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Abstract

We compare activation functions in terms of the approximation
power of their feedforward nets
 We consider the case of analog as
well as boolean input


� Introduction

We consider e�cient approximations of a given multivariate function f � 
��� ��m �
R by feedforward neural networks
 We �rst introduce the notion of a feedforward
net


Let � be a class of real�valued functions� where each function is de�ned on some
subset of R
 A ��net C is an unbounded fan�in circuit whose edges and vertices
are labeled by real numbers
 The real number assigned to an edge �resp
 vertex�
is called its weight �resp
 its threshold�
 Moreover� to each vertex v an activation
function �v � � is assigned
 Finally� we assume that C has a single sink w


The net C computes a function fC � 
��� ��m � R as follows
 The components
of the input vector x � �x�� � � � � xm� � 
��� ��m are assigned to the sources of C

Let v�� � � � � vn be the immediate predecessors of a vertex v
 The input for v is then
sv�x� �

Pn
i��wiyi�tv� where wi is the weight of the edge �vi� v�� tv is the threshold

of v and yi is the value assigned to vi
 If v is not the sink� then we assign the value



�v�sv�x�� to v
 Otherwise we assign sv�x� to v


Then fC � sw is the function computed by C where w is the unique sink of C


A great deal of work has been done showing that nets of two layers can approximate
�in various norms� large function classes �including continuous functions� arbitrar�
ily well �Arai� ����� Carrol and Dickinson� ����� Cybenko� ����� Funahashi� �����
Gallant and White� ����� Hornik et al� ����� Irie and Miyake������ Lapades and
Farber� ����� Nielson� ����� Poggio and Girosi� ����� Wei et al�� �����
 Various
activation functions have been used� among others� the cosine squasher� the stan�
dard sigmoid� radial basis functions� generalized radial basis functions� polynomials�
trigonometric polynomials and binary thresholds
 Still� as we will see� these func�
tions di�er greatly in terms of their approximation power when we only consider
e�cient nets� i
e
 nets with few layers and few vertices


Our goal is to compare activation functions in terms of e�ciency and quality of
approximation
 We measure e�ciency by the size of the net �i
e
 the number of
vertices� not counting input units� and by its number of layers
 Another resource
of interest is the Lipschitz�bound of the net� which is a measure of the numerical
stability of the net
 We say that net C has Lipschitz�bound L if all weights and
thresholds of C are bounded in absolute value by L and for each vertex v of C and
for all inputs x� y � 
��� ��m�

j�v�sv�x�� � �v�sv�y��j � L � jsv�x�� sv�y�j�

�Thus we do not demand that activation function �v has Lipschitz�bound L� but
only that �v has Lipschitz�bound L for the inputs it receives
� We measure the
quality of an approximation of function f by function fC by the Chebychev norm�
i
e
 by the maximum distance between f and fC over the input domain 
��� ��m


Let � be a class of activation functions
 We are particularly interested in the
following two questions


� Given a function f � 
��� ��m � R� how well can we approximate f by a ��net
with d layers� size s� and Lipschitz�bound L� Thus� we are particularly interested
in the behavior of the approximation error e�s� d� as a function of size and number
of layers
 This set�up allows us to investigate how much the approximation error
decreases with increased size and�or number of layers


� Given two classes of activation functions �� and ��� when do ���nets and ���
nets have essentially the same �approximation power� with respect to some error
function e�s� d��

We �rst formalize the notion of �essentially the same approximation power�


De�nition ��� Let e � N � �R� be a function� �� and �� are classes of activation
functions�

�a�� We say that �� simulates �� with respect to e if and only if there is a constant
k such that for all functions f � 
��� ��m �R with Lipschitz�bound ��e�s� d��



if f can be approximated by a ���net with d layers� size s� Lipschitz�
bound 	s and approximation error e�s� d�� then f can also be ap�
proximated with error e�s� d� by a ���net with k�d� �� layers� size

