
Fast Optimal Genome Tiling with Applications to Microarray

Design and Homology Search∗

Piotr Berman†

Department of Computer Science & Engineering

Pennsylvania State University, University Park, PA 16802

Email: berman@cse.psu.edu

Paul Bertone‡

Department of Molecular, Cellular, and Developmental Biology

and Department of Molecular Biophysics and Biochemistry

Yale University, New Haven, CT 06520

Email: paul.bertone@yale.edu

Bhaskar DasGupta§

Department of Computer Science

University of Illinois at Chicago, Chicago, IL 60607

Email: dasgupta@cs.uic.edu

Mark Gerstein¶

Department of Molecular Biophysics and Biochemistry

and Department of Computer Science

Yale University, New Haven, CT 06520

Email: mark.gerstein@yale.edu

Ming-Yang Kao‖

Department of Computer Science

Northwestern University, Evanston, IL 60201

Email: kao@cs.northwestern.edu

Michael Snyder∗∗

Department of Molecular, Cellular and Developmental Biology

and Department of Molecular Biophysics and Biochemistry

Yale University, New Haven, CT 06520

Email: michael.snyder@yale.edu

September 5, 2003

∗A preliminary version of this paper appeared in the 2nd Workshop on Algorithms in Bioinformatics, Lecture Notes in

Computer Science 2452, R. Guigó and D. Gusfield (editors), Springer Verlag, pp. 419-433, 2002.
†Supported in part by National Library of Medicine grant LM05110.
‡Supported in part by NIH grants P50 HG02357 and R01 CA77808.
§Corresponding author. Supported in part by NSF grants CCR-0296041 and CCR-0208749, and a UIC startup grant.
¶Supported in part by NIH grant P50 HG02357.

‖Supported in part by NSF grant EIA-0112934.
∗∗Supported in part by NIH grants P50 HG02357 and R01 CA77808.

Abstract

In this paper we consider several variations of the following basic tiling problem: given a sequence of

real numbers with two size bound parameters, we want to find a set of tiles of maximum total weight

such that each tiles satisfies the size bounds. A solution to this problem is important to a number of

computational biology applications such as selecting genomic DNA fragments for PCR-based amplicon

microarrays and performing homology searches with long sequence queries. Our goal is to design efficient

algorithms with linear or near-linear time and space in the normal range of parameter values for these

problems. For this purpose, we first discuss the solution to a basic online interval maximum problem

via a sliding window approach and show how to use this solution in a non-trivial manner for many of

the tiling problems introduced. We also discuss NP-hardness results and approximation algorithms for

generalizing our basic tiling problem to higher dimensions. Finally, computational results from applying

our tiling algorithms to genomic sequences of five model eukaryotes are reported.

1 Introduction

There are currently over 800 complete genome sequences available to the scientific community, representing

the three principal domains of life: bacteria, archaea, and eukaryota [19]. The recent sequencing of several

large eukaryotic genomes, including the nematode Caenorhabditis elegans [27] (100 Mb), the flowering plant

Arabidipsis thaliana [26] (125 Mb), the fruitfly Drosophila melanogaster [1] (180 Mb) and working draft

sequences for the laboratory mouse Mus musculus [28] (2.7 Gb) and Homo sapiens [11, 29] (3.4 Gb) has

enabled advances in biological research on an unprecedented scale.

Genome sequences vary widely in size and composition. In addition to the thousands of sequences

that encode functional proteins and genetic regulatory elements, most eukaryotic genomes also possess a

large number of non-coding sequences which are replicated in high numbers throughout the genome. These

repetitive elements were introduced over evolutionary time and consists of families of transposable elements

that can move from one chromosomal location to another, retroviral sequences integrated that are into the

genome via an RNA intermediate, and simple repeat sequences that can originate de novo at any location.

Nearly 50% of human genomic DNA is associated with repetitive elements.

The presence of repeat sequences can be problematic for both computational and experimental biology

1

research. For example, BLAST searches [2] with queries containing repeats against large sequence databases

often result in many spurious subsequence matches, obscuring significant results and wasting computational

resources. Although it is now standard practice to screen query sequences for repetitive elements, doing

so subdivides the query into a number of smaller sequences that often produce a less specific match than

the original. In an experimental context, when genomic sequence is used to investigate the binding of

complementary DNA, repetitive elements can generate false positive signals and mask true positives by

providing highly redundant DNA binding sites that compete with the meaningful targets of complementary

probe sequences.

Genomic DNA can be screened for repeat sequences using specialized programs such as RepeatMasker [23]

which performs local subsequence alignments [25] against a database of known repetitive elements [13]. Re-

peats are then masked within the query sequence, whereby a single non-nucleotide character is substituted for

the nucleotides of each repeat instance. This global character replacement preserves the content and relative

orientation of the remaining subsequences, which are then interspersed with character blocks representing

the repetitive elements identified during the screening process.

Although the screening and/or removal of repeats is generally beneficial, additional problems may arise

from the resulting genomic sequence fragmentation. Following repeat sequence identification, the remaining

high-complexity component (i.e., non-repetitive DNA) exists as a population of fragments ranging in size from

a few nucleotides to several kilobases. For organisms such as Homo sapiens, where the genome contains many

thousands of repeat elements, the vast majority of these high-complexity sequence fragments are below 1 Kb

in size. This situation presents a significant impediment to both computational and experimental research.

Bioinformatics analyses often benefit from the availability of larger contiguous sequences, typically 1 Kb and

larger, for homology searches and gene predictions. Similarly, very small sequences (< 200 bp) are of limited

use in many high-throughput experimental applications. These constraints provide the basis of the tiling

problems formalized in this paper.

DNA microarray design A principal motivation for looking at the tiling problems considered in this

paper is their application to the design of DNA microarrays for efficient genome analysis. A number of

large-scale techniques have recently been developed for genome-wide data acquisition. Of these, a variety of

2

microarray technologies have become ubiquitous in genome analysis centers due to the highly parallel nature

of these experiments. DNA microarray experiments rely on the property of complementarity, whereby

each of the four nucleotide bases can preferentially interact with another base: adenine (A) couples with

thymine (T) and vice versa, and cytosine (C) couples with guanine (G) and vice versa. When nucleic acid

molecules recognize and anneal to molecules having complementary sequences, they are said to hybridize.

DNA microarrays exploit this phenomenon by measuring the degree of hybridization that takes place when

a battery of different sequences is exposed to a set of test molecules or probes.

Each microarray element consists of a different DNA sequence, present in high copy number and immo-

bilized to a glass surface. These DNA sequences are simultaneously exposed to a population of fluorescence-

labeled probe molecules, and complementary sequences are allowed to hybridize. A laser scanner is used to

excite the fluors coupled to the hybridized probe, and the emitted signals are detected and quantified by

densitometry software. This provides a measure of the degree of hybridization of probe molecules to each

microarray element. Since the DNA sequences immobilized to the array are known, this technique provides

information about which sequences are enriched by complementary probe molecules that are present under

various experimental conditions. Such data is used to observe the differential expression of genes across dif-

ferent cell types, identify the location of regulatory elements, and detect disease-related sequence mutations.

Using microarray systems, researchers can simultaneously interrogate thousands of individual molecules in

a single experiment. Designing microarrays that contain sequences representing large spans of chromosomal

DNA provides a vehicle for the global analysis of gene expression or other types of molecular interactions on

a genome-wide scale.

Various types of microarrays have been developed, each designed to capture a different kind of informa-

tion. The most important types include cDNA microarrays [22], high-density oligonucleotide systems [16]

and microarrays whose elements are composed of amplified genomic DNA [10, 12]. The principal differences

between these systems lie in the substrate DNA molecules that are used. cDNA microarrays are constructed

using gene sequences which have been previously been observed to be expressed within a cell. High-density

oligonucleotide systems employ an in situ DNA synthesis method to deposit short (25-70 nucleotide) DNA

fragments using a modified inkjet technology. These typically represent sequences internal to known genes,

3

providing an anchor to which complementary probe molecules can hybridize.

The microarrays we consider here are constructed from amplified genomic DNA. Each element consists

of a relatively long (typically 300 bp - 1.2 Kb) sequence of genomic DNA that is acquired via the polymerase

chain reaction (PCR) [17] in which a segment of DNA may be selectively amplified using a chemical system

that recreates DNA replication in vitro. Although the size resolution of these array elements is not as fine

as that of high-density oligonucleotide systems, PCR-based (or amplicon) microarrays provide experimental

access to much larger regions of contiguous genomic DNA. The tiling algorithm described here has recently

been used to design a microarray of this type to represent the complete sequence of human chromosome

22 [20].

When considering PCR-based microarrays, we are concerned with finding the maximum number of high-

complexity subsequence fragments given a genomic DNA sequence whose repetitive elements have been

identified and masked. A maximal-coverage amplicon array can then be designed by deriving an optimal

tile path through the target genomic sequence such that the best set of fragments is selected for PCR

amplification. Determining this tile set allows one to achieve optimal coverage of high-complexity DNA across

the target sequence, while simultaneously maximizing the number of potential subsequences of sufficient size

to facilitate large-scale biological research.

The rest of the paper is organized as follows. In Section 2 we precisely describe variants of the tiling

problem. In Section 3 we discuss a basic Online Interval Maximum problem and its efficient solution via

a sliding window approach. In Sections 4–8, we introduce new algorithms for the solution of various tiling

problems. Finally, in Section 9 we discuss practical results for the tiling problem as applied to several

example genome sequences.

2 Problem Statements and New Algorithms

In this section, we define our tiling problems, precisely describe algorithms for their solution, and cite

related previous results. We also outline typical parameter values for our tiling problems when applied to

DNA microarray design and homology search in Section 2.3.

4

2.1 Problem Statements

Based on the applications discussed in Section 1, we now formalize a family of tiling problems. The following

notations are used uniformly throughout the rest of the paper:

• [i, j) denotes the set of integers {i, i + 1, . . . , j − 1};

• [i, j] = [i, j + 1);

• f[i, j) and f[i, j] denote the elements of an array f with indices in [i, j) and [i, j], respectively.

Our tiling problems build upon the basic genome tiling algorithm developed in [6], which we call the GTile

problem and describe as follows. The input consists of an array c[0, n) of real numbers and two integer size

parameters � and u. A subarray B = c[i, j) is called a block of length j − i and weight w(B) =
∑j−1

k=i ck, the

weight of a set of blocks is the sum of their weights and a block is called a tile if its length belongs to [�, u].

Our goal is to find a set of pairwise disjoint tiles with the maximum possible weight. The tiling problems

of interest in this paper are variations, restrictions and generalizations of the GTile problem specified by a

certain combinations of the following items:

Compressed versus uncompressed input data: This is motivated by a simple binary classification of

the high-complexity regions of the genome sequence from their low-complexity counterparts. Now all

entries of c[0, n) is either x or −x for some fixed x > 0. Hence, the input sequence can be more efficiently

represented by simply specifying beginnings and endings of blocks of identical values1. In other words,

we can compress the input sequence c[0, n) to a sequence of integers (indices) S[0, m + 1) such that

• S0 = 0, Sm = n + 1, S1 ≥ S0 and Si > Si−1 for all i ∈ [2, m];

• each element of c[S2j, S2j+1) is x for all 0 ≤ j ≤ �m
2
�;

• each element of c[S2j−1, S2j) is −x for all 0 < j ≤ �m+1
2

�.

We note in Section 2.3 that the input size m+1 of such a compressed input data is typically significantly

smaller than n. As a result, we can get significantly faster algorithms if we can design an algorithm
1Notice that a {0,1} classification of the high-complexity regions from the low-complexity ones is not suitable since then we

do not penalize for covering low-complexity regions and solving the tiling problem becomes trivial.

5

for compressed inputs with a running time nearly linear in m. Furthermore, this also allows one to

develop efficient hybrid approach to solving the tiling problems: first use a crude binary classification

of the regions to quickly obtain an initial set of tiles and then refine the tiles taking into consideration

the relative importances of the high-complexity elements.

Unbounded versus bounded number of tiles: Another important item of interest is when the number

of tiles that may be used is at most a given value t, which could be considerably smaller than the

number of tiles used by a tiling with no restrictions on the number of tiles. This is motivated by

the practical consideration that the capacity of a microarray as obtainable by current technology is

bounded.

Overlapping versus non-overlapping tiles: To enhance searching sequence databases for homology searches

to allow for the case when potential matches can be found at tile boundaries, it may be useful to relax

the condition of disjointness of tiles by allowing two tiles to share at most p elements for some given

(usually small) p > 0. However, to ensure that we do not have too many overlaps, we need to penalize

them by subtracting the weight of each overlapped region from the sum of weights of all tiles, where

the weight of each overlapped region is the sum of the elements in it. In other words, if T is the set

of tiles and R is the set of elements of C that belong to more than one tile in T , then the weight is

∑
T∈T w(T) −

∑
ci∈R ci.

One dimensional versus d-dimensional: Generalization of the GTile problem in d dimensions has ap-

plications in database designs and related problems [4, 5, 14, 15, 18]2. In this case, we are given a

d-dimensional array C of size n1 ×n2 × ·×nd with 2d size parameters �1, �2, . . . , �d, u1, u2, . . . , ud, a

tile is a rectangular subarray of C of size p1 ×p2 × · · ·×pd satisfying �i ≤ pi ≤ ui for all i, the weight

of a tile is the sum of all the elements in the tile and our goal is again to find a set of tiles such that

the sum of weights of the tiles is maximized.

We examine only those combinations of the above four items which are of importance in our applications.

To simplify exposition, unless otherwise stated explicitly, the GTile problem we consider is 1-dimensional
2For example, in two dimensions with �1 = �2 = 0 and u1 = u2 =∞ this is precisely the ARRAY-RPACK problem discussed

in [14].

6

with uncompressed inputs, unbounded number of tiles and no overlaps. In addition to the previously defined

notations, unless otherwise stated, we use the following notations and variables with their designated mean-

ings throughout the rest of the paper: n + 1 is the number of elements of the (uncompressed) 1-dimensional

input array c[i, j), n1 ≤ n2 ≤ · · · ≤ nd are the sizes of the dimensions for the d-dimensional input array,

w(T) is the weight for a set of tiles T , t is the given number of tiles when the number of tiles is bounded

and p is the maximum overlap between two tiles in 1-dimension. Finally, all logarithms are in base 2 unless

stated otherwise explicitly.

2.2 Related Work

Tiling an array of numbers in one or more dimensions under various constraints is a very active research

area (for example, see [3–5, 14, 15, 18, 24]) and has applications in several areas including database decision

support, two-dimensional histogram computation and resource scheduling. Several techniques, such as the

slice-and-dice approach [4], the shifting technique [9, Chapter 9] and dynamic programming methods based

on binary space partitions [3, 14, 18] have proven useful for these problems. However, to the best of our

knowledge, the particular tiling problems that we investigate in this paper have not specifically been looked

at before except in [6] in which the authors provided a dynamic programming algorithm of higher time

complexity to solve the basic GTile problem and some of its variations. Our problems are different from the

tiling problems in [3, 4, 14, 15, 18, 24]; in particular, we do not require partitioning of the entire array, the

array entries may be negative and there are lower and upper bounds on the size of a tile. Other papers which

most closely relate to our work are the references [21] and [30]. The authors in [21] provide an O(n) time

algorithm to find all maximal scoring subsequences of a sequence of length n. In [30] the authors investigate

computing maximal scoring subsequences which contain no subsequences with weights below a particular

threshold.

2.3 Typical Parameter Values for Microarray Design and Homology Search

n + 1 (the DNA sequence length): Although the sizes of sequenced eukaryotic genomes range from 12Mb

(for the budding yeast Saccharomyces cerevisiae) to 3.4Gb (H. sapiens), these exist as separate chro-

mosomes that are treated as individual sequence databases by our tiling algorithms. Eukaryotic chro-

7

mosomes range in size from approximately 230 Kb (S. cerevisiae chromosome I) to 256 Mb (human

chromosome 1), with the average human chromosome being 150 Mb in size.

