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Abstract

Di�erent phylogenetic trees for the same group of species are often produced either by procedures

that use diverse optimality criteria ���� or from di�erent genes ���� in the study of molecular

evolution� Comparing these trees to �nd their similarities and dissimilarities �i�e� distance	 is

thus an important issue in computational molecular biology� Several distance metrics including the

nearest neighbor interchange �nni	 distance and the subtree�transfer distance have been proposed

and extensively studied in the literature� This article considers a natural extension of the subtree


transfer distance� called the linear�cost subtree
transfer distance� and studies the complexity and

e�cient approximation algorithms for this distance as well as its relationship to the nni distance�

The linear
cost subtree
transfer model seems more suitable than the �unit
cost	 subtree
transfer

model in some applications� The following is a list of our results�

�� The linear
cost subtree
transfer distance is in fact identical to the nni distance on unweighted

phylogenies�

�� There is an algorithm to compute an optimal linear
cost subtree
transfer sequence between

unweighted phylogenies in O�n � �O�d�	 time� where d denotes the linear
cost subtree
transfer

distance� Such an algorithm is useful when d is small�


� Computing the linear
cost subtree
transfer distance between two weighted phylogenetic trees

is NP
hard� provided we allow multiple leaves of a tree to share the same label �i�e� the trees

are not necessarily uniquely labeled	�

�� There is an e�cient approximation algorithm for computing the linear
cost subtree
transfer

distance between weighted phylogenies with performance ratio ��



� Introduction

The evolution history of organisms is often conveniently represented by trees� called phylogenetic

trees or simply phylogenies� Such a tree has uniquely labeled leaves and unlabeled internal nodes�

can be unrooted or rooted if the evolutionary origin is known� and usually has internal nodes of

degree 
� Over the past few decades� many di�erent objective criteria and algorithms for re


constructing phylogenies have been developed� including �not exhaustively	 parsimony ��� �� ����

compatibility ����� distance ���� ���� and maximum likelihood ��� �� ��� The outcomes of these

methods usually depend on the data and the amount of computational resources applied� As a

result� in practice they often lead to di�erent trees on the same set of species ����� It is thus of

interest to compare phylogenies produced by di�erent methods� or by the same method on di�erent

data� for similarity and discrepancy� The comparison of phylogenies is also routinely performed in

simulation studies where people analyze reconstructed phylogenies against the true ones�

Several metrics for measuring the distance between phylogenies have been proposed in the

literature� Among these measures� the nearest neighbor interchange �nni	 distance ���� ��� ��� has

perhaps received the most attention� An nni operation swaps two subtrees that are separated by

an internal edge �u� v	� as shown in Figure �� The nni operation is said to operate or perform
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Figure �� The two possible nni operations on an internal edge �u� v	� exchange B � C or B � D�

on this internal edge� The nni distance� Dnni�T�� T�	� between two trees T� and T� is de�ned

as the minimum number of nni operations required to transform one tree into the other� The

computational complexity of computing the nni distance has puzzled the research community for

nearly �� years until recently� It is shown in �
� that the nni distance is NP
hard to compute� Some

e�cient logarithmic
ratio approximation algorithms for the nni distance have also been proposed

in �
� ����

The problem of computing distance between phylogenies also arises in a di�erent context� When

the data is in the form of some molecular sequences of organisms and the sequences have been

subject to events such as recombination or gene conversion during the course of evolution� the

evolutionary history of the sequences cannot be adequately described by a single tree� In an

attempt to solve this problem� more general evolutionary models have been proposed including the

network model ���� and a model using a list of phylogenetic trees ���� �
�� In the latter� every

tree corresponds to a speci�c region of the sequences� and each tree can be obtained from the

preceding tree on the list by transferring some subtrees from one place to another� Figure � shows

a recombination event between two sequences and Figure 
 shows a subtree�transfer operation and

its corresponding recombination event� The parsimony model in ���� �
� requires the computation

of the subtree
transfer distance between two trees� i�e� the minimum number of subtrees we need

�



0

0

1

1

1 1

Figure �� Recombination event between two sequences� The genetic material �thick lines�� that is

in one sequence after recombination� was in two sequences just before the recombination�

to move to transform one tree into the other� In ���� the authors show that computing the subtree


transfer distance is NP
complete and give a simple approximation algorithm with approximation

ratio 
�

It is relevant in practice to discriminate among subtree
transfer operations as they occur with

di�erent frequencies� For example� it is reasonable to assume that sequences that have only diverged

recently give rise to more recombinations than sequences that diverged many generations ago ��
�

���� In this case� we can charge each subtree
transfer operation a cost equal to the distance �number

of nodes passed	 that the subtree has moved in the current tree� The linear�cost subtree
transfer

distance� Dst�T�� T�	� between two trees T� and T� is then the minimum total cost required to

transform T� into T� by subtree
transfer operations� Clearly� both subtree
transfer and linear


cost subtree
transfer models can also be used as alternative measures for comparing phylogenies

generated by di�erent phylogeny reconstruction methods�

A phylogeny may also have weights on its edges� where an edge weight �more popularly known as

branch length in genetics	 could represent the evolutionary distance along the edge� Many phylogeny

reconstruction methods� including the distance and maximum likelihood methods� actually produce

weighted phylogenies� Comparison of weighted phylogenies has recently been studied in ����� The

distance measure adopted is based on the di�erence in the partitions of the leaves induced by the

edges in both trees� and has the drawback of being somewhat insensitive to the tree topologies ����

