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Abstract. In this paper we investigate the computational complexities
of a combinatorial problem that arises in the reverse engineering of pro-
tein and gene networks. Our contributions are as follows:

– We abstract a combinatorial version of the problem and observe
that this is “equivalent” to the set multicover problem when the
“coverage” factor k is a function of the number of elements n of the
universe. An important special case for our application is the case
in which k = n − 1.

– We observe that the standard greedy algorithm produces an approx-
imation ratio of Ω(log n) even if k is “large” i.e. k = n − c for some
constant c > 0.

– Let 1 < a < n denotes the maximum number of elements in any
given set in our set multicover problem. Then, we show that a non-
trivial analysis of a simple randomized polynomial-time approxima-
tion algorithm for this problem yields an expected approximation
ratio E[r(a, k)] that is an increasing function of a/k. The behavior
of E[r(a, k)] is “roughly” as follows: it is about ln(a/k) when a/k is
at least about e2 ≈ 7.39, and for smaller values of a/k it decreases to-
wards 2 exponentially with increasing k with lima/k→0 E[r(a, k)] ≤ 2.
Our randomized algorithm is a cascade of a deterministic and a ran-
domized rounding step parameterized by a quantity β followed by a
greedy solution for the remaining problem.

1 Introduction

Let [x, y] is the set {x, x+1, x+2, . . . , y} for integers x and y. The set multicover
problem is a well-known combinatorial problem that can be defined as follows.

Problem name: SCk.



Instance < n,m, k >: An universe U = [1, n], sets S1, S2, . . . , Sm ⊆ U
with ∪m

j=1Sj = U and a “coverage factor” (positive integer) k.
Valid Solutions: A subset of indices I ⊆ [1,m] such that, for every
element x ∈ U , |j ∈ I : x ∈ Sj | ≥ k.
Objective: Minimize |I|.

SC1 is simply called the Set Cover problem and denoted by SC; we will
denote an instance of SC simply by <n,m> instead of <n,m, 1>.

Both SC and SCk are already well-known in the realm of design and analysis
of combinatorial algorithms (e.g., see [14]). Let 3 ≤ a < n denote the maximum
number of elements in any set,i.e., a = maxi∈[1,m]{|Si|}. We summarize some of
the known relevant results for them below.

Fact 1
(a) [4] Assuming NP �⊆ DTIME(nlog log n), instances < n,m > of the SC
problem cannot be approximated to within a factor of (1−ε) ln n for any constant
0 < ε < 1 in polynomial time.
(b) [14] An instance <n,m, k> of the SCk problem can be (1+ln a)-approximated
in O(nmk) time by a simple greedy heuristic that, at every step, selects a new
set that covers the maximum number of those elements that has not been cov-
ered at least k times yet. It is also possible to design randomized approximation
algorithms with similar expected approximation ratios.

1.1 Summary of Results

The combinatorial problems investigated in this paper that arise out of reverse
engineering of gene and protein networks can be shown to be equivalent to SCk

when k is a function of n. One case that is of significant interest is when k is
“large”,i.e., k = n− c for some constant c > 0, but the case of non-constant c is
also interesting (cf. Questions (Q1) and (Q2) in Section 2). Our contributions
in this paper are as follows:

– In Section 2 we discuss the combinatorial problems (Questions (Q1) and (Q2))
with their biological motivations that are of relevance to the reverse engi-
neering of protein and gene networks. We then observe, in Section 2.3, using
a standard duality that these problems are indeed equivalent to SCk for
appropriate values of k.

– In Lemma 1 in Section 3.1, we observe that the standard greedy algorithm
SCk produces an approximation ratio of Ω(log n) even if k is “large”, i.e.
k = n − c for some constant c > 0.