� and u (lower and upper bounds for tile sizes): In computing an optimal set of tiles for microarray

design, tile sizes can range from 200 bp to 1.5 Kb. Sequence fragments below 200 bp become difficult to

recover when amplified in a high-throughput setting. An upper bound of 1.5 Kb balances two factors:

(1) obtaining maximal sequence coverage with a limited number of tiles, and (2) producing a set of

tiles which are small enough to achieve sufficient array resolution. In practice the average tile size is

800 when � and u are set to 300 and 1500, respectively. For some instances of the homology search

problem it may be desirable to extend the upper bound from 1.5 Kb to 2 Kb, representing the typical

size of processed eukaryotic messenger RNA transcripts.

p (maximum overlap between two tiles): For microarray applications, tiles are disjoint; that is, the

overlap parameter p is 0. However, searching sequence databases for homology matches can be en-

hanced by introducing a maximum overlap of p ≤ 100 nucleotides for the case when potential matches

can be made at tile boundaries.

t (maximum number of tiles, when the number of tiles is bounded): In selecting tiles for microar-

ray applications, t can be specified to limit the number of sequence fragments considered for PCR

amplification. For mammalian DNA where repeat content (and subsequent sequence fragmentation)

is high, we can expect the high-complexity sequence nucleotides to cover n/2 sequence elements; the

desired number of tiles to be computed will thus be n
2

divided by u+�
2

(the average of u and �). For

homology search problems t is unbounded.

m (size of compressed input): It is difficult to give an accurate estimate of the number of high-complexity

sequence fragments in the target sequence following repeat screening since it varies greatly with the

organism. In our experience, human chromosomes end up having between 2 to 3 times as many high-

complexity sequence fragments (before processing) as there are final tiles (after processing), that is, m

is roughly between 2t and 3t. In other words, in practice m may be smaller than n by a factor of at

least 600 or more.

8

2.4 Synopsis of Results

Our main results are summarized in Table 1; all these results are either new or direct improvements of

any previously known algorithms. All of our methods use simple data structures such as a double-ended

queues and are therefore easy to implement. The techniques used for many of these tiling problems in

one dimension use the solution of an Online Interval Maximum (OLIM) problem. In Section 3, we discuss

the OLIM problem together with an efficient solution for it using a windowing scheme reminiscent of that

in [8]. However, the primary consideration in the applications in [8] was reduction of space because of the

online nature of their problems, whereas we are more concerned with time-complexity issues since our tiling

problems are off-line in nature (and hence space for storing the entire input is always used). Moreover, our

windowing scheme is somewhat different from that in [8] since we need to maintain multiple windows of

different sizes and data may not arrive at evenly spaced time intervals.

3 Computing the Online Interval Maximum via Sliding Window

In this section, we discuss an Online Interval Maximum (OLIM for short) problem which is used to design

many of our remaining algorithms. The authors in [8] considered a restricted version of the OLIM problem

in the context of maintaining stream statistics in the sliding window model and briefly mention a solution

for this problem. We expect the OLIM problem to be useful in other contexts as well. The problem in its

most general form can be stated as follows.

Input: (1) a sequence a[0, n) of real values in increasing order where each value ai is an argument or a

test (possibly both), (2) 2α real numbers �1, u1, �2, u2, . . . , �α, uα with 0 < �1 < u1 < �2 < u2 < · · · <

�α < uα and (3) a real value function g defined on the arguments.

Output: for every test number ak compute the maximum bk of the α quantities bk,1, bk,2, . . . , bk,α, where

bk,i is given by

bk,i = max




g(aj) : ak − ui ≤ aj < ak − �i and aj is an argument




.

9

Online limitations: read the elements of the sequence a[0, n) one at a time from left to right and compute

bk (if ak is a test) before computing g(ak).

As an illustration, let α = 1, n = 4, �1 = 2, u1 = 3, ai = i for i ∈ [0, 5), each ai is both an argument and a

test, and the function g is given as g(i) = (−2)i for i ∈ [0, 5). Then, b4 = b4,1 = max {g(i) : 1 ≤ i ≤ 2} = 4.

Theorem 1 The OLIM problem can be solved in O(n1β + nα) time using O(n1 + α) space, where n1 and

n2 are respectively the numbers of arguments and tests in the input and β is the maximum time to compute

g(x) for any x.

Proof. We maintain a queue Qi for each i ∈ [1, α]. When we compute the pair (ak, g(ak)) for each

argument ak, we will also store it in the abovementioned queues such that the following invariant is satisfied

for each Qi: Qi stores a minimal set of argument-value pairs such that for some future test am that has not

been read yet it is possible to have bm,i = g(x) for some (x, g(x)) in Qi. After reading each ak, Qi can be

maintained using the following two rules:

Rule 1: Remove from Qi every (x, g(x)) such that x < ak − ui. The validity for this rule is obvious from

the definition of bm,i and the fact that the sequence a[0, n) is in increasing order.

Rule 2: Let p be the smallest index of an argument such that ak − ui ≤ ap < ak − �i and (ap, g(ap)) �∈ Qi.

Remove from Qi every (x, g(x)) such that g(x) ≤ g(ap) and then insert (ap, g(ap)) in Qi. Rule 2 is valid

because for m ≥ k if we compute bm,i as the maximum value of a set that contains a removed (x, g(x),

then this set must also contain (ap, g(ap)). This is true because x < ap and therefore rule 1 would remove

(x, g(x)) earlier.

If we perform all the needed insertions to Qi using Rule 2, then the following holds: if j < m and

(aj, g(aj)) and (am, g(am)) are simultaneously present in Qi, then g(aj) > g(am). Consequently, the

maximum of the g-values in Qi is contained in the oldest pair in Qi. These observations allow us to

maintain each Qi as a double-ended queue where front(Qi) stores the maximum of all the g-values of the

elements in Qi (needed to compute bm,i, and to perform Rule 1), while tail(Qi) has the minimum g-value

(needed to perform Rule 2). The following is a high-level pseudocode of the main parts of our proposed

algorithm for Qi when reading ak assuming all the parameters have been appropriately intialized:

10

(* windowing scheme for Qi *)

(* notations *)

Let q be the least index of an argument of a that has been read

but has not considered for insertion to Qi yet;

for each argument ai, g(ai) is calculated once and stored;

(* algorithm for Qi *)

(* currently read number is ak *)

(* Execute Rule 1 *)

(x, g(x))← front(Qi);

while ((Qi �= ∅) and (x < ak − ui)

remove front(Qi)

endwhile;

(* Execute Rule 2 *)

while ((ap < ak − �i))

(y, g(y))← tail(Qi)

while ((Qi �= ∅) and (g(y) ≤ g(ap))

remove tail(Qi)

endwhile;

add (ap, g(ap)) to Qi at its tail;

p← p + 1

endwhile;

(* calculate bk,i if necessary *)

11

if (ak is a test) then (z, g(z))← front(Qi); bk,i = g(z)

For each queue Qi and each ak we need to check if Qi must be updated using either of the two rules.

This takes O(nα) time. Because each argument is inserted to and deleted from a queue exactly once, these

updates takes O(n1α) total time. For every test we compute the maximum of the maxima of the queues,

this takes O(n2α) time. ❑

4 Basic GTile

Theorem 2 The GTile problem can be solved in O(n) time using O(n) space.

Proof. We use dynamic programming to reduce the GTile problem to OLIM. Subproblem k has c[0, k) as

input. Let mk be the sum of weights of the tiles and c[dk, ek) be the last tile in an optimum solution of

subproblem k. If mk = mk−1, then subproblem k has the same solution as subproblem k − 1, otherwise this

solution consists of tile c[dk, k) and the tiles in the solution of subproblem dk. Let sk = w(c[0, k)), hence

w(c[i, j)) = sj − si. It is trivial to compute sk for all k ∈ [0, n] in O(n) time and space. Obviously, mk = 0

for 0 ≤ k ≤ �. For k > � we can compute mk and dk recursively as follows:

let i ∈ [k − u, k − �] ∩ [0,∞) be an index that maximizes vi = mi + sk − si;

if vi > mk−1, then mk = vi, dk = i and ek = k

else mk = mk−1, dk = dk−1 and ek = ek−1

To complete our claim on time and space complexity, it suffices to show how to compute mk for every k > �

in a total of O(n) time and space. For each k we can first search for i ∈ [k−u, k− �]∩ [0,∞) that maximizes

yi = mi − si; then we know vi = yi + sk. This is the OLIM problem with input array a[0, n), ai = i, each

ai is both an argument and a test, α = 1, �1 = � + 1, u1 = u and g(ai) = mi − si. It is easy to recover an

optimal tiling via the dk and ek values. ❑

12

5 GTile with Overlaps

In this section, we consider the GTile problem when the overlap p between two tiles is an element of some

s-subset A of [0, δ] with δ < �
2
. The constraint δ < �

2
holds for our biological applications since typically

p ≤ 100 and �
 300. An important consequence of this constraint is the following observation:

Obsevration 3 No ci can belong to more than two tiles.

