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Abstract

This paper addresses the problem of scheduling packet transmissions in wavelength-division mul-

tiplexed (WDM) networks with tunable transmitters and fixed-tuned receivers. Unlike previous work

which assume that all packets are known in advance, this paper considers the on-line case in which

packets may arrive at any time. An on-line algorithm is presented that achieves a performance ratio

of 3 with respect to an optimal off-line algorithm. In addition, off-line algorithms are presented for the

case when there are two wavelength channels. Even this special case of the problem is known to be

NP-complete and the currently best known algorithm for this case achieves a performance ratio of 2.

Using a more rigorous analysis, it is shown that this algorithm has, in fact, a performance ratio of 3
2 ,

and an example is presented where this algorithm achieves this performance ratio even when the tuning

delay is zero. Furthermore, for this case, a new polynomial-time approximation algorithm is presented

with a performance ratio better than 3
2
, provided the tuning delay δ is less than

(
3
2
−

√
2
)

S
6
, where S is

the total number of packets to be transmitted.

1 Introduction

Wavelength division multiplexing is a promising approach to utilize the enormous bandwidth of optical fiber

and offers the capability of building very large wide-area networks consisting of thousands of nodes with

per-node throughputs in the gigabits-per-second range.

In a wavelength-divisionmultiplexed (WDM) optical network, n transmitters and r receivers communicate

through m non-interfering wavelength channels. In practice, m is typically much less than either n or r and

hence the channels are shared by the transmitters and the receivers. Transmitters and receivers that can

tune from one wavelength to another are called tunable, while those that cannot are called fixed-tuned. The
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network is packet switched and time slotted. That is, transmitters transmit data in fixed-length packets and

a packet’s transmission time equals one time slot. Packets are transmitted within slot boundaries.

An important parameter in the design of WDM optical networks is the tuning delay, which is the amount

of time required for a transmitter to tune from one wavelength to another. Current WDM networks have

large tuning delays, sometimes in the order of milliseconds for transmitters and receivers with wide tuning

ranges [4]. Consequently, algorithms for scheduling packet transmissions in WDM networks must explicitly

take into account the effect of tuning delay on performance.

The problem of scheduling transmissions in WDM networks has been studied by various researchers

[11, 1, 2, 3, 4, 8, 9, 10]. In this paper, we are interested in the scheduling problem for WDM networks with

tunable transmitters and fixed-tuned receivers. This model has previously been studied in [9] and [4]. In

[9], Pieris and Sasaki considered the all-to-all broadcast problem (i.e., a single packet is to be transferred

between every transmitter/receiver pair) and presented upper and lower bounds on the minimum-length

schedule for this problem. Subsequently, Choi, Choi and Azizog̃lu [4] improved upon [9]’s lower bound and

showed that the latter’s all-to-all broadcast algorithm is, in fact, optimal. In the same paper [4], the authors

considered the general problem in which arbitrary (but known) number of packets are to be transferred

between transmitter/receiver pairs. They presented an algorithm based on the well-known list scheduling

algorithm [5, 7] which produces schedule lengths that are at most twice the optimal length.

In this paper, we consider the on-line version of the general transmission scheduling problem, which

applies to more practical situations that does the off-line version. In on-line scheduling, packets arrive at the

transmitters at arbitrary times; consequently, scheduling decisions must be made on the basis of the packets

that have arrived so far, without knowledge of future packets. We show that this problem, while more

difficult than the off-line case, admits efficient solutions as well. In particular, we give an on-line algorithm

that produces schedule lengths that are at most three times the optimal length. Interestingly, our on-line

algorithm reduces to the off-line list scheduling algorithm when all packets are known in advance (i.e., arrive

at time 0).

For the off-line case, the interesting question is whether the performance ratio of 2 achieved by the

list scheduling algorithm of [4] is the best possible. To gain further insight into this problem, we consider

the special case when there are only two wavelength channels. Even this special case of the transmission

scheduling problem is known to be NP-complete [11].

For the two-channel case, a more rigorous analysis shows that the list scheduling algorithm actually has

a performance ratio of 3
2
. We also show that this ratio is tight even when the tuning delay is zero. This leads

to the question of whether 3
2 is the best ratio achievable by any off-line algorithm. We answer this question

in the negative by presenting a polynomial-time approximation algorithm that achieves a performance ratio

better than 3
2
, provided the tuning delay δ is less than

(
3
2
−
√

2
)

S
6
, where S is the total number of packets

to be transmitted. This result opens up the possibility of even better performing off-line algorithms not only

for the two-channel case, but for the general case as well.
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2 The On-Line Algorithm

An instance of the on-line transmission scheduling problem consists of n tunable transmitters Ti (1 ≤ i ≤ n),

r fixed-tuned receivers Ri (1 ≤ i ≤ r) and m wavelength channels Ci (1 ≤ i ≤ m). Each receiver Ri is tuned

permanently to a specific channel Cj; hence, all packets destined for Ri must be transmitted over channel

Cj. On the other hand, each transmitter Ti may tune to, and transmit packets over, any channel. However,

at any given time, a transmitter may transmit over at most one channel and a channel may carry at most

one packet. All packets have the same length and a packet’s transmission time equals one time unit. When a

transmitter tunes to a channel, it incurs a tuning delay equal to δ time units. Initially, the transmitters are

not tuned to any specific channel. Assuming that we start at time 0, for a given set of transmission requests,

the length of a transmission schedule satisfying these requests is the latest time at least one channel was

busy serving one of the transmission requests.

Packets arriving at a transmitter Ti are placed in a queue Qi. For notational convenience, we denote by

Qi[j] the set of packets in Qi that are to be transmitted over channel Cj. Ti also maintains a ready queue

READYi of packets already scheduled for transmission.

We now present the on-line algorithm. The algorithm maintains an array F of m elements, one for each

channel Cj, 1 ≤ j ≤ m. F [j] = t means that channel Cj will become free (i.e., no packet transmission is

scheduled) after t time units (relative to current time). F [j] is decremented by one after each time unit.

Initially, F [j] = 0 for all j.

Each transmitter goes through a sequence of transmit cycles; during each cycle the transmitter tunes

to a channel, waits (if necessary) until the channel becomes free, then sends one or more packets over the

channel. Specifically, each transmitter Ti cycles through the steps given in Algorithm A below.
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Step 1. Select a j such that Qi[j] �= ∅ and channel Cj has the earliest available time

(i.e., F [j] is minimum).

Step 2. Move the packets in Qi[j] to the ready queue READYi.

Step 3. If already tuned to channel Cj, then update F [j] = |READYi| and transmit

all packets in READYi over channel Cj. Go to step 1.

Step 4. If not tuned to channel Cj, then do the following:

(a) Let f = F [j] and τ = max{ F [j], δ }. Update F [j] = τ + |READYi|.

(b) Tune to channel Cj (for δ time units).

(c) Wait max{ f − τ, 0 } time units, then transmit all packets in READYi

over channel Cj. Go to step 1.

Algorithm A

The on-line scheduler given by Algorithm A may be implemented in a distributed manner using a control

channel scheme similar to that described in [8]. In this scheme, a separate control channel is used to

coordinate the transmissions of the distributed transmitters. Before commencing the next transmit cycle,

a transmitter first sends a control packet to all other transmitters indicating the channel it plans to use

next. In the event that two or more transmitters attempts to reserve the same channel at the same time,

one transmitter is granted the channel based on some predetermined contention resolution scheme, e.g.,

lowest-transmitter-number-first or round-robin. (In this case, only the control packet of the winning channel

survives – all other control packets are discarded.) The transmitter that wins the channel then computes

the new earliest available time for the channel (i.e., the F value) and sends a control packet containing this

value to all other transmitters, which in turn update their local copies of the F value for the channel. This

guarantees that the F values are consistent across all transmitters.

Before analyzing the performance of the above on-line algorithm, we first derive some useful properties

of an optimal schedule and the schedule produced b Algorithm A. Let:

• p(Ti) = total number of packets to be transmitted by transmitter Ti,

• p(Ci) = total number of packets to be transmitted over channel Ci, and

• c(Ti) = number of distinct channels over which the packets of Ti have to be transmitted.

Let LOPT be the length of an optimal schedule. The following facts are obvious:

Fact 2.1 LOPT ≥ max1≤i≤n{ p(Ti) + δc(Ti) }.
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Fact 2.2 LOPT ≥ max1≤i≤m{ p(Ci) + δ }.

Let L be the length of the schedule produced by Algorithm A. Let T be the transmitter which completed

transmission at time L. Suppose that T goes through a sequence of l transmit cycles 〈Γ1, Γ2, . . . , Γl〉. Suppose

further that during the last transmit cycle Γl, T transmitted packets over channel C. Let ρ be the packet

with the earliest arrival time among all packets transmitted during Γl. Let i be the largest integer such that

the arrival time of ρ ≥ start time of Γi.

Fact 2.3 For any two consecutive transmit cycles Γj and Γj+1 in 〈Γi, . . . , Γl〉, there is no idle1 period between

the end of Γj and the start of Γj+1.

Proof: From Algorithm A, it is clear that once a transmitter has sent all packets over a channel, it

immediately tunes to a new channel (and hence begins the next transmit cycle) whenever there are packets

still waiting to be sent. Since packet ρ arrived during Γi and was not transmitted till Γl, T always had at

least one packet to send at the completion of every transmit cycle Γj, i ≤ j ≤ l. The fact follows.

Fact 2.3 implies that the idle periods of T occur only within transmit cycles; specifically, only when T

has finished tuning to a channel but is forced to wait until the channel becomes free before transmitting any

packets.

Fact 2.4 At any time during 〈Γi, . . . , Γl〉, channel C is busy whenever transmitter T is idle.

Proof: Note that transmitter T has at least one packet to send (i.e., packet ρ) over channel C during

〈Γi, . . . , Γl〉. Suppose to the contrary that during some transmit cycle Γj , i ≤ j ≤ l, T remained idle when

channel C became free. If T were tuned to C, then it should have started transmitting as soon as C became

free and not remained idle. If T were tuned to another channel D, then it should have instead tuned to C

because C would be available earlier than D. In either case, we have a contradiction.

We are now ready to prove the following:

Theorem 2.1 Algorithm A produces a schedule of length L ≤ 3LOPT , where LOPT is the length of an

optimal schedule.

Proof: During 〈Γi, . . . , Γl〉, either:

(1) all cycles transmit over distinct channels; or

(2) two or more cycles transmit over the same channel.

Case 1. Consider first the case when all transmit cycles in 〈Γi, . . . , Γl〉 use distinct channels. Let:

1A transmitter is busy if it is either tuning to a channel or transmitting a packet; otherwise, it is idle.

5



• t1 = arrival time of packet ρ at transmitter T ;

• t2 = sum of all idle periods of T during 〈Γi, . . . , Γl〉; and

• t3 = sum of all busy periods of T during 〈Γi, . . . , Γl〉.

Clearly, the finish time L of transmitter T satisfies:

L ≤ t1 + t2 + t3

Since packet ρ arrived at time t1, any schedule must finish no earlier than t1. Hence,

t1 ≤ LOPT

Recall from Fact 2.4 that whenever T is idle, channel C is busy. Using this fact and Fact 2.2, we have,

t2 ≤ p(C) ≤ LOPT − δ

Finally, since T transmits over distinct channels during 〈Γi, . . . , Γl〉, then

t3 ≤ p(C) + δc(T ) ≤ LOPT ,

where we used Fact 2.1 for the second inequality.

It follow that:

L ≤ t1 + t2 + t3 ≤ 3LOPT − δ ≤ 3LOPT

Case 2. Suppose that in 〈Γi, . . . , Γl〉, two or more transmit cycles used the same channel. Find the largest

integer j, i ≤ j ≤ l, such that:

• no transmit cycles in 〈Γj+1, . . . , Γl〉 used the same channel; and

• Γj used the same channel C ′ as some transmit cycle Γk in 〈Γj+1, . . . , Γl〉.

Let ρ′ be the packet with the earliest arrival time among all packets transmitted by T during Γk.

Furthermore, let:

• t′1 = arrival time of packet ρ′ at T ;

• t′2 = sum of all idle periods of T during 〈Γj, . . . , Γl〉; and

• t′3 = sum of all busy periods of T during 〈Γj, . . . , Γl〉.