Just like the nni model ���� the linear
cost subtree
transfer model can be naturally extended to

weighted phylogenies� a moving subtree is charged for the weighted distance it travels� Intuitively

this measure is more sensitive to the tree topologies than the one in �����

In this paper� we study the computational complexity and approximation algorithms for linear


cost subtree
transfer distance on both unweighted and weighted phylogenies� The rest of the paper

is organized as follows� In section ���� we show that the linear
cost subtree
transfer distance is

in fact identical to the nni distance on unweighted phylogenies� As a result� the complexity and

approximation results for the nni distance reported in �
� �� directly apply to the linear
cost subtree
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Figure 
� ���	 Recombination event at point rp in �a� corresponds to transferring subtree s� in

�b�� The genetic material �thick lines�� that is in one sequence after recombination� was in two

sequences just before the recombination� The two sets of numbers �on the thick lines� correspond to

the two evolutionary histories �as shown in �b�� of two parts of the sequences� For example� in the

evolutionary tree for the second parts of the sequences �rightmost tree in �b��� a common ancestor

of s�� s�� s� is found going back in time
 hence the second number of the thick line in second row is


�

transfer distance on unweighted phylogenies too� Section � presents an algorithm to compute an

optimal linear
cost subtree
transfer sequence on unweighted phylogenies in time O�n ��O�d�	� where

d stands for the linear
cost subtree
transfer distance between the trees involved� In Section 
� we

formalize the extension of the linear
cost subtree
transfer distance on weighted phylogenies and

prove the following results�

� We show that computing the linear
cost subtree
transfer distance between two weighted trees

is NP
hard� provided we allow multiple leaves of a tree to share the same label �i�e� the trees

are not necessarily uniquely labeled	�

� We devise an approximation algorithm for the linear
cost subtree
transfer distance between

weighted trees with performance ratio ��

The results presented in this paper form a part of the results in �
�� The remaining results in






�
� deal with the proof of NP
hardness of computing the nni distance for �uniquely	 labeled trees�

as well as extending the nni distance for weighted phylogenies� and will be published seperately ����

Unless otherwise mentioned explicitly� the following de�nitions are used uniformly throughout

the rest of the paper� All the trees in this paper are trees with internal nodes of degree 
 and with

unique labels on leaves� We will mention it explicitly if a tree has nonuniquely labeled leaves or

unlabeled leaves� An edge of a tree is external if it is incident on a leaf� otherwise it is internal�

Finally� two weighted trees are considered equal i� there is an isomorphismbetween them preserving

topology and edge weights �and leaf labels� if they are labeled	�

��� Nni and Subtree�transfer on Unweighted Phylogenies

Surprisingly� although they are studied in parallel for very di�erent reasons� we demonstrate here

that the linear
cost subtree
transfer distance and the nni distance are very closely related for un


weighted phylogenies�

Lemma � The linear�cost subtree�transfer distance is identical to the nni distance on unweighted

phylogenies�

Proof� Observe that an nni move is just a restricted subtree
transfer where a subtree is only

moved across a single edge� �In Figure �� the �rst exchange can alternatively be seen as moving

node v together with subtree C past node u towards subtree A� or vice
versa�	 On the other hand�

when all internal nodes have degree 
� a subtree
transfer over a distance d can always be simulated

by a series of d nni moves� Hence the linear
cost subtree
transfer distance is in fact identical to the

nni distance on unweighted phylogenies�

As a result� all the results on computing the nni distance reported in �
� �� directly apply to

the linear
cost subtree
transfer problem on unweighted phylogenies also� In particular� this means

that� for any two unweighted phylogenies T� and T��

� Computing Dst�T�� T�	 is NP
hard�

� Dst�T�� T�	 can be approximated within a logarithmic factor in polynomial time�

� An E�cient Exact Algorithm for Small Subtree�transfer Dis�

tance

The result in this section concerns computing Dst�T�� T�	 exactly� where T� and T� are unweighted

phylogenies� In practice� the trees to be compared usually have small subtree
transfer distances

between them and it is of interest to devise e�cient algorithms for computing an optimal subtree


transfer sequence when the Dst�T�� T�	 is small� say at most d� An nO�d� algorithm for this problem

�



is trivial� With careful inspection� one can derive an algorithm that runs in O�nO��� � dO�d
��	 time�

It turns out that by using the results in ��
� ���� we can improve this asymptotically to O�n ����d��	

time�

De�nition � Let T� and T� be the two trees being compared� An edge e� � T� is good if there is

another edge e� � T� such that e� and e� partition the leaf labels of T� and T� identically� e� is bad

otherwise�

The proof of the following lemma can be found in ��� which deals with computing strict consesus

trees�

Lemma � ��	 Let T� and T� be two trees� each with n leaves� Then� the set of good edges of T�
�with respect to T�� can be enumerated in O�n	 time�

We also need the following rather straightforward observation�

Observation � Let e and e� be two edges of a binary tree T which are not adjacent to each other�

Then� performing an nni operation � across e followed by an nni operation �� across e� is the same

as performing the nni operation �� across e� followed by the nni operation � across e�

See Figure � for an illustration of the Observation 
�

Theorem � Suppose that Dst�T�� T�	 � d� An optimal sequence of subtree�transfer operations

transforming T� into T� can be computed in O�n � ���d��	 time�

Proof� Since the linear
cost subtree
transfer distance is identical to the nni distance on unweighted

trees� we choose� for convenience of understanding� to describe how to �nd an optimal nni sequence

�which is in fact an optimal subtree
transfer sequence	� We know that T� contains at least � �and at

most d	 bad edges� Moreover� assume that these bad edges form t connected components B�� � � � � Bt