Proof. Suppose that some ci belongs to three tiles c[b1, e1), c[b2, e2) and c[b3, e3) with e1 ≤ e2 ≤ e3 and

b3 < e1. Since each tile is of length at least � and the length of overlap between any two tiles is less than

�
2
, we must have b1 ≤ b2 ≤ b3. Now, e2 − b2 = (e2 − e1) + (e1 − b2) < (e2 − b3) + (e1 − b2) < �

2
+ �

2
= �,

hence the tile c[b2, e2) does not satisfy the size bounds. ❑

Using the above observation, we can prove the following result.

Theorem 4 The GTile problem with overlaps as described above can be solved in O(sn) time using O(n)

space.

Proof. Let A ⊆ [0, p] be the s-subset for this problem. We reuse some of the notations in the proofs of

Theorems 1 and 2. Let m ′
k be the sum of weights of the tiles and c[d ′

k, k) was the last tile in an optimum

solution of subproblem k in which ck was the ending of the last tile. For k ≤ �, m ′
k = 0. For k > �, we can

again compute m ′
k and d ′

k in the following manner:

let i ∈ [k − u, k − �] ∩ [0,∞) be an index that

maximizes vi = mi + sk − si;

m ′
k = vi, d ′

k = i

This can again be solved in O(n) time and space via the OLIM problem in the same manner as in Theorem 2.

Let [hk, fk) be tile previous to the last tile [dk, k) in an optimum solution of subproblem k in which ck was

the ending of the last tile. If the last tile was overlapped by the previous to last tile by a ∈ A elements in an

optimum solution of subproblem k, then the total weight of the solution is (sk−sdk
)+m ′

dk+a−(sdk+a−sdk
) =

sk + m ′
dk+a − sdk+a. Now, for each k > �, we can compute mk, dk, ek and fk in the following manner:

13

(* vi is the solution when the last tile [i, k) was not overlapped *)

let i ∈ [k − u, k − �] ∩ [0,∞) be an index that maximizes vi = mi + sk − si

(* µj,a is the solution when the last tile [j, k) was overlapped by a elements *)

(* computation of µj,a takes O(s) time *)

let j ∈ [k − u, k − �] ∩ [0,∞) and a ∈ A be the indices that maximize µj,a = sk + m ′
j+a − sj+a;

if mk−1 ≥ max{vi, µj,a} then mk = mk−1, dk = dk−1, ek = ek−1, fk = fk−1

else

if vi > µj,a then mk = vi, dk = i, ek = k, fk = ei

else mk = µj,a, dk = j, ek = k, fk = j + a

By Observation 3, the last three tiles in the solution of subproblem k cannot have a common element and

hence the solution is correct. Obviously, it suffices to find that i ∈ [k − u, k − �] ∩ [0,∞) that maximizes

mi − si and that j ∈ [k − u + a, k − � + a] ∩ [0,∞) that maximizes m ′
j − sj. Each of them is can again be

solved via OLIM problem. The tiles in an optimal solution can be recovered recursively via the di, ei and

fi values. ❑

6 GTile with Compressed Input

Theorem 5 The GTile problem with compressed input data can be solved in O(αm) time using O(αm)

space where α = ��/(u − �)
.

In the remaining part of this section, we prove the above theorem. We again reduce this problem to

OLIM. A key idea in this reduction is to extend the definition of a tile to include unions of adjacent tiles.

In the rest of this section, we use this extended definition of a tile3. Then we can redefine our problem by

requesting that tiles in our optimal solution are separated by entries that do not belong to any tile. Notice
3Given an extended tile, it is indeed easy to decompose it into a set of tiles in O(1) time.

14

that the set of lengths that an extended tile may have is ∪∞i=1[i�, iu] =
(
∪α−1

i=1 [i�, iu]
)
∪ [α�,∞), where α is

the smallest positive integer such that (α + 1)� ≤ αu + 1. We will say that the legal length of any tile in any

solution can be of α different kinds: the ith kind (for 1 ≤ i < α) is [i�, iu] and the αth kind is [α�,∞). The

following lemma shows how to further restrict the beginnings and endings of our extended tiles.

Lemma 6 There is an optimum solution for the GTile problem with compressed input in which the (ex-

tended) tiles are only of the following kinds:

(i) c[S2i, S2j+1), i.e., starting and ending with a full block of x’s;

(ii) c[S2i+1 − k�, S2i+1) or c[S2i+1 − ku, S2i+1) for some positive integer k ∈ [1, α], i.e., ending with a

full block of x’s and the length of the tile is either a multiple of � or a multiple u;

(iii) c[0, k�) or c[0, ku) for some positive integer k ∈ [1, α].

Proof. If the length of a selected tile is neither a multiple of � nor a multiple of u, then it must be of

type (i) since otherwise we could get a tile of greater weight by moving one of the ends. Now suppose that

the length of a selected tile is a multiple of � or u and it does not end at some S2i+1. If it ends with a x,

we can shift the tile to the right until it ends with the last x of this block of x’s, or it coalesces with another

tile in the solution and then the shifting process is again applied to this coalesced tile. If it ends with a

−x, we can shift it to the right with similar results. This type of shifting produces tiles of type (ii) unless

after shifting the tile to the left it ends at c0 and then we get tiles of type (iii). If the length of a tile of

type (ii) or (iii) produced by the above shifting is greater than αu, then there are two possibilities: if the

tile starts in a block of x’s then we extend the tile until the begining of this block producing a tile of type (i);

however if the tile ends in a block of −x’s then we can shrink the tile by moving its begining to the right

until either the length is αu or the tile ends with a full block of x’s, whichever occurs earlier. ❑

In our algorithm, we first need to generate all possible beginnings and endings for the extended tiles. We

do this in the following straightforward manner:

• We generate the monotonically increasing sequence of indices of all possible beginnings of our tiles: S2i

such that 2i ≤ m (type (i) and (iii)) and S2i+1 − kL such that 0 < k ≤ α and L ∈ {�, u} (type (ii)).

The total number of such beginnings is at most
⌈

m
2

⌉
+ αm. Duplicates are removed from the list.

15

• We generate the monotonically increasing sequence of indices of all possible endings of our tiles: S2j+1

such that 2j + 1 ≤ m (type (i) and (ii)) and kL such that 0 < k ≤ α and L ∈ {�, u}. The total number

of such endings is at most
⌈

m
2

⌉
+ 2α. Duplicates are removed from the list.

• We merge these monotonically increasing sequences of beginnings and endings into one increasing

sequence X of beginnings and endings.

The above steps can be carried out in O(mα) time and space. As in Theorem 2, define si to be w(c[0, i))

for i ∈ {S0, S1, . . . , Sm}. It is easy to calculate all such si’s in O(m) time and space. We now process the list

X from left to right. We will maintain the following as we process each element x of the list X:

(a) If x is a beginning, then we maintain mx, vx = mx − sx and previous(x) = c[dx, ex), where mx the

maximum possible sum of entries of set of disjoint tiles of legal length that end before x and previous(x)

is the last tile from such a solution. If z is the entry in X before x, then we need to set mx = mz,

vx = mz − sx and previous(x) = previous(z); if x is the first element of X then we set mx = 0 and

vx = sx.

(b) If x is an ending, then we find vz = y ∈
(
∪α−1

i=1 [x − i�, x − iu]
)
∪ [x−α�, 0]{vy}. We set mx = (sx − sz)+

mz = sx + vz, vx = mx − sx and previous(x) = c[cx, dx) = c[z, x). Let x ′ be the entry in X previous

to x (if such an entry does not exist, then simply set mx ′ = −∞ in the following formula). Then, if

mx < mx ′ then we set mx = mx ′ .

It is clear that the only nontrivial step is the computation of mz in (b) above. This is however again

the OLIM problem: the sequence a[0, n) is the sorted list of beginnings and endings X= (x1, x2, . . .), each

beginning is an argument, an ending is a test, g(x) = vx for argument x, [�i, ui] = [i� + 1, iu] for 1 ≤ i < α

and [�α, uα] = [α� + 1, n] Our final solution has a total weight of mn; to recover the tiling we start with

previous(mn) in our collection and recursively look at the previous values for the part of the optimal

solution that ends before the beginning of previous(mn).

Because we have O(mα) arguments, O(m + α) tests and α queues, a straightforward application of

Theorem 1 shows that we use O(mα2) time and O(mα) space. However, we can design our algorithm with

O(mα) running time as explained below.

16

For ease of counting in the analysis, we will assume that duplicates are not removed from the list of

begining; this can only increase the running time. For analysis, the beginings will be partitioned into two

sets: Γ1 contains the O(m) beginings of type S2i+1 and Γ2 contains the remaining mα beginings. The endings

are also partitioned into two sets: ∆1 contains the 2α endings of the form kL for 0 < k ≤ α and L ∈ {�, u}

and ∆2 contains the remaining O(m) endings.