Clearly, packet ρ′ should have arrived no earlier than the start of transmit cycle Γj , since otherwise ρ′

would have been transmitted during Γj and not during Γk. Thus, the finish time L of T satisfies:

L ≤ t′1 + t′2 + t′3
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Moreover,

t′1 ≤ LOPT

and

t′2 ≤ p(C) ≤ LOPT − δ

Note that during 〈Γj, . . . , Γl〉 no channel was used more than once except for channel C ′. Therefore,

t′3 ≤ p(T ) + (δ + 1) · c(T ) ≤ LOPT + δ,

by Fact 2.1. It follows that:

L ≤ t′1 + t′2 + t′3 ≤ 3LOPT

3 Off-Line Scheduling: Better Polynomial-Time Approximation

Algorithms for the Two-Channel Case

When all packets to be transmitted are known in advance (i.e., all packets arrive at time 0), the on-line

algorithm described in the previous section reduces to the off-line list scheduling algorithm described in

[4]. In [4] it was shown that this algorithm produces schedules which are within a factor 2 of the optimal

schedule. We should point out that the alternative algorithms given in [4] (viz., Theorem 3 and its corollaries)

are not polynomial-time approximation algorithms2 and hence could not be used to get a polynomial-time

approximation with a ratio better than 2.

We attempt to provide further insight into the off-line scheduling problem by considering the special case

when there are only two channels. Even this special case of the problem is known to be NP-complete [11].

For this special case, a more rigorous analysis shows that the list scheduling algorithm actually has a better

performance ratio of 3
2 . We also show that this ratio is tight by demonstrating a problem instance (with

even zero tuning delay) for which the algorithm achieves exactly this ratio. This leads to the interesting

question of whether 3
2

is the best ratio achievable by any polynomial-time off-line algorithm. We partially

answer this question by exhibiting an algorithm that achieves a performance ratio better than 3
2 , provided

the tuning delay δ is less than
(

3
2 −

√
2
)

S
6 , where S is the total number of packets to be transmitted.

Without loss of generality, one can assume that every transmitter has at least one packet to send (other-

wise, the transmitter can be removed from consideration), and at least one packet is sent over each channel

(otherwise, the channel can be removed from consideration). A channel is considered busy when packets

2This is because the time taken by these algorithms is proportional to the size s of the largest packet. But, only �log2(s+1)�
bits are needed to encode s. In other words, all these algorithms run in pseudo-polynomial time (see, for example, [6, pages

387-391] for a discussion on pseudo-polynomial time algorithms).
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are transmitted over it. For an interval I = [a, b] ⊆ [0,∞], let |I| denote the length of the interval (i.e.,

|I| = b − a), and let a and b denote the beginning and the end of the interval I, respectively. As before

in Section 2, assuming that we start at time 0, for a given set of transmission requests, the length of a

transmission schedule satisfying these requests is the latest time at least one channel was busy serving one

of the transmission requests.

3.1 A 3
2

Performance Bound for Two-Channel List Scheduling

For the case of two channels, we can obtain an improved performance ratio for the list scheduling algorithm.

Theorem 3.1 The off-line list scheduling algorithm achieves a performance ratio of 3
2 when there are 2

channels. Moreover, this ratio is tight.

Proof: Suppose that transmitter Ti, 1 ≤ i ≤ n, has ai and bi packets to send to channels C1 and C2,

respectively. Let αi = δ + ai and βi = δ + bi. Let L and LOPT be the schedule lengths produced by the list

scheduling algorithm and the optimal algorithm, respectively.

First, consider the case when, for each i, either ai = 0 or bi = 0 (but, not both!). In this case, according

to the list scheduling algorithm, all transmitters Tj with aj �= 0 tune to channel C1 at time 0, and all

transmitters Tj with bj �= 0 tune to channel C2 at time 0. Then, clearly L = LOPT (since channels C1 or C2

are continuously busy from time δ until all the packets for the channel have been transmitted).

Hence, assume that there is at least one index i such that both ai and bi are not zero. By using Fact 2.1

and Fact 2.2, it follows that LOPT > 2δ.