– Let 1 < a < n denotes the maximum number of elements in any given set
in our set multicover problem. In Theorem 2 in Section 3.2, we show that a
non-trivial analysis of a simple randomized polynomial-time approximation
algorithm for this problem yields an expected approximation ratio E[r(a, k)]
that is an increasing function of a/k. The behavior of E[r(a, k)] is “roughly”
as follows: it is about ln(a/k) when a/k is at least about e2 ≈ 7.39, and for



smaller values of a/k it decreases towards 2 exponentially with increasing k
with lima/k→0 E[r(a, k)] ≤ 2. More precisely, E[r(a, k)] is at most

1 + ln a, if k = 1

(
1 + e−(k−1)/5

)
ln(a/(k − 1)), if a/(k − 1) ≥ e2 ≈ 7.39 and k > 1

min{ 2 + 2 · e−(k−1)/5, 2 +
(
e−2 + e−9/8

) · a
k }

≈ min{ 2 + 2 · e−(k−1)/5, 2 + 0.46 · a
k } if a/(k − 1) < e2 and k > 1

Some proofs are omitted due to lack of space.

1.2 Summary of Analysis Techniques

– To prove Lemma 1, we generalize the approach in Johnson’s paper [6]. A
straightforward replication of the sets will not work because of the depen-
dence of k on n, but allowing the “misleading” sets to be somewhat larger
than the “correct” sets allows a similar approach to go through at the ex-
pense of a diminished constant.

– Our randomized algorithm in Theorem 2 is a cascade of a deterministic and
a randomized rounding step parameterized by a quantity β followed by a
greedy solution for the remaining problem.

– Our analysis of the randomized algorithm in Theorem 2 uses an amortized
analysis of the interaction between the deterministic and randomized round-
ing steps with the greedy step. For tight analysis, we found that the standard
Chernoff bounds such as in [1, 2, 10, 14] were not always sufficient and hence
we had to devise more appropriate bounds for certain parameter ranges.

2 Motivations

In this section is to define a computational problem that arises in the context of
experimental design for reverse engineering of protein and gene networks. We will
first pose the problem in linear algebra terms, and then recast it as a combina-
torial question. After that, we will discuss its motivations from systems biology.
Finally, we will provide a precise definition of the combinatorial problems and
point out its equivalence to the set multicover problem via a standard duality.

Our problem is described in terms of two matrices A ∈ R
n×n and B ∈ R

n×m

such that:

– A is unknown;
– B is initially unknown, but each of its columns, denoted as B1, B2, . . . , Bm,

can be retrieved with a unit-cost query;
– the columns of B are in general position, i.e., each subset of k ≤ n columns

of B is linearly independent;
– the zero structure of the matrix C = AB = (cij) is known, i.e., a binary

matrix C0 =
(
c0
ij

) ∈ {0, 1}n×m is given, and it is known that cij = 0 for
each i, j for which c0

ij = 0.



The objective, “roughly speaking”, is to obtain as much information as possible
about A (which, in the motivating application, describes regulatory interactions
among genes and/or proteins), while performing “few” queries (each of which
may represent the measuring of a complete pattern of gene expression, done
under a different set of experimental conditions).

Notice that there are intrinsic limits to what can be accomplished: if we
multiply each row of A by some nonzero number, then the zero structure of C is
unchanged. Thus, the best that we can hope for is to identify the rows of A up
to scalings (in abstract mathematical terms, as elements of the projective space
P

n−1). To better understand these geometric constraints, let us reformulate the
problem as follows. Let Ai denote the ith row of A. Then the specification of
C0 amounts to the specification of orthogonality relations Ai · Bj = 0 for each
pair i, j for which c0

ij = 0. Suppose that we decide to query the columns of B
indexed by J = {j1, . . . , j�} . Then, the information obtained about A may be
summarized as Ai ∈ H⊥

J,i, where “⊥” indicates orthogonal complement, and

HJ,i = span {Bj , j ∈ Ji} ,

Ji = {j | j ∈ J and c0
ij = 0} . (1)

Suppose now that the set of indices of selected queries J has the property:

each set Ji, i = 1, . . . , n, has cardinality ≥ n − k, (2)

for some given integer k. Then, because of the general position assumption, the
space HJ,i has dimension ≥ n − k, and hence the space H⊥

J,i has dimension at
most k.

