
Finding Influential Cores via Normalized Ricci Flows in Directed and Undirected
Hypergraphs with Applications

Prithviraj Sengupta∗ and Nazanin Azarhooshang†

Department of Computer Science,
University of Illinois Chicago
Chicago, IL 60607, USA

Réka Albert‡

Department of Physics
Pennsylvania State University

University Park, PA 16802, USA

Bhaskar DasGupta§

Department of Computer Science
University of Illinois Chicago
Chicago, IL 60607, USA

(Dated: April 7, 2025)

Many biological and social systems are naturally represented as edge-weighted directed or undi-
rected hypergraphs since they exhibit group interactions involving three or more system units as
opposed to pairwise interactions that can be incorporated in graph-theoretic representations. How-
ever, finding influential cores in hypergraphs is still not as extensively studied as their graph-theoretic
counter-parts. To this end, we develop and implement a hypergraph-curvature guided discrete time
diffusion process with suitable topological surgeries and edge-weight re-normalization procedures for
both undirected and directed weighted hypergraphs to find influential cores. We successfully apply
our framework for directed hypergraphs to seven metabolic hypergraphs and our framework for
undirected hypergraphs to two social (co-authorship) hypergraphs to find influential cores, thereby
demonstrating the practical feasibility of our approach. In addition, we prove a theorem showing
that a certain edge weight re-normalization procedure in a prior research work for Ricci flows for
edge-weighted graphs has the undesirable outcome of modifying the edge-weights to negative num-
bers, thereby rendering the procedure impossible to use. To the best of our knowledge, this seems
to be one of the first articles that formulates algorithmic approaches for finding core(s) of (weighted
or unweighted) directed hypergraphs.

I. INTRODUCTION

Useful insights for many complex systems are often
obtained by representing them as graphs and analyzing
them using graph-theoretic and combinatorial tools [1–3].
Such graphs may vary in diversity from simple undirected
graphs to edge-labeled directed graphs. In such graphs,
nodes represent the basic units of the system (e.g., sys-
tem variables) and edges represent relationships (e.g.,
correlations) between pairs of such basic units. Once
such graphs are constructed, they can be analyzed using
graph-theoretic measures such as degree-based measures
(e.g., degree distributions), connectivity-based measures
(e.g., clustering coefficients), geodesic-based measures
(e.g., betweenness centralities) and other more novel net-
work measures such as in [4–7] to give meaningful in-
sights into the properties and the dynamics of the system.

∗ prithvi1096@gmail.com; www.linkedin.com/in/prithviraj-
sengupta/

† nazanin.azarhoushang@gmail.com;
www.linkedin.com/in/nazaninazarhooshang/

‡ rza1@psu.edu; www.ralbert.me
§ bdasgup@uic.edu; http://bdasgup.github.io/

However, many real-world systems exhibit group (i.e.,
higher order) interactions involving three or more sys-
tem units [8–10]. One way to handle these higher order
interactions is to encode them by a suitable combination
of pairwise interactions and then simply use the exist-
ing graph-theoretic tools (e.g., see [11, 12]). While such
approaches have been successful in the context of many
real-world networks, they obviously do not encode the
higher-order interactions in their full generalities. A more
direct approach would be to use directed or undirected
hypergraphs to encode these interactions, and this is the
approach we follow in this article. Although the theory
of hypergraphs has been considerably developed during
the last few decades (e.g., see [13]), applications of hyper-
graphs to real-world networks face their own challenges.
Sometimes it is not clear how to generalize a concept from
graphs to hypergraphs such that it best serves its purpose
in the corresponding application, and some computation-
ally tractable graph-theoretic algorithms may become
intractable when generalized to hypergraphs (e.g., the
maximum matching problem for graphs is polynomial-
time solvable whereas the 3-dimensional matching prob-
lem for hypergraphs is NP-complete [14]).
Suitable notions of curvatures are natural measures

of shapes of higher dimensional objects in mainstream

2

physics and mathematics [15, 16]. There have been
several attempts to extend these curvature measures to
graphs and hypergraphs. Two major notions of curva-
tures of graphs can be obtained via extending Forman’s
discretization [17] of Ricci curvature for (polyhedral or
CW) complexes to undirected graphs (the “Forman-Ricci
curvature”) [18–23] and via Ollivier’s discretization of
manifold Ricci curvature to undirected edge-weighted
graphs (the “Ollivier-Ricci curvature”) [24–27]. Both
Ollivier-Ricci curvature and Forman-Ricci curvature as-
sign a number to each edge of the given graph, but the
numbers are calculated in very different ways since they
capture different metric properties of a Riemannian man-
ifold; some comparative analysis of these two measures
can be found in [22, 23]. Recently, the Ollivier-Ricci cur-
vature and the Forman-Ricci curvature measures have
been generalized in a few ways to unweighted directed
and undirected hypergraphs [28–32].

A curvature-guided diffusion process called Ricci flow,
along with “topological surgery” procedures to avoid
topological singularities, was originally introduced in the
context of a Riemannian manifold by Hamilton [33] to
provide a continuous change of the metric of the mani-
fold to provide a continuous transformation (homeomor-
phism) of one manifold to another manifold. One of the
most ground-breaking application of this technique was
done by Perelman [34] to solve the Poincaré conjecture,
which asserts that any three-dimensional manifold that
is closed, connected, and has a trivial fundamental group
is homeomorphic to the three-dimensional sphere. In the
context of a weighted undirected graphs, these techniques
were extended in papers such as [20, 35–40] to iteratively
and synchronously change the weights of the edges of
the graph. Motivated by the fact that connected sum
decomposition can be detected by the geometric Ricci
flows in manifolds, these techniques were then used to
find communities or modules mostly in the context of
undirected social graphs. To prevent lack of convergence
of graph Ricci flows within reasonable time, edge-weight
re-normalization methods after every iteration were sug-
gested and investigated in [37].

In this article we devise a computational framework
to detect influential cores in both undirected and di-
rected weighted hypergraphs by formulating and using a
hypergraph-curvature guided discrete time diffusion pro-
cess with suitable topological surgeries and edge-weight
re-normalization procedures. We demonstrate the prac-
tical feasibility of our approach by successfully applying
our computational framework for directed hypergraphs
to seven metabolic hypergraphs and our computational
framework for undirected hypergraphs to two social (co-
authorship) hypergraphs to find influential cores. In ad-
dition, we prove a theorem showing that a certain edge
weight re-normalization procedure in [37] for Ricci flows
for edge-weighted graphs has an undesirable outcome of
modifying the edge-weights to negative numbers, thereby
rendering the procedure impossible to use.

a. Motivation for finding core(s) of a complex system
Broadly speaking, the core of a complex system (also
studied under the name “cohesive subgraph” in the net-
work science literature [41]) is a smaller sub-system that
contributes significantly to the functioning of the over-
all system, and thus focussing the analysis of the smaller
sub-system, which could be easier than analyzing the sys-
tem as a whole, may reveal important characteristics of
the overall system. For example, in the context of brain
graphs, identifications of core(s) of the graph where neu-
rons strongly interact with each other provide effective
characterizations of these graph topologies; such cores
are very important for various brain functions and cogni-
tion [42]. As another example, cores in attributed social
networks can be directly utilised for a recommendation
system [41].

For systems represented by undirected graphs, prior re-
search works have used various definitions of what actu-
ally constitutes a core, such as via modularity [43], via
rich clubs [44], or using information-theoretic ideas [45].

Our definition for cores of hypergraphs requires suffi-
cient connectivity and cohesiveness, nontrivial size, and
a large centrality, evidenced by a large loss of short paths
in the network when the core is removed. The spe-
cific definition and constraints are given in Section IIC.
The specific usefulness of finding cores for metabolic (di-
rected) hypergraphs and for co-authorship (undirected)
hypergraphs are discussed in Section III E 1 and in Sec-
tion III E 2, respectively. To the best of our knowl-
edge, this seems to be one of the first articles
that formulates algorithmic approaches for find-
ing core(s) of (weighted or unweighted) directed
hypergraphs. Note that since graphs are special cases
of hypergraphs, our methodologies are also applicable to
graphs; however, in this article our focus is on hyper-
graphs that are not graphs.

b. Finding core(s) vs. modular decomposition Note
that finding a core of a system is different than the mod-
ular decomposition of graphs that has been extensively
studied in the network science literature [46–50]: the
overall goal of graph decomposition (partitioning) into
modules (also called communities or clusters) is to parti-
tion the entire node set into modules and requires the op-
timization of a joint fitness function of these modules to
evaluate the quality of the decomposition. In particular,
the centrality parameters (quantifying loss of short paths
when removing the core, see Section IIC) are not relevant
for typical modular decomposition applications and the
size constraints are unimportant if the joint fitness func-
tion is satisfactory (e.g., papers such as [49] show that a
good approximation to Newman’s modularity value may
be obtained even though the corresponding modules will
not satisfy our size constraints).

3

A. Basic Definitions and Notations

A weighted directed hypergraphH = (V,E,w) consists
of a node set V , a set E of (directed) hyperedges and a
hyperedge-weight function w : E 7→ R≥0. A directed hy-
peredge e ∈ E is an ordered pair (Taile,Heade) where
∅ ⊂ Taile ⊂ V is the tail, ∅ ⊂ Heade ⊂ V is the head
and Taile ̸= Heade; for convenience we will also denote
the hyperedge by Taile → Heade. For a node x ∈ V , the
in-degree deginx is the number of “incoming” hyperedges,
i.e., the number of hyperedges e′ such that x ∈ Heade′ ,
and the out-degree degoutx is the number of “outgoing”
hyperedges, i.e., the number of hyperedges e′ such that
x ∈ Taile′ . A (directed) path Px,y from node x to node y
is an alternating sequence (x = v1, e1, . . . , vk, ek, vk+1 =
y) of distinct nodes and directed hyperedges such that
vi ∈ Tailei and vi+1 ∈ Headei for each i ∈ {1, . . . , k};
the length of the path is

∑k
i=1 w(ei). We will denote by

distH(u, v) the minimum length of any path from u to
v; note that distH(u, v) need not be same as distH(v, u).
A directed hypergraph is weakly connected provided for
every pair of nodes x and y there is either a path from
x to y or a path from y to x. We assume from now
onwards that our original (input) directed hyper-
graph is weakly connected.

A weighted undirected hypergraph H = (V,E,w) con-
sists of a node set V , a set E of (undirected) hyperedges
and a hyperedge-weight function w : E 7→ R≥0. A (undi-
rected) hyperedge e ∈ E is a subset of nodes Ae where
∅ ⊂ Ae ⊆ V . For a node x ∈ V , the degree degx is the
number of the number of hyperedges e′ such that x ∈
Ae′ . An (undirected) path Px,y between nodes x and y is
an alternating sequence (x = v1, e1, . . . , vk, ek, vk+1 = y)
of distinct nodes and undirected hyperedges such that
vi, vi+1 ∈ Aei for each i ∈ {1, . . . , k}; the length of the

path is
∑k

i=1 w(ei). We will denote by distH(u, v) the
distance (i.e., minimum length of any path) between u
and v. A undirected hypergraph is connected provided
for every pair of nodes there is a path between them.
We assume from now onwards that our original
(input) undirected hypergraph is connected.

B. Discussions on Prior Relevant Research

There are some prior published articles that deal
with finding cores or core-like structures for undirected
hypergraphs, mostly for unweighted undirected hyper-
graphs [51–60] but some also on weighted undirected
hypergraphs [61]. However, there seem to be very few
peer-reviewed prior articles dealing with finding cores
for directed (and more so for weighted directed) hyper-
graphs where cores are defined in the same sense as used
in this article; the authors themselves were unable to
get any relevant peer-reviewed prior works via google
search. For example, the articles by Pretolani [62] and
by Volpentesta [63] investigate intriguing but different

concepts that refer to sub-structures in unweighted di-
rected hypergraphs based on hyperpaths. Note that al-
though for graphs replacing an undirected edge by two
directed edges make the core finding problem for undi-
rected graphs solvable from the core finding problem
for directed graphs, a similar trick cannot directly be
used for hypergraphs since the head or tail may contain
more than one node (i.e., a core finding algorithm for
directed hypergraphs does not readily translate to an
algorithm for finding cores in undirected hypergraphs).
One possible way to get around the difficulty would be
to “average out” over all possible combinatorial ways of
choosing direction of a hyperedge to convert an undi-
rected (weighted or unweighted) edge to a set of directed
weighted edges. In other words, an undirected hyper-
edge e is replaced by a set of directed hyperedges Te =
{eS | ∅ ⊂ S ⊂ Ae} where TaileS = S, HeadeS = Ae \ S,
and

∑
∅⊂S⊂Ae

w(eS) = w(e). However, this approach
has at least two potential problems. First, this approach
leads to an obvious combinatorial explosion since a single
undirected hyperedge e is replaced by a set of 2|Ae| − 2
directed edges. Second, it may not be a priori clear how
one should select the values of w(eS) for each individ-
ual hyperedge eS , e.g., whether the weight should be the
same for each eS or if it should depend on the value of
|TaileS | − |HeadeS |. A strength of our framework is that
we have a single overall algorithmic method (albeit with
different calculations of certain quantities) that can be
adopted for both directed and undirected hypergraphs.

Most of the prior works on finding cores for undirected
unweighted hypergraphs involve iteratively identifying a
set of nodes such that the degree of every node in the
set is at least k for a given k. We go deeper than these
prior works by defining the centrality quality parame-
ters of the core as stated via Equations (12) and (13).
These centrality quality parameters, which are combina-
torial analogs of the information loss quantifications used
in prior research works such as [45], are significant in
real-world applications to biological and social networks,
as mentioned in prior publications such as [64] in the
context of undirected unweighted graphs (e.g., see Fig-
ure 5 for biological networks and Figures 7–8 for social
networks in [64] with associated texts), and are closely
related to the concept of structural holes [65] in social
networks. Another crucial advantage of our approach
over most prior approaches is scalability via easy paral-
lelization. Since within each iteration the calculations of
the Emd values for the hyperedges can be done in par-
allel in the algorithmic framework of Table I, a clustered
computing environment could be used for a direct linear
speedup, i.e., using a cluster of c computing nodes would
result in a speedup by about a factor c. This makes our
method more suitable for larger hypergraphs in a net-
worked computing environment.

4

II. METHODS AND MATERIALS

A. Definition of Curvatures of Weighted
Hypergraphs

Curvatures of weighted hypergraphs are defined in
somewhat different ways depending on whether the hy-
pergraph is directed or undirected. However, both defi-
nitions use a common paradigm of Emd (Earth Mover’s
Distance, also known as the L1 transportation distance,
the L1 Wasserstein distance or the Monge-Kantorovich-
Rubinstein distance [66–69]) defined on the hypergraph
in the following manner based on the notations and ter-
minologies in [70]. Let H = (V,E,w) be a directed or
undirected hypergraph. Suppose that we have two proba-
bility distributions Pleft and Pright over the set of nodes V ,
i.e., two real numbers 0 ≤ Pleft(v),Pright(v) ≤ 1 for every
node v ∈ V with

∑
v∈V Pleft(v) =

∑
v∈V Pright(v) = 1.

We can think of Pleft(v) as the total amount of “earth”
(dirt) at node v that need to be moved to other nodes,
and Pright(v) as themaximum total amount of earth node
v can store. The cost of transporting one unit of earth
from node u to node v is distH(u, v), and the goal is
to move all units of earth (determined by Pleft) while
simultaneously satisfying all storage requirements (dic-
tated by Pright) and minimizing the total transportation
cost. Letting the real variable zu,v ∈ [0, 1] denote the
amount of shipment from node u to node v in an opti-
mal solution, Emd for the two probability distributions
P1 and P2 on V is the linear programming (LP) problem
shown in Fig. 1 which can be solved in polynomial time.
We will use the notation EmdH(Pleft,Pright) to denote
the value of the objective function in an optimal solution
of the LP in Fig. 1.

Given a hypergraph H and an edge e of H, the curva-
ture value of e is then computed as follows:

▷ Fix appropriate distributions for Pleft and Pright.

▷ Use a formula for Ricci curvature of the hyperedge e
The formula is different depending on whether the
hypergraph is directed or undirected, and shown
below:

▷ For directed hypergraphs, the Ricci curvature
of the hyperedge e is calculated as:�
�

�
Ric(e) = 1− EmdH(Pleft,Pright)

w(u, v)
(1)

An informal intuitive understanding of the
connection of Emd to Ricci curvature in the
above formula, as explained in prior research
works such as [24] in the context of graphs,
is as follows. The Ricci curvature at a point
x in a smooth Riemannian manifold can be
thought of transporting a small ball centered
at x along that direction and measuring the
“distortion” of that ball. In (1) the role of the

direction is captured by the hyperedge (u, v),
the roles of the balls at the two nodes are
played by the distributions Pleft and Pright,
and the role of the distortion due to trans-
portation is captured by the Emd measure.

▷ For undirected hypergraphs, the Ricci curva-
ture of the hyperedge e is calculated as:�

�
�
�

Ric(e) = 1− 1(|Ae|
2

) × ∑
p,q∈Ae
p̸=q

EmdH(Pp
left,P

q
right) (2)

The calculation for the curvature averages out
weighted-lazy random walk probabilities over
all pairs of distinct nodes in e. There is one
special case not covered by the above defi-
nition but may occur in our undirected co-
authorship hypergraphs: namely when Ae =
{u} for some node u corresponding to a paper
written by just one author. For this case we
treat the hyperedge as a self-loop from u to u
giving an Emd value of zero.

The exact calculations of Pleft and Pright are somewhat
different depending on whether the hypergraph is di-
rected or undirected, and this is described in next two
sections. Let H = (V,E,w) be the weighted (directed
or undirected) hypergraph, and e ∈ E be the hyperedge
considered.

1. Calculations of Pleft and Pright for a Weighted Directed
Hypergraph

The distributions Pleft and Pright are determined by
the nodes in Taile and Heade, respectively. Pleft is de-
termined in the following manner by adopting the calcu-
lations in [29]:

▷ Initially, Pleft(u) = 0 for all u ∈ V . In our subse-
quent steps, we will add to these values as appro-
priate.

▷ We divide the total probability 1 equally among
the nodes in Taile, thus “allocating” a value of
(|Taile|)−1 to each node in question.

▷ For every node x ∈ Taile with deginx = 0, we add
(|Taile|)−1 to Pleft(x).

▷ For every node x ∈ Taile with deginx > 0, we per-
form the following:

▷ We divide the probability (|Taile|)−1 equally
among the hyperedges e′ such that x ∈
Heade′ , thus “allocating” a value of (|Taile| ×
deginx)−1 to each hyperedge in question.

▷ For each such hyperedge e′ such that x ∈
Heade′ , we divide the allocated value equally

5

variables: zu,v for every pair of nodes u, v ∈ V

minimize
∑
u∈V

∑
v∈V ′

distH(u, v) zu,v (* minimize total transportation cost *)

subject to ∑
v∈V

zu,v = Pleft(u), for each u ∈ V (* ship from u as much as it has *)∑
u∈V

zu,v = Pright(v), for each v ∈ V (* ship to v as much as it can store *)

zu,v ≥ 0, for each u, v ∈ V

FIG. 1. LP-formulation for Emd on hypergraph H = (V,E,w) corresponding to distributions Pleft and Pright. Comments are
enclosed by (* and *).

among the nodes in Taile′ and add these val-
ues to the probabilities of these nodes. In
other words, for every node y ∈ Taile′ we add
(|Taile| × deginx × |Taile′ |)−1 to Pleft(y).

Note that the final probability for each node is calculated
by summing all the contributions from each bullet point.
In closed form, Px

left(y) is given by:

Px
left(y) =

δdeginy ,0 × δ|Taile|−1,|Taile\{y}|

|Taile|

+
∑

x∈Taile
x∈Heade′
y∈Taile′

1− δdeginx ,0

|Taile| × deginx × |Taile′ |

where δ(i, j) is the Kronecker delta function, i.e.,

δi,j =

{
1, if i = j
0, otherwise

Pright is determined in a symmetric manner. The details
are provided in the appendix for the sake of completeness.

2. Calculations of Pleft and Pright for an Undirected
Hypergraph

For this case, Px
left(y) = Px

right(y) for all x, y ∈ Ae

since the hypergraph is undirected. Let 0 < α < 1 be
a parameter that encodes the “laziness” of the random
walk. Then, Px

left is determined in the following manner
by adopting the calculations in [30] (see Fig. 2 for an
illustration):

▷ Initially, Px
left(x) = α and Px

left(y) = 0 for all y ̸= x.
In our subsequent steps, we will add to these values
as appropriate.

▷ We divide and allocate the remaining total proba-
bility 1− α among all the hyperedges that contain
x proportionally to the cardinality of these hyper-
edges excluding the node x, i.e., a hyperedge e′ such

that x ∈ Ae gets δe′
def
= |Ae′ |−1∑

x∈A
e′′

(|Ae′′ |−1) . Then, we

FIG. 2. An illustration of the calculations of Pleft and Pright

for an undirected hypergraph, as outlined in Section IIA 2,
where the node set is {s1, s2, s3, s4, s5, s6, s7, s8} and the
four hyperedges are {s1, s2, s3, s4}, {s1, s5, s7}, {s5, s6} and
{s2, s8}.

s1s1s1 s4s4s4 s3s3s3 s2s2s2 s5s5s5 s6s6s6

s7s7s7 s8s8s8

P
s1
left(s1) = P

s1
right(s1) = αP

s1
left(s1) = P

s1
right(s1) = αP

s1
left(s1) = P

s1
right(s1) = α

P
s1
left(s2) = P

s1
right(s2) = (1 − α)× 3

2+3 × 1
3P

s1
left(s2) = P

s1
right(s2) = (1 − α)× 3

2+3 × 1
3P

s1
left(s2) = P

s1
right(s2) = (1 − α)× 3

2+3 × 1
3

P
s1
left(s3) = P

s1
right(s3) = (1 − α)× 3

2+3 × 1
3P

s1
left(s3) = P

s1
right(s3) = (1 − α)× 3

2+3 × 1
3P

s1
left(s3) = P

s1
right(s3) = (1 − α)× 3

2+3 × 1
3

P
s1
left(s4) = P

s1
right(s4) = (1 − α)× 3

2+3 × 1
3P

s1
left(s4) = P

s1
right(s4) = (1 − α)× 3

2+3 × 1
3P

s1
left(s4) = P

s1
right(s4) = (1 − α)× 3

2+3 × 1
3

P
s1
left(s5) = P

s1
right(s5) = (1 − α)× 2

2+3 × 1
2P

s1
left(s5) = P

s1
right(s5) = (1 − α)× 2

2+3 × 1
2P

s1
left(s5) = P

s1
right(s5) = (1 − α)× 2

2+3 × 1
2

P
s1
left(s6) = P

s1
right(s6) = 0P

s1
left(s6) = P

s1
right(s6) = 0P

s1
left(s6) = P

s1
right(s6) = 0

P
s1
left(s7) = P

s1
right(s7) = (1 − α)× 2

2+3 × 1
2P

s1
left(s7) = P

s1
right(s7) = (1 − α)× 2

2+3 × 1
2P

s1
left(s7) = P

s1
right(s7) = (1 − α)× 2

2+3 × 1
2

P
s1
left(s8) = P

s1
right(s8) = 0P

s1
left(s8) = P

s1
right(s8) = 0P

s1
left(s8) = P

s1
right(s8) = 0

divide the allocated value δe′ equally among the
nodes in Ae′ excluding x and add these values to
the probabilities of these nodes. In other words, for

every node y ∈ Ae′ such that y ̸= x we add δe′
|Ae′ |−1

to Px
left(y).

In closed form, Px
left(y) is given by:

Px
left(y) =

6
α, if x = y

(1− α)×
∑

x,y∈e′

|Ae′ |−1∑
x∈A

e′′
(|Ae′′ |−1) × 1

|Ae′ |−1

= (1− α)×
∣∣ {e′ |x, y ∈ Ae′}

∣∣∑
x∈Ae′′

(|Ae′′ | − 1)

, otherwise

The parameter α was used in the context of Ricci flows on
undirected graphs by Ni et al. [35], and by Lai et al. [37].
These works suggested using a non-zero value for α, but
the exact choice of α was left to the specific application
in question. Thus, we decided to use a non-zero value of
α and found that a value of α = 0.1 works best in our
applications.

B. Ricci Flow, Weight-renormalization, Topological
Surgery and Flow Convergence for Weighted

Hypergraphs

Before proceeding with the technical descriptions, we
first provide a brief informal intuition behind the pro-
posed approach. The curvature values of the hyperedges
provide a (positive or negative) value to each hyperedge
of the hypergraph. The Ricci flow is an iterative process
that produces a sequence of hypergraphs, where each it-
eration of the Ricci flow process dynamically alters the
weights of hyperedges based on their current weights and
curvature values. On average, these weight alterations
tend to increase the weights of the hyperedges connecting
the core(s) to the rest of the hypergraph while decreas-
ing the weights of those hyperedges within the core(s).
The weight re-normalization procedure after every iter-
ation ensures that the weights of the hyperedges do not
increase in an unbounded manner and instead eventu-
ally converge to some “steady-state” values. The goal
of the topological surgery procedure performed once in
a few iterations is to remove the hyperedges connect-
ing the core(s) to the rest of the hypergraph so that at
the end of our Ricci flow process, when the hyperedge
weights have converged to some stable values, we can re-
cover the core(s) from the connected components of the
hypergraph. This process of topological surgeries and
hyperedge weight updates via Ricci flows is somewhat
analogous to the Newman-Girvan’s algorithm [71] which,
in the context of undirected graphs, iteratively removes
edges of high betweenness centrality and recomputes the
edge betweenness centrality.

We now present the precise technical descriptions of
these concepts. Let t = 0, 1, 2, · · · is the discrete it-
eration index, and let H(0) = (V (0), E(0), w(0)), H(1) =
(V (1), E(1), w(1)), H(2) = (V (2), E(2), w(2)), · · · denote
the sequence of hypergraphs produced by the Ricci flow
with H(0) being equal to the original (starting) hyper-
graph H = (V,E,w). The Ricci flow equation (without
topological surgeries and hyperedge-weight renormaliza-

tion) is as follows [35–37]:�� ��w(t+1)(e) = w(t)(e)− w(t)(e)×Ric(t)(e) (3)

where Ric(t)(e) is the curvature value based on the
edge-weights W (t) =

{
w(t)(e) | e ∈ E(t)

}
. Note that if

w(t)(e) = 0 for some value t = t0 then w(t)(e) stays zero
for all t > t0 based on (3), so we may simply remove
such edges e from all E(t) with t ≥ t0. Also note that

w(t)(e) ≥ 0 for all t since Ric(t)(e) ≤ 1 for all t.
Unfortunately, as observed in papers such as [37], there

are problematic aspects to the Ricci flow equation in (3).
In particular, in applications such as in this article, we
would like the iterations to eventually converge (within
a reasonable time), but it can be easily seen that there
exists hypergraphs for which the hyperedge weights may
keep on increasing in successive iterations. As a remedy
for graphs only, Lai, Bai and Lin [37] proposed chang-
ing (3) to (4) as shown below such that the Ricci flow is
“normalized” in the sense that the sum of edge weights
of the graph remain the same and therefore edge weights
cannot become arbitrarily large:�
�

�
�

w(t+1)(e) = w(t)(e)− w(t)(e)×Ric(t)(e)

+
s×w(t)(e)×

(∑
h∈E

(
w(t)(h)×Ric(t)

(h)
))

∑
h∈E

(
w(0)(h)×Ric(0)

(h)
) (4)

In the above equation, s > 0 is a constant (called “step
size” in [37]). Unfortunately, as we will prove in The-
orem in Section III C, there are infinitely many graphs
for which w(1)(e) will become negative thus rendering
the iterative process in (4) impossible to execute be-
yond the first step. Instead, in our algorithm we per-
form hyperedge-weight re-normalization by applying a
sigmoidal function to hyperedge weights to ensure that
all hyperedge weights do not exceed 1, i.e., for t ≥ 1 we
replace w(t)(e) by 1

1+e−w(t)(e)
. In the sequel, unless

explicitly mentioned otherwise, when we refer to
weight w(t)(e)w(t)(e)w(t)(e) for t ≥ 1t ≥ 1t ≥ 1 we refer to the weight after
re-normalization.
Unfortunately, there is no closed-form analytical so-

lution of Equation (3) yet and it is not even clear if
such a solution is possible. Here we introduce our topo-
logical surgery operation, and provide an informal in-
tuition behind our approach of finding cores by using
Ricci flows with topological surgery. Note that since all
hyperedge weights are non-negative at all times, Equa-

tion (3) shows that w(t+1)(e) < w(t)(e) if Ric(t)(e) > 0

and w(t+1)(e) > w(t)(e) if Ric(t)(e) < 0, i.e., each it-
eration of the Ricci flow process dynamically alters the
weights of hyperedges based on their curvature values,
increasing the weights of those with negative curvature
while decreasing the weights of those with positive cur-
vature. Using the observation in [36] that states (quoted
verbatim) “positively curved edges are well connected in
the sense that none of them are essential for the proper

7

transport operation”, which is also supported by research
works such as [35, 36] on graphs, it follows that this ef-
fect should on an average lead to pairs of nodes within a
core being connected by hyperedges with a smaller weight
whereas pairs of nodes outside cores being connected by
hyperedges with a larger weight. Consequently, we can
use the following “topological surgery” method to isolate
the core(s) from the remaining parts of the hypergraph:
remove hyperedges with substantial weights following ev-
ery several iterations of the Ricci flow. This strategic ma-
nipulation enhances the clarity of core structures within
the network. Moreover, since each hyperedge in a hyper-
graph typically involves many nodes, surgical removal of
hyperedges may disconnect more nodes (as compared to
graphs in which each edge always involves two nodes),
thus leading to the survival of a few very well-connected
sets of nodes as cores. See Fig. 3 for a visual illustration
of some of these intuitions.

For our experiments, we did surgery every 2 iterations
and ran our algorithm for a total of 40 iterations in total
for every hypergraph. The amount of hyperedges to be
removed is an adjustable parameter that can be tweaked
accordingly to get cores of different sizes. For our exper-
iments, we set our “surgery amount” to be those hyper-
edges that have weights in the largest 8% of the weights
of all hyperedges in the previous iteration. These com-
binations of adjustable parameters provided us with a
reasonable combination of rapid rate of convergence and
acceptable core quality parameters.

To check if the edge-weights have converged to a fixed-
point we use a standard convergence criterion in which
the average of the absolute differences of edge-weights in
successive iterations is sufficiently small, i.e.,�

�
�
∆AVE =

1

|E(t)| ×
∑

e∈E(t)

|w(t+1)(e)− w(t)(e)| (5)

is at most ε for some small real number ε ≥ 0. We
use ε = 0.005 for directed hypergraph applications and
ε = 0.000005 for undirected hypergraph applications. To
check the dispersion of these absolute differences around
mean we calculate the standard deviation, i.e.,�
�

�
∆STD =

√
1

|E(t)| ×
∑

e∈E(t)

(
∆AV E − |w(t+1)(e)− w(t)(e)|

)2
(6)

C. Quality Measures of Influential cores

A core is a subset of nodes that are more connected to
each other as opposed to the rest of the hypergraph. In
this article, following the approach in [64] we also want
our cores for hypergraphs to be central and influential

in the sense that removal of the nodes in the core sig-
nificantly disrupts short paths between nodes not in the
core. This leads to the following quality constraints and
parameters for a core that generalizes similar conventions
used by the network science community for graphs.

1. Connectivity Constraint

For an undirected hypergraph (respectively, directed
hypergraph) a core is a connected component (respec-
tively, a weakly connected component) of the hyper-
graph. This is a bare minimum constraint that a core
should satisfy.

2. Size Constraint

The size (number of nodes) of a core should be non-
trivial, i.e., neither too small nor too large. For example,
a core containing more than 50% of all nodes or contain-
ing only 5 nodes is hardly an interesting core. For the real
hypergraphs investigated in this paper, our algorithm al-
ways produces only one or two cores of non-trivial size
(cf. Table VI and Table VII) in the sense that each of the
remaining connected components has very few nodes.

3. Cohesiveness Measure

This goal of quantifying this measure is to ensure that
the nodes in the core should be connected more among
themselves as opposed to nodes outside the core. For our
hypergraphs, we quantify this in the following manner.

Undirected hypergraph

For an undirected hypergraph H = (V,E,w), a non-
empty proper subset V ′ of V and a node x ∈ V , let the
notation H \ V ′ denote the hypergraph (V \ V ′, E′, w)
obtained by removing the nodes in V ′ from V and re-
moving any hyperedge e with Ae ∩ V ′ ̸= ∅ from E. Let
the notation degx(H) denote the degree of x in H. For
undirected graphs, several measures of cohesiveness have
been used in prior published literatures [72], e.g., via dis-
tance, via degree, via density, etc. However, most prior
published articles dealing with finding cores or core-like
structures for undirected hypergraphs use a simple “de-
gree” cohesive measure by extending the concept of a
k-core (or its minor variations) from undirected graphs
to undirected hypergraphs [51–61]. In the notations and
terminologies of this article, a k-core of an undirected hy-
pergraph H = (V,E,w) is a subset of nodes S such that
degx(H \ (V \S)) ≥ k for every node x ∈ S; larger values
of k signify a better core. In particular, a 1-core trivially
exists in any hypergraph and therefore is not considered
a core at all.
We however believe that the above-mentioned k-core

measure is not very suitable for the type of undirected

8

FIG. 3. A visual illustration of the intuition behind our approach of finding cores by using Ricci flows with topological surgery
as discussed in Section II B. The notation “≈ 0′′ refers to a function f(n) such that limn→∞ f(n) = 0. The nodes are colored
blue and red for visual clarity: red nodes are involved in cliques of hyperedges of two nodes (i.e., cliques of edges) and all the
blue nodes together with an equal number of red nodes appear in a single hyperedge of 2n nodes. The cliques are enclosed
by dotted black bounding boxes for visual clarity (the cliques do not correspond to hyperedges). The second figure from top
indicates the hypergraph after one iteration of Ricci flow but before the weight renormalization. The thicknesses of the red
edges are reduced to indicate the decrease of their weights from approximately 1 to approximately 0 and the thickness of the
black hyperedge is increased to indicate an increase of its weight. The third figure from top shows that the black hyperedge of
2n nodes gets deleted as a result of weight renormalization and topological surgery, thus giving us the n cores corresponding
to the n cliques. { nnn cliques, each having n3n3n3 nodes

each red edge (hyperedge of two nodes) has curvature ≈ 1≈ 1≈ 1
black hyperedge of 2n2n2n nodes has curvature < 0< 0< 0

all hyperedges are of weight 1

each red edge has new weight ≈ 0≈ 0≈ 0
black hyperedge of 2n2n2n nodes has new weight > 1> 1> 1

after Ricci flow and
before weight

renormalization

after weight
renormalization and
topological surgery

9

hypergraphs studied in this article (namely, co-author
hypergraphs (see Section III B 2) and similar other so-
cial interaction hypergraphs). The condition of a k-
core is too strict and changes the quality of the core
too abruptly. For example, if a node x in the core S

satisfies degx(H \ (V \ S)) = k − 10 then S defines a
(k − 10)-core even if every remaining node y in S sat-
isfies degy(H \ (V \ S)) = k. Density-based measures
centered on average degrees have been used extensively
in the computer science literature for graphs [73–82], and
in one instance for undirected hypergraphs [83]. Follow-
ing these research works, we consider a measure of cohe-
sion based on average degrees. Note that for the example
mentioned above the average degree changes from k

|S| to
k×(|S|−1)+1×(k−10)

|S| = k− 10
|S| , showing a more gradual de-

terioration of the quality with an increasing value of |S|.
However, one should also account for the nodes outside
of S. For example, for the node x it is possible that ei-
ther (a) degx(H \ (V \ S)) = degx(H) = k − 10, or (b)
degx(H \ (V \ S)) = k − 10 but degx(H) = k − α for
some α < 10. Our cohesiveness measure should indicate
better cohesiveness for case (a) as opposed to case (b),
and for case (b) our cohesiveness measure should indi-
cate worse cohesiveness with increasing α. Thus, we use
the following measure for cohesiveness of a core S:�

�
�
rdeg =

∑
x∈S

degx(H\(V \S))
degx(H)

|S| (7)

In the above equation, H \ (V \S) is the sub-hypergraph
of H induced by the nodes in S, degx(H \ (V \ S)) is
the degree of node x in this induced sub-hypergraph, the
ratio degx(H \ (V \ S))/degx(H) ∈ [0, 1] provides a mea-
sure of how much the node x is connected to only nodes
in S when we exclude all connections to nodes outside of
S via hyperedges, and the entire equation averages out
the ratio over nodes in S. Simple calculations show that

for case (b) of our example rdeg =
(k−1)×1+1× k−10

k−α

k =

1 − 10−α
k×(k−α) , which decreases with increasing α, as de-

sired. Note that obviously 0 ≤ rdeg ≤ 1. Any value of
rdeg in the range (1/2, 1] with a statistical significance in-
dicator p-value (see Section IIC 5) below 10−5 indicates
a valid core since in that case the nodes in the core on
average are connected more to other nodes in the core as
opposed to nodes outside the core and this property is not
satisfied by the null hypothesis model; in other words, a
core found by any algorithm will be considered to be in-
valid if either rdeg ≤ 0.5 or if the p-value is greater than
or equal to 10−5. Higher values of rdeg indicate better
cohesiveness of the core.

Directed hypergraph

For a directed hypergraph H = (V,E,w), a non-empty
proper subset V ′ of V and a node x ∈ V , let the nota-
tion H \ V ′ denote the hypergraph (V \ V ′, E′, w) ob-
tained by removing the nodes in V ′ from V and remov-

ing any hyperedge e with (Taile ∪Heade) ∩ V ′ ̸= ∅ from

E, and the notations deginx (H), deginx (H \V ′), deginx (out)
and degoutx (H \ V ′) denote the corresponding in-degrees
and out-degrees of x in H and H \ V ′. As we mentioned
already, we could not find existing peer-reviewed pub-
lished materials for finding cores in directed weighted or
unweighted hypergraphs, and thus no prior cohesive mea-
sures for directed hypergraphs were available. Our cohe-
siveness quality measures for directed hypergraphs are a
direct generalization the cohesiveness quality measure for
undirected hypergraphs as stated in Equation (7). Due
to the directionality of a hyperedge in a directed hyper-
graph, we get two cohesive parameters. For a directed
hypergraph H = (V,E,w) our cohesiveness measures for
a core S are the following two values:�

�
�
r

deg
in =

∑
x∈S

deginx (H\(V \S))
deginx (H)

|S| (8)

�
�

�
r

deg
out =

∑
x∈S

degout
x (H\(V \S))
degout

x (H)

|S| (9)

In the above two equations, H \ (V \ S) is the di-
rected sub-hypergraph of H induced by the nodes in
S, deginx (H \ (V \ S)) (respectively, degoutx (H \ (V \
S))) is the in-degree (respectively, out-degree) of node
x in this induced directed sub-hypergraph, the ratio
deginx (H \ (V \ S))/deginx (H) ∈ [0, 1] (respectively, the

ratio degoutx (H \ (V \ S))/deginx (H) ∈ [0, 1]) provides a
measure of how much the node x is connected only to
nodes in S (respectively, nodes in S are connected to the
node x) when we exclude all connections to nodes out-
side of S via directed hyperedges, and the entire equation
averages out the ratio over nodes in S. For example,
deginx (H\(V \S))

deginx (H)
= 0.7 indicates that 70% of the the in-

degree of node x is contributed by hyperedges that con-
tain only nodes from S both in their head and tail and
only 30% of the hyperedges contributing to the in-degree
of x have one or more outside nodes either in their head
or in their tail. Note that obviously 0 ≤ r

deg
in , rdeg

out ≤ 1.
Again for a similar reason as in the undirected case, val-

ues of both r
deg
in and r

deg
out in the range (1/2, 1] with a sta-

tistical significance indicator p-value (see Section IIC 5)
below 10−5 indicate a valid core; in other words, a core
found by any algorithm will be considered to be invalid

if the values of at least one of rdeg
in or rdeg

out is at most 0.5
or if at least one of their p-values is greater than or equal

to 10−5. Higher values of rdeg
in and r

deg
out indicate better

cohesiveness of the core.

10

4. Centrality Measure

These types of measures are a “combinatorial analog”
of the information loss quantifications used in prior re-
search works such as [45], and are significant in real-world
applications to biological and social networks as men-
tioned in prior publications such as [64] in the context
of undirected unweighted graphs. For our hypergraphs,
these measures quantify centrality and influential nature
of the core in the sense that removal of the nodes in the
core significantly disrupts short paths between nodes not
in the core. In the definitions below we use the notation
H \ V ′ as defined in Section IIC 3.

Directed hypergraph

Let H = (V,E,w) be the directed hypergraph and
∅ ⊂ S ⊂ V be the core we are evaluating. Our first goal
is to measure the fraction of ordered pairs of nodes for
which there was a path in the given input hypergraph
but there no longer is a path after removing the core.
Let ζ denote the number of ordered pairs (u, v) of nodes
u, v not in any core for which there was a (directed) path
from u to v in H but no (directed) path in H \ S. We
then calculate the following quantity:�

�
	r

ordered pairs
disconnected =

ζ

|V \ S| × (|V \ S| − 1)
(10)

In addition, our second goal is to measure the average
percentage increase in the length of paths among ordered
pairs of nodes that remain connected both before and
after removing the core. This is done as follows. Let ξ
be the number of ordered pair (u, v) of nodes u, v not in
any core for which there was a (directed) path from u to
v in both H and H \ S. We then calculate the following
quantity:�

�

�

�
rdirected
dist stretch =

1

ξ
×
∑

(u,v)∈V \S:
u̸=v
distH\S(u,v)<∞
distH(u,v)<∞

distH\S(u, v)

distH(u, v)
(11)

Note that every ordered pair of nodes from V \S appears

in the calculation of either rordered pairs
disconnected or rdirected

dist stretch but
not both, the reason being that incorporating the or-
dered pair of nodes used in (10) in (11) instead would
have make the value of rdirected

dist stretch become ∞. Note that

r
ordered pairs
disconnected is at most 1, and rdirected

dist stretch is at least 1
(since edge removal does not decrease the distance val-
ues).

The values of rdirected
dist stretch and r

ordered pairs
disconnected are con-

sidered to be valid only if their statistical significance
indicator p-values (see Section IIC 5) are below 10−5,

and higher values of both rdirected
dist stretch and r

ordered pairs
disconnected

indicate stronger central and influential quality. Note

that a small value of r
ordered pairs
disconnected does not signify a

weak-quality core as long as rdirected
dist stretch is sufficiently

large; however if rdirected
dist stretch is not sufficiently large then

r
ordered pairs
disconnected must be sufficiently large to signify the cen-

trality of the core. In this article, we adopt the strict
criterion that for a valid core either rdirected

dist stretch must be
at least 3/2 (i.e., shortest paths are stretched by at least

50%), or if rdirected
dist stretch is below 3/2 then r

ordered pairs
disconnected must

be at least 1/2 (i.e., at least 50% of the ordered pairs of
nodes are disconnected); in other words, a core found
by any algorithm will be considered to be invalid if both

rdirected
dist stretch < 3/2 and r

ordered pairs
disconnected < 1/2.

Undirected hypergraph

Let H = (V,E,w) be the undirected hypergraph and
∅ ⊂ S ⊂ V be the core we are evaluating. Our first goal
is to measure the fraction of pairs of nodes for which there
was a path in the given input hypergraph but there no
longer is a path after removing the core. Let ζ denote
the number of unordered pairs {u, v} of nodes u, v not
in any core for which there is no path between them in
H \ S. We then calculate the following quantity:�

�
�
r

unordered pairs
disconnected =

ζ(|V \S|
2

) (12)

In addition, our second goal is to measure the average
percentage increase in the length of paths among un-
ordered pairs of nodes that remain connected both even
after removing the core. This is done as follows. Let ξ
be the number of unordered pair {u, v} of nodes u, v not
in any core for which there was still a path between u to
v in H \ S. We then calculate the following quantity:�

�

�

�
rundirected
dist stretch =

1

ξ
×
∑

{u,v}∈V \S:
u̸=v
distH\S(u,v)<∞

distH\S(u, v)

distH(u, v)
(13)

Note that every (unordered) pair of nodes from V \
S appears in the calculation of either r

unordered pairs
disconnected

or rundirected
dist stretch but not both, as incorporating the pair

of nodes used in (12) in (13) instead would yield

rundirected
dist stretch = ∞ Note that r

unordered pairs
disconnected is at most

1, and rundirected
dist stretch is at least 1 (since edge removal

does not decrease the distance values). The values of

rundirected
dist stretch and r

unordered pairs
disconnected are considered to be valid

only if their statistical significance indicator p-values
(see Section IIC 5) are below 10−5, and higher values

of both rundirected
dist stretch and r

unordered pairs
disconnected indicate stronger

central and influential quality. Note that a small value

of r
unordered pairs
disconnected does not signify a weak-quality core

as long as rundirected
dist stretch is sufficiently large; however if

rundirected
dist stretch is not sufficiently large then r

unordered pairs
disconnected

must be sufficiently large to justify centrality of the
core. In this article, we adopt the strict criterion that

11

for a valid core either rundirected
dist stretch must be at least 3/2

(i.e., shortest paths are stretched by at least 50%), or if

rundirected
dist stretch is below 3/2 then r

unordered pairs
disconnected must be at

least 1/2 (i.e., at least 50% of pairs of nodes are discon-
nected); in other words, a core found by any algorithm
will be considered to be invalid if both rundirected

dist stretch < 3/2

and r
unordered pairs
disconnected < 1/2.

5. Statistical Significance Measure: Calculations of p-values
for Core Quality Parameters

Statistical significance (p-value) calculations for core
quality parameters require a null hypothesis model cor-
responding a random hypergraph similar in some essen-
tial characteristics to the one studied. We explain below
why two most common methods for generating random
graphs used by the network science community for p-
value calculations fail to generalize to hypergraphs:

Generative models: The random graphs are generated
so that they statistically match some key topologi-
cal characteristics of the given graph such as node
degree distributions for undirected graphs and dis-
tribution of in-degrees and out-degrees of nodes for
directed graphs. There are two reasons that pre-
vented us from using these methods for our hyper-
graphs. First, there are no broadly accepted evi-
dences of topological characteristics such as degree
distributions for metabolic and co-authorship hy-
pergraphs. Secondly, it is not clear how we will
generate random hypergraphs so that they sta-
tistically match key topological characteristics of
the given hypergraph, e.g., the methods outlined
in [46, 47, 71, 84, 85] for generating random graphs
with prescribed degree-distributions are not easily
generalizable to hypergraphs.

Random-swap models: For graphs, these kind of ran-
dom graphs are generated using a Markov-chain al-
gorithm [86] by starting with the real graph and re-
peatedly swapping randomly chosen “compatible”
pairs of edges. However, it is not very clear if there
is an useful generalization of this hypergraphs. For
graphs, an edge contributes exactly 1 to the degrees
of nodes at its endpoints, leading to many compati-
ble edges as candidates for swap and thus providing
statistical validity of the model. In contrast, hyper-
edges may contribute to the degree of an arbitrary
number of nodes in a more complicated fashion.

Based on the above observations, we design the fol-
lowing method to generate the p-values. Let H =
(V,E,w) be the (directed or undirected) hypergraph,
let S ⊂ V be the core in question with α1, . . . , αr be-
ing the values of its quality parameters (for directed

hypergraphs α1, α2, α3, α4 are the values of rdeg
in , rdeg

out ,

rdirected
dist stretch and r

ordered pairs
disconnected , respectively; for undirected

hypergraphs α1, α2, α3 are the values of rdeg, rundirected
dist stretch

and r
unordered pairs
disconnected , respectively). We generate 100 ran-

dom subsets of V , say B1, . . . ,B100, such that |B1| =
· · · = |B100| = |S| and compute the values of βi,j for
i ∈ {1, . . . , 100} and j ∈ {1, . . . , r}, where βi,j is the
value of the jth property for Bi. We calculate the p-
value for the jth property by performing a one-sample
t-test with β1,j , . . . , β100,j as the values of the samples
and αj as the value of the hypothesis.
The p-value is a real number between 0 and 1; lower

p-values indicate better statistical significance. Follow-
ing standard practice in network science, in this article
we adopt a strict constraint on the acceptable p-values:
a ppp-value that is more than 10−510−510−5 even for a sin-
gle quality measure for a core will invalidate the
selection of that core.

D. Data Sources

1. Metabolic Systems (for Directed Hypergraphs)

We collected seven metabolic systems from BiGG
Models [87], a comprehensive public repository man-
aged by the Systems Biology Research Group at UC San
Diego. These seven metabolic systems pertained to the
seven species Escherichia Coli, Homo Sapiens, Helicobac-
ter Pylori, Methanosarcina berkeri str. Fusaro, Mycobac-
terium Tuberculosis, Synechococcus elongatus and Syne-
chocystis.

2. Co-authorships data (for Undirected Hypergraphs)

We build two undirected hypergraphs corresponding
to two co-authorship datasets, which we will call the
Computer Science Papers (Csp) dataset and the Network
Science Papers (Nsp) dataset. Each individual item in
each dataset is a peer-reviewed publication in the re-
spective (computer science or network science) research
field. Our datasets are constructed following similar ap-
proaches used by prior researchers such as [88].
a. Csp dataset We selected three influential pa-

pers [89–91], by three Turing Award winner researchers
S. Goldwasser, R. M. Karp and A. Wigderson working
in the same general research area (Theoretical Computer
Science). We then selected 300 of the most cited papers
that cite each of these 3 papers giving us a list of 900
papers.
b. Nsp dataset We selected three influential pa-

pers [71, 92, 93] in network science that have been used
by previous researchers for related research works [88].
We then selected 200 of the most cited papers that cite
each of these 3 papers giving us a list of 600 papers.
We faced a situation regarding co-authorships in net-

work science that is usually not encountered in com-
puter science, mathematics or theoretical physics: there
are papers co-authored by a large number of authors.

12

For example, there are 355 and 141 co-authors (af-
ter including corresponding consortium authors) respec-
tively in the following two papers: (a) Gene expres-
sion imputation across multiple brain regions provides
insights into schizophrenia risk, Nature Genetics 51, 659–
674, 2019, and (b) Brain structural covariance networks
in obsessive-compulsive disorder: a graph analysis from
the ENIGMA Consortium, Brain 143(2), 684–700, 2020.
These kind of papers act as a bottleneck in the calcu-
lation of the Ricci curvature via Equation (2) that was
adopted from [30] (graph-theoretic methods as illustrated
in Fig. 5 will not be helpful either since they will include
all or almost all of the 355 or 141 authors in the core).

Fortunately, there are only 18 of the 600 papers in our
collection (3% of all the papers) that were co-authored
by 15 or more authors. We removed these papers from
our dataset.

III. RESULTS AND DISCUSSIONS

Before presenting our results in details in the following
subsections, we provide a brief synopsis of them below:

▷ In Section IIIA we present our algorithm for finding
core(s) in a hypergraph.

▷ In Section III B we show how to construct our di-
rected and undirected hypergraphs from the corre-
sponding datasets mentioned in Section IID.

▷ In Section III C we prove a theorem showing that
there are infinitely many graphs for which the iter-
ative process in (4) is impossible to execute beyond
the first step.

▷ In Section IIID we show that the initial conver-
gence of Ricci flows based on the values of ∆AVE

occurs within a small number of iterations for all
our hypergraphs. We then show that increasing the
number of iterations further improves the values of
∆STD thereby making the cores more stable.

▷ In Section III E we provide the final cores with their
quality parameter values for all hypergraphs as de-
termined by our algorithm and observe that these
values are satisfactory.

▷ In Subsection III E 1 we discuss how to in-
terpret the cores and its quality parameters
for the seven metabolic systems corresponding
to the seven directed hypergraphs. We also
briefly comment here on optimally designing
the biological experimental mechanism to re-
move a core in subsection III E 1 a.

▷ In Subsection III E 2 we discuss how to inter-
pret the cores and its quality parameters for
the two co-authorship data corresponding to
the two undirected hypergraphs.

A. Overall Algorithmic Approach

Based on our discussions in Sections IIA–IIC, we de-
sign an algorithm for finding core(s) in a (directed or
undirected) hypergraph whose high-level overview is pre-
sented in Table I. Below we provide brief comments on
the adjustable parameters in Table I:

▷ η controls the number of iterations. Selecting larger
η will make the algorithm slower but is likely to
generate smaller cores, although smaller cores may
not necessarily have better values of other quality
parameters. We recommend selecting η sufficiently
high to ensure that the diffusion process has actu-
ally converged in several successive iterations based
on the value of ∆AVE (and, optionally, ∆STD) and
that the quality parameters are within acceptable
bounds.

▷ κ controls the number of cores selected for further
analysis. We suggest a small value for this param-
eter.

▷ δ and τ control the frequency and the amount of the
topological surgery operation, respectively. Select-
ing larger values of δ and smaller values of τ may
help with faster convergence, but may also end up
providing smaller cores by subdividing them.

Readers, especially from the algorithms or the compu-
tational complexity community, may be curious to have
an expression in the theoretical worst-case running time
in the big-O notation for the above algorithm. Un-
fortunately, it does not seem possible to derive such
an expression that would provide meaningful bound to
the reader since it involves too many parameters for
the hypergraph. We illustrate this point for an undi-
rected hypergraph H = (V,E). Let TimeEmd(p) de-
note the running time for solving the Earth Mover’s
distance on a hypergraph with p nodes; note that ob-
viously TimeEmd(p) = Ω(p). Consider a hyperedge e ∈ E.
For every pair of nodes x, y ∈ Ae, the total time taken
to compute Px

left(y), Px
right(y), Py

left(x) and Py
right(x) is

O
(∑

e′:x∈Ae′
|Ae′ |+

∑
e′:y∈Ae′

|Ae′ |
)
, and the time to

compute the corresponding EmdH(Pp
left,P

q
right) value is

TimeEmd

(∑
e′:x∈Ae′

|Ae′ |+
∑

e′:y∈Ae′
|Ae′ |

)
. Summing

over all pairs of nodes in e and then summing over all
hyperedges gives us the following time bound for one it-
eration of Ricci flow:

O

Time Emd

∑
e∈E

∑
x,y∈Ae

 ∑
e′:x∈Ae′

|Ae′ |+
∑

e′:y∈Ae′

|Ae′ |

The above bound depends in a non-trivial manner on
the frequencies of nodes and the lengths of hyperedges,
and further simplification is not possible without making
additional assumptions. For the very special case when

13

TABLE I. High-level overview of our algorithmic approach to find core(s) in a directed or undirected hypergraph. See Sec-
tion IIIA for comments on the adjustable parameters. In our experiments, η = 40, τ = 2, κ = 2 and δ = 8.

Input: A directed or undirected hypergraph H = (V,E,w).
Adjustable
parameters

: η, κ, τ , δ

Output: A set of µ ≤ κ mutually disjoint node subsets (cores) S1, . . . ,Sµ ⊂ V .

1. Starting with H, perform Ricci flow iterations (see Equation (3) and Section II B) for a suitable
large number η of steps such that the edge-weights has converged at the end of iterations (see
Equation (5) and Section II B).

1.1.
• Perform topological surgery with “surgery amount” δ% after every τ iterations
(see Section II B).

1.2.
• Perform edge-weight normalization before the start of the next iteration
(see Section II B).

2. If G is an undirected hypergraph (respectively, directed hypergraph) then output up to κ
connected (respectively, weakly connected) components of G that best satisfy the quality
parameters for the particular application (see Section IIC).

every node occurs in exactly f hyperedges and every hy-
peredge has exactly the same length ℓ, letting n denote
the number of nodes in the hypergraph the above running

time can be simplified to O
(
Time Emd

(
n f
ℓ × ℓ2 × f

))
=

O
(
Time Emd

(
n f2 ℓ

))
. A somewhat more complicated ex-

pression for the running time for directed hypergraphs
can also be calculated in a similar manner.

a. Implementation and source codes We imple-
mented our algorithm in python. The linear program
for calculation of Emd was solved using the python li-
brary of the Gurobi Optimizer whose LP solver is known
for its superior performance, often solving optimization
models faster than other LP solvers in the industry (we
used the free academic license to use the optimizer for
our work). The source codes for our implementation are
freely available via GitHub at the link https://github.
com/iamprith/Ricci-Flow-on-Hypergraphs.

B. Hypergraph Construction

1. Directed Hypergraphs

We modeled various metabolic and biochemical re-
actions as directed hypergraphs. Each reaction in the
data had always at least one reactant but sometimes
did not have a product. We represent a reaction of the
form “R1 + · · · + Rk → P1 + · · · + Pℓ”, where Ri’s are
the reactants, Pj ’s are the products, as a directed hy-
peredge e (see Fig. 4) with Taile = {R1, . . . , Rk} and
Heade = {P1, . . . , Pℓ}[94]. In other words, each hy-
peredge points from the set of reactants to the set of
products of the corresponding reaction. For reactions of
the form “R1 + · · · + Rk →” without a product we use
Heade = {sink} for a unique node named “sink” following
the same conventions used in the network science litera-
ture (note that there is exactly one sink node in the entire

FIG. 4. A visual illustration of the hypergraph-theoretic rep-
resentation (Section III B 1) vs. two common graph-theoretic
representations of biochemical reactions. If the reaction times
are known accurately then they can be used as the weights of
the corresponding hyperedges.

s1 + s2 + s3 + s4s1 + s2 + s3 + s4s1 + s2 + s3 + s4 →→→ s5 + s6s5 + s6s5 + s6
s1 + s5 + s7s1 + s5 + s7s1 + s5 + s7 →→→ s2 + s8s2 + s8s2 + s8

or

graph
representation

s4s4s4s3s3s3s2s2s2s1s1s1

s8s8s8s7s7s7s6s6s6s5s5s5

s1s1s1 s2s2s2 s3s3s3 s4s4s4

s5s5s5 s6s6s6

s7s7s7

s8s8s8

s1s1s1 s4s4s4 s3s3s3 s2s2s2 s5s5s5 s6s6s6

s7s7s7 s8s8s8

directed hypergraph
representation

hypergraph and it does not appear in Tailf for any hyper-
edge f in the hypergraph). All the directed hypergraphs
that we construct are weakly connected. We computed
some first-order statistics of the constructed directed hy-
pergraphs as shown in Table II. We show in Fig. 4 a
visual comparison of our hypergraph-theoretic represen-
tation with two common graph-theoretic representations
of biochemical reactions.

14

TABLE II. Some first-order statistics of constructed directed hypergraphs from metabolic systems in [87].

Constructed directed hypergraph (V,E,w)

in-degree out-degree
Name of metabolic system |V | |E| average max min average max min

Escherichia Coli 762 1335 3.63 380 0 3.56 231 0

Homo Sapiens 343 672 3.58 165 0 3.27 114 1

Helicobacter Pylori 486 740 3.20 191 0 3.10 129 0

Methanosarcina berkeri str. Fusaro 629 905 3.22 255 0 3.09 167 0

Mycobacterium Tuberculosis 826 1297 3.68 364 0 3.49 253 0

Synechococcus elongatus 769 849 3.09 244 0 2.97 193 0

Synechocystis 796 863 3.00 277 0 3.26 222 0

FIG. 5. A visual illustration of the hypergraph-theoretic rep-
resentation (Section III B 2) vs. graph-theoretic representa-
tion of co-authorships.

authors a1, a2, a3, a4, a5a1, a2, a3, a4, a5a1, a2, a3, a4, a5 wrote paper p1p1p1
authors a1, a2, a6, a7a1, a2, a6, a7a1, a2, a6, a7 wrote paper p2p2p2

graph
representation

a3a3a3

a4a4a4

a5a5a5

a1a1a1

a2a2a2

a6a6a6

a7a7a7

a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

a6a6a6 a7a7a7

undirected
hypergraph

representation

2. Undirected Hypergraphs

The hypergraph has a node corresponding to every
authors and an undirected hyperedge e with Ae =
{a1, . . . , ak} corresponding to each paper co-authored by
authors a1, . . . , ak. For the Csp dataset, we build an
undirected hypergraph out of the 900 papers and take

TABLE III. Some first-order statistics of constructed undi-
rected hypergraphs in Section III B 2.

Constructed undirected
hypergraph (V,E,w)

degree
|V | |E| average max min

Csp dataset 496 609 2.97 39 1

Nsp dataset 518 213 1.61 20 1

the largest connected component as our input undirected
hypergraph. For the Nsp dataset, we found the largest
connected component in the resulting undirected hyper-
graph of 582 papers, and took that connected compo-
nent as our input undirected hypergraph. We computed
some first-order statistics of the constructed undirected
hypergraphs as shown in Table III. We show in Fig. 5 a
visual comparison of our hypergraph-theoretic represen-
tation with a common graph-theoretic representation of
co-authorship relationships.

C. Proof of Inapplicability of Normalized Ricci
Flow equation (4) to graphs

The following theorem shows that there are infinitely
many graphs for which the normalized Ricci flow equa-
tion (4) will make w(1)(f) negative for some edge f thus
rendering the iterative process in (4) impossible to exe-
cute beyond the first step.

Theorem 1. For all sufficiently large n, there exists an
undirected graph Gn on n nodes for which w(1)(f) < 0
for some edge f of Gn.

Proof. For convenience and ease of proof, we first ex-
plicitly state the standard definition of the Ricci curva-
ture for an undirected graph G = (V,E,w) where the
weight w(e) is 1 for every edge e ∈ E [24–27, 37, 70, 95].

15

FIG. 6. The graph Gn used in the proof of Theorem 1.

Consider an edge e = {u, v} ∈ E of our input (undi-
rected unweighted) graph G = (V,E). For a node u of
G, let NbrG(u) = {u}⋃{v | {u, v} ∈ E} and degG(u) =
|NbrH(u) \ {u} | denote the closed neighborhood and the
degree of u in G, respectively. Let PNbrG(u) and PNbrG(v)

denote the two uniform distributions over the nodes in
NbrG(u) and NbrG(v), respectively. Extend the distri-
butions PNbrG(u) and PNbrG(v) to all nodes in G by as-
signing zero probabilities to nodes in V \ NbrG(u) and
V \ NbrG(v), respectively. The Ollivier-Ricci curvature
CG(e) of the edge e = {u, v} is then defined as

CG(e) = 1− Emd H(PNbrG(u),PNbrG(v)) (14)

where we use the same calculations of Emd as in Sec-
tion IIA.

We will show the graph Gn = (V,E,w) of m edges
where w(e) = 1 for every edge e (and thus the sum of all
edge weights is m). For this case, for t = 0 and an edge e

of Gn = G
(0)
n = (V (0), E(0), w(0)) equation (4) simplifies

to

w(1)(e) = 1− CGn(e) +
s

m

∑
h∈E

CGn(h)

It thus suffices to show the graph Gn with an edge e sat-
isfying CGn

(e) − s
m

∑
h∈E CGn

(h) > 1. We show this by
showing a graphGn of n nodes in which CGn

(e) ≥ 1−o(1)
and s

m

∑
h∈E CGn

(h) ≤ −ε for some positive constant
ε > 0. Our graph Gn, as shown in Fig. 6, consists of

two subgraphs H1 = (V1, E1) and H2 = (V2, E2) con-
nected by an edge, where H1 has n1 =

√
n + 2 nodes

and m1 = 2
√
n + 1 edges H2 is a complete 10-ary tree

having n2 = n−n1 nodes and m2 = n2− 1 = n−√
n− 3

edges. (since the graph is unweighted, we omit mention-
ing the weights of the edges). Thus, the total number
of edges of Gn is m = m1 + m2 + 1 = n +

√
n + 2.

Let L2 be the set of leaf nodes of H2. We calculate
the number of leaves ℓ2 = |L2| of H2 in the following
simple manner. Letting k be the depth of H2, we have∑k

j=0 10
j = n2. This gives the number of leaves ℓ2 of H2

as ℓ2 = 10k = 9n2+1
10 = 9n−9

√
n−17

10 . The edge f = {s, t}
shown in Fig. 6 is the edge for which we will show that
w(1)(f) < 0.

Consider any edge e = {u, v} ∈ E of Gn and the
associated distributions PNbrGn (u) and PNbrGn (v) as de-
fined before. The (standard) total variation distance
||PNbrGn (u)−PNbrGn (v)||TVD between the two distributions
PNbrGn (u) and PNbrGn (v) is defined as

||e||TVD
def
= ||PNbrGn (u) − PNbrGn (v)||TVD =

1

2
×
(∑

α∈NbrGn (u)∩NbrGn (v)

∣∣PNbrGn (u)(α)− PNbrGn (v)(α)
∣∣

+
∑

β∈NbrGn (u)\NbrGn (v)

PNbrGn (u)(β) +
∑

γ∈NbrGn (v)\NbrGn (u)

PNbrGn (v)(γ)

)

16

By Proposition 1 of [70] we have

1− 3× ||e||TVD ≤ CGn
(e) ≤ 1− ||e||TVD (15)

Now suppose that the following condition holds for the
edge e:

∀α ∈ NbrGn
(u) \ {u, v} ∀β ∈ NbrGn

(v) \ {u, v} :

distGn
(α, β) = 3 (C1)

Using the discussions surrounding Proposition 1 and
Proposition 2 of [70], we get the following bound for this
case:

Emd e(PNbrGn (u),PNbrGn (v)) ≥
3× ||e||TVD −

∣∣PNbrGn (u)(u)− PNbrGn (v)(u)
∣∣

−
∣∣PNbrG(u)(v)− PNbrG(v)(v)

∣∣ (16)

Finally, suppose that edge e satisfies NbrGn
(u) = {u, v}.

Since distGn
(u, α) = 2 for all α ∈ NbrGn

(v) \ {u, v}, in
this case we get the following bound:

Emd e(PNbrGn (u),PNbrGn (v)) ≥
1

2
×
[
2(degGn

(v)− 1)

degGn
(v) + 1

+ 2

(
1

2
− 1

degGn
(v) + 1

)]
=

3

2
− 1

2degGn
(v) + 2

(17)

We now use relatively straightforward calculations to cal-
culate the Ricci curvature values of various edges of Gn:

(i): For the edge f = {s, t}, we get

||f ||TVD =
√
n+2
2 ×

(
1√
n+2

− 1√
n+3

)
+ 1

2(
√
n+3)

= 1
2 −

√
n+1

2
√
n+6

= 1√
n+3

and thus using (15) we get CGn(f) ≥ 1 − 3√
n+3

=

1− o(1), as required.

(ii): For any edge e = {pi, s} ∈ E1 for i ∈ {1, . . . ,√n },
we have

||e||TVD =
1

2
× 1

4
+ 3× 1

2
×
(
1

3
− 1

4

)
=

1

4

and thus using (15) we get

Λ1 =
∑

e={pi,s}∈E1, i∈{1,...,
√
n }

CGn
(e) ≤ 3

4

√
n

(iii): Since trivially CGn
(e) ≤ 1 for any edge e =

{pi, t} ∈ E1 for i ∈ {1, . . . ,√n }, we get

Λ2 =
∑

e={pi,t}∈E1, i∈{1,...,
√
n }

CGn(e) ≤
√
n

(iv): For any edge e = { {ri, rj} | ri ∈ L2 } ∈ E2 con-
necting a leaf node ri to another non-leaf node rj in
H2, since NbrGn

(ri) = {ri, rj} and degGn
(v) = 11,

using (17) we get Emd e(PNbrGn (ri),PNbrGn (rj)) ≥
3
2 − 1

24 = 35
24 , and thus

Λ3 =
∑

e={ {ri,rj} | ri∈L2 }∈E2

CGn(e) ≤
(
1− 35

24

)
× ℓ2

=
−99n+ 99

√
n+ 187

240

(v): Condition (C1) applies to any edge e =
{ {ri, rj} | ri, rj /∈ L2} ∈ E2 connecting a pair of
non-leaf nodes ri, rj in H2, or to the edge {u, r1}.
Thus, by using (16) we get the following bounds:

• For an edge e = { {ri, rj} | ri, rj /∈ L2} ∈ E2,
Emd e(PNbrGn (ri),PNbrGn (rj)) =

5
4 and thus

Λ4 =
∑

e={ {ri,rj} | ri,rj /∈L2}∈E2

CGn(e)

≤ −1

4
× (n2 − ℓ2) =

−n+
√
n+ 3

10

• If e = {u, r1} then

Emd e(PNbrGn (r1),PNbrGn (u)) =

3× 1

2
×
(
10

12
+

√
n+ 1√
n+ 3

)
=

5

4
+

3

2
×

√
n+ 1√
n+ 3

and thus

Λ5 = CGn
(e) ≤ −1

4
− 3

2
×

√
n+ 1√
n+ 3

Adding up the relevant quantities, we get∑
h∈E CGn

(h) ≤ CGn
(f)+

∑5
j=1 Λj ≤ 1+

∑5
j=1 Λj . Since

m = m1 +m2 + 1 = n+
√
n+ 2 and s > 0 is a constant,

it now follows that limn→∞
s
m

∑
h∈E CGn(h) ≤ − 123 s

240 ,
thus there exists a constant ε > 0 such that
s
m

∑
h∈E CGn

(h) < −ε for all sufficiently large n.

D. Rapid Initial Convergence of the Ricci Flow for
Directed and Undirected Hypergraphs

As we shown in Table IV below, the first iteration in
which the edge-weights converge under Equation (5) is
a small number for all of our (directed and undirected)
hypergraphs.
Table IV show fast initial convergence of Ricci flows via

small value of the parameter ∆AVE. However, as men-
tioned in Section IIIA, it is preferable to execute more
iterations to ensure that the diffusion process has actu-
ally converged in several successive iterations based on
the value of ∆AVE and that the quality parameters are

17

TABLE IV. Fast convergence of the Ricci flows for all con-
structed hypergraphs (cf. Section II B). ηfirst is the smallest
iteration after which ∆AVE ≤ ε; ε = 0.005 for directed hyper-
graphs and ε = 0.000005 for undirected hypergraphs.

Hypergraph name ηfirst

Escherichia Coli 4

Homo Sapiens 4

Helicobacter Pylori 4

Methanosarcina berkeri str. Fusaro 4

Mycobacterium Tuberculosis 4

Synechococcus elongatus 4

Synechocystis 4

Csp dataset 10

Nsp dataset 5

within acceptable bounds. Moreover, even if ∆AVE is
within acceptable bounds, some individual edge weights
may still change significantly in subsequent iterations
since the value of ∆STD (cf. Equation (6)) may not be ac-
ceptably low, and this may lead to changes in the cores.
In our case, we indeed found that further iterations pro-
duced decreasing values of ∆STD leading to more stable
cores (see Table V).

E. Final Cores and Their Qualities Determined by
Our Algorithm

We report in Table VI and Table VII the cores found
by our algorithm with their quality parameters via Equa-
tions (8)–(12). As can be seen, taken together the

parameters r
deg
in , r

deg
out , rdirected

dist stretch, r
ordered pairs
disconnected for di-

rected hypergraphs and the parameters rdeg, rundirected
dist stretch,

r
unordered pairs
disconnected for undirected hypergraphs indicate a

good quality of modularity and centrality of the cores and
satisfy all the validity criteria set forth in Sections II C 1–
IIC 5. For example, for Synechococcus elongatus hyper-
edges with only nodes from the core both in their head
and tail contributed 80% on average to the in-degrees of
the nodes and similarly hyperedges with only nodes from
the core both in their head and tail contributed 79% on
average to the out-degrees of the nodes. Furthermore,
for Synechococcus elongatus about 73% of ordered pairs
of nodes not in the core that were connected by a path
lose this path when the core is removed, and ordered
node pairs that stay connected increase their distance by
about 272% on average.

An inspection of the values in Table VI and Table VII
shows that removal of the cores disconnect fewer pairs of
nodes in the core for undirected hypergraphs as compared

to the directed hypergrahs (i.e., the runordered pairs
disconnected values

are smaller than the r
ordered pairs
disconnected values), even though

the stretch factors of shortest paths surviving after core
removals are comparable (i.e., the rdeg, rundirected

dist stretch val-
ues are of similar magnitudes to the values of rdirected

dist stretch).
There are two possible reasons for this behavior. Firstly,
the sizes of cores for undirected hypergraphs are smaller
than the typical core sizes of directed hypergraphs, and
intuitively one would expect removal of fewer nodes to
disconnect less number of remaining paths. Secondly,
the directionality constraints on paths for directed hy-
pergraphs (i.e., edges may not be traversed in the wrong
direction) allow fewer avenues to “bypass” the nodes in
the core; indeed, majority of biochemical reactions in our
dataset are not bidirectional reactions.
In the following two sections, we comment on inter-

preting the cores and their implications to future research
works.

1. Interpretation and Usefulness of Cores for Directed
Hypergraphs (Metabolic Systems)

A core S ⊂ V of the directed hypergraphG = (V,E,w)
corresponds to a set of molecules (reactants and/or prod-
ucts) in the biochemical system under consideration. Our
analysis indicates the following properties for this subset
of molecules:

(I) The high values of rdeg
in and r

deg
out in Table VI sug-

gest that each molecule (node) u in the core is
highly dependent on other molecules (nodes) in the
core, e.g., for another molecule v in the core either
u and v are both reactants in the same biochemical
reaction, which itself is part of the core or one of the
them is a product produced in a core biochemical
reaction in which the other one is a reactant.

(II) The values of rordered pairs
disconnected and rdirected

dist stretch signify
the importance of the molecules in the core in the
overall functioning of the biochemical system in the
following manner.

(A) Consider an ordered pair (u, v) which con-

tributes towards the value of rordered pairs
disconnected by

losing their path when the core is removed.
This implies that the production of v can be
significantly reduced or perhaps completely
disrupted by the removal of the core S.

(B) Consider an ordered pair (u, v) such that
distH\S(u,v)

distH\S(u,v)
is large enough to contribute sig-

nificantly towards the value of rdirected
dist stretch.

Then removal of the core S may significantly
delay the production of v by increasing the
number of reactions needed for its production.

Since removal of the core(s) significantly affects the over-
all functioning of the biochemical system, one can con-
clude that the core plays a dominant role in the sys-
tem. Following a standard practice used in computa-

18

TABLE V. Values of ∆STD (cf. Equation (6)) value at the end of η Ricci flows iterations for all constructed hypergraphs (cf.
Section II B). For all these cases, as observed in Table IV, the value of ∆AVE is at most ε = 0.005 for directed hypergraphs and
is at most ε = 0.000005 for undirected hypergraphs.

∆STD values at end of η =

Hypergraph name η ‡
conv 10 20 30 40

Escherichia Coli 0.0818 0.0650 0.0498 0.0411 0.0358

Homo Sapiens 0.0286 0.0199 0.0136 0.0131 0.0123

Helicobacter Pylori 0.0037 0.0025 0.0020 0.0017 0.0015

Methanosarcina berkeri str. Fusaro 0.0872 0.0592 0.0554 0.0461 0.0403

Mycobacterium Tuberculosis 0.0884 0.0600 0.0530 0.0441 0.0385

Synechococcus elongatus 0.0184 0.0132 0.0100 0.0082 0.0071

Synechocystis 0.1171 0.0837 0.0628 0.0515 0.0446

Csp dataset 0.0024 0.0024 0.0017 0.0014 0.0012

Nsp dataset 0.0189 0.0138 0.0103 0.0091 0.0085

‡the smallest value of η for which ∆AVE ≤ ε

TABLE VI. For directed hypergraphs, cores with their quality parameters (cf. Equations (8),(9),(11),(10)) as found by our
algorithm. The ppp-values for the core quality parameters (cf. Section IIC 5) for all cores were found to be
significantly less than 10−510−510−5, so these values are not listed explicitly.

Hypergraph (V,E,w) |V | core†# core size‡
core quality parameters

r
deg
in r

deg
out rdirected

dist stretch r
ordered pairs
disconnected

Escherichia Coli 762 1 326 0.7259 0.7340 2.7043 0.1839

Homo Sapiens 343 1 144 0.6960 0.7400 2.7065 0.4303

Helicobacter Pylori 486 1 230 0.7859 0.7501 2.7065 0.3215

Methanosarcina berkeri str. Fusaro 629 1 254 0.7829 0.7590 2.7337 0.2463

Mycobacterium Tuberculosis 826 1 377 0.7993 0.7092 2.7236 0.2886

Synechococcus elongatus 769 1 305 0.8063 0.7907 2.7211 0.7345

Synechocystis 796 1 305 0.8058 0.7694 2.6035 0.1622

†core# : number of cores
‡core size : number of nodes in the cores

tional biology, researchers may focus on the molecules in
the core and their associated biochemical reactions for
further computational analysis if the original system was
too computationally intensive to analyse because of its
size.

a. Removing a core by biological experiments Per-
turbation experiments (e.g., genetic knockouts) are well-
established biological method for probing the importance
of biochemical entities. The best way to eliminate a
chemical reaction is to knock out the enzyme that cat-
alyzes the reaction. We briefly comment here on opti-
mally designing the biological experimental mechanism
to remove a core S, assuming that we have the data cor-

responding to the enzymes for each reaction (our datasets
did not provide this information). Let E be the set of all
biochemical reactions in which one or more members of
S appear as either a reactant or a product (or both);
thus, disabling the reactions in E will effectively discon-
nect the core S. Let C be the set of enzymes catalyzing
the reactions from E. Then, a minimal set of enzyme
knockouts that can be used to disable all the reactions in
E can be determined by solving an appropriate minimum
hitting set problem [14] defined such that the universe is
E and corresponding to each enzyme c ∈ C we have a set
{e ∈ E | c is a catalyst for e }. The reader is referred to
standard literatures in computer algorithms such as [96]

19

TABLE VII. For undirected hypergraphs, cores with their quality parameters (cf. Equations (7),(13),(12)) as found by our
algorithm. The ppp-values for the core quality parameters (cf. Section IIC 5) for all cores were found to be
significantly less than 10−510−510−5, so these values are not listed explicitly.

Hypergraph (V,E,w) |V | core†# core size‡
core quality parameters

rdeg rundirected
dist stretch r

unordered pairs
disconnected

Csp dataset 496 1 62a 0.6411 2.8964 0.0006

Nsp dataset 518 2
24b 0.7530 3.4574 0.0002

23c 0.7600 1.6309 0.0001

†core# : number of cores
‡core size : number of nodes in the cores

aAuthors in the core:

M. Bellare, R. Impagliazzo, M. Szegedy, L. Fortnow, M. Yung, B. Waters, D. Dolev, L. Babai, M. Luby,

A. Lysyanskaya, A. Wigderson, A. Sahai, M. Sudan, J. Naor, T. Okamoto, L. Levin, Omer Reingold,

N. Buchbinder, P. Rogaway, C. Dwork, H. Krawczyk, H. Buhrman, O. Goldreich, B. Barak, D. Boneh,

N. Nisan, Y. Lindell, S. Halevi, S. Keelveedhi, A. Herzberg, S. Wolf, G. Segev, R. Rivest, S. Vadhan,

C. Peikert, R. Santhanam, J. Stern, E. Fujisaki, V. Kabanets, S. Goldwasser, L. Trevisan,

S. Jarecki, A. O’Neill, G. Rothblum, M. Kharitonov, R. Schwartz, D. Melkebeek, M. Naor, R. Canetti,

A. Goldberg, S. Micali, A. Boldyreva, D. Pointcheval, S. Arora, K. Yang, N. Linial, J. Hastad,

S. Rudich, E. Sweedyk, R. Ostrovsky, A. Desai, M. Feldman
bAuthors in the core:

J. Zhuang, C. Bauch, M. Perc, Y. Tian, A. Sheikhahmadi, C. Hens, M. Duh, Y. Mu, Y. Xia, W. Lin,

P. Ji, K. Skok, M. Milojevic, J. Ye, J. Sun, J. Kurths, Z. Cheng, A. Zareie, J. Cao, Y. Tang,

L. Guerrini, M. S. K. Fasaei, L. Tang, M Gosak
cAuthors in the core:

X. Wu, W. Han, D. Zhao, C. Lv, E. M. Ruiz, P. A. C. Sousa, L.-L. Jiang, A. Nicchi, S. Boccaletti,

J. Gao, Z. Wang, D. Duan, E. Kubik, H. Stanley, S. Havlin, L. Wang, S. Li, Q. Su, A. Li, S. Si,

D. Li, M. Zanin, D. Papo

for methods to solve a minimum hitting set problem ef-
ficiently.

2. Interpretation and Usefulness of Cores for Undirected
Hypergraphs (Co-author Relationships)

A core S ⊂ V of the undirected hypergraph G =
(V,E,w) corresponds to a set of authors. Below we ex-
plain what the core signifies in terms of its properties:

(I) The values of rdeg in Table VII suggest that the
authors in S form a “close group” of collaborators
in the sense that they wrote more papers with each
other as compared to with authors outside the core.

We show by an illustrative example that the
above need not be the case if cores are found
by graph-theoretic approaches. For some large
even k > 2, suppose that authors a1, . . . , ak wrote
a paper, authors ai, aj wrote a paper for 1 ≤
i < j ≤ k/2 and authors ai, aj wrote a paper for
k/2 + 1 ≤ i < j ≤ k (see Fig. 7 for a visual il-
lustration when k = 10). The standard graph-
theoretic approach (cf. Fig. 5) will group all the
k nodes a1, . . . , ak in the same core since they form

a large k-clique, whereas hypergraph-theoretic ap-
proach will correctly group them in two cores con-
taining a1, . . . , ak/2 and a1+k/2, . . . , ak, respectively.

(II) The values of rundirected
dist stretch and r

unordered pairs
disconnected signify

the importance of the authors in S in promoting
collaborations between other researchers in the fol-
lowing manner. Note that for a path Px,y = (x =
v1, e1, . . . , vk, ek, vk+1 = y) between nodes x and y
vi and vi+1 are co-authors for i = 1, . . . , k. Con-
sider a pair of authors {x, y} contributing towards

the value of runordered pairs
disconnected . This implies complete

disruption of collaborations between any pairs of
authors where one of them is in the set of authors
reachable from u via chains of collaboration and the
other one is in the set of authors reachable from v
via chains of collaboration. If for a pair of authors

{x, y} distH\S(u,v)

distH\S(u,v)
was large enough to contribute

significantly towards the value of rundirected
dist stretch then,

even though some collaborative chains connecting
u and v are not completely disrupted, they are elon-
gated leading to a decrease in productivity.

20

FIG. 7. A visual illustration of the example discussed in item
(I) in Section III E 2 for k = 8. The cores are shown in dotted
black lines. The hypergraph representation captures the cores
correctly whereas the graph representation does not.

graph representation

s4s4s4s3s3s3s2s2s2s1s1s1

s8s8s8s7s7s7s6s6s6s5s5s5

s1s1s1 s2s2s2

s3s3s3 s4s4s4

s5s5s5 s6s6s6

s7s7s7 s8s8s8

undirected hypergraph representation

IV. CONCLUSION

In this article, we have designed and implemented an
algorithmic paradigm for finding cores in edge-weighted
directed and undirected hypergraphs using a hypergraph-
curvature guided discrete time diffusion process, and
have successfully applied our methods to seven metabolic
hypergraphs and two social (co-authorship) hypergraphs.
En route, we have also shown that an edge-weight re-
normalization procedure in a prior research work for Ricci
flows has undesirable properties. Finding cores of hyper-
graphs is still a relatively new research topic that is grow-
ing rapidly, and we expect that our our work will provide
further impetus and guidance to this burgeoning research
area. We conclude by listing a few research questions in
this direction that may be of interest to researchers:

▷ Our calculations of Ricci curvatures of directed hyper-
graphs in Section IIA 1 and directed hypergraphs in
Section IIA 2 is a generalization of the corresponding
calculations for undirected and directed graphs, respec-
tively. However, it is possible to carry out these gen-
eralizations in different ways, and thus it will be of in-
terest to know if other generalizations produce better
qualities for cores of hypergraphs.

▷ It would be of interest to see if the discrete time dif-

fusion process using Ricci curvatures can be combined
with random walks in hypergraphs [54] for application
domains such as modular decompositions of graphs.

▷ In spite of writing our code in Python (which runs
slower than codes written in C or similar other pro-
gramming languages) and using a single older (slower)
laptop, we were able to finish our experimental work
within reasonable time, and therefore we made no at-
tempt to rewrite the code in a more suitable program-
ming language, optimize the code and use a faster com-
putational device. We believe this could be due to two
reasons: (i) our hypergraphs were of moderate size
(number of nodes) and moderate density (number and
size of hyperedges), and (ii) our Ricci flow iterations
converged within a few steps. However, computational
speed could become an issue with larger hypergraphs
or if Ricci flows required more steps to converge. Here
we provide a few suggestions to researchers to overcome
possible future computational bottlenecks. Note that
the most computational intensive part of the curvature
calculations involve the following two computational
components: (a) computing the Earth Mover’s Dis-
tance (EmdH(Pleft,Pright)) for each directed hyperedge
or for each pair of nodes within an undirected hyper-
edge for every iteration, and (b) the all-pairs distance
calculations once for the entire hypergraph for every
iteration.

For all-pairs distance calculations we either used a
straightforward adoption of Floyd-Warshall’s all-pair
shortest path calculations with early terminations for
graphs to our hypergraphs, or used a simple breadth-
first-search based approach. However, the standard
all-pairs-shortest-path problems for graphs have a long
and rich algorithmic history [97] with strong connec-
tions to matrix multiplication algorithms [98, 99] and
other problems [100], and future researchers could im-
plement some of these advanced algorithmic methods
for their computations. Note that in many applications
it may even suffice to compute the distances approxi-
mately and in that case algorithms such as in [101]
could be useful.

We have the following suggestions for future re-
searchers regarding the Emd calculations:

▷ Note that within each iteration, the calculations of
the Emd values for the hyperedges can be done in
parallel, and thus a clustered computing could be
used.

▷ If it suffices to compute the Emd values approxi-
mately, one could implement the ε-additive approxi-
mation algorithms in [102, 103].

21

Appendix: Details of Calculations of Pright for
Weighted Directed Hypergraphs in Section IIA 1

▷ Initially, Pright(u) = 0 for all u ∈ V . In our subse-
quent steps, we will add to these values as appro-
priate.

▷ We divide the total probability 1 equally among
the nodes in Heade, thus “allocating” a value of
(|Heade|)−1 to each node in question.

▷ For every node x ∈ Heade with degoutx = 0, we add
(|Heade|)−1 to Pleft(x).

▷ For every node x ∈ Heade with degoutx > 0, we
perform the following:

▷ We divide the probability (|Heade|)−1 equally

among the hyperedges e′ such that x ∈
Taile′ , thus “allocating” a value of (|Heade| ×
degoutx)−1 to each hyperedge in question.

▷ For each such hyperedge e′ such that x ∈
Taile′ , we divide the allocated value equally
among the nodes in Heade′ and add this val-
ues to the probabilities of these nodes. In
other words, for every node y ∈ Heade′ we
add (|Heade|×degoutx ×|Heade′ |)−1 to Pleft(y).

Note that the final probability for each node is calculated
by summing all the contributions from each bullet point.

ACKNOWLEDGMENTS

We thank Katie Kruzan for useful discussions and help
in debugging our software.

[1] B. DasGupta and J. Liang, Models and Algorithms
for Biomolecules and Molecular Networks (Wiley-IEEE
Press, New Jersey, 2016).

[2] M. E. J. Newman, Networks: An Introduction (Oxford
University Press, 2010).

[3] R. Albert and A.-L. Barabási, Statistical mechanics of
complex networks, Reviews of Modern Physics 74, 47
(2002).

[4] V. Colizza, A. Flammini, M. Serrano, and A. Vespig-
nani, Detecting rich-club ordering in complex networks,
Nature Physics 2, 110 (2006).

[5] V. Latora and M. Marchiori, A measure of centrality
based on network efficiency, New Journal of Physics 9,
188 (2007).

[6] R. Albert, B. DasGupta, R. Hegde, G. S. Sivanathan,
A. Gitter, G. Gürsoy, P. Paul, and E. Sontag, Computa-
tionally efficient measure of topological redundancy of
biological and social networks, Physical Review E 84,
036117 (2011).

[7] D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha,
J. M. Carlson, and S. T. Grafton, Dynamic reconfigu-
ration of human brain networks during learning, Pro-
ceedings of the National Academy of Sciences 118, 7641
(2011).

[8] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lu-
cas, A. Patania, J.-G. Young, and G. Petri, Networks
beyond pairwise interactions: Structure and dynamics,
Physics Reports 874, 1 (2020).

[9] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. F.
de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. La-
tora, Y. Moreno, M. M. Murray, T. P. Peixoto, F. Vac-
carino, and G. Petr, The physics of higher-order inter-
actions in complex systems, Nature Physics 17, 1093
(2021).

[10] L. Torres, A. S. Blevins, D. Bassett, and T. Eliassi-
Rad, The why, how, and when of representations
for complex systems, SIAM Review 63, 435 (2021),
https://doi.org/10.1137/20M1355896.

[11] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-

L. Barabasi, The large-scale organization of metabolic
networks, Nature 407, 651 (2000).

[12] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang,
Algorithmic and complexity results for decomposi-
tions of biological networks into monotone subsystems,
Biosystems 90, 161 (2007).

[13] C. Berge, Hypergraphs: Combinatorics of Finite Sets,
2nd ed. (Elsevier Science Publishers, New York, NY,
1989).

[14] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, 1st ed. (W. H. Freeman, 1979).

[15] M. R. Bridson and A. Häfliger, Metric Spaces of Non-
Positive Curvature, 1st ed. (Springer-Verlag Berlin Hei-
delberg, 1999).

[16] M. Berger, A Panoramic View of Riemannian Geome-
try , 1st ed. (Springer-Verlag Berlin Heidelberg, 2003).

[17] R. Forman, Bochner’s method for cell complexes and
combinatorial ricci curvature, Discrete and Computa-
tional Geometry 29, 323 (2003).

[18] R. P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and
A. Samal, Forman curvature for complex networks,
Journal of Statistical Mechanics: Theory and Experi-
ment 2016, 063206 (2016).

[19] R. P. Sreejith, J. Jost, E. Saucan, and A. Samal, Sys-
tematic evaluation of a new combinatorial curvature for
complex networks, Chaos, Solitons and Fractals 101, 50
(2017).

[20] M. Weber, E. Saucan, and J. Jost, Characterizing com-
plex networks with forman-ricci curvature and associ-
ated geometric flows, Journal of Complex Networks 5,
527 (2017).

[21] B. DasGupta, M. V. Janardhanan, and F. Yahyanejad,
Why did the shape of your network change? (on detect-
ing network anomalies via non-local curvatures), Algo-
rithmica 82, 1741 (2020).

[22] A. Samal, R. P. Sreejith, J. Gu, S. Liu, E. Saucan, and
J. Jost, Comparative analysis of two discretizations of
ricci curvature for complex networks, Scientific Reports

22

8, 8650 (2018).
[23] T. Chatterjee, R. Albert, S. Thapliyal,

N. Azarhooshang, and B. DasGupta, Detecting
network anomalies using forman-ricci curvature and a
case study for human brain networks, Scientific Reports
11, 10.1038/s41598-021-87587-z (2021).

[24] Y. Ollivier, A visual introduction to Riemannian cur-
vatures and some discrete generalizations, in Analysis
and Geometry of Metric Measure Spaces: Lecture Notes
of the 50th Séminaire de Mathématiques Supérieures
(SMS), Montréal, 2011 , Vol. 56, edited by G. Dafni,
R. J. McCann, and A. Stancu (American Mathematical
Society, Providence, RI, USA, 2013) pp. 197–219.

[25] Y. Ollivier, Ricci curvature of markov chains on metric
spaces, Journal of Functional Analysis 256, 810 (2009).

[26] Y. Ollivier, A survey of ricci curvature for metric spaces
and markov chains, in Advanced Studies in Pure Math-
ematics, Vol. 57, edited by M. Kotani, M. Hino, and
T. Kumagai (Mathematical Society of Japan, 2010) pp.
343–381.

[27] Y. Ollivier, Ricci curvature of metric spaces, Comptes
Rendus Mathematique 345, 643 (2007).

[28] S. Asoodeh, T. Gao, and J. Evans, Curvature of hyper-
graphs via multi-marginal optimal transport, in 2018
IEEE Conference on Decision and Control (2018) pp.
1180–1185.

[29] M. Eidi and J. Jost, Ollivier ricci curvature of directed
hypergraphs, Scientific Reports 10, 12466 (2020).

[30] C. Coupette, S. Dalleiger, and B. Rieck, Ollivier-ricci
curvature for hypergraphs: A unified framework, in The
Eleventh International Conference on Learning Repre-
sentations (2023).

[31] T. Akamatsu, A new transport distance and its associ-
ated ricci curvature of hypergraphs, Analysis and Ge-
ometry in Metric Spaces 10, 90 (2022).

[32] W. Leal, G. Restrepo, P. F. Stadler, and J. Jost,
Forman-ricci curvature for hypergraphs, Ad-
vances in Complex Systems 24, 2150003 (2021),
https://doi.org/10.1142/S021952592150003X.

[33] R. S. Hamilton, Three-manifolds with positive Ricci cur-
vature, Journal of Differential Geometry 17, 255 (1982).

[34] G. Perelman, The entropy formula for the ricci
flow and its geometric applications, arXiv preprint
arXiv:math/0211159v1 10.48550/arXiv.math/0211159
(2002).

[35] C.-C. Ni, Y.-Y. Lin, F. Luo, and J. Gao, Community
detection on networks with ricci flow, Scientific Reports
9, 9984 (2019).

[36] J. Sia, E. Jonckheere, and P. Bogdan, Ollivier-ricci
curvature-based method to community detection in
complex networks, Scientific Reports 9, 9800 (2019).

[37] X. Lai, S. Bai, and Y. Lin, Normalized discrete ricci
flow used in community detection, Physica A: Statistical
Mechanics and its Applications 597, 127251 (2022).

[38] M. Weber, J. Jost, and E. Saucan, Forman-ricci flow for
change detection in large dynamic data sets, Axioms 5,
10.3390/axioms5040026 (2016).

[39] E. Cohen, Y. Nachshon, A. Maril, P. M. Naim, J. Jost,
and E. Saucan, Object-based dynamics: Applying
forman-ricci flow on a multigraph to assess the im-
pact of an object on the network structure, Axioms 11,
10.3390/axioms11090486 (2022).

[40] C.-C. Ni, Y.-Y. Lin, J. Gao, and X. Gu, Network align-
ment by discrete ollivier-ricci flow, in Graph Draw-

ing and Network Visualization, edited by T. Biedl and
A. Kerren (Springer International Publishing, 2018) pp.
447–462.

[41] J. Kim, H. J. Jeong, S. Lim, and J. Kim, Effective and
efficient core computation in signed networks, Informa-
tion Sciences 634, 290 (2023).

[42] A. Fornito, A. Zalesky, and E. Bullmore, Fundamen-
tals of brain network analysis, 1st ed. (Academic press,
2016).

[43] O. Sporns and R. F. Betzel, Modular brain networks,
Annual Review of Psychology 67, 613 (2016).

[44] L. Harriger, M. P. van den Heuvel, and O. Sporns, Rich
club organization of macaque cerebral cortex and its
role in network communication, PLoS ONE 7, e46497
(2012).

[45] J. Kitazono, R. Kanai, and M. Oizumi, Efficient search
for informational cores in complex systems: Application
to brain networks, Neural Networks 132, 232 (2020).

[46] M. E. J. Newman and M. Girvan, Finding and evaluat-
ing community structure in networks, Physical Review
E 69, 026113 (2004).

[47] E. A. Leicht and M. E. J. Newman, Community struc-
ture in directed networks, Physical Review Letters 100,
118703 (2008).

[48] M. E. J. Newman, Modularity and community
structure in networks, Proceedings of the Na-
tional Academy of Sciences 103, 8577 (2006),
https://www.pnas.org/content/103/23/8577.full.pdf.

[49] B. DasGupta and D. Desai, On the complexity of New-
man’s community finding approach for biological and
social networks, Journal of Computer and System Sci-
ences 79, 50 (2013).

[50] B. DasGupta, Computational complexities of optimiza-
tion problems related to model based clustering of
networks, in Optimization in Science and Engineer-
ing , edited by T. Rassias, C. Floudas, and S. Butenko
(Springer, New York, NY, 2014) pp. 97–113.

[51] F. Tudisco and D. J. Higham, Core-periphery
detection in hypergraphs, SIAM Journal on
Mathematics of Data Science 5, 1 (2023),
https://doi.org/10.1137/22M1480926.

[52] I. Chien, C.-Y. Lin, and I.-H. Wang, Community de-
tection in hypergraphs: Optimal statistical limit and
efficient algorithms, in Proceedings of the Twenty-First
International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research,
Vol. 84, edited by A. Storkey and F. Perez-Cruz (PMLR,
2018) pp. 871–879.

[53] N. Ruggeri, M. Contisciani, F. Battiston, and C. D.
Bacco, Community detection in large hypergraphs,
Science Advances 9, 10.1126/sciadv.adg9159 (2023),
https://www.science.org/doi/pdf/10.1126/sciadv.adg9159.

[54] T. Carletti, D. Fanelli, and R. Lambiotte, Random
walks and community detection in hypergraphs, Journal
of Physics: Complexity 2, 015011 (2021).

[55] A. Eriksson, D. Edler, A. Rojas, M. de Domenico, and
M. Rosvall, How choosing random-walk model and net-
work representation matters for flow-based community
detection in hypergraphs, Communications Physics 4,
1093 (2021).

[56] J. Kritschgau, D. Kaiser, O. A. Rodriguez, I. Amburg,
J. Bolkema, T. Grubb, F. Lan, S. Maleki, P. Chodrow,
and B. Kay, Community detection in hypergraphs via
mutual information maximization., Scientific Reports

23

14, 10.1038/s41598-024-55934-5 (2024).
[57] Y. Zhen and J. Wang, Community detection in gen-

eral hypergraph via graph embedding, Journal of the
American Statistical Association 118, 1620 (2023),
https://doi.org/10.1080/01621459.2021.2002157.

[58] A. Eriksson, T. Carletti, R. Lambiotte, A. Rojas, and
M. Rosvall, Flow-based community detection in hyper-
graphs, in Higher-Order Systems, edited by F. Battiston
and G. Petri (Springer International Publishing, Cham,
2022) pp. 141–161.

[59] M. Mancastroppa, I. Iacopini, G. Petri, and A. Barrat,
Hyper-cores promote localization and efficient seeding
in higher-order processes, Nature communications 14,
6223 (2023).

[60] M. Mancastroppa, I. Iacopini, G. Petri, and A. Bar-
rat, The structural evolution of temporal hypergraphs
through the lens of hyper-cores, EPJ Data Science 13,
10.1140/epjds/s13688-024-00490-1 (2024).

[61] Y. Xu, F. Zhang, and B. Liu, The decomposition
and maintenance of hypercores on edge-weighted hy-
pergraphs, Mathematical Foundations of Computing
(2023).

[62] D. Pretolani, Finding hypernetworks in directed hyper-
graphs, European Journal of Operational Research 230,
226 (2013).

[63] A. P. Volpentesta, Hypernetworks in a directed hyper-
graph, European Journal of Operational Research 188,
390 (2008).

[64] R. Albert, B. DasGupta, and N. Mobasheri, Topologi-
cal implications of negative curvature for biological and
social networks, Physical Review E 89, 032811 (2014).

[65] R. S. Burt, Structural Holes: The Social Structure
of Competition (Harvard University Press, Cambridge,
MA, USA, 1992).

[66] C. L. Mallows, A Note on Asymptotic Joint Normality,
The Annals of Mathematical Statistics 43, 508 (1972).

[67] Y. Rubner, C. Tomasi, and L. J. Guibas, A metric
for distributions with applications to image databases,
in Sixth International Conference on Computer Vision
(IEEE Cat. No.98CH36271) (1998) pp. 59–66.

[68] Y. Rubner, C. Tomasi, and L. J. Guibas, The earth
mover’s distance as a metric for image retrieval, Inter-
national Journal of Computer Vision 40, 99 (2000).

[69] C. Villani, Topics in optimal transportation, in Gradu-
ate Studies in Mathematics, Vol. 58 (American Math-
ematical Society, Providence, RI, USA, 2003) pp. 197–
219.

[70] N. Azarhooshang, P. Sengupta, and B. DasGupta, A
review of and some results for ollivier-ricci network cur-
vature, Mathematics 8, 10.3390/math8091416 (2020).

[71] M. Girvan and M. E. J. Newman, Community struc-
ture in social and biological networks, Proceedings of
the National Academy of Sciences 99, 7821 (2002),
https://www.pnas.org/content/99/12/7821.full.pdf.

[72] S. Koujaku, I. Takigawa, M. Kudo, and H. Imai, Dense
core model for cohesive subgraph discovery, Social Net-
works 44, 143 (2016).

[73] F. Bonchi, D. Garćıa-Soriano, A. Miyauchi, and C. E.
Tsourakakis, Finding densest k-connected subgraphs,
Discrete Applied Mathematics 305, 34 (2021).

[74] D. Boob, Y. Gao, R. Peng, S. Sawlani, C. Tsourakakis,
D. Wang, and J. Wang, Flowless: Extracting densest
subgraphs without flow computations, in Proceedings of
The Web Conference 2020 , WWW ’20 (Association for

Computing Machinery, New York, NY, USA, 2020) pp.
573–583.

[75] C. Chekuri, K. Quanrud, and M. R. Torres, Densest
subgraph: Supermodularity, iterative peeling, and flow,
in Proceedings of the 2022 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 1531–1555,
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.64.

[76] Y. Fang, W. Luo, and C. Ma, Densest subgraph dis-
covery on large graphs: applications, challenges, and
techniques, Proc. VLDB Endow. 15, 3766 (2022).

[77] X. Liu, T. Ge, and Y. Wu, A stochastic approach to
finding densest temporal subgraphs in dynamic graphs,
IEEE Transactions on Knowledge and Data Engineering
34, 3082 (2022).

[78] W. Luo, Z. Tang, Y. Fang, C. Ma, and X. Zhou, Scal-
able algorithms for densest subgraph discovery, in 2023
IEEE 39th International Conference on Data Engineer-
ing (ICDE) (2023) pp. 287–300.

[79] C. Ma, R. Cheng, L. V. S. Lakshmanan, and X. Han,
Finding locally densest subgraphs: a convex program-
ming approach, Proc. VLDB Endow. 15, 2719 (2022).

[80] C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan,
W. Zhang, and X. Lin, On directed densest subgraph
discovery, ACM Transaction Database Systems 46,
10.1145/3483940 (2021).

[81] U. Feige, D. Peleg, and G. Kortsarz, The dense k-
subgraph problem, Algorithmica 29, 410 (2001).

[82] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and
A. Vijayaraghavan, Detecting high log-densities: an
O(n1/4) approximation for densest k-subgraph, in Pro-
ceedings of the Forty-Second ACM Symposium on The-
ory of Computing , STOC ’10 (Association for Comput-
ing Machinery, New York, NY, USA, 2010) pp. 201–210.

[83] S. K. Bera, S. Bhattacharya, J. Choudhari, and
P. Ghosh, A new dynamic algorithm for densest subhy-
pergraphs, in Proceedings of the ACM Web Conference
2022 , WWW ’22 (Association for Computing Machin-
ery, New York, NY, USA, 2022) pp. 1093–1103.

[84] M. E. J. Newman, The structure and function of com-
plex networks, SIAM Review 45, 167 (2003).

[85] M. E. J. Newman, Detecting community structure in
networks, European Physics Journal B 38, 321 (2004).

[86] R. Kannan, P. Tetali, and S. Vempala, Simple markov-
chain algorithms for generating bipartite graphs and
tournaments, Random Structures & Algorithms 14, 293
(1999).

[87] Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federow-
icz, J. A. Lerman, A. Ebrahim, B. O. Palsson, and
N. E. Lewis, Bigg models: A platform for integrating,
standardizing and sharing genome-scale models, Nucleic
acids research 44, D515 (2016).

[88] R. Molontay and M. Nagy, Twenty years of network sci-
ence: A bibliographic and co-authorship network anal-
ysis, in Big Data and Social Media Analytics: Trending
Applications, edited by M. Çakırtaş and M. K. Ozdemir
(Springer International Publishing, Cham, 2021) pp. 1–
24.

[89] S. Goldwasser and S. Micali, Probabilistic encryption,
Journal of Computer and System Sciences 28, 270
(1984).

[90] R. M. Karp, Reducibility among combinatorial prob-
lems, in Complexity of Computer Computations: Pro-
ceedings of a symposium on the Complexity of Computer
Computations, edited by R. E. Miller, J. W. Thatcher,

24

and J. D. Bohlinger (Springer US, Boston, MA, 1972)
pp. 85–103.

[91] N. Nisan and A. Wigderson, Hardness vs randomness,
Journal of Computer and System Sciences 49, 149
(1994).

[92] A.-L. Barabási and R. Albert, Emergence of scaling in
random networks, Science 286, 509 (1999).

[93] D. Watts and S. Strogatz, Collective dynamics of ‘small-
world’ networks, Nature 393, 440 (1998).

[94] If the reaction times are known accurately then they can
be used as the weights of the corresponding hyperedges.

[95] B. DasGupta, E. Grigorescu, and T. Mukherjee, On
computing discretized ricci curvatures of graphs: Lo-
cal algorithms and (localized) fine-grained reductions,
Theoretical Computer Science 975, 114127 (2023).

[96] V. V. Vazirani, Approximation Algorithms, 1st ed.
(Springer, Berlin, Heidelberg, 2010).

[97] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, 3rd ed. (MIT Press
and McGraw-Hill, 2009).

[98] R. Seidel, On the all-pairs-shortest-path problem in un-
weighted undirected graphs, Journal of Computer and
System Sciences 51, 400 (1995).

[99] U. Zwick, All pairs shortest paths using bridging sets
and rectangular matrix multiplication, Journal of the
ACM 49, 289 (2002).

[100] V. V. Williams and R. R. Williams, Subcubic equiv-
alences between path, matrix, and triangle problems,
Journal of the ACM 65, 1 (2018).

[101] D. Dor, S. Halperin, and U. Zwick, All-pairs almost
shortest paths, SIAM Journal on Computing 29, 1740
(2000).

[102] K. Quanrud, Approximating Optimal Transport With
Linear Programs, in 2nd Symposium on Simplicity in
Algorithms (SOSA 2019), OpenAccess Series in Infor-
matics (OASIcs), