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Abstract This paper addresses the problem of
scheduling packet transmissions in wavelength-
division multiplezed (WDM) networks with tunable
transmitters and fized-tuned receivers. Unlike pre-
vious work which assume that all packets are known
in advance, this paper considers the on-line case in
which packets may arrive at any time. An on-line
algorithm is presented that achieves a performance
ratio of 3 with respect to an optimal off-line al-
gorithm. In addition, off-line algorithms are pre-
sented for the case when there are two wavelength
channels. Even this special case of the problem is
known to be NP-complete and the currently best
known algorithm for this case achieves a perfor-
mance ratio of 2. Using a more rigorous analysis,

1t is shown that this algorithm has, in fact, a per-
3
where this algorithm achieves this performance ra-

formance ratio of =, and an erample is presented

tio even when the tuning delay is zero. Further-

more, for this case, a new polynomial-time approz-

imation algorithm is presented with a performance
3

ratio better than 5, provided the tuning delay 6 is

less than (% — a) %, where S is the total number of
packets to be transmitied and « =~ 1.4142136.
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1 Introduction

Wavelength division multiplexing is a promis-
ing approach to utilize the enormous band-
width of optical fiber and offers the capabil-
ity of building very large wide-area networks
consisting of thousands of nodes with per-node
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throughputs in the gigabits-per-second range.

In a wavelength division multiplexed
(WDM) optical network, n transmitters and
r receivers communicate through m non-
interfering wavelength channels. In practice,
m is typically much less than either n or
r and hence the channels are shared by the
transmitters and the receivers. Transmitters
and receivers that can tune from one wave-
length to another are called tunable, while
those that cannot are called fized-tuned. The
network is packet switched and time slotted.
That is, transmitters transmit data in fixed-
length packets and a packet’s transmission
time equals one time slot. Packets are trans-
mitted within slot boundaries.

An important parameter in the design of
WDM optical networks is the tuning delay,
which is the amount of time required for a
transmitter to tune from one wavelength to an-
other. Current WDM networks have large tun-
ing delays, sometimes in the order of millisec-
onds for transmitters and receivers with wide
tuning ranges [4]. Consequently, algorithms for
scheduling packet transmissions in WDM net-
works must explicitly take into account the ef-
fect of tuning delay on performance.

The problem of scheduling transmissions in
WDM networks has been studied by various
researchers [11, 1, 2, 3, 4, 8, 9, 10]. In this pa-
per, we are interested in the scheduling prob-
lem for WDM networks with tunable trans-
mitters and fized-tuned receivers. This model
has previously been studied in [9] and [4]. In
[9], Pieris and Sasaki considered the all-to-all
broadcast problem (i.e., a single packet is to be
transferred between every transmitter /receiver



pair) and presented upper and lower bounds on
the minimum-length schedule for this problem.
Subsequently, Choi, Choi and Azizoglu [4] im-
proved upon [9]’s lower bound and showed that
the latter’s all-to-all broadcast algorithm is, in
fact, optimal. In the same paper [4], the au-
thors considered the general problem in which
arbitrary (but known) number of packets are
to be transferred between transmitter /receiver
pairs. They presented an algorithm based on
the well-known list scheduling algorithm [5, 7]
which produces schedule lengths that are at
most twice the optimal length.

In this paper, we consider the on-line version
of the general transmission scheduling prob-
lem, which applies to more practical situa-
tions that does the off-line version. In on-
line scheduling, packets arrive at the transmit-
ters at arbitrary times; consequently, schedul-
ing decisions must be made on the basis of
the packets that have arrived so far, without
knowledge of future packets. We show that
this problem, while more difficult than the off-
line case, admits efficient solutions as well. In
particular, we give an on-line algorithm that
produces schedule lengths that are at most
three times the optimal length. Interestingly,
our on-line algorithm reduces to the off-line
list scheduling algorithm when all packets are
known in advance (i.e., arrive at time 0).

For the off-line case, the interesting question
is whether the performance ratio of 2 achieved
by the list scheduling algorithm of [4] is the
best possible. To gain further insight into this
problem, we consider the special case when
there are only two wavelength channels. Even
this special case of the transmission scheduling
problem is known to be NP-complete [11].

For the two-channel case, a more rigorous
analysis shows that the list scheduling algo-
rithm actually has a performance ratio of %
We also show that this ratio is tight even when
the tuning delay is zero. This leads to the ques-
tion of whether % is the best ratio achievable by
any off-line algorithm. We answer this question
in the negative by presenting a polynomial-
time approximation algorithm that achieves a
performance ratio better than %, provided the

S
(R
is the total number of packets to be transmit-
ted and a = 1.4142136. This result opens up
the possibility of even better performing off-
line algorithms not only for the two-channel

case, but for the general case as well.

tuning delay §é is less than (% - a) where S

2 The On-Line Algorithm

An instance of the on-line transmission
scheduling problem consists of n tunable trans-
mitters T; (1 < ¢ < n), r fixed-tuned receivers
R; (1 <4 < r) and m wavelength channels C;
(1 < i < m). Each receiver R; is tuned perma-
nently to a specific channel C;; hence, all pack-
ets destined for R; must be transmitted over
channel C;. On the other hand, each trans-
mitter T; may tune to, and transmit packets
over, any channel. However, at any given time,
a transmitter may transmit over at most one
channel and a channel may carry at most one
packet. All packets have the same length and
a packet’s transmission time equals one time
unit. When a transmitter tunes to a channel,
it incurs a tuning delay equal to § time units.
Initially, the transmitters are not tuned to any
specific channel.

Packets arriving at a transmitter 7; are
placed in a queue ;. For notational conve-
nience, we denote by Q;[j] the set of packets
in @; that are to be transmitted over channel
C;. T; also maintains a ready queue READY;
of packets already scheduled for transmission.

We now present the on-line algorithm. The
algorithm maintains an array F' of m elements,
one for each channel C;,1 < j < m. F[j] =t
means that channel C; will become free (i.e., no
packet transmission is scheduled) after ¢ time
units (relative to current time). F[j] is decre-
mented by one after each time unit. Initially,
Flj] =0 for all j.

Each transmitter goes through a sequence
of transmit cycles; during each cycle the trans-
mitter tunes to a channel, waits (if necessary)
until the channel becomes free, then sends one
or more packets over the channel. Specifically,
each transmitter T; cycles through the steps



given in Algorithm A.

Before analyzing the performance of the
above on-line algorithm, we first derive some
useful properties of an optimal schedule and
the schedule produced by Algorithm A. Let:

e p(T;) = total number of packets to be
transmitted by transmitter 7,

e p(C;) = total number of packets to be
transmitted over channel C;, and

¢ ¢(T;) = number of distinct channels over
which the packets of T; have to be trans-
mitted.

Let Lopr be the length of an optimal sched-
ule. The following facts are obvious:

Fact 2.1 Lopr > maX1§i§n{ p(T;) +6¢(T3) }.
Fact 2.2 Lopr > maX1§i§m{ p(C;)+ 8},

Let L be the length of the schedule pro-
duced by Algorithm A. Let T be the trans-
mitter which completed transmission at time
L. Suppose that T' goes through a sequence of
[ transmit cycles (I';,T's, ..., T). Suppose fur-
ther that during the last transmit cycle I'y, T
transmitted packets over channel C'. Let p be
the packet with the earliest arrival time among
all packets transmitted during I';. Let ¢ be the
largest integer such that the arrival time of p >
start time of T';.

Fact 2.3 For any two consecutive transmit cy-
cles T'; and T'j4q in (Ty,...,Iy), there is no
idle' period between the end of T'; and the start
Of Fj+1 .

Proof: From Algorithm A, it is clear that
once a transmitter has sent all packets over a
channel, it immediately tunes to a new chan-
nel (and hence begins the next transmit cycle)
whenever there are packets still waiting to be
sent. Since packet p arrived during I'; and was
not transmitted till I';, T always had at least

! A transmitter is busyif it is either tuning to a chan-
nel or transmitting a packet; otherwise, it is ¢dle.

one packet to send at the completion of every
transmit cycle I';,2 < j <. The fact follows.

Fact 2.3 implies that the idle periods of T
occur only within transmit cycles; specifically,
only when T has finished tuning to a channel
but is forced to wait until the channel becomes
free before transmitting any packets.

Fact 2.4 At any time during (I;,...,Ty),
channel C' is busy whenever transmitter T is

idle.

Proof: Note that transmitter 7' has at least
one packet to send (i.e., packet p) over channel
C during (T';,...,T). Suppose to the contrary
that during some transmit cycle I';,2 < j <,
T remained idle when channel ' became free.
If T were tuned to C, then it should have
started transmitting as soon as C' became free
and not remained idle. If 7' were tuned to an-
other channel D, then it should have instead
tuned to C' because C would be available ear-
lier than D. In either case, we have a contra-
diction. [ ]

The following theorem shows the perfor-
mance ratio of the above algorithm.