First, let us calculate the total time that we will take to check if one of the α queues in the OLIM problem

need to be updated.

(a) The mα beginings in Γ2 can be partitioned into groups of 2α beginings, where each such group of 2α

beginings are of the form S2i+1 − kL for 0 < k ≤ α, L ∈ {�, u} and a distinct S2i+1. However, notice

that the two endings S2i+1 − kL for a particular k need to be checked for insertion in only the queue

Qk in the algorithm for the OLIM problem. With this minor modification in the code of the algorithm

for the OLIM problem, the total time to check if all appropriate queues need to be updated for the

beginings in Γ2 is O(mα).

(b) For each begining in Γ1 and each ending in ∆2, we may need to check each of the α queues for update,

hence the total time taken for these endings in O(mα).

(c) For a pair of endings kL ∈ ∆1, we need to check only one possible entry v0 for insertion into its kth

queue Qk; the remaining queues need not be checked for update for these pair of endings. Hence, the

total time taken for the endings in ∆1 is O(α).

Let us now calculate the total time taken for insertions and deletions of the beginings in the queues. Since

each of the mα beginings in Γ2 can be inserted and/or deleted from at most one queue, the total time for all

these insertions and deletions is O(mα). Each of the remaining O(m) beginings can be inserted or deleted

from each of the α queues at most once, hence the total time taken for this part is also O(mα).

7 GTile with Bounded Number of Tiles

In this section, we consider the case when the maximum number of tiles t is given.

17

Theorem 7 The GTile problem with bounded number of tiles can be solved in O(min{n logn, nt}) time using

O(n) space.

It is not too difficult to provide an algorithm with O(nt) time and space using the approach of Theorem 2

and maintaining separate queues for each possible value of number of tiles. In the rest of this section, we will

use a different approach to reduce the space to O(n) which is significant since t could be large. We will also

provide another algorithm that runs in O(n log n) time using O(n) space which is significant since typically

for our applications log n � t.

7.1 Sets and Sequences of Block Ends

Recall that a block is contiguous subsequence c[p, q) of the given input sequence, a block of length at least �

and at most u is a tile and our solution consists of a set of disjoint tiles. A set of blocks SSSS can be uniquely

characterized by the set of endpoints of its blocks by using the following two quantities (where the first

component of an ordered pair is λ or ρ depending on whether the endpoint is the left or the right endpoint

of the block, respectively):

ends(c[a, b)) = {(λ, a), (ρ, b)}; ends(SSSS) =
⋃

T∈SSSS

ends(T).

A block end e = (ρ, m) has side side(e) = ρ and position pos(e) = m. A set of ends E is consistent if

E = ends(SSSS) for some set of non-empty blocks SSSS. We introduce a partial order ≺ among the block ends as

follows: e ≺ f if pos(e) < pos(f) or if pos(e) = pos(f), side(e) = ρ and side(f) = λ. A set E of m + 1 ends

ordered according to ≺ is the sequence
−→
E = (e0, e1, . . . , em).

The test for consistency of E is obvious: the number of endpoints m + 1 in E has to be even and the

sequence side(e0), side(e1), . . ., side(em) has to be (λ, ρ, . . . , λ, ρ). Our insistence that (ρ, k) ≺ (λ, k) reflects

the fact that we do not allow empty blocks, i.e. blocks of the form c[k, k).

In this subsection we will assume that SSSS and TTTT are sets of blocks with A = ends(SSSS) and A ′ = ends(TTTT);

hence both A and A ′ are consistent. We also assume that B = A⊕A ′ = (A − A ′) ∪ (A ′ − A), C = A ∪ A ′

and
−→
B = (b0, . . . , b2k−1).

If A⊕D is consistent, we will say that D is an alteration of SSSS, and SSSS ⊕ D is the set of blocks UUUU such

that ends(UUUU) = A⊕D. Obviously, B is an alteration of SSSS. We want to characterize the subsets of B that are

18

alterations as well. For every i ∈ [0, k) we say that b2i and b2i+1 are partners in B. See Figure 1 for an

illustration.

Lemma 8 Partners in B are adjacent in
−→
C .

Proof. For the sake of contradiction, suppose that in
−→
C entries b2i and b2i+1 are separated by another

entry, say a, not in B. Then a is preceded by an odd number of elements of B. Consequently, if a is preceded

by an odd (respectively, even) number of elements of A, then it is preceded by an even (respectively, odd)

number of elements of A⊕B. Thus if the consistency of A dictates that side(a) = λ (respectively, side(a) = ρ)

then the consistency of A⊕B dictates that side(a) = ρ (respectively, side(a) = λ), a contradiction. ❑

Lemma 9 Assume that D ⊂ B does not separate any pair of partners of B, i.e. for each pair of partners in

B, D either has either both or none of them. Then A⊕D is consistent.

Proof. Each a ∈ A − D is preceded by an even number of elements of D, because if it is preceded by

some b ∈ D then, by Lemma 8 and the fact that D does not separate any pair of partners in B, it is also

preceded by the partner of b which is also in D. Thus the parities of the positions of a in A and A⊕D are

the same. Because B − D also does not separate any pairs of partners in B and A⊕D = A ′⊕(B − D), the

same reasoning shows that for any d ∈ D − A ⊂ A ′ − (B − D) the parities of the positions of d in A ′ and

A⊕D are the same. As a result, in the ordering of A⊕D every λ is on an even position and every ρ is on

an odd position. ❑

7.2 Modifying a Set of Tiles

We now revise the assumptions of the previous subsection to assume that SSSS and TTTT are two sets of tiles (i.e.

they satisfy the size bounds), and we redefine the notion of alteration as follows: D is an alteration of SSSS if

SSSS⊕D is a set of tiles. Again, we want to characterize the alterations of SSSS that are subsets of B.

If g < h < i < j and c[g, i), c[h, j) ∈ SSSS ∪ TTTT we say that (λ, h) and (ρ, i) are friends; see Figure 1 for an

illustration. We need the following lemma.

Lemma 10 Two friends must be adjacent in
−→
C , they must both belong to B and they are not partners.

19

Proof. Without loss of generality assume that c[g, i) ∈ SSSS and c[h, j) ∈ TTTT . Clearly, (λ, g) ≺ (λ, h) ≺ (ρ, i) ≺

(ρ, j). No block end in A is between (λ, g) and (ρ, i) and no block end in A ′ is between (λ, h) and (ρ, j).

This shows that (λ, h) and (ρ, i) are adjacent in
−→
C and that they are both in B. To see that they are not

partners, note that A⊕{(λ, h), (ρ, i)} cannot be consistent and use Lemma 9. ❑

Note that a pair of friends is easy to recognize: it must be a pair of the form {b2i−1, b2i} = {(λ, g), (ρ, h)}

where either b2i−1 ∈ A − A ′ and e2i ∈ A ′ − A, or b2i−1 ∈ A ′ − A and b2i ∈ A − A ′, Let GB be the graph

with the vertex set as the set of block ends B and with two kinds of edges: between pairs of partners and

between pairs of friends. By Lemmas 8 and 10 these sets of edges form two disjoint matchings of GB. Now

we have our crucial lemma.

Lemma 11 If D ⊆ B is the set of vertices in a connected component of GB, then D is an alteration of SSSS.

Proof. Because D does not separate any pair of partners, by Lemma 9 UUUU = SSSS⊕D is a set of disjoint blocks.

Suppose that c[g, h) ∈ UUUU is not a tile, i.e. h − g �∈ [�, u]; we will then obtain a contradiction. Obviously

c[g, h) �∈ SSSS and c[g, h) �∈ TTTT . Hence exactly one of (λ, g) and (ρ, h) is in A and the other one is in A ′. Without

loss of generality assume that c[g, i) ∈ SSSS and c[j, h) ∈ TTTT . We can exclude the cases when j ≤ g < i ≤ h or

g ≤ j < h ≤ i because then h − g ∈ [�, u]. The case when g < j < i < h can also be excluded, because then

the friends (λ, j) and (ρ, i) are separated by D (because D contained (ρ, i) but did not contain (λ, j)) and

hence D did not contain all the vertices in a connected component of GB. Similarly, if j < g < h < i then the

friends (λ, g) and (ρ, h) are separated by D. Thus it remains to consider the case when g < i ≤ j < h. But

then (ρ, i) ∈ D, (λ, j) �∈ D, (ρ, h) ∈ D. This contradicts the assumption that D is a connected component of

GB. ❑

Alterations that are vertices in a connected component of GB will be called atomic; see Figure 1 for an

illustration. Obviously any alteration can be expressed as a union of one or more disjoint atomic alterations

and two disjoint atomic alterations can be applied in any order on a given set of tiles to obtain the same set

of tiles. We will say that an atomic alteration is increasing, neutral or decreasing if |SSSS⊕D| − |SSSS| equals 1, 0

or −1, respectively. See Figure 2 for an illustration.