�s � ��k and Lipschitz�bound 	s
k

�

�b�� We say that �� and �� are equivalent with respect to e if and only if ��
simulates �� with respect to e and �� simulates �� with respect to e�

In other words� when comparing the approximation power of activation functions�
we allow size to increase polynomially and the number of layers to increase by a
constant factor� but we insist on at least the same approximation error
 Observe
that we have linked the approximation error e�s� d� and the Lipschitz�bound of the
function to be approximated
 The reason is that approximations of functions with
high Lipschitz�bound �tend� to have an inversely proportional approximation error

Moreover observe that the Lipschitz�bounds of the involved nets are allowed to be
exponential in the size of the net
 We will see in section �� that for some activation
functions far smaller Lipschitz�bounds su�ce


Below we discuss our results
 In section 	 we consider the case of tight approx�
imations� i
e
 e�s� d� � 	�s
 Then in section � the more relaxed error model
e�s� d� � s�d is discussed
 In section � we consider the computation of boolean
functions and show that sigmoidal nets can be far more e�cient than threshold�
nets


� Equivalence of Activation Functions for Error e�s� d� � ��s

We obtain the following result


Theorem ��� The following activation functions are equivalent with respect to er�
ror e�s� d� � 	�s�

� the standard sigmoid ��x� � �
��exp��x� �

� any rational function which is not a polynomial�

� any root x�� provided � is not a natural number�

� the logarithm �for any base b � ���

� ex�

� the gaussian e�x
�

�

� the radial basis functions �� � x���� � � �� � �� �

Notable exceptions from the list of functions equivalent to the standard sigmoid are
polynomials� trigonometric polynomials and splines
 We do obtain an equivalence
to the standard sigmoid by allowing splines of degree s as activation functions for



nets of size s
 �We will always assume that splines are continuous with a single knot
only
�

Theorem ��� Assume that e�s� d� � 	�s� Then splines �of degree s for nets of size
s� and the standard sigmoid are equivalent with respect to e�s� d��

Remark ���

�a� Of course� the equivalence of spline�nets and f�g�nets also holds for binary
input� Since threshold�nets can add and multiply m m�bit numbers with constantly
many layers and size polynomial in m �Reif� ������ threshold�nets can e�ciently
approximate polynomials and splines�

Thus� we obtain that f�g�nets with d layers� size s and Lipschitz�bound L can
be simulated by nets of binary thresholds� The number of layers of the simulat�
ing threshold�net will increase by a constant factor and its size will increase by a
polynomial in �s � n� log�L�� where n is the number of input bits� �The inclusion
of n accounts for the additional increase in size when approximately computing a
weighted sum by a threshold�net��

�b� If we allow size to increase by a polynomial in s � n� then threshold�nets and
f�g�nets are actually equivalent with respect to error bound 	�s� This follows� since
a threshold function can easily be implemented by a sigmoidal gate �Maass et al��
������

Thus� if we allow size to increase polynomially �in s� n� and the number of layers
to increase by a constant factor� then f�g�nets with weights that are at most expo�
nential �in s � n� can be simulated by f�g�nets with weights of size polynomial in
s�

f�g�nets and threshold�nets �respectively nets of linear thresholds� are not equiva�
lent for analog input
 The same applies to polynomials� even if we allow polynomials
of degree s as activation function for nets of size s�

Theorem ���

�a� Let sq�x� � x�� If a net of linear splines �with d layers and size s� approximates
sq�x� over the interval 
��� ��� then its approximation error will be at least s�O�d��

�b� Let abs�x� �j x j� If a polynomial net with d layers and size s approximates
abs�x� over the interval 
��� ��� then the approximation error will be at least s�O�d��

We will see in Theorem 	
� that the standard sigmoid �and hence any activation
function listed in Theorem 	
�� is capable of approximating sq�x� and abs�x� with
error at most 	�s by constant�layer nets of size polynomial in s
 Hence the standard
sigmoid is properly stronger than linear splines and polynomials
 Finally� we show
that sine and the standard sigmoid are inequivalent with respect to error 	�s


