solutions de-
termines the partitioning, not all input solutions may
be necessary. For siblings reconstruction, it means that
some “chosen” input solutions always determine the
output. In our formulation for genotyping errors, there
cannot be an oligarchy as any two input solutions are
based on only slightly different data. Generally, an oli-
garchy is not acceptable as it means that some of the
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input solutions may not have any say in the final solu-
tion.

Definition 7 Symmetry: ∀P ∈ Sk ∧ ∀ permutations
σ of K: P = (S1, . . . , Sk)] =⇒ [C(P ) =
C(Sσ(1), . . . , Sσ(k))].

Symmetry implies that it does not matter how the so-
lutions are obtained, the output solution depends only
on the inputs and not their order or source.

The following impossibility theorem was presented
by Mirkin (Mirkin 1975).

Theorem 4 Consensus rule C : Sk → S is indepen-
dent and Pareto optimal if and only if it is oligarchic.

Which easily yields to:

Corollary 1 Consensus rule C : Sk → S is rule by
unanimity if and only if it is independent, Pareto optimal
and symmetric.

Let’s consider what this result means for reconstruc-
tion of sibling relationships. If a consensus rule can
guarantee independence regarding subsets of individu-
als and also guarantees that if all input solutions identify
a set of individuals as siblings, then there is an oligarchy
of solutions determining the output. Both independence
and Pareto optimality are extremely important, but if
they apply then there is a dictatorial subgroup of solu-
tions which decide which individuals can be siblings.
The corollary shows that if we desire for all the inputs
to be treated equally, then they must always agree.

Consensus based approach for
error-tolerant siblings reconstruction

With the exception of COLONY (Wang 2004), none
of the existing kinship reconstruction methods is de-
signed to tolerate genotyping errors or mutation. Yet,
both errors and mutation cannot be avoided in practice
and identifying these errors without any prior kinship
information is a challenging task. We now describe
our approach (Sheikh et al. ) to reconstructing sib-
ling relationships in presence of genotyping errors using
consensus. Consider an individual Xi which has some
genotyping error(s). Any error that is affecting siblings
reconstruction must be preventingXi’s sibling relation-
ship with at least one other individualXj , who in reality
is a sibling. It is possible that there is more than one er-
ror in an individual’s genotype, yet it is unlikely that all
errors will bias the solution in the same direction.

Thus, we can discard one locus at a time, considering
it to be erroneous, and obtain a sibling reconstruction
solution based on the remaining loci. If all such solu-
tions put the individuals Xi and Xj in the same sibling
group (i.e., there is a consensus among those solutions),
we consider them to be siblings. The bulk of our error-
tolerant approach design is concerned with pairs of in-
dividuals that do not consistently end up in the same

sibling group during this process, that is, there is no
consensus about their sibling relationship.

We now discuss how the approaches defined above
perform for this input.

Majority and Voting Consensus
Such a consensus is highly prone to errors when used
with our input solutions which are based on dropping
one locus at a time. Errors will not be out-voted as long
as we are using subsets where each locus is present in a
majority of subsets.
Theorem 5 Majority Consensus for sibship recon-
struction or any partitioning problem using “drop-one-
locus/column” approach will always prefer in favor of
the error.

Proof. Let’s consider the population of individuals as
A a n× k matrix. When a locus is dropped, tth column
vector from this matrix is dropped and the remaining
n × (k − 1) matrix At is used to compute a sibship re-
construction. Consider an error at row i, column j. De-
cisions made on A1, . . . Aj−1, Aj+1, . . . , Ak are based
on data with error. Therefore, any majority rule will be
in favor of the error with overwhelming majority.

Even though such a technique may be useful in gen-
eral, but not effective to handle errors in our framework.

Voting consensus is not suitable for the “drop-one-
locus” approach as shown in the above theorem.

Distance based consensus
Distance based consensus is well suited for this ap-
proach as a strict consensus should enforce an erroneous
individual to be classified differently in at least one so-
lution. Both pair-wise greedy and Sibgroup greedy con-
sensus make intuitive sense for identifying and correct-
ing errors. Pair-wise greedy consensus can allow too
many genotyping errors in a sibgroup, leading to large
sibgroups of individuals that share alleles but are other-
wise unrelated. Sibgroup Greedy consensus maintains a
control on errors at all levels and thus only allow errors
that are allowed by the relative costs.

Results
We tested these approaches on some real datasets us-
ing the “drop-one-locus” approach. Pair-wise greedy
algorithm performs reasonably, better than both voting
and strict consensus. Sibgroup greedy algorithm per-
forms considerably better than all the other approaches.
In fact, it outperforms all the known sibling reconstruc-
tion methods for few loci and high allele frequencies
(Sheikh et al. ). We show the performance of three main
approaches on a real dataset in Table 2. The dataset
of tiger shrimp Penaeus monodon dataset (Jerry et al.
2006) consists of 59 individuals from 13 families with
7 loci. There are 16 missing alleles. The parentage is
known and was used to identify errors.
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Sibgroup Greedy Pairwise Greedy Voting
91.52 89.8 88.1

Table 2: Solution accuracy of consensus algorithms on
Shrimp data.

Conclusion
We have formulated a consensus-based approach for
error-tolerant reconstruction of sibling relationships
from genetic data. We have formulated and investigated
various consensus based approaches. Strict Consensus
ensures Pareto optimality but produces too many sin-
gleton groups. Majority Consensus may not produce a
partition, and we have shown that it will not work with
our error-tolerant approach. A distance-based consen-
sus achieves the desired balance between Pareto opti-
mality and parsimony, however, it is computationally
intractable. Therefore, we propose greedy heuristics to
approximate it.

We have also shown that it is not possible to have
a fair consensus method that is both independent and
Pareto optimal. This result is not unusual in social
choice theory and we have shown that it holds in the
domain of siblings reconstruction.

In future we intend to design an approximation al-
gorithm with provable performance guarantees for dis-
tance based consensus methods for siblings reconstruc-
tion. Currently there are no consensus methods for hier-
archical kinship analysis, we also intend to address this
issue.
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