C1

C2
Tn

Tn

I3 I1
an

I4 I2
bnδ

0 LδTime

y δ x

Figure 1: List scheduling algorithm for 2 channels.

Note that in the list scheduling algorithm, a transmitter tunes to either channel at most once and sends

all packets destined for that channel without interruption. Assume, without loss of generality, that C2 is the
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channel over which the last packet was sent and that Tn was the transmitter that sent the last packet. Refer

to Figure 1 and the notations used there. We define the following notations for convenience:

I1 = time interval during which Tn transmitted packets over C1

I2 = time interval during which Tn was tuned to C2, but

waited for C2 to be idle

I3 = time interval during which Tn was tuned to C1, but

waited for C1 to be idle

I4 = time interval during which Tn was tuning to C2

Notice that, in the notations of Figure 1, |I2| = x and |I3| = y. Also, note that |I1| = an and |I4| = δ. Then,

we have the following equalities/inequalities:

L = an + bn + x + y + 2δ (1)

LOPT ≥ an + bn + 2δ (2)

LOPT ≥ an + y + δ (3)

LOPT ≥ bn + x + y + δ (4)

LOPT > 2δ (5)

The explanations of the above equalities or inequalities are as follows. Equality (1) is obvious. Inequality (2)

follows from Fact 2.1 and Fact 2.2. Inequality (3) follows since C1 must have been continuously busy

during I3 (otherwise, since Tn was already tuned to C1, it would have started transmitting over C1 earlier).

Inequality (4) follows by considering the times during which C2 was busy (together with the initial tuning

delay of δ, which must occur in any lower bound). Inequality (5) has already been explained before.

Adding inequalities 2-4 and dividing both sides by 3, we get:

LOPT ≥ 2
3

(
an + bn + 2δ +

x

2
+ y

)
(6)

Now, there are two cases to consider:

Case 1. x = 0. Then, inequality (6) and equality (1) implies that L ≤ 3
2LOPT .

Case 2. x > 0. Let Tj (where j �= n) be the transmitter which was transmitting to C2 during the interval

[an + y +2δ, an + y +2δ +1] (i.e., during the first time unit of the interval I2). The following are true:

(a) Since δ is the tuning delay, Tj must have started tuning to channel C2 on or before the beginning

of interval I4.

(b) As a result of (a), Tj could not have sent any packets over C1 anytime during the interval I4.

(c) Since Tn was transmitting over C1 during the interval I1, Tj could not have sent any packets over

C1 anytime during the interval I1.
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(d) By (b) and (c), Tj could not have sent any packets over C1 anytime during the interval I1 ∪ I4.

Hence, Tj must have started tuning to C2 on or before the beginning of the interval I1.

(e) By (d), Tj must have finished tuning to C2 on or before time y + 2δ.

(f ) By (e), the channel C2 must have been continuously busy during the interval [y + 2δ, an + y + 2δ]

(i.e., all of the interval I1 ∪ I4 except the initial sub-interval of length δ), because the only way

to prevent Tj from transmitting over C2 is to make it wait until one or more other transmitters

finishes transmission.

(g) Due to (e), the lower bound of inequality (4) can be improved to:

LOPT ≥ an + bn + x + y + δ (7)

Now, there are only two subcases to consider:

Case 2.1. an + bn + x + y ≥ δ. Using equality (1) and inequality (7), it follows that

L

LOPT
≤ 1 +

δ

an + bn + x + y + δ
≤ 1 +

δ

2δ
≤ 3

2

Case 2.2. an + bn +x+y < δ. Then, from equality (1), L < 3δ. Hence, using inequality (5), we again

have L
LOPT

≤ 3
2 .

This performance ratio is tight, as can be seen from the following example. Let n = 4, δ = 0, a1 = b1 =

a2 = b2 = a3 = b3 = 1, a4 = b4 = 3. Figure 2 below shows the optimal schedule (which is of length 6) and

the schedule produced by the list-scheduling algorithm (which is of length 9).

T3

T2 T3 T1

T1 T2

T4

T4 T1 T3T2

T1 T2 T3 T4

C1

C2

C1

C2

T4

1 1 1

1 1 1

1 1 1

1 1 1

3

33

3

3

idle

(a) (b)

Figure 2: Worst-case example achieving ratio of 3
2 . (a) shows the optimal schedule and (b) shows the schedule

produced by the list-scheduling algorithm.