Theorem ��� The function sine�Ax� can be approximated by a f�g�net CA with d
layers� size s � AO���d� and error at most sO��d�� On the other hand� every f�g�net



with d layers which approximates sine�Ax� with error at most �
� � has to have size

at least A����d��

Below we sketch the proof of Theorem 	
�
 The proof itself will actually be more
instructive than the statement of Theorem 	
�
 In particular� we will obtain a
general criterion that allows us to decide whether a given activation function �or
class of activation functions� has at least the approximation power of splines


��� Activation Functions with the Approximation Power of Splines

Obviously� any activation function which can e�ciently approximate polynomials
and the binary threshold will be able to e�ciently approximate splines
 This follows
since a spline can be approximated by the sum p � t � q with polynomials p and q
and a binary threshold t
 �Observe that we can approximate a product once we can
approximately square� �x� y���	� x��	� y��	 � x � y
�

Firstly� we will see that any su�ciently smooth activation function is capable of
approximating polynomials


De�nition ��� Let � � R � R be a function� We call � suitable if and only if
there exists real numbers �� � �� � �� and an integer k such that

�a� � can be represented by the power series
P
�

i�� ai�x � ��i for all x � 
��� ���
The coe�cients are rationals of the form ai �

Pi
Qi

with jPij� jQij � 	ki �for i � ���

�b� For each i � 	 there exists j with i � j � ik and aj �� ��

Proposition ��� Assume that � is suitable with parameter k�

Then� over the domain 
�D�D�� any degree n polynomial p can be approximated
with error 	 by a f�g�net Cp� Cp has � layers and size O�n�k�� its weights are
rational numbers whose numerator and denominator are bounded in absolute value
by

pmax�	 �D�poly�n�jj��N���jj�����	
�

	
�

Here we have assumed that the coe�cients of p are rational numbers with numerator
and denominator bounded in absolute value by pmax�

Thus� in order to have at least the approximation power of splines� a suitable activa�
tion function has to be able to approximate the binary threshold
 This is achieved
by the following function class�

De�nition ��� Let � be a class of activation functions and let g � 
�����R be a
function�

�a�� We say that g is fast converging if and only if

j g�x� � g�x � 	� j� O�	�x�� for x � �� 	 � ��



� �

Z
�

�

g�u��du �� and j

Z
�

�N
g�u��du j� O���N � for all N � ��

�b�� We say that � is powerful if and only if at least one function in � is suitable
and there is a fast converging function g which can be approximated for all s � �
�over the domain 
�	s� 	s�� with error 	�s by a f�g�net with a constant number of
layers� size polynomial in s and Lipschitz�bound 	s�

Fast convergence can be checked easily for di�erentiable functions by applying the
mean value theorem
 Examples are x�� for � � �� exp��x� and ���x�
 Moreover�
it is not di�cult to show that each function mentioned in Theorem 	
� is powerful

Hence Theorem 	
� is a corollary of

Theorem ��� Assume that � is powerful�

�a� � simulates splines with respect to error e�s� d� � 	�s�

�b� Assume that each activation function in � can be approximated �over the
domain 
�	s� 	s�� with error 	�s by a spline�net Ns of size s and with constantly
many layers� Then � is equivalent to splines�

Remark ��� Obviously� ��x is powerful� Therefore Theorem ��� implies that
constant�layer f��xg�nets of size s approximate abs�x� � jxj with error 	�s� The
degree of the resulting rational function will be polynomial in s� Thus Theorem
��� generalizes Newman	s approximation of the absolute value by rational functions�
�Newman� �����

� Equivalence of Activation Functions for Error s�d

The lower bounds in the previous section suggest that the relaxed error bound
e�s� d� � s�d is of importance
 Indeed� it will turn out that many non�trivial smooth
activation functions lead to nets that simulate f�g�nets� provided the number of
input units is counted when determining the size of the net
 �We will see in section
�� that linear splines and the standard sigmoid are not equivalent if the number of
inputs is not counted�
 The concept of threshold�property will be crucial for us


De�nition ��� Let � be a collection of activation functions� We say that � has
the threshold�property if there is a constant c such that the following two properties
are satis
ed for all m � ��

�a� For each � � � there is a threshold�net T��m with c layers and size �s � m�c

which computes the binary representation of ���x� where j��x�� ���x�j � 	�m�

The input x of T��m is given in binary and consists of 	m � � bits� m bits describe
the integral part of x� m bits describe its fractional part and one bit indicates the
sign� s � m speci
es the required number of output bits� i�e� s � dlog��supf��x� �
�	m�� � x � 	m��g�e�



�b� There is a ��net with c layers� size mc and Lipschitz bound 	m
c

which approx�
imates the binary threshold over D � 
��� ��� 
���m� ��m� with error ��m�

We can now state the main result of this section


Theorem ��� Assume that e�s� d� � s�d�

�a� Let � be a class of activation functions and assume that � has the threshold
property� Then� � and � are equivalent with respect to e� Moreover� f�g�nets only
require weights and thresholds of absolute value at most s� �Observe that ��nets are
allowed to have weights as large as 	s��

�b� If � and � are equivalent with respect to error 	�s� then � and � are equivalent
with respect to error s�d�

�c� Additionally� the following classes are equivalent to f�g�nets with respect to e�
�We assume throughout that all coe�cients� weights and thresholds are bounded by
	s for nets of size s��

� polynomial nets �i�e� polynomials of degree s appear as activation function for
nets of size s��

� f�g�nets� where � is a suitable function and � satis
es part �a� of De
nition ��
�
�This includes the sine�function��

� nets of linear splines

The equivalence proof involves a �rst phase of extracting O�d log s� bits from the
analog input
 In a second phase� a binary computation is mimicked
 The extraction
process can be carried out with error s�� �over the domain 
��� �� � 
���s� ��s��
once the binary threshold is approximated


� Computing boolean functions

As we have seen in Remark 	
�� the binary threshold �respectively linear splines�
gains considerable power when computing boolean functions as compared to approx�
imating analog functions
 But sigmoidal nets will be far more powerful when only
the number of neurons is counted and the number of input units is disregarded
 For
instance� sigmoidal nets are far more e�cient for �squaring�� i
e when computing�

Mn � f�x� y� � x � f�� �gn� y � f�� �gn
�

and 
x�� � 
y�g �where 
z� �
X
i

zi��

Theorem ��� A threshold�net computing Mn must have size at least ��logn�� But
Mn can be computed by a ��net with constantly many gates�

The previously best known separation of threshold�nets and sigmoidal�nets is due
to Maass� Schnitger and Sontag �Maass et al�� �����
 But their result only applies
to threshold�nets with at most two layers� our result holds without any restriction



on the number of layers
 Theorem �
� can be generalized to separate threshold�nets
and ��times di�erentiable activation functions� but this smoothness requirement is
more severe than the one assumed in �Maass et al�� �����


� Conclusions

Our results show that good approximation performance �for error 	�s� hinges on
two properties� namely e�cient approximation of polynomials and e�cient approx�
imation of the binary threshold
 These two properties are shared by a quite large
class of activation functions� i
e
 powerful functions
 Since �non�polynomial� ratio�
nal functions are powerful� we were able to generalize Newman�s approximation of
j x j by rational functions


On the other hand� for a good approximation performance relative to the relaxed
error bound s�d it is already su�cient to e�ciently approximate the binary thresh�
old
 Consequently� the class of equivalent activation functions grows considerably
�but only if the number of input units is counted�
 The standard sigmoid is dis�
tinguished in that its approximation performance scales with the error bound� if
larger error is allowed� then smaller weights su�ce


Moreover� the standard sigmoid is actually more powerful than the binary threshold
even when computing boolean functions
 In particular� the standard sigmoid is able
to take advantage of its �non�trivial� smoothness to allow for more e�cient nets
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