The most desirable special case is that in which k = 1. Then dimH⊥
J,i ≤ 1,

hence each Ai is uniquely determined up to a scalar multiple, which is the best
that could be theoretically achieved. Often, in fact, finding the sign pattern
(such as “(+,+,−, 0, 0,−, . . .)”) for each row of A is the main experimental
goal (this would correspond, in our motivating application, to determining if
the regulatory interactions affecting each given gene or protein are inhibitory or
catalytic). Assuming that the degenerate case H⊥

J,i = {0} does not hold (which
would determine Ai = 0), once that an arbitrary nonzero element v in the
line H⊥

J,i has been picked, there are only two sign patterns possible for Ai (the
pattern of v and that of −v). If, in addition, one knows at least one nonzero sign
in Ai, then the sign structure of the whole row has been uniquely determined
(in the motivating biological question, typically one such sign is indeed known;
for example, the diagonal elements aii, i.e. the ith element of each Ai, is known
to be negative, as it represents a degradation rate). Thus, we will be interested
in this question:

find J of minimal cardinality such that |Ji| ≥ n− 1, i = 1, . . . , n. (Q1)

If queries have variable unit costs (different experiments have a different associ-
ated cost), this problem must be modified to that of minimizing a suitable linear
combination of costs, instead of the number of queries.



More generally, suppose that the queries that we performed satisfy (2), with
k > 1 but small k. It is not true anymore that there are only two possible sign
patterns for any given Ai, but the number of possibilities is still very small. For
simplicity, let us assume that we know that no entry of Ai is zero (if this is
not the case, the number of possibilities may increase, but the argument is very
similar). We wish to prove that the possible number of signs is much smaller
than 2n. Indeed, suppose that the queries have been performed, and that we
then calculate, based on the obtained Bj ’s, a basis {v1, . . . , vk} of H⊥

J,i (assume
dimH⊥

J,i = k; otherwise pick a smaller k). Thus, the vector Ai is known to

have the form
k∑

r=1

λrvr for some (unknown) real numbers λ1, . . . , λk. We may

assume that λ1 �= 0 (since, if Ai =
∑k

r=2 λrvr, the vector εv1 +
∑k

r=2 λrvr,
with small enough ε, has the same sign pattern as Ai, and we are counting
the possible sign patterns). If λ1 > 0, we may divide by λ1 and simply count
how many sign patterns there are when λ1 = 1; we then double this estimate
to include the case λ1 < 0. Let vr = col (v1r, . . . , vnr), for each r = 1, . . . , k.
Since no coordinate of Ai is zero, we know that Ai belongs to the set C =
R

k−1\
(
L1

⋃
. . .

⋃
Ln

)
where, for each 1 ≤ s ≤ n, Ls is the hyperplane in R

k−1

consisting of all those vectors (λ2, . . . , λk) such that
∑k

r=2 λrvsr = −vs1. On
each connected component of C, signs patterns are constant. Thus the possible
number of sign patterns is upper bounded by the maximum possible number of
connected regions determined by n hyperplanes in dimension k−1. A result of L.
Schläfli (see [3, 11], and also [12] for a discussion, proof, and relations to Vapnik-
Chervonenkis dimension) states that this number is bounded above by Φ(n, k −
1), provided that k−1 ≤ n, where Φ(n, d) is the number of possible subsets of an

n-element set with at most d elements, that is, Φ(n, d) =
d∑

i=0

(
n

i

)
≤ 2

nd

d!
≤

(en

d

)d

. Doubling the estimate to include λ1 < 0, we have the upper bound

2Φ(n, k−1). For example, Φ(n, 0) = 1, Φ(n, 1) = n+1, and Φ(n, 2) = 1
2 (n2+n+2).

Thus we have an estimate of 2 sign patterns when k = 1 (as obtained earlier),
2n + 2 when k = 2, n2 + n + 2 when k = 3, and so forth. In general, the number
grows only polynomially in n (for fixed k).