�� � t � d	� As observed in ����� for an optimal nni transformation� sometimes one or more nni

operations are needed across a good internal edge of T�� Consider the set of at most d � � good

edges in T� across which at least one nni operation is performed in an optimal nni sequence� This

set of good edges form at most d�� connected components in T�� Consider any one such connected

component S� Since good edges in T� and T� partition the trees in a similar manner� it is very easy

to see that there must be at least one connected component Bi sharing a vertex with S�

Using this observation� we can devise the following algorithm�

�
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Figure �� Illustration of Observation �� The subtrees swapped in each nni operation are shown by

thick dashed rectangles� The �nal trees in the two nni sequences are the same� �� �� �� �� � and �

are subtrees� The portion of the tree connecting e to e� is shown by a dashed line�

For every choice of integers k�� � � � � kt � �� � �
Pt

i�� ki � d do

For every choice of connected subgraphs A�� � � � � At of T� such that

Ai has at most ki internal edges
�and contains the component Bi do

Examine all sequences of nni transformations across edges of all Ai�s

such that no more than ki nni operations are performed across the

edges of Ai

Among all sequences examined� select the one of shortest length that transforms T� into T�

Algorithm NNI
d

Figure � illustrates how the algorithmworks� Figure ��a	 shows two bad edges �� � in T� �shown

by thick lines	 forming two connected components �t � �	� In Figure ��b	 we show one choice of

two connected subgraphs containing k� and k� edges� and including the edges � and �� respectively�

For each connected subgraph� algorithm NNI
d computes all possible nni sequences such that at

most 
 nni are performed across edges of each connected subgraph�

Now� we analyze the running time of the above algorithm� The following countings are crucial

for the analysis�

�nni operations cannot obviously be performed across external edges

�
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Figure �� Illustration of how Algorithm NNI�d works �d � �� k� � k� � 
� t � ���

� There are at most

dX
i��

�
i� t� �

i

�
�

dX
i��

�
i� d� �

i

�
�

dX
i��

�i	d�� 	 ��d

choices for the integers k�� � � � � kt�

� Note that any connected subgraph of k edges including a �xed edge �k 
 �	 can be represented

by a rooted binary tree on k�� nodes �the root corresponding to the middle of the �xed edge	�

hence there are at most Ck	� � �
k	�

��k	�
k	�

�
	 ��k such subgraphs��� page ����� For k � ��

there is exactly � 	 ��k such subgraph� Hence� it follows that the total number of choices for

the subgraphs A�� � � � � At �for any particular value of k�� � � � � kt	 is at most �
Pt

i��
��ki� � ��d�

Consider a particular choice of subgraphs A�� A�� � � � � At �with k�� k�� � � � � kt edges� respectively	�

Let M��M�� � � � �Ms be the s connected components of A� � A� � � � � � At� Assume that Mi has �i
edges �

Ps
i�� �i �

Pt
i�� ki � d	� Notice that we are required to perform at most �i nni operations

across the edges of Mi� Let mi � �i be the number of nni operations performed across the edges of

Mi� Extend each Mi to M �

i by adding edges from T such that every degree � or degree � node of

Mi �that is not a leaf of T 	 is of degree 
 in M �

i � Notice thatM
�

i has at most �i�
 leaves� Lemma �

of ���� states that the number of trees within an nni distance of m 
 � from any given tree with n

leaves is at most 
n����m �for m � �� the number of such trees is obviously at most n� 
	� Hence�

the total number of distinct nni operations we will need to consider for each connected subgraph

Mi is at most 
��i	�������i � 
�i	����i 	 ����i�� if � 	 mi � �i� and at most �i 	 ����i�� if mi � ��

By Observation 
� nni operations across the edges in Mi can be performed independently of the

nni operations across the edges of Mj for i �� j� Hence� the total number of nni operations across

the edges of all Mi�s is at most �������
Ps

i��
�i � ���d��� Combining everything� the total number of

nni operations we will need to consider is at most

Number of choices for the integers

k�� k�� � � � � kt
�

Number of choices of

A�� A�� � � � � At for each

choice of k�� k�� � � � � kt

�

Number of nni op�

erations across the

edges ofM��M�� � � � �Ms

which is at most ��d 	 ��d 	 ���d�� � ���d���

�



The set of all good edges of T� can be found in O�n	 time using Lemma �� and this time

bound is also su�cient to �nd the connected components of good edges� Using the adjacency


list representation of trees� updating a tree during a single nni operation can easily be done in

O��	 time� and whether two trees are isomorphic can be easily checked in O�n	 time� Hence� this

algorithm �nds an optimal nni sequence in O�n � ���d��	 time�

� Linear�cost Subtree�Transfer Distance on Weighted Phylogenies

In this section we investigate the linear
cost subtree
transfer model on weighted phylogenies� Re


call that the linear
cost subtree
transfer distance is identical to the nni distance on unweighted

phylogenies� Below we formalize the linear
cost subtree
transfer model on weighted phylogenies�

Consider �unrooted	 trees in which each edge e has a weight w�e	 � �� To ensure feasibility

of transforming a tree into another� we require the total weight of all edges to equal one� A

subtree
transfer is de�ned as follows� Select a subtree S of T at a given node u and select an edge

e� �� S� Split the edge e� into two edges e� and e
 with weights w�e�	 and w�e
	 �w�e�	� w�e
	 � ��

w�e�	�w�e
	 � w�e�		� and move S to the common end
point of e� and e
� Finally� merge the two

remaining edges e� and e� adjacent to u into one edge e� with weight w�e�	 � w�e�	 � w�e�	� The

cost of this subtree
transfer is the total weight of all the edges over which S is moved� Figure 
 gives

an example� The subtree S is transferred to split the edge e� to e� and e
 such that w�e�	� w�e
	 � �

and w�e�	 � w�e
	 � w�e�	� �nally� the two edges e� and e� are merged to e� such that w�e�	 �

w�e�	 � w�e�	� The cost of transferring S is w�e�	 � w�e�	 � w�e�	�

1
e
2

e
3

e
4

e
3e5

e
6 e

7
e

(b)

S
S

(a)

Figure �� Subtree�transfer on weighted phylogenies� Tree �b� is obtained from tree

�a� with one subtree�transfer�

��� Some De�nitions and a Useful Lower Bound

In this section� we introduce some notations and a lower bound on the subtree
transfer distance

which will be useful in subsequent proofs� For any tree T � let E�T 	 �resp� V �T 		 denote the edge

set �resp� node set	 of T and L�T 	 denote the set of leaf nodes of T � An external edge of T

incident on a leaf node a is denoted by eT �a	� Let Eint�T 	 and Eext�T 	 denote the set of internal

and external edges of T � respectively� For a subset E� 
 E�T 	� de�ne w�E�	 �
P

e�E� w�e	� De�ne

Wint�T 	 � w�Eint�T 		 and Wext�T 	 � w�Eext�T 		�

�



Consider the transformation of tree T� to tree T� �hence L�T�	 � L�T�		� We partition Eext�T�	

into three subsets as follows�

Eext�T��T��T�	 � feT��a	 j w�eT��a		 
 w�eT��a		g

Eext�T��T��T�	 � feT��a	 j w�eT��a		 � w�eT��a		g

Eext�T��T��T�	 � feT��a	 j w�eT��a		 	 w�eT��a		g

Wext�T��T��T�	 �
X

eT� �a��Eext�T��T�
�T��

w�eT��a		� w�eT��a		

Similarly� Eext�T�	 can be partitioned into� Eext�T��T��T�	� Eext�T��T��T�	� and Eext�T��T��T�	�

Wext�T��T��T�	 is de�ned analogously�

Lemma � Wint�T�	 �Wext�T��T��T�	 � Wint�T�	 �Wext�T��T��T�	�

Proof� Since w�Eext�T��T��T�		 � w�Eext�T��T��T�		 �Wext�T��T��T�	� we have�

Wint�T�	�w�Eext�T��T��T�		�w�Eext�T��T��T�		�w�Eext�T��T��T�		�Wext�T��T��T�	 � w�T�	 � �

Similarly� we have

Wint�T�	�w�Eext�T��T��T�		�w�Eext�T��T��T�		�w�Eext�T��T��T�		�Wext�T��T��T�	 � w�T�	 � �

Since w�Eext�T��T��T�		 � w�Eext�T��T��T�		� the lemma follows from above two equations�

We next de�ne the notion of good edge pairs in the following�

De�nition � Let e� � Eint�T�	 and e� � Eint�T�	� Let T �

� and T ��

� be the two subtrees of T�
partitioned by e�� Let T

�

� and T ��

� be the two subtrees of T� partitioned by e�� The edges e� and e�

are called a good edge pair of T� and T� i� the following two conditions hold�

�� L�T �

�	 � L�T �

�	 and L�T ��

� 	 � L�T ��

� 	�

�� One of the following two conditions holds�

�a	 w�E�T �

�		 � w�E�T �

�		 	 w�E�T �

�		 � w�e�	� or

�b	 w�E�T �

�		 � w�E�T �

�		 	 w�E�T �

�		 � w�e�	�

The following lemma provides a lower bound on Dst�T�� T�	 when T� and T� do not share good

edge pairs�

Lemma � If T� and T� share no good edge pairs� then�

��� Dst�T�� T�	 � Wint�T�	 �Wext�T��T��T�	�

�
� Dst�T�� T�	 � Wint�T�	 �Wext�T��T��T�	�

�



Proof� We only prove ��	� The proof of ��	 follows from ��	 and Lemma �� For each edge

e � E�T�	� we determine the minimum portion of e over which some subtrees of T� must be

transferred in order to transform T� to T�� First� consider an edge e� � Eint�T�	� By the assumption

of the lemma� there is no edge e� in T� such that e� and e� are a good pair� There are two cases�

Case �� The partition of L�T�	 induced by e� is di�erent from the partition of L�T�	 induced by

any edge in T�� Then� in order to transform T� to T�� some leaf nodes of T� must be transferred

across the entire length of e��

Case �� The partition of L�T�	 induced by e� is the same as the partition of L�T�	 induced by an

edge e� in T�� Let T
�

� and T ��

� be the two subtrees of T� partitioned by e�� Let T
�

� and T ��

� be the

two subtrees of T� partitioned by e�� where L�T
�

�	 � L�T �

�	 and L�T ��

� 	 � L�T ��

� 	�

Case ���� w�E�T �

�		 � w�E�T �

�		�w�e�	� In this case� in order to transform T �

� to T
�

�� some subtree

in T �

� must be transferred across entire length of e��

Case ���� w�E�T �

�		 � w�E�T �

�		 � w�e�	� This implies� w�E�T ��

� 		 � w�e�	 � w�E�T ��

� 		� In order

to transform T ��

� to T ��

� � some subtree in T ��

� must be transferred across the entire length of e��

In either case� some subtree of T� must be transferred across the entire length of e� with cost

w�e�	�

Next consider an edge eT��a	 � Eext�T��T��T�	� In order to transform eT��a	 to eT��a	� a subtree

of T� must be transferred across a portion of eT��a	 of length w�eT��a		� w�eT��a		� Thus�

Dst�T�� T�	 �
P

e�Eint�T��
w�e	�

P
e�Eext�T��T�

�T��
�w�eT��a		�w�eT��a		� � Wint�T�	�Wext�T��T��T�	

Remark� Assume that the given trees T� and T� are not uniquely
labeled �i�e�� a label may appear

in more than one leaf	� Extend the de�nition of good edge pairs by treating L�T 	 as the multi


set of leaves for a tree T and considering the conditions L�T �

�	 � L�T �

�	 or L�T ��

� 	 � L�T ��

� 	 to

hold if the corresponding multi
sets are identical� Assume that all the leaves are incident on zero�

weight edges �i�e�� Wint�T�	 � Wint�T�	 and Wext�T�	 � Wext�T�	��	� and that T� and T� share

no good edge pairs� Then� in a manner very similar to the proof of Lemma �� one can show that

Dst�T�� T�	 � Wint�T�	 �and� that some subtree is transfered over every internal edge of T� to

transform T� to T�	�

We say that nodes connected by �
weight edges are equivalent and call the resulting equivalence

classes super�nodes� Let e�� � � � � ek be all positive weight edges incident to a super
node o� With �

cost� we can re
connect the edges e�� � � � � ek by any subtree� consisting of only � weight edges� In

particular� the following observation will be useful in our subsequent descriptions�

Observation� Let o be a super
node of T � Let e�� � � � � ek be all positive weight edges incident on

o� Pick any ei and ej � We can assemble fe�� � � � � ekg � fei� ejg into a single subtree S with � cost�

and then transfer S along ei by a distance d � w�ei	� The e�ect of this operation is that the edges

��



e�� � � � � ek are still incident on a super
node� and a portion of ei of length d is moved into ej � The

total cost of this operation is d� We denote this operation by move�ei� d� ej	� This operation can

be implemented in O�k	 time using the adjacency
list representation of the tree �where the weight

of the edge is also stored in the adjacency list	�

e1

⇒
e2

e3

e4

e5

0.4 0.3

(1)

e1

⇒

e2

e3

e4

e5

0.4
0.3

(2)

e1

e2

e3

e4

e5

0.2 0.5

Figure �� The operation move�e�� ���� e�	� ��� e�� e�� e� are assembled into a tree S
 �
� S is moved

along e� by a length of ��
�

Figure � shows an example of this operation� In the �gure� the thin lines denote � weight edges

and heavy lines denote positive weight edges�

A tree T is called a super�star if all of its internal edges have � weight� In other words� all

external edges of a super
star T are incident to a single super
node�

��� An NP�hardness Result

It is open whether the linear
cost subtree
transfer problem is NP
hard for weighted phylogenies�

However� we can show that the problem is NP
hard for weighted trees with non
uniquely labeled

leaves�

Theorem 	 Let T� and T� be two weighted trees with �not necessarily uniquely� labeled leaves�

Then� computing Dst�T�� T�	 is NP�hard�

Our proof is by a reduction from Exact Cover by ��Sets �X
C	 problem� which is de�ned as

follows�

INSTANCE� S � fs�� � � � � smg� where m � 
q� and C�� � � � � Cn� where Ci � fsi� � si� � si�g 
 S�

QUESTION� Are there q disjoint sets Ci� � � � � � Ciq such that �qj��Cij � S �

X
C is known to be NP
complete ����� We will construct two trees T� and T� with leaf labels

�not necessarily unique	� such that transforming from T� into T� requires subtree
transfers of total

cost exactly � i� an exact cover of S exists�

Proof of Theorem 	� Assume that an instance� S � fs�� s�� � � � � smg �with m � 
q	 and

��
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Figure �� Trees T� and T� used in the proof of Theorem �� The leaf labels are shown beside the cor�

responding leaves� The notations for some of the internal edges are shown beside the corresponding

edges� The edge weights are as follows� w�e��	 � w�e��	 � � � � � w�e�n	 � w�e��	 � w�e��	 �

� � � � w�e�n�q	 �
�
n � w�e��	 � w�e��	 � � � � � w�e�m	 �

�
�n � and all other edges have zero weights�

C�� C�� � � � � Cn� �with jCij � 
	� of the X
C problem is given� We construct two weighted la�

beled �but not uniquely labeled	 trees as shown in Figure �� T� has n long arms� ��� � � � � �n� T� has

n� q long arms� ��� � � � � �n�q� and m short arms� ��� � � � � �m� Each long �resp� short	 arm consists

of an edge of weight �
n �resp� �

�n	� with three leaves �resp� one leaf	 labeled by the same label x

�x �� S	� connected to it as shown in Figure �� For notational convenience� let e�i �resp� e�i � e�i	

denote the edge of non
zero weight in the long arm �i �resp� in the long arm �i� in the short arm

�i	� In T�� at the bottom of the ith long arm �i� we attach a subtree ti consisting of three leaves�

as shown in Figure �� labeled by the three elements si� � si� and si� of Ci� At the bottom of each

long arm of T�� there are no additional subtrees attached� The labeling of the remaining leaves of

T� is as follows�

� At the bottom of the ith short arm �i� we attach a leaf labeled by si�

� The remaining 
n �m leaf labels �each leaf label is an element of S	 are associated �in any

order	 with the 
n�m leaves in the middle of T� between the long and the short arms�

Note that Wint�T�	 � Wint�T�	 � � and Wext�T�	 � Wext�T�	 � �� Also� notice that the trees

T� and T� are not uniquely labeled� The following lemma proves the correctness of the NP
hardness

reduction�

Lemma 
 Dst�T�� T�	 � � i� there is a solution of the X�C problem�

The following lemma is needed in the proof of Lemma ��

Lemma � Dst�T�� T�	 � �� Moreover� if Dst�T�� T�	 � �� then over any portion of any of the edges

e�i� exactly one subtree�transfer takes place�

��



Proof� We �rst verify that every edge e�i of T� is not a good edge pair with any edge of T��

Consider the edge e�i �� � i � n	� This edge partitions T� into two trees T �

� and T ��

� � where L�T
�

�	

consists of � leaves labeled with si� � si� � si� � x� x� x and L�T ��

� 	 consists of the remaining leaves of

T�� Also� note that w�E�T
�

�		 � � and w�E�T ��

� 		 � � � �
n � Consider any edge e � T� partitioning

T� into two trees T �

� and T ��

� � Since both the conditions L�T �

�	 � L�T �

�	 and L�T ��

� 	 � L�T ��

� 	 must

be satis�ed for e�i to be a good edge pair with e� the only possibility for the edge e is to be the

zero
weight edge between e�� and e�� � But� in that case� w�E�T �

�		 �
�
n and w�E�T ��

� 		 � � � �
n �

Then� clearly both w�E�T �

�		 
 w�E�T �

�		 and w�E�T �

�		 � w�E�T �

�		 � w�e�i	 are true� Hence� e�i
is not a good edge pair with e�

Hence� from the Remark following the proof of Lemma �� some subtree is transferred over every

internal edge e�i of T�� and we get

Dst�T�� T�	 �
nX
i��

w�e�i	 � �

The remaining part of the lemma is now straightforward� Assume that over a portion � of some e�i �

more than one subtree is transfered �� 	 w��	 � w�e�i		� Then�Dst�T�� T�	 �
Pn

i��w�e�i	�w��	 �

� � w��	 
 ��

Proof of Lemma 
� Suppose that there is an exact cover of S� say �without loss of generality	

C�� � � � � Cq� Then� we transform T� to T� in the following manner�

� First� we consider the corresponding long arms ��� � � � � �q in T� and move the leaves of each

subtree tj �j � �� � � � � q	 up in the following way as shown in Figure �� Without loss of
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Figure �� Moving leaves of the long arm ���

generality� we describe the procedure for �� only� Leave one of the three leaves� say s�� �

with a leaf x at the bottom� and move the subtree containing the other two leaves s�� and

�




s�� together with two leaves labeled x up by a distance �
�n �remember that we can use zero

weight edges to assemble many subtrees at a given node into one subtree with zero cost	�

Now� leave one of these two leaves� say s�� � with a leaf labeled x there� and move the subtree

containing leaves s�� and s�� together with two leaves labeled x up by a distance �
�n � Finally�

move the subtree containing the leaf s�� and a leaf labeled x and the subtree containing the

leaf s�� and a leaf labeled x together up by a distance �
�n � After this� we have created all the

short arms of T�� but not necessarily in the correct order� After some rearrangements of the

short arms of total cost zero �since we move subtrees across zero weight edges	� we can create

the short arms of T� in the correct order�

� For each Cl not in the cover� we simply move the subtree containing the three leaves of the

subtree tl up by a distance �
n �see Figure ��	� This already creates the remaining long arms of

sl1
s l 2

sl3

sl1 s l 2

sl3

1/n

x
x
x

x
x

x

1/n

Figure ��� Moving leaves of the long arm �l for every Cl not in cover�

T�� Now� with some extra rearrangements of total cost zero� we can create� in correct order�

the leaves in the middle part of T� between the long and the short arms�

Hence� our conversion of T� to T� is complete� The total cost of conversion is q � �n ��n� q	 � �n � ��

as promised�

Conversely� assume that there is no exact cover of S� Then� by Lemma �� if Dst�T�� T�	 � ��

then over any portion of any of the edges e�i � at most one subtree transfer takes place� But� in

that case� the only possible way to create the m short arms of T� is to use exactly q long arms in

T�� which means there was an exact cover of S�

Remark� Since the X
C problem is NP
complete even if each element occurs in at most 
 sets �����

it follows that Theorem � holds even if every label� except only one label �label x in the proof	�

occurs in at most 
 leaves�

��



��� An Approximation Algorithm

In this section� we prove the following theorem�

Theorem �� For any two �uniquely�labeled� weighted phylogenies T� and T�� Dst�T�� T�	 can be

approximated to within a factor of � in O�n�	 time�

We are now ready to describe our algorithm� First� we consider the special case when T� and

T� do not have any good edge pairs� Algorithm DST� as described below� approximatesDst�T�� T�	

to within a factor of �� The algorithm transforms T� into a super
star T �

� �by moving the weight

of internal edges into external edges	� Similarly� the algorithm transforms T� into a super
star

T �

�� The transformations are chosen to make T �

� coincide with T �

�� To transform T� to T�� we �rst

transform T� to T
�

��� T �

�	 and then transform this to T�� Let T
�

� �resp� T
�

�	 denote the tree during

the transformation of T� �resp� T�	� T �

� �resp� T
�

�	 is initialized to be T� �resp� T�	�

Algorithm DST�

Step �� Initialize T �

� � T� and T �

� � T��

Step �� While T �

� is not a super
star yet and there is an external edge eT �

�

�a	 � �a� u	 in T �

�

such that w�eT �

�

�a		 	 w�eT �

�

�a		� do�

� Let e� be any positive weight internal edge of T �

� incident on the super
node containing

u� Let d � minfw�e�	� �w�eT �

�

�a		� w�eT �

�

�a		�g�

� Perform the operation move�e�� d� eT �

�

�a		 in T �

�� �Note� after this move operation�

either the entire length of e� is moved into eT �

�

�a	 or w�eT �

�

�a		 � w�eT �

�

�a			�

�Note� after the loop terminates� either T �

� is a super
star or w�eT �

�

�a		 � w�eT �

�

�a		 for all

leaf nodes a� Also we perform subtree
transfer only on internal edges of T�	�

Step �� Similar to Step �� with the roles of T �

� and T �

� swapped�

Step 
� We transform T �

� and T �

� into two super
stars such that w�eT �

�

�a		 � w�eT �

�

�a		 for all

leaf nodes a� There are two possible cases as follows�

Case 
��� w�eT �

�

�a		 � w�eT �

�

�a		 for all leaf nodes a� Perform the following loop to transform

both T �

� and T
�

� into super
stars� During the execution of the loop� we maintain the condition

w�eT �

�

�a		 � w�eT �

�

�a		 for all leaf nodes a �this condition implies that T �

� is a super
star i�

T �

� is a super
star	�

Repeat

��



Pick any edge eT �

�

�a	 � �a� u�	 in T �

�� Suppose that the corresponding edge eT �

�

�a	 in

T �

� is �a� u�	� Let e� be any positive weight internal edge of T �

� incident on the super


node containing u�� Let e� be any positive weight internal edge of T �

� incident on the

super
node containing u�� Let d � minfw�e�	� w�e�	g� In T �

�� perform the operation

move�e�� d� eT �

�

�a		� In T �

�� perform the operation move�e�� d� eT �

�

�a		� �After this� we

have moved the entire length of either e� or e� into external edges�	

Until both T �

� and T �

� are super
stars�

�Note� during this step� we perform subtree
transfer only on internal edges of T� and T�	�

Case 
��� There exists a leaf node a such that w�eT �

�

�a		 �� w�eT �

�

�a		� This can happen only if

both T �

� and T
�

� are super
stars already� We need to make w�eT �

�

�a		 � w�eT �

�

�a		 for all leaf

nodes a� This is done as follows� Partition L�T �

�	 into three subsets A� B� and C as follows�

A �resp� B�C	 is the set of leaf nodes a �resp� b� c	 such that w�eT �

�

�a		 � w�eT �

�

�a		 �resp�

w�eT �

�

�b		 	 w�eT �

�

�b		� w�eT �

�

�c		 
 w�eT �

�

�c			�

Repeat

Pick any edge eT �

�

�b	 with b � B and eT �

�

�c	 with c � C� Let d � minf�w�eT �

�

�c		 �

w�eT �

�

�c		�� �w�eT �

�

�b		� w�eT �

�

�b		�� In T �

�� perform move�eT �

�

�c	� d� eT �

�

�b		� Then�

� If d � w�eT �

�

�b		� w�eT �

�

�b		� remove b from B and put b into A�

� If d � w�eT �

�

�c		� w�eT �

�

�c		� remove c from C and put c into A�

� If d � w�eT �

�
�c		� w�eT �

�
�c		 � w�eT �

�
�b		� w�eT �

�
�b		� remove b from B� remove c

from C� put both b and c into A�

Until B � C � ��

Step �� Now both T �

� and T �

� are super
stars and w�eT �

�

�a		 � w�eT �

�

�a		 for all leaf nodes a�

We adjust the topology of the super
nodes of T �

� and T �

� so that T �

� and T �

� are identical�

Lemma �� Assume that T� and T� do not share any good edge pairs� Then� algorithm DST

approximates Dst�T�� T�	 to within a factor of � in O�n�	 time�

Proof� We analyze the cost and running time of each step of the algorithm� We use the adjacency


list representation of a tree� Steps � and � incur no costs and can easily be implemented in O�n	

time� During Steps �� � and 
��� we only transfer subtrees across internal edges of T� and T�� Over

any portion of such an edge e� at most one subtree
transfer operation occurs� So the total cost of

these steps is bounded above by Wint�T�	�Wint�T�	� Moreover� it is easy to see that at most O�n	

moves are performed during Steps ���� and 
��� and since each move operation can be implemented

in O�n	 time� the total time for all these steps is at most O�n�	�

Next� consider Step 
��� Before the repeat loop is entered� for any c � C� we have�

� w�eT �

�

�c		 � w�eT��c		� �This is because no additional weight is moved to the edge eT �

�

�c	

during Steps � and �	�

��



� w�eT �

�

�c		 � w�eT��c		�

During Step 
��� we only transfer subtrees across the edges eT �

�

�c	 for c � C� Fix such an edge�

Note that any portion of eT �

�

�c	 is traversed at most once during Step 
��� Once the length of

eT �

�
�c	 is reduced to w�eT �

�
�c		� c is removed from C� So the portion of eT �

�
�c	 traversed during Step


�� is w�eT �

�
�c		� w�eT �

�
�c		 � w�eT��c		� w�eT �

�
�c		 � w�eT��c		� w�eT��c		� So the total cost of

Step 
�� is at most
P

c�C �w�eT �

�

�c		� w�eT �

�

�c		� �
P

c�C �w�eT��c		� w�eT��c		� � Wext�T��T��T�	�

Also� we perform at most O�n	 move operations during Step 
��� and hence this step can also be

implemented in O�n�	 time�

Thus the total cost of the algorithm is bounded above by Wint�T�	�Wint�T�	�Wext�T��T��T�	�

which is at most �Dst�T�� T�	 by Lemma ��

Next� we consider the general case when T� and T� may share some good edge pairs� First� we

show how to �nd all good edge pairs e�ciently�

Lemma �� Let T� and T� be two trees� each with n leaves� Then� the set of good edges of T� �with

respect to T�� can be enumerated in O�n�	 time�

Proof� First we calculate� for every edge e of either T� or T�� w�E�T��		 and w�E�T��		 where

T�� and T�� are two subtrees at the two end
points of e� This can be trivially done in O�n�	 time�

Next� we ignore condition ��	 of the de�nition of good edge pairs �De�nition �	� and �nd all those

edge pairs of T� and T� which satisfy only condition ��	 of this de�nition� This can be done in O�n	

time by Lemma ��� Finally� for every such edge pairs which satisfy condition ��	 of this de�nition�

we check if they satisfy condition ��	 of the de�nition also� This takes O�n�	 time�

We now show how to apply algorithm DST to achieve an approximation ratio of � when T� and

T� may share some good edge pairs� Let K be the number of good edge pairs in T� and T�� Our

algorithm is by induction on K� If K � �� algorithm DST works by Lemma ��� Suppose K 
 ��

Let e� � �u�� v�	 � E�T�	 and e� � �u�� v�	 � E�T�	 be a good edge pair� Let T �

� and T ��

� be the

two subtrees of T� partitioned by e�� Let T �

� and T ��

� be the two subtrees of T� partitioned by e��

where L�T �

�	 � L�T �

�	 and L�T ��

� 	 � L�T ��

� 	 �

Assume w�E�T �

�		 � w�E�T �

�		 	 w�E�T �

�		�w�e�	� �The other case can be handled in a similar

way	� Add a new edge �u�� x	 to T �

� and assign w��u�� x		 � w�E�T �

�		�w�E�T �

�		� Add a new edge

�x� v�	 to T ��

� and assign w��x� v�		 � w�e�	� w��u�� x		� Add a new edge �u�� x	 to T �

� and assign

w��u�� x		 � �� Add a new edge �x� v�	 to T ��

� and assign w��x� v�		 � w�e�	� �See Figure ��	� Note

that the weights of all new edges are non
negative�

Now we have� L�T �

�	 � L�T �

�	 and w�T �

�	 � w�T �

�	� We can normalize the weights of T �

� and T �

�

such that their sum is �� By induction hypothesis� we can transform T �

� to T �

� with cost at most

�Dst�T �

�� T
�

�	� Similarly� we can transform T ��

� to T ��

� with cost at most �Dst�T ��

� � T
��

� 	� Combining the

two transfer sequences� we can transform T� to T� with cost at most �Dst�T�� T�	� The complete

algorithm takes O�n�	 time� This completes the proof of Theorem ���

��
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Figure ��� Cut each of T� and T� into two smaller trees�

Remark� Naturally� one may try to investigate if the performance ratio of � in Theorem �� can

be further improved� For this purpose� note that in some cases� the lower bounds of Lemma � are

rather weak� for instance if two trees have four leaves each� di�erently partitioned over the single

internal edge of weight one� with all four external edges having zero weight� The transformation

cost in this case is two� whereas the above only shows a lower bound of one� The internal edges of

these two trees could be said to be entangled� since they partition the leaves in sets none of which is

contained in another� So one must bring the various leaves together �rst� and after repartitioning�

move them apart again� This led us to the following conjecture� Disjoint pairs of entangled edges

contribute at least their sum of weights to the optimal cost� However� the trees in Figure �� provide

a counterexample �external edges have zero weight	� in that the edge pairs fx� wg and fy� zg are

both entangling� yet the distance between T� and T� is less than the sum weight of these four edges�

a b

b e cdde

c a
T1 T2

x y w z

Figure ��� A counterexample to the entangle conjecture�

� Discussion and Open Problems

These results have been obtained as a part of our larger project of building a comprehensive software

package for comparing phylogenetic trees�

One may wonder why we could obtain a factor � approximation for the linear
cost subtree


transfer distance on weighted phylogenies� where we could get only a logn factor approximation

for unweighted phylogenies� But� notice that all intermediate trees in the unweighted case are also

binary trees� whereas in the weighted case� intermediate trees of high degree may be produced

�e�g�� by allowing zero length edges	� In other words� in the weighted case� the topology of an

��



intermediate tree may be considerably di�erent from the given trees� and in fact� we do utilize this

to get a factor � approximation� Consequently� the distance may vary considerably depending on

whether we are considering unweighted or weighted phylogenies� For example� consider unweighted

trees with n labeled leaves� and weighted trees with n labeled leaves where the weight of every

internal edge is �
n�� and the rest of the edges have zero weights� Assume also the two �unweighted

or weighted	 trees involved in the distance calculation share no good edge pairs �De�nition � or

De�nition �� as appropriate	� In the unweighted case� it is known that there are two trees which

are at a distance of ��n logn	 ��
�� However� in the weighted case� our factor � approximation

algorithm and the lower bounds in Lemma � imply that any two trees are at a distance of at most

O��	�

Several open questions still remain and may be worth persuing further�

�� Is the linear
cost subtree
transfer problem NP
hard when the trees are �uniquely	 labeled

and weighted�

�� Can we approximate the linear
cost subtree
transfer distance for weighted phylogenies with

a ratio better than ��
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