3.2 Breaking the 3
2

Barrier

Intuitively, in order to improve upon the 3
2 ratio, we need to ensure that the transmission schedules over

the two channels are balanced in a better way. As before, assume that transmitter Ti, 1 ≤ i ≤ n, has ai
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and bi packets to transmit over channels C1 and C2, respectively. Let S1 =
n∑

i=1

ai, S2 =
n∑

i=1

bi, and assume,

without loss of generality, that S2 ≥ S1 > 0. Obviously, LOPT ≥ max{ δ + S2, max
1≤i≤n

(2δ + ai + bi) }. Also,

since every transmitter has at least one packet to send, S2 ≥ n
2
. The scheduling algorithm is given as

Algorithm B in the next page.

Theorem 3.2 Algorithm B runs in polynomial time and achieves a performance ratio of r < 3
2 , provided

the tuning delay δ satisfies δ <
(

3
2
− α

)
S
6
, where α = 1

2
3+ε1

=
√

2.

Proof: Assume that δ <
(

3
2 − α

)
S
6 . Since S2 ≥ S

2 , δ <
(

3
2 − α

)
S2
3 . For notational simplicity, let

c = 1
3
2−α

> 1. Hence, S2 > 3cδ. First, notice that it is always the case that Σ1 ∩ Σ′
1 = Σ2 ∩ Σ′

2 = φ; hence

during the first (respectively, second) round, transmitters from Σ1 (respectively, Σ2) do not compete with

the transmitters from Σ′
1 (respectively, Σ′

2) for the same channel. Also, notice that Σ1 ∪ Σ2 = Σ′
1 ∪ Σ′

2 =

{T1, T2, . . . , Tn}; hence at the end of the algorithm, all transmitters finish their transmissions. Finally, due

to the choice of the particular value of the constant ε1, it is true that 4
3

+ 2ε1 = 1
2
3+ε1

(ε1 is the positive root

of the quadratic equation 18ε21 + 24ε1 − 1 = 0).

If the algorithm found some i such that (ai +bi) ≥ (2
3 +ε1)(S1 +S2), then LOPT ≥ 2δ+(2

3 +ε1)(S1 +S2),

whereas the schedule length L of Algorithm B is L = 2δ + S1 + S2. Hence,

r = L
LOPT

≤ S1+S2
2δ+( 2

3+ε1)(S1+S2)
+ 2δ

2δ+( 2
3+ε1)(S1+S2)

< 1
2
3+ε1

+ 1

1+( 2
3+ε1)

S2
2δ

< 1
2
3+ε1

+ 1
1+c

< 1
2
3+ε1

+ 1
c

= α + 3
2 − α

= 3
2

as desired.

Otherwise, (ai + bi) < (2
3 + ε1)(S1 + S2) for every i. Algorithm B now ensures that Σ1, Σ2, Σ′

1, Σ′
2 �= φ.

Define

σ1 = δ +
∑

Tj∈Σ1

aj σ′
1 = δ +

∑
Tj∈Σ′

1

bj σ2 = δ +
∑

Tj∈Σ2

aj σ′
2 = δ +

∑
Tj∈Σ′

2

bj

Notice that σ1 +σ2 = 2δ+S1 and σ′
1 +σ′

2 = 2δ+S2. Let t = |σ1−σ′
1|. Depending on the relative magnitudes

of σ1, σ
′
1, σ2, σ

′
2, there could be four possibilities:

(a) σ1 ≤ σ′
1 and σ2 ≤ σ′

2. Then, L = S2 + 2δ, LOPT ≥ S2 + δ and hence

r =
L

LOPT
≤ 1 +

δ

S2 + δ
≤ 1 +

1
1 + 3c

< 1 +
1
4
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(b) σ1 ≤ σ′
1 and σ2 > σ′