These considerations lead us to formulating the generalized problem, for each
fixed k: find J of minimal cardinality such that |Ji| ≥ n − k for all i = 1, . . . , n.
Recalling the definition (1) of Ji, we see that Ji = J

⋂
Ti, where Ti = {j | c0

ij =
0}. Thus, we can reformulate our question purely combinatorially, as a more
general version of Question (Q1) as follows. Given sets

Ti ⊆ {1, . . . , m} , i = 1, . . . , n.

and an integer k < n, the problem is:

find J ⊆ {1, . . . , m} of minimal cardinality such that |J ⋂
Ti| ≥ n− k,

1 ≤ i ≤ n. (Q2)



For example, suppose that k = 1, and pick the matrix C0 ∈ {0, 1}n×n in such a
way that the columns of C0 are the binary vectors representing all the (n−1)-
element subsets of {1, . . . , n} (so m = n); in this case, the set J must equal
{1, . . . , m} and hence has cardinality n. On the other hand, also with k = 1,
if we pick the matrix C0 in such a way that the columns of C0 are the binary
vectors representing all the 2-element subsets of {1, . . . , n} (so m = n(n− 1)/2),
then J must again be the set of all columns (because, since there are only two
zeros in each column, there can only be a total of 2� zeros, � = |J |, in the
submatrix indexed by J , but we also have that 2� ≥ n(n − 1), since each of the
n rows must have ≥ n − 1 zeros); thus in this case the minimal cardinality is
n(n − 1)/2.

2.1 Motivations from Systems Biology

This problem was motivated by the setup for reverse-engineering of protein and
gene networks described in [8, 9] and reviewed in [13]. We assume that the time
evolution of a vector of state variables x(t) = (x1(t), . . . , xn(t)) is described by
a system of differential equations:

ẋ1 = f1(x1, . . . , xn, p1, . . . , pm)
ẋ2 = f2(x1, . . . , xn, p1, . . . , pm)

...
ẋn = fn(x1, . . . , xn, p1, . . . , pm)

(in vector form, “ẋ = f(x, p)”), where p = (p1, . . . , pm) is a vector of parame-
ters, representing for instance the concentrations of certain enzymes which are
maintained at a constant value during a particular experiment. There is a ref-
erence value p̄ of p, which represents “wild type” (that is, normal) conditions,
and a corresponding steady state x̄. That is, f(x̄, p̄) = 0. We are interested
in obtaining information about the Jacobian of the vector field f evaluated at
(x̄, p̄), or at least about the signs of the derivatives ∂fi/∂xj(x̄, p̄). For example,
if ∂fi/∂xj > 0, this means that xj has a positive (catalytic) effect upon the rate
of formation of xi. The critical assumption, indeed the main point of [8, 9], is
that, while we do not know the form of f , we do know that certain parameters
pj do not directly affect certain variables xi. This amounts to a priori biolog-
ical knowledge of specificity of enzymes and similar data. This knowledge will
be summarized by the binary matrix C0 =

(
c0
ij

) ∈ {0, 1}n×m, where “c0
ij = 0”

means that pj does not appear in the equation for ẋi, that is, ∂fi/∂pj ≡ 0.
The experimental protocol allows us to make small perturbations in which

we change one of the parameters, say the kth one, while leaving the remaining
ones constant. (A generalization would allow for the simultaneous perturbation
of more than one parameter.) For the perturbed vector p ≈ p̄, we measure the
resulting steady state vector x = ξ(p). (Mathematically, we suppose that for
each vector of parameters p in a neighborhood of p̄ there is a unique steady
state ξ(p) of the system, where ξ is a differentiable function. In practice, each



such perturbation experiment involves letting the system relax to steady state,
and the use of some biological reporting mechanism, such as microarrays, in
order to measure the expression profile of the variables xi.) For each of the
possible m experiments, in which a given pj is perturbed, we may estimate the
n “sensitivities”

bij =
∂ξi

∂pj
(p̄) ≈ 1

p̄j − pj
(ξi(p̄ + pjej) − ξi(p̄)) , i = 1, . . . , n

(where ej ∈ R
m is the jth canonical basis vector). We let B denote the matrix

consisting of the bij ’s. (See [8, 9] for a discussion of the fact that division by
p̄j −pj , which is undesirable numerically, is not in fact necessary.) Finally, we let
A be the Jacobian matrix ∂f/∂x and let C be the negative of the Jacobian matrix
∂f/∂p. From f(ξ(p), p) ≡ 0, taking derivatives with respect to p, and using the
chain rule, we get that A = BC. This brings us to the problem stated in this
paper. (The general position assumption is reasonable, since we are dealing with
experimental data.)