Theorem 2.1 Algorithm A produces a sched-
ule of length L < 3Lopr, where Lopt 1s the
length of an optimal schedule.

Proof: During (T';,...,I), either:

(1) all cycles transmit over distinct channels;
or

(2) two or more cycles transmit over the same
channel.

Case 1. Consider first the case when all trans-
mit cycles in (T';, ..., T') use distinct chan-
nels. Let:

e t; = arrival time of packet p at trans-
mitter T';

e t5 = sum of all idle periods of T' dur-
ing (T';,...,I}); and



e t3 = sum of all busy periods of T
during (T;,...,Ty).

Clearly, the finish time L of transmitter T’
satisfies:

L<t+ty+1t3

Since packet p arrived at time t;, any
schedule must finish no earlier than ¢;.
Hence,

t1 < Lopr

Recall from Fact 2.4 that whenever T is
idle, channel C is busy. Using this fact
and Fact 2.2, we have,

ts <p(C)< Lopr — ¢

Finally, since T transmits over distinct
channels during (T';,...,T;), then

ts <p(T)+ 6¢(T) < Lopr,

where we used Fact 2.1 for the second in-
equality.

It follow that:

L<ti+ty+t3<3Lopr — 06 <3Lopr

Case 2. Suppose that in (I';,...,I;), two or
more transmit cycles used the same chan-
nel. Find the largest integer j,7 < 57 <[,
such that:

e no transmit cycles in (I'j1q,...,T})
used the same channel; and
o T'; used the same channel C’ as some

transmit cycle 'y in (T'j1q,...,T).

Let p’ be the packet with the earliest ar-
rival time among all packets transmitted
by T during I'y,. Furthermore, let:

e t = arrival time of packet p’ at T,

e t, = sum of all idle periods of T' dur-
ing (T';,...,T); and

e t; = sum of all busy periods of T
during (T';,...,T).

Clearly, packet p’ should have arrived no
earlier than the start of transmit cycle
T';, since otherwise p’ would have been
transmitted during I'; and not during T'.
Thus, the finish time L of T satisfies:

L<t)+1t,+1

Moreover,

and
ty <p(C) < Lopr — &

Note that during (T';,...,I;) no channel
was used more than once except for chan-
nel C’. Therefore,

ts <p(T)+ (6 +1)-¢(T) < Lopr + 6,
by Fact 2.1. It follows that:

L<ti+th+ty <3Lopr m

3 Off-Line Scheduling: Better
Polynomial-Time Approxi-
mation Algorithms for the
Two-Channel Case

When all packets to be transmitted are known
in advance (i.e., all packets arrive at time 0),
the on-line algorithm described in the previous
section reduces to the off-line list scheduling al-
gorithm described in [4]. In [4] it was shown
that this algorithm produces schedules which
are within a factor 2 of the optimal schedule.
We should point out that the alternative al-
gorithms given in [4] (viz., Theorem 3 and its
corollaries) are not polynomial-time approxi-
mation algorithms? and hence could not be
used to get a polynomial-time approximation
with a ratio better than 2.

?This is because the time taken by these algorithms
is proportional to the size s of the largest packet. But,
only [log,(s+1)] bits are needed to encode s. In other
words, all these algorithms run in pseudo-polynomial
time (see, for example, [6, pages 387-391] for a discus-
sion on pseudo-polynomial time algorithms).



We attempt to provide further insight into
the off-line scheduling problem by considering
the special case when there are only two chan-
nels. Even this special case of the problem is
known to be NP-complete [11]. For this special
case, a more rigorous analysis shows that the
list scheduling algorithm actually has a bet-
ter performance ratio of % We also show that
this ratio is tight by demonstrating a prob-
lem instance (with even zero tuning delay) for
which the algorithm achieves exactly this ra-
tio. This leads to the interesting question of
whether % is the best ratio achievable by any
polynomial-time off-line algorithm. We par-
tially answer this question by exhibiting an al-
gorithm that achieves a performance ratio bet-
ter than %, provided the tuning delay § is less

than (% — a) %, where 5 is the total number of
packets to be transmitted and o ~ 1.4142136.

3.1 A % Performance Bound for
Two-Channel List Scheduling

For the case of two channels, we can obtain
an improved performance ratio for the list
scheduling algorithm.

Theorem 3.1 The off-line list scheduling al-
gorithm achieves a performance ratio of %
when there are 2 channels. Moreover, this ratio
is tight.

3.2 Breaking the Z Barrier

Intuitively, in order to improve upon the % ra-
tio, we need to ensure that the transmission
schedules over the two channels are balanced in
a better way. As before, assume that transmit-
ter T;, 1 < i < n, has a; and b; packets to trans-
mit over channels C'; and C5, respectively. Let

n n
S1 = Zai, Se = Zbi’ and assume, without
i=1

1= =1
loss of generality, that 52 > 57 > 0. Obviously,
Lopr > max{ § + 55, max (26 + a; + b;) }.

Also, since every transmitter has at least one

packet to send, So > 5. The scheduling algo-

rithm is given as Algorithm B.

Theorem 3.2 Algorithm B runs in polyno-
mial time and achieves a performance ratio of

r < %, provided the tuning delay § satisfies
3 s _ 1 :
6 < (5 — a) 3, where a = v (Notice that

o~ 1.4142136)

2 6

Sy > 2,6 < (% — a) % For notational sim-

plicity, let ¢ = éia > 1. Hence, S5 > 3cd.

Proof: Assume that § < (§ — a) 5 Since

First, notice tha2t it is always the case that
Y1 NXE = YN X, = ¢; hence during the
first (respectively, second) round, transmitters
from %; (respectively, ¥,) do not compete
with the transmitters from X] (respectively,
¥,) for the same channel. Also, notice that
YU, = XU, ={T1,Ts,...,T,}; hence at
the end of the algorithm, all transmitters finish
their transmissions. Finally, due to the choice
of the particular value of the constant €y, it is
true that %—I—Qel = §i61 (€1 is the positive root

of the quadratic equation 18¢ + 24¢; — 1 = 0).
If the algorithm found some ¢ such that (a;+
b;) > (2+€1)(S14S2), then Lopr > 26+ (2 +
€1)(S1+ S2), whereas the schedule length L of
Algorithm Bis L = 26 + 51 + S2. Hence,

T
28
26+(24€1)(S1+52)

I
3
+
g

4+

14+(2+e1) 52
1 1
+ 14¢

_|_l

w1

VANVANEVAN

[ Q oyl
_'_
N
|
Q

as desired.
Otherwise, (a; + b;) < (2 4 e)(S1 + 52)
for every i. Algorithm B now ensures that

Y1, %5, 20,2, # ¢. Define

o1 =6+ Z a; cr{:c?—l— Z b;

T;e¥% T;€X)
!
02:5—|—Za]~ 02:5—|—ij
T;je¥s T;ex)

Notice that o1 + 05 = 26 + 51 and o] + 04 =
26 + S3. Let t = |oy — of|. Depending on



Step 1. Select a j such that Q;[j] # 0 and channel C; has the earliest available time
(i-e., F[j] is minimum).

Step 2.  Move the packets in Q;[7] to the ready queue READY;.

Step 3. If already tuned to channel C;, then update F[j] = |[READY;| and transmit
all packets in READY; over channel C;. Go to step 1.

Step 4. If not tuned to channel C}, then do the following:
(a) Let f = F[j] and 7 = max{ F[j],¢ }. Update F[j] =7+ |READY;|.
(b) Tune to channel C; (for ¢ time units).
(c) Wait max{ f — 7,0 } time units, then transmit all packets in READY;
over channel C;. Go to step 1.

Algorithm A

e = =245048 % 0.040440115, 2 = § — 2¢; ~ 0.085786438

if 3¢ such that (a; + b;) > (% + €1)(S1 + S2) then
Y1 =% ={T1,T>,...., T}, 2 =%, =¢
else
if 3¢ such that |a; + b; — S| < (% — €2)5> then
1 =Aa;}, B ={b; [ # i}, 2 ={a; | j # i}, 35 = {bi}
else

find & such that

So — Z (a; + b;) > (% — €)52 and
1<i<k—1 .
Sy — Z (ai +b;) < (5 — €2)5
1<i<k
(the proof will show that such a k exists)
¥, =%, ={1,T,Ts,...,Tk}
Yo =% = {Ths1, Tk, Thas,-- -, Tn}
endif
endif
Transmit the packets in two rounds of transmission as follows:
During first round,
Transmitters T; € X transmit over channel C'; one after another in any order.
Transmitters T; € ¥} transmit over channel C; one after another in any order.
All transmitters wait (if necessary) until both C; and C; are not busy.
During second round,
Transmitters T; € X, transmit over channel C'; one after another in any order.
Transmitters T; € ¥} transmit over channel C; one after another in any order.

endif

Algorithm B




the relative magnitudes of o1, 0], 02, 0%, there
could be four possibilities:

(a) o1 <o} and 02 < 05. Then, L = S5 + 26,
Lopr > S9 + 6 and hence

1 <5
1+3c 4

L
r = <1+

<14
Lopr — So+6 ~

(b) o1 < o] and o2 > 5. Since S; < 5o,

(Sl—|-25—0'1)—

oy — 0h =
< o — 04

Hence,
L=2Sy+26+(0g—05)< S2+26+1

Since Lopr > S9 + 8, we have

L So+26+t 1 t
P = < < 14—+
Lopr = Sa2+46 c Sa+4d

(¢) o1 > o1 and 05 < 0%. Then, L = S2+26+
t, Lopr > S2+434, and hence again (similar
to (b) above) r = <1414 52_|_5

LOPT

(d) o1 > of and o5 > o). But, o1 + 03 =
S1+ 26 < Sg 4 26 = o1 + 04. Hence, this

case is not possible.

So, combining all the items above, r <
max{%, 1+ SLQ + %} Our goal is to show that
t is not too large. We have two major cases:

Case 1. The algorithm found some 7 such that
|a; + b; — S2| < (5 — €)S2. Then, t =
loy — o1] = la; — (52 — b; )| < (5 — €)8s.
Hence, 7’<1—|—§—€2—|— ez—l—%

1 _ 1 1 _ _
3+2€1+c—§+61+c a=

||0

3
2

Ol

+ e

[ d

Case 2. The algorithm found no such 7 as in
Case 1. That is, for all ¢, |a; + b; — S3| >

(% — 62)52 > 0.

First we show that, for all 7, a; < S9 — b;.
Assume, for the sake of contradiction, that
a; > So — b; for some 7. This implies a; +
b;— Sy > (——62)52 Hence, a; +b; > (

€2)52 = ( +2¢€1)S52. But, we already have,
(a;i+b;) < (§+€1)(S1+52) < (%+2€1)52,

since S7 < §5. This is a contradiction.

(Sz + 26 — 0'1)

Hence, for all 7z, a; < Sy — b;. That

means S, — b; — a; > (% — €)S2. That

is, a; + b; < (% + €2)S85.  Algorithm

B now tries to find an appropriate in-

dex k. The index k must exist, since

S 3 (@ 8) =525 (5 — @),
1<i<0

1
So — Z (ai + bl) =-51< (— — 62)52.
1<i<n 2
Hence, the index k can be found. Let

1
P=25- Z (a; +b;) < <§—€2>52

1<i<k
and
1
:S2_ Z (ai+bi)><§—€2>52
1<i<k—1
Then, ¢ = |P|. How large |P| can be?
Notice that, since a + by, < (3 + €2) 5o,
P = P’—(ak—l—bk)
> (% — 62)52 — (% + 62)52 = —2¢9.59

Hence, —2¢,5 < P < (% — €)S52, and

t =|P| < max{ 2659, (% —€)52 }
= (35— €)5
and, hence
< ltG-e)+s
_ 1 1
= . _|_c
= a+i-
3
2

Combining all cases, it is always true that

7’<%. [ |

4 Conclusion

The results presented in this paper point to
several interesting questions that still remain
to be addressed:

o Is there an on-line transmission schedul-
ing algorithm that achieves a performance
ratio better than 37 (It is possible that
a better analysis would show that the on-
line algorithm presented here has a perfor-
mance ratio less than 3.)



Can the off-line algorithm for two chan-
nels be generalized to m channels and be
shown to achieve a performance ratio bet-
ter than %?

Can efficient on-line and off-line algo-
rithms be developed for the general case
of tunable transmitters and tunable re-
ceivers?

Furthermore, to be of practical use, exten-

sive simulations need to be carried out to test

the algorithms under a variety of system con-

figurations and traffic distribution patterns.

We encourage other researchers to investigate

these problems so as to gain better insight into
the capabilities (and limitations) of WDM op-
tical networks.
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