Lemma 12 If D is an atomic alteration of SSSS, then −1 ≤ |SSSS⊕D| − |SSSS| ≤ 1.

20

Proof. Except for its first and last elements, D is covered by disjoint pairs of friends. Applying a pair

of friends removes one element of ends(SSSS) and inserts another, thus leaving the total number of block ends

unchanged. Hence the net change in the number of block ends can come only from the first and the last

elements of D, and because the number of block ends changes by at most 2, the number of blocks changes

by at most 1. ❑

7.3 Computing St in O(nt) Time Using O(n) Space

Let SSSS0 = ∅ and SSSSt+1 be a set of t + 1 tiles of maximum weight that can be obtained by applying a minimal

alteration (i.e. an alteration that is not properly contained in another alteration) to SSSSt.

Lemma 13 If SSSSt+1 = SSSSt⊕D then D is an atomic alteration.

Proof. Suppose that D is not an atomic alteration and thus it is a union of more than one disjoint atomic

alterations. We know that disjoint atomic alternations can be applied in any order. If one of them, say D0,

is neutral, then one of the following two cases occur:

• D0 changes the weight of the set of tiles. Then w(SSSSt⊕D0) > w(SSSSt) or w(SSSSt+1⊕D0) > w(SSSSt+1),

contradicting the definition of SSSSt or SSSSt+1.

• D0 does not change the weight of the set of tiles. Then we could apply D − D0 rather than D to get

SSSSt+1, i.e. D is not minimal.

If D contains a decreasing atomic alteration D0, then it must also contains an increasing alteration, say

D1, and we can use the neutral alteration D0 ∪ D1 to obtain a contradiction similar to above. Hence every

atomic alterations contained in D is increasing and thus D can contain only one such alteration. ❑

Based on the above results, our simple algorithm is as follows.

SSSS0 = ∅, w(SSSS0) = 0

for p = 1 to t do

compute SSSSp = SSSSp−1⊕D by finding the increasing atomic

alteration D that produces maximum gain in total weight

21

if w(SSSSp)≤w(SSSSp−1) then

output SSSSp−1, exit (* SSSSp is the best solution *)

output SSSSt

Our claim on the time and space complexity of the above algorithm follows from the following lemma.

Lemma 14 Given Sp−1, we can find in O(n) time and space an atomic alteration D such that Sp = Sp−1⊕D.

Proof. For simplicity, we will be using SSSS to denote SSSSp−1. As in Theorem 2, we compute sk = w(c[0, k))

for all k ∈ [0, n] in O(n) time and space.

Let us consider possible structures of the atomic alteration D that we seek. For a possible tile end e let

De = {f ∈ D : f ≺ e}. Note that De does not include e itself. In our algorithm we will scan all possible

tile ends in ≺ order from left to right. In other words, we will scan the elements of c[0, n) in left-to-right

order, and each element will be first considered as a possible tile ending and then as a possible tile begining.

When we consider the tile end e we need to know what De could be. We need to perform the following case

analysis. We refer the reader to Figure 2 for a clearer understanding of these cases. The default value of the

quantity A(i) defined below is −∞ for all i ∈ [0, n).

Case 1: e = (λ, i).

Case 1.1: for some c[g, h) ∈ SSSS we have g < i < h.

It follows that De �= ∅ since otherwise D would not be an increasing atomic alteration and that

E = De ∪ {(ρ, h)} is a neutral alteration. Let A(i) be the set of neutral atomic alterations that

contain (ρ, h) as the only element that does not precede e and let

A(i) = max
E∈A(i)

w(SSSS ⊕ E) − w(SSSS)

Because w(SSSS) cannot be increased by a neutral atomic alteration, A(i) ≤ 0. Later when we need

to consider e as a possible left end of a new tile, we will consider it with a priority of vi = A(i)−si.

Case 2.1 shows how to compute the value of A(i) when the last new tile ends at i using the OLIM

problem. Note that since any element is first considered as a possible ending and then a possible

22

ending, Case 2 will occur before Case 1 for that element. Hence, we simply set A(i) to be the

maximum of A(i − 1) and current A(i), and update vi accordingly if necessary.

Case 1.2: Case 1.1 does not hold. Then e would have to be the first tile end in D and thus the left end

of the leftmost new tile. We should now consider e as a possible left end with priority vi = −si.

We should allow here for e being the left end of an old tile (i.e. i = g for some c[g, h) ∈ SSSS) which

indicates an alteration where the leftmost new tile shares its left end with an old tile.

Case 2: e = (ρ, i).

Case 2.1: for some c[g, h) ∈ SSSS we have g < i < h.

We consider e to be the right end of a new tile. The matching left end, (λ, j), must satisfy j ≤ g,

i.e. it must be to the left of c[g, h). We choose j as the index of the matching left end that

satisfies vj = maxi−u≤z≤min{i−�,g}{vz}, and this allows to consider a new alteration to the set

A(i); the total gain of this alteration is vj − w(c[g, h)) + si Then, if this gain is greater than the

current value of A(i), we replace A(i) with this new gain and update vi accordingly. Notice that

computation of the vj’s can be done via the OLIM problem in the same manner as in the proof

of Theorem 2.

Case 2.2: Case 2.1 does not hold and c[g, h) is the last tile of SSSS to the left of i. Then e would be the

rightmost tile end of an increasing atomic alteration (or, if i = h, the right end of a tile whose left

end is the rightmost element of the alteration). We select the matching left end (λ, q) such that

vq = maxi−u≤z≤i−� vz and the gain of this alteration is si + vq. Then, if this gain is greater than

the current value of A(i), we replace A(i) with this new gain and update vi accordingly. Notice

that the computation of the vq’s can again be done via the OLIM problem.

❑

Remark 1 The claim of Lemma 14 holds even if D is a neutral or decreasing alteration (which produces a

minimum total weight loss) by using a very similar algorithm. Moreover we actually also compute, for each

possible tile end e, the optimum alteration of the prescribed type in which all elements precede e.

23

7.4 Computing St in O(n log n
�
) Time Using O(n) Space

The idea of this algorithm is the following. We will proceed in phases. Before a phase, we computed a set

of t disjoint tiles, say SSSS, that has the largest weight under the constraint that each tile is contained in one

of the blocks c[a0, a1), c[a1, a2), . . . , c[ak−1, ak). For this phase, we will select some ai such that, after the

phase, we replace SSSS with some SSSS ⊕ B that maximizes the sum of weights under the constraint that each tile

in SSSS⊕B is contained in c[a0, a1), c[a1, a2), c[ai−2 ,ai−1), c[ai−1, ai+1), c[ai+1, ai+2), . . . , c[ak−1, ak) (i.e.

the new set of blocks is obtained from the old set of blocks by coalescing the two blocks c[ai−1, ai) and

c[ai, ai+1) into one block c[ai−1, ai+1)).

We can start with ai = i�; each block is a tile of minimum length, thus we can compute the weight of

each tile and select the tiles with t largest weights. Using any linear time algorithm for order statistics [7],

we can complete the first phase in O(n) time and space. In Lemma 15 below we show that we can perform

a single phase in O(M + log n
�
) time and O(n) space, where M = maxk

i=1{ai − ai−1}. This will be sufficient

for our claim on the time and space complexity of our complete algorithm by the following analysis4. We

first coalesce adjacent pairs of blocks of length � into blocks of length 2� (unless there is only one block of

length � left). This requires O(n/�) phases and each of them takes O(�) time, because during these phases

the longest block has length 2�. Hence the total time and space complexity for these n/� phases is O(n).

Repeating the same procedure for blocks of length 2�, 4�, . . ., it follows that that if all blocks but one have the

maximum length then we can half the number of blocks in O(n) time and space, and again, all blocks but

one will have the maximum length. Obviously, we are done when we have one block. Since each phase can be

carried out independently of any other phase, the space complexity is O(n), and the total time complexity is

O
(∑log(n/�)

i=1

((
2i+1� + log n

�

)
n

2i�

))
= O

(
n log n

�

)
. Hence it suffices to prove the following lemma to prove

our claim.

Lemma 15 We can perform a single phase in O(M + log n) time and O(n) space.

Proof. For an increasing (respectively, decreasing, neutral) atomic alteration B, let B be called the best

increasing (respectively, decreasing, neutral) atomic alteration if w(SSSS ⊕ B) is maximized. We maintain the

following data structures throughout all phases. For each block, we store that part of the current solution
4This is similar to the analysis of mergesort in which two blocks of sorted numbers are merged during one step [7].

24

that is contained in that block, the best increasing atomic alteration of that part and the best decreasing

one. Moreover, we will have two priority queues Q1 and Q2 of blocks, in which the priority of a block is

the gain in total weight of its best increasing and decreasing atomic alterations, respectively. These data

structures can be initialized in O(n) time and space using Lemma 14 and Remark 1. Moreover, note that

both Q1 and Q2 contain at most O(n/�) entries.

We need to show how to find the desired alteration B which consists of an union of one or more atomic

alterations. We consider all possible structures of B. If the new solution contains no tile c[g, h) such that

g < ai < h, then B = ∅. Otherwise, assume that such a tile exists. Under this assumption, the number of

end points of tiles contained in each of c[ai−1, ai) and c[ai, ai+1) changes from even to odd, which shows

that B contains a pair of partners b, b ′ such that b ≺ (ρ, ai) and (λ, ai) ≺ b ′. Let D be the atomic alteration

such that {b, b ′} ⊆ D ⊆ B. We have the following 3 cases.

Case 1: D is a neutral atomic alteration. Because |SSSS ⊕ (B − D)| = |SSSS|, we could alter SSSS with B − D before

the current phase, hence this alteration cannot increase the weight, and therefore we do not need it.

Thus in this case B = D. Hence, for this case, we need to find a best neutral atomic alteration in

c[ai−1, ai+1), i.e. one that yields the maximum increase of weight. Using Lemma 14 and Remark 1

we can find such an alteration in time O(ai+1 − ai−1) and space. Subsequently, in similar time and

space we can find in c[ai−1, ai+1) a best increasing and decreasing atomic alterations and update Q1

and Q2 in O
(
log n

�

)
time.

Case 2: D is an increasing atomic alteration. C = B − D does not contain a non-empty atomic alteration F

that does not change the size of SSSS; otherwise since we could alter SSSS with F before the current phase, F

cannot increase the weight of SSSS and thus we do not need it. Hence C is a decreasing atomic alteration.

To find B, we consider two subcases.

Case 2.1: C is contained in a block different than c[ai−1, ai+1). We can find a best D using the

algorithm from Lemma 14, in O(M) time and a best C from the priority queue Q2 in O(n/�) time,

both using O(n) space. Subsequently, we need to compute a best increasing and a best decreasing

atomic alterations for both c[ai−1, ai+1) and the block that contains C (using Lemma 14 and

Remark 1) and update Q1 and Q2 in a total of O
(
M + log n

�

)
time and O(n) space.

25

Case 2.2: C is contained in c[ai−1, ai). We first compute for each j ∈ [ai−1, i) the best decreasing

atomic alteration contained in c[ai−1, j) and set X(j) to be its gain i.e. the increase in total weight

produced by it (perhaps negative). As noted in Remark 1, this can be done in O(M) time and

O(n) space. Now, to find the best increasing atomic alteration D, we proceed as in Lemma 14

except that when we consider some (λ, k) to be the leftmost left end of a tile introduced by D

we set its priority to be X(j) − sk. Hence such a D can again be found in O(M) time and O(n)

space. At the end, we must update Q1 and Q2 as in Case 1 in O
(
log n

�

)
time.

Case 2.3: C is contained in c[ai, ai+1). This case is mirror-symmetric of Case 2.2, so we can apply

the same methods, except that we will be scanning the merged block from right to left.

Case 3: D is a decreasing atomic alteration. Then C = B − D is an increasing atomic alteration by an

argument very similar to that in Case 2. Case 3 is then symmetric of Case 2 if we replace increasing

(respectively, decreasing) by decreasing (respectively, increasing) in the remainder of Case 2.

❑

8 GTile in d-dimensions

It is not difficult to see from previously known results that the GTile problem is NP-hard even for d = 2.

The following theorem summarizes approximability issues for the higher dimensional cases.

Theorem 16 Let M = Πd
i=1ni(ui − �i + 1), N = max1≤i≤d ni, u

�
= maxi

ui

�i
, and ε > 1 be any arbitrary

given constant. Then, it is possible to design the following approximation algorithms for the GTile problem

in d-dimension:

(i) if the number of tiles is unbounded, then it is possible to design an O(
((

u
�

)
ε
)4(u

�)
2
ε2

Mε2) time

algorithm using O(M) space with an approximation ratio of
(
1 − 1

ε

)d
.

(ii) if the number of tiles is bounded, then approximation algorithms with the following bounds are

possible:

26

• an O(tM + dM logε M + dN log N

log log N
) time algorithm using O(M) space with an approximation

ratio of 1/
(
Πd−1

i=1 (�1 + log ni�)
)
.

• an O(M(2ε−1)d−1+1 dt) time algorithm using O(M(2ε−1)d−1+1 dt) space with an approximation

ratio of 1/
(
Πd−1

i=1

(
�1 + log ni

ε
�
))

.

Proof. The GTile problem in d dimensions can be easily reduced to the d-RPACK problem in [5] in which

the number of rectangles is M and the coordinates of the ith dimension has coordinates from {1, 2, . . . , ni}.

This gives us the results in (ii). Since the ith dimension of any tile has a length of at least �i and at most

ui, the aspect ratio of any tile is at most u
�

and hence we can use the shifting strategy of [9, Chapter 9] to

get the result in (i). ❑

9 Computational Results

Here we discuss the application of the GTile problem to the genomic sequences of 5 model eukaryotes. The

single largest chromosome from each organism was considered as representative of the characteristics of that

particular genome. Table 2 lists the target chromosomes and their sequence properties. The chromosomes

vary in the degree of repeat density, where the first few examples contain relatively few repetitive elements in

comparison to the two mammalian sequences. In the cases of C. elegans, A. thaliana, and D. melanogaster,

the low repeat content allows us to tile the sequences fairly well simply by subdividing the remaining high-

complexity DNA into sequence fragments within the appropriate size range. However, as the repeat density

increases in the genomes of higher eukaryotes, so does the fragmentation of the high-complexity sequence

containing genes and regulatory elements of biological significance. It soon becomes impossible to achieve

maximal coverage of the high-complexity sequence in the absence of further processing.

The results of applying the tiling algorithm to each chromosome appear in Table 3. GTile improves the

sequence coverage in all cases, easily covering nearly 100% of the high-complexity DNA in the smaller, less

complex genomes with few incorporated repeats. In practice, the coverage will never reach 100% because

there remains a population of small high-complexity sequences whose sizes fall below the lower bound. In

terms of experimental applications, these sequences are too small to be chemically amplified by PCR and

27

are therefore excluded from consideration.

GTile performs particularly well for the mammalian chromosomes, dramatically increasing the high-

complexity sequence coverage with minimal repeat inclusion. The higher eukaryotic genomes benefit most

from this approach, because the large number of repetitive elements present in these genomes results in a much

more difficult tiling problem. Also notable is that as sequence coverage increases, the number of required tiles

decreases as a greater percentage of tiles are generated within the optimal size range. The algorithm therefore

minimizes the number of tiles required to obtain the maximum coverage of high-complexity sequence.

10 Acknowledgements

We would like to thank Ms. Sarita Lella of the Bioengineering department in UIC for implementing the

basic GTile algorithm.

References

[1] M. D. Adams et al. The genome sequence of Drosophila melanogaster. Science, 287:2185–2195, 2000.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local alignment search

tool. Journal of Molecular Biology, 215:403–410, 1990.

[3] P. Berman, B. DasGupta, and S. Muthukrishnan. On the exact size of the binary space partitioning of

sets of isothetic rectangles with applications. SIAM Journal of Discrete Mathematics, 15 (2): 252-267,

2002.

[4] P. Berman, B. DasGupta, and S. Muthukrishnan. Slice and dice: A simple, improved approximate tiling

recipe. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 455–464,

January 2002.

[5] P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Improved approximation algorithms

for tiling and packing with rectangles. In Proceedings of the 12th Annual ACM-SIAM Symposium on

Discrete Algorithms, 427–436, January 2001.

28

[6] P. Bertone, M. Y. Kao, M. Snyder, and M. Gerstein. The maximum sequence tiling problem with

applications to DNA microarray design (submitted).

[7] T. H. Cormen, C. L. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, Cambridge,

MA, 1990.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows.

In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 635–644, January

2002.

[9] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing, Boston, MA,

1997.

[10] C. E. Horak, M. C. Mahajan, N. M. Luscombe, M. Gerstein, S. M. Weissman, and M. Snyder. GATA-1

binding sites mapped in the beta-globin locus by using mammalian chip-chip analysis. Proceedings of

the National Academy of Sciences of the U.S.A., 995:2924–2929, 2002.

[11] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human

genome. Nature, 15:860–921, 2001.

[12] V. R. Iyer, C. E. Horak, C. S. Scafe, D. Botstein, M. Snyder, and P. O. Brown. Genomic binding sites

of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409:33–538, 2001.

[13] J. Jurka. Repbase Update: a database and an electronic journal of repetitive elements. Trends in

Genetics, 9:418–420, 2000.

[14] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and packing. In

Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 384–393, 1998.

[15] S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient array partitioning. In G. Goos, J. Hartmanis, and

J. van Leeuwen, editors, Lecture Notes in Computer Science 1256: Proceedings of the 24th International

Colloquium on Automata, Languages, and Programming, 616–626. Springer-Verlag, New York, NY,

1997.

29

[16] D. J. Lockhart et al. Expression monitoring by hybridization to high-density oligonucleotide arrays.

Nature Biotechnology, 14:1675–1680, 1996.

[17] K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. Specific enzymatic amplification of

DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposium in Quantitative Biology,

51:263–273, 1986.

[18] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitions in two dimensions: Algorithms,

complexity and applications. In Proceedings of the 7th International Conference on Database Theory,

236–256, 1999.

[19] National Center for Biotechnology Information (NCBI). www.ncbi.nlm.nih.gov, 2002.

[20] J. L. Rinn, G. Euskirchen, P. Bertone, R. Martone, N. M. Luscombe, S. Hartman, P. M. Harrison,

K. Nelson, P. Miller, M. Gerstein, S. Weissman, and M. Snyder. The transcriptional activity of human

chromosome 22. Genes and Development (in press).

[21] W. L. Ruzzo and M. Tompa. Linear time algorithm for finding all maximal scoring subsequences. In

Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology, 234–241,

1999.

[22] D. D. Shalon and P. O. B. S. J. Smith. A DNA microarray system for analyzing complex DNA samples

using two-color fluorescent probe hybridization. Genome Research, 6(7):639–645, July 1996.

[23] A. F. A. Smit and P. Green. RepeatMasker, repeatmasker.genome.washington.edu, 2002.

[24] A. Smith and S. Suri. Rectangular tiling in multi-dimensional arrays. In Proceedings of the 10th Annual

ACM-SIAM Symposium on Discrete Algorithms, 786–794, 1999.

[25] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of

Molecular Biology, 147:195–197, 1981.

[26] The Arabidipsis Genome Initiative. Analysis of the genome sequence of the flowering plant arabidopsis

thaliana. Nature, 408:796–815, 2000.

30

[27] The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for

investigating biology. Science, 282:2012–2018, 1998.

[28] The Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse

genome. Nature, 420:520–562, 2002.

[29] J. C. Venter et al. The sequence of the human genome. Science, 291:1304–1351, 2001.

[30] Z. Zhang, P. Berman, and W. Miller. Alignments without low-scoring regions. Journal of Computational

Biology, 5(2):197–210, 1998.

31

Version of GTile Time O() Space O() Approximation Ratio Theorem

basic n n exact 2

overlap is from sn n exact 4

a s-subset of

[0, δ], δ < �
2

compressed m �
u−�

m �
u−�

exact 5

input

number of min{n log n
�
, nt} n exact 7

tiles given

d-dimensional
((

u
�

)
ε
)4(u

�)
2
ε2

Mε2 M
(
1 − 1

ε

)d
16

d-dimensional, tM + dM logε M M
(
Πd−1

i=1 (�1 + log ni�)
)−1

16

+dN log N

log log N

number of

tiles given M(2ε−1)d−1+1 dt M(2ε−1)d−1+1 dt
(
Πd−1

i=1

(
�1 + log ni

ε
�
))−1

16

Table 1: A summary of the results in this paper. All the algorithms are either new or direct improvements of

any previously known. The parameter ε > 1 is any arbitrary constant. A s-subset is a subset of s elements.

For the d-dimensional case, M = Πd
i=1ni(ui − �i + 1), N = max1≤i≤d ni and u

�
= maxi

ui

�i
. For our biology

applications p ≤ 100 < �
2
� n, t
 n

u+�
, m � n and �

u−�
< 6. The column labeled “Approximation Ratio”

indicates whether the algorithm computes the optimal solution exactly or, for an approximation algorithm,

the ratio of the total weight of our tiling to that of the optimum.

32

SSSS

TTTT = SSSS⊕D

D

p
f

p
f

D1 D2 D3 D4

p p p p

SSSS⊕D1

SSSS⊕D2

Figure 1: Alterations, partners and friends. A set of tiles is altered with a set of tile ends. Partners are

indicated with p and friends with f. Di’s are atomic alterations.

33

Figure 2: An increasing atomic alteration. White tile ends are old and black tile ends are new. There can

be also an increasing atomic alteration that does not have the first two tile ends or the last two: this is the

case when ends of new and old tiles coincide.

34

Organism Chromosome Nucleotides Repeat Repetitive DNA % Repeats High-complexity

elements (bp) (bp) DNA

Caenorhabditis elegans V 20,916,335 16,575 2,414,183 11.5 18,502,152

(nematode)

Arabidopsis thaliana I 30,074,119 14,490 3,557,144 11.8 26,516,975

(flowering plant)

Drosophila melanogaster 3 51,243,003 27,259 3,106,633 6 48,136,370

(fruit fly)

Mus musculus 1 196,842,934 288,551 90,532,869 46 106,310,065

(laboratory mouse)

Homo sapiens 1 246,874,334 308,257 132,580,913 53.7 114,293,421

(human)

Table 2: Summary of target chromosome sequences. The sequences increase in repeat density with the

complexity of the genome, causing a greater degree of fragmentation and loss of high-complexity sequence

coverage in the unprocessed chromosomes. This situation is especially problematic in the higher eukaryotes

such as human and mouse.

35

Target chromosome Number of Tiles High-complexity DNA (bp) % Coverage Repetitive DNA (bp) % Repeats

Initial sequence coverage

C. elegans chrV 22,842 17,852,822 96.4

A. thaliana chrI 30,075 25,972,994 98

D. melanogaster chr3 57,568 47,366,173 98.3

M. musculus chr1 142,165 90,988,520 85.5

H. sapiens chr1 151,720 97,191,872 85

GTile, repeat penalty 6:1

C. elegans chrV 19,034 18,299,667 99 237,772 1.28

A. thaliana chrI 25,349 26,376,577 99 196,222 0.74

D. melanogaster chr3 46,901 48,056,034 99 453,704 0.93

M. musculus chr1 128,472 96,280,008 90.5 2,314,565 2.34

H. sapiens chr1 137,403 101,866,284 89 2,026,782 1.95

GTile, repeat penalty 5:1

C. elegans chrV 18,975 18,329,464 99 290,152 1.55

A. thaliana chrI 25,344 26,391,095 99.5 213,917 0.8

D. melanogaster chr3 46,878 48,061,534 99.8 465,573 0.96

M. musculus chr1 127,146 97,953,586 92 4,304,560 4.2

H. sapiens chr1 136,457 103,434,234 90.4 3,788,374 3.53

GTile, repeat penalty 4:1

C. elegans chrV 18,891 18,345,048 99 348,086 1.86

A. thaliana chrI 25,342 26,396,637 99.5 226,559 0.85

D. melanogaster chr3 46,867 48,062,909 99.8 471,650 0.97

M. musculus chr1 125,787 98,617,314 92.7 5,765,790 5.52

H. sapiens chr1 135,305 104,138,841 91 5,247,600 4.79

Table 3: GTile results for the 5 model eukaryotic chromosomes. Maximal coverage of the high-complexity

DNA is achieved with minimal repeat nucleotide inclusion, while the number of required tiles decreases. Sets

of non-overlapping tiles were computed for the size range of 300 bp – 1 Kb.