2.2 Combinatorial Formulation of Questions (Q1) and (Q2)

Problem name: CPk (the k-Covering problem that captures Ques-
tion (Q1) and (Q2))4

Instance < m,n, k >: U = [1,m] and sets T1, T2, . . . , Tn ⊆ U with
∪n

i=1Ti = U .
Valid Solutions: A subset U ′ ⊆ U such that |U ′ ∩ Ti| ≥ n− k for each
i ∈ [1, n].
Objective: Minimize |U ′|.

2.3 Equivalence of CPk and SCn−k

We can establish a 1-1 correspondence between an instance <m,n, k> of CPk

and an instance <n,m, n− k> of SCn−k by defining Si = { j | i ∈ Tj} for each
i ∈ [1,m]. It is easy to verify that U ′ is a solution to the instance of CPk if and
only if the collection of sets Su for each u ∈ U ′ is a solution to the instance of
SCn−k.

3 Approximation Algorithms for SCk

An ε-approximate solution (or simply an ε-approximation) of a minimization
problem is defined to be a solution with an objective value no larger than ε times
the value of the optimum. It is not difficult to see that SCk is NP-complete even
when k = n − c for some constant c > 0.

4 CPn−1 is known as the hitting set problem [5, p. 222].



3.1 Analysis of Greedy Heuristic for SCk for Large k

Johnson [6] provides an example in which the greedy heuristic for some instance
of SC over n elements has an approximation ratio of at least log2 n. This ap-
proach can be generalized to show the following result.

Lemma 1. For any fixed c > 0, the greedy heuristic (as described in Fact 1(b))
has an approximation ratio of at least

(
1
2 − o(1)

) (
n−c
8n−2

)
log2 n = Ω(log n) for

some instance <n,m, n − c> of SCn−c.

3.2 Randomized Approximation Algorithm for SCk

As stated before, an instance <n,m, k> of SCk can be (1 + ln a)-approximated
in O(mnk) time for any k where a = maxS∈S{|S|}. In this section, we provide a
randomized algorithm with an expected performance ratio better than (1+ ln a)
for larger k. Let S = {S1, S2, . . . , Sm}.

Our algorithm presented below as well as our subsequent discussions and
proofs are formulated with the help of the following vector notations:

– All our vectors have m coordinates with the ith coordinate indexed with the
ith set Si of S.

– if V ⊂ S, then v ∈ {0, 1}m is the characteristic vector of V , i.e., vSi
={

1 if Si ∈ V
0 if Si �∈ V

– 1 is the vector of all 1’s, i.e. 1 = s;
– Si = {A ∈ S : i ∈ A} denotes the sets in S that contains a specific element

i.

Consider the standard integer programming (IP) formulation of an instance <
n,m, k> of SCk [14]:

minimize 1x subject to
six ≥ k for each i ∈ U
xA ∈ {0, 1} for each A ∈ S

A linear programming (LP) relaxation of the above formulation is obtained by
replacing each constraint xA ∈ {0, 1} by 0 ≤ xA ≤ 1. The following randomized
approximation algorithm for SCk can then be designed:



1. Select an appropriate positive constant β > 1 in the following manner:

β =




ln a if k = 1
ln(a/(k − 1)) if a/(k − 1) ≥ e2 and k > 1
2 otherwise

2. Find a solution x to the LP relaxation via any polynomial-time algorithm for solving
linear programs (e.g. [7]).

3. (deterministic rounding) Form a family of sets C0 = {A ∈ S : βxA ≥ 1}.
4. (randomized rounding) Form a family of sets C1 ⊂ S − C0 by independent

random choices such that Pr[A ∈ C1] = βxA.
5. (greedy selection) Form a family of sets C2 as:

while si(c0 + c1 + c2) < k for some i ∈ U , insert to C2 any A ∈ Si − C0 − C1 − C2.
6. Return C = C0 ∪ C1 ∪ C2 as our solution.

Let r(a, k) denote the performance ratio of the above algorithm.

Theorem 2.5

E[r(a, k)] ≤




1 + ln a, if k = 1

(
1 + e−(k−1)/5

)
ln(a/(k − 1)), if a/(k − 1) ≥ e2 and k > 1

min{ 2 + 2 · e−(k−1)/5, 2 +
(
e−2 + e−9/8

) · a
k }

≈ min{ 2 + 2 · e−(k−1)/5, 2 + 0.46 · a
k } if a/(k − 1) < e2 and k > 1

Let OPT denote the minimum number of sets used by an optimal solution.
Obviously, OPT≥ 1x and OPT≥ nk

a . A proof of Theorem 2 follows by showing
the following upper bounds on E[r(a, k)] and taking the best of these bounds
for each value of a/k:

1 + ln a, if k = 1(
1 + e−(k−1)/5

)
ln(a/(k − 1)), if a/(k − 1) ≥ e2 and k > 1

2 + 2 · e−(k−1)/5, if a/(k − 1) < e2 and k > 1
2 +

(
e−2 + e−9/8

) · a
k , if a/(k − 1) < e2 and k > 1

3.2.1 Proof of E[r(a, k)] ≤ 1 + ln a if k = 1,
E[r(a, k)] ≤ (

1 + e−(k−1)/5
)
ln(a/(k − 1)) if a/(k − 1) ≥ e2 and k > 1,

and
E[r(a, k)] ≤ 2 + 2 · e−(k−1)/5 if a/(k − 1) < e2 and k > 1
For our analysis, we first define two following two vector notations:

x0
A =

{
xA if βxA ≥ 1
0 otherwise x1

A =
{

0 if βxA ≥ 1
xA otherwise

Note that c0
A = �x0

A
 ≤ βx0
A. Thus 1x0 ≤ 1c0 ≤ β1x0. Define bonus = β1x0 −

1c0. It is easy to see that E[1(c0 + c1)] = β1x − bonus.
5 The case of k = 1 was known before and included for the sake of completeness only.



The contribution of set A to bonus is βx0
A − c0

A. This contribution to bonus
can be distributed equally to the elements if A. Since |A| ≤ a, an element
i ∈ [1, n] receives a total of at least bi/a of bonus, where bi = si(βx0 − c0) The
random process that forms set C1 has the following goal from the point of view
of element i: pick at least gi sets that contain i, where gi = k − sic0 These sets
are obtained as successes in Poisson trials whose probabilities of success add
to at least pi = β(k − six0). Let yi be random function denoting the number
that element i contributes to the size of C2; thus, if in the random trials in
Step 4 we found h sets from Si then yi = max{0, k − h}. Thus, E[r(a, k)] =
E[1(c0 + c1 + c2)] ≤ β1x +

∑n
i=1 E[yi − bi

a ] Let qi = β
β−1si(c0 − x0). We can

parameterize the random process that forms the set C2 from the point of view
of element i as follows:

– gi is the goal for the number of sets to be picked;
– pi = β(k − six0) = βgi + (β − 1)qi is the sum of probabilities with which

sets are picked;
– bi/a is the bonus of i, where bi = si(βx0 − c0) ≥ (β − 1)(k − gi − qi);
– qi ≥ 0, gi ≥ 0 and gi + qi ≤ k;
– yi measures how much the goal is missed;
– to bound E[r(a, k)] we need to bound E[yi − bi

a ].

3.2.1.1 g-shortage Functions

In this section we prove some inequalities needed to estimate E[yi − bi

a ] tightly.
Assume that we have a random function X that is a sum of N independent 0-1
random variables Xi. Let E[X] =

∑
i Pr[Xi = 1] = µ and g < µ be a positive

integer. We define g-shortage function as Y µ
g = max{g − X, 0}. Our goal is to

estimate E[Y µ
g ].

Lemma 2. E[Y µ
g ] < e−µ

∑g−1
i=0

g−i
i! µi.

From now on we will assume the worst-case distribution of Y µ
g , so we will

assume that the above inequality in Lemma 2 is actually an equality (as it
becomes so in the limit), i.e., we assume E[Y µ

g ] = e−µ
∑g−1

i=0
g−i
i! µi. For a fixed

β, we will need to estimate the growth of E[Y gβ
g ] as a function of g. Let ρg(β) =

egβE[Y gβ
g ].

Lemma 3. ρg(1) =
∑g−1

i=0
g−i
i! gi = gg

(g−1)!

Lemma 4. For β > 1, ρg+1(β)
βρg(β) is a decreasing function of β.

Lemma 5. If g > 1 and β > 1 then E[Y gβ
g ]

E[Y
(g−1)β

g−1 ]
≤ e−β

(
g

g−1

)g

Lemma 6.
E[Y gβ+q

g ]

E[Y gβ
g ]

< e−q(1−1/β)



3.2.1.2 Putting All the Pieces Together

In this section we put all the pieces together from the previous two subsec-
tions to prove our claim on E[r(a, k)]. We assume that β ≥ 2 if k > 1. Because
we perform analysis from the point of view of a fixed element i, we will skip
i as a superscript as appropriate. As we observed in Section 3.2.1, we need to
estimate E[y − b

a ] and b ≥ (β − 1)(k − g − q). We will also use the notations p
and q as defined there.

Obviously if g = 0 then y = 0. We omit the case of k = 1 and assume that
k > 1 for the rest of this section. We first consider the “base” case of g = 1 and
q = 0. Since q = 0, c0 = x0. Thus, b = si(βc0−c0) = (β−1)sic0 = (β−1)(k−1).
Next, we compute E[y]. Since p = βg = β, E[y] = E[Y β

1 ] = e−β .
We postulate that

E[y − b

a
] ≤ 0 ≡ e−β ≤ (β − 1)(k − 1)

a

≡ e−β

β − 1
≤ k − 1

a

≡ eβ(β − 1) ≥ a

k − 1

≡ β + ln(β − 1) ≥ ln
a

k − 1
(3)

It is easy to see that, for the base case, E[1(c0 + c1 + c2)] ≤ β1x ≤ ln(a/(k −
1))OPT.

Now we consider the “non-base” case when either g > 1 or q > 0. Compared
to the base case, in a non-base case we have bonus b

a decreased by at least
(β − 1)(g + q − 1)/a. Also, E[y] = E[Y p

g ] = E[Y βg+(β−1)q
g ].

Lemma 7.
E[Y βg+(β−1)q

g ]

E[Y β
1 ]

≤ e−(g+q−1)/5.

Summarizing, when bonus is decreased by at most (β − 1)(g + q − 1)/a =
(β−1)t/a, we decrease the estimate of E[y] by multiplying it with at least e−t/5.
As a function of t = g + q − 1 we have

E[y]− b/a ≤ e−β−t/5 − β − 1
a

(k − 1− t) =
(β − 1)(k − 1)

a

(
e−t/5 − 1 +

t

k − 1

)

This is a convex function of t, so its maximal value must occur at one of
the ends of its range. When t = 0 we have 0, and when t = k − 1 we have
(β−1)(k−1)

a e−(k−1)/5. As a result, our expected performance ratio for k > 1 is



given by

E[r(a, k)] ≤ β1x +
∑n

i=1 E[yi − bi

a ]

≤ βOPT + βnk
a e−(k−1)/5

≤ β(1 + e−(k−1)/5)OPT

≤
{(

1 + e−(k−1)/5) ln(a/(k − 1)
)
OPT if a/(k − 1) ≥ e2

2 · (1 + e−(k−1)/5
)
OPT if a/(k − 1) < e2
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