2. Since S1 ≤ S2,

σ2 − σ′
2 = (S1 + 2δ − σ1) − (S2 + 2δ − σ′

1) ≤ σ′
1 − σ1

Hence,

L = S2 + 2δ + (σ2 − σ′
2) ≤ S2 + 2δ + (σ′

1 − σ1) = S2 + 2δ + t

Since LOPT ≥ S2 + δ, we have

r =
L

LOPT
≤ S2 + 2δ + t

S2 + δ
= 1 +

δ

S2 + δ
+

t

S2 + δ
< 1 +

1
3c

+
t

S2 + δ
< 1 +

1
c

+
t

S2 + δ

(c) σ1 > σ′
1 and σ2 ≤ σ′

2. Then, L = S2 + 2δ + t, LOPT ≥ S2 + δ, and hence again (similar to (b) above)

r = L
LOPT

< 1 + 1
c + t

S2+δ .

(d) σ1 > σ′
1 and σ2 > σ′

2. But, σ1 + σ2 = S1 + 2δ ≤ S2 + 2δ = σ′
1 + σ′

2. Hence, this case is not possible.

So, combining all the items above, r < max{ 5
4 , 1 + t

S2
+ 1

c}. Our goal is to show that t is not too large.

We have two major cases:

Case 1. The algorithm found some i such that |ai + bi − S2| ≤ (1
2
− ε2)S2. Then, t = |σ1 − σ′

1| =

|ai − (S2 − bi)| ≤ (1
2 − ε2)S2. Hence,

r < 1 +
1
2
− ε2 +

1
c

=
3
2
− ε2 +

1
c

=
4
3

+ 2ε1 +
1
c

=
1

2
3 + ε1

+
1
c

= α +
3
2
− α =

3
2

Case 2. The algorithm found no such i as in Case 1. That is, for all i, |ai + bi − S2| > (1
2 − ε2)S2 > 0.

First we show that, for all i, ai < S2 − bi. Assume, for the sake of contradiction, that ai > S2 − bi for

some i. This implies ai + bi − S2 > (1
2 − ε2)S2. Hence, ai + bi > (3

2 − ε2)S2 = (4
3 + 2ε1)S2. But, we

already have, (ai + bi) < (2
3

+ ε1)(S1 + S2) ≤ (4
3

+ 2ε1)S2, since S1 ≤ S2. This is a contradiction.

Hence, for all i, ai < S2−bi. That means S2−bi −ai > (1
2 −ε2)S2. That is, ai +bi < (1

2 +ε2)S2. Algo-

rithm B now tries to find an appropriate index k. The index k must exist, since

S2 −
∑

1≤i≤0

(ai + bi) = S2 > (
1
2
− ε2)S2, S2 −

∑
1≤i≤n

(ai + bi) = −S1 < (
1
2
− ε2)S2. Hence, the index k

can be found. Let

P = S2 −
∑

1≤i≤k

(ai + bi) ≤
(

1
2
− ε2

)
S2

and

P ′ = S2 −
∑

1≤i≤k−1

(ai + bi) >

(
1
2
− ε2

)
S2

Then, t = |P |. How large |P | can be? Notice that, since ak + bk < (1
2 + ε2)S2,

P = P ′ − (ak + bk) > (
1
2
− ε2)S2 − (

1
2

+ ε2)S2 = −2ε2S2

12



Hence, −2ε2S2 < P ≤ (1
2 − ε2)S2, and

t = |P | ≤ max{ 2ε2S2, (
1
2
− ε2)S2 } = (

1
2
− ε2)S2

and, hence r < 1 + (1
2 − ε2) + 1

c = 1
2
3+ε1

+ 1
c = α + 3

2 − α = 3
2 .

Combining all cases, it is always true that r < 3
2 .

4 Conclusion

The results presented in this paper point to several interesting questions that still remain to be addressed:

• Is there an on-line transmission scheduling algorithm that achieves a performance ratio better than

3? (It is possible that a better analysis would show that the on-line algorithm presented here has a

performance ratio less than 3.)

• Can the off-line algorithm for two channels be generalized to m channels and be shown to achieve a

performance ratio better than 3
2?

• Can efficient on-line and off-line algorithms be developed for the general case of tunable transmitters

and tunable receivers?

Furthermore, to be of practical use, extensive simulations need to be carried out to test the algorithms

under a variety of system configurations and traffic distribution patterns. We encourage other researchers to

investigate these problems so as to gain better insight into the capabilities (and limitations) of WDM optical

networks.
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ε1 = −24+
√

648
36

≈ 0.040440115, ε2 = 1
6
− 2ε1 ≈ 0.085786438

if ∃i such that (ai + bi) ≥ (2
3 + ε1)(S1 + S2) then

Σ1 = Σ′
2 = {T1, T2, . . . , Tn}, Σ′

1 = Σ2 = φ

else

if ∃i such that |ai + bi − S2| ≤ (1
2 − ε2)S2 then

Σ1 = {Ti}, Σ′
1 = {Tj | j �= i}, Σ2 = {Tj | j �= i}, Σ′

2 = {Ti}
else

find k such that

S2 −
∑

1≤i≤k−1

(ai + bi) > (
1
2
− ε2)S2 and

S2 −
∑

1≤i≤k

(ai + bi) ≤ (
1
2
− ε2)S2

(the proof will show that such a k exists)

Σ1 = Σ′
2 = {T1, T2, T3, . . . , Tk}

Σ2 = Σ′
1 = {Tk+1, Tk+2, Tk+3, . . . , Tn}

endif

endif

Transmit the packets in two rounds of transmission as follows:

During first round,

Transmitters Tj ∈ Σ1 transmit over channel C1 one after another in any order.

Transmitters Tj ∈ Σ′
1 transmit over channel C2 one after another in any order.

All transmitters wait (if necessary) until both C1 and C2 are not busy.

During second round,

Transmitters Tj ∈ Σ2 transmit over channel C1 one after another in any order.

Transmitters Tj ∈ Σ′
2 transmit over channel C2 one after another in any order.

endif

Algorithm B

References

[1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, and M. Sudan, “Efficient

Routing and Scheduling Algorithms for Optical Networks”, IBM Research Report, Tech. Rep. RC

18967, June 1993.

14



[2] M. Azizog̃lu, R. Barry, and A. Mokhtar, “Impact of Tuning Delay on the Performance of Bandwidth-

Limited Optical Broadcast Networks with Uniform Traffic”, IEEE J. Select. Areas Commun., vol. 14,

no. 5, June 1996, pp. 935–944.

[3] M. S. Borella and B. Mukherjee, “Efficient Schedulling of Nonuniform Packet Traffic in a WDM/TDM

Local Lightwave Network with Arbitrary Transceiver Tuning Latencies”, IEEE J. Select. Areas Com-

mun., vol. 14, no. 5, June 1996, pp. 923–934.

[4] H. Choi, H.-A. Choi and M. Azizog̃lu, “Efficient Scheduling of Transmissions in Optical Broadcast

Networks”, IEEE/ACM Trans. Networking, vol. 4, no. 6., Dec. 1996, pp. 913–920.

[5] E. G. Coffman and P. J. Denning, Operating Systems Theory, Englewood Cliffs, NJ: Prentice-Hall, 1973.

[6] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall Inc., 1982.

[7] R. L. Graham, “Bounds for Certain Multiprocessor Anomalies”, Bell Sys. Tech. Journal, 45, 1966, pp.

1563–1581.

[8] F. Jia, B. Mukherjee, and J. Iness, “Scheduling Variable-Length Messages in a Single-Hop Multichannel

Local Lightwave Network”, IEEE/ACM Trans. Networking, vol. 3, no. 4, Aug. 1995, pp. 477–487.

[9] G. R. Pieris and G. H. Sasaki, “Scheduling Transmissions in WDM Broadcast-and-Select Networks”,

IEEE/ACM Trans. Networking, vol. 2, no. 2, Apr. 1994, pp. 105–110.

[10] G. N. Rouskas and V. Sivaraman, “On the Design of Optimal TDM Schedules for Broadcast WDM

Networks with Arbitrary Transceiver Tuning Latencies”, Proc. IEEE INFOCOM’96, 1996, pp. 1217–

1224.

[11] G. N. Rouskas and V. Sivaraman, “Packet Scheduling in Broadcast WDM Networks with Arbitrary

Transceiver Tuning Latencies”, IEEE/ACM Trans. Networking, vol. 5, no. 3, June 1997, pp. 359–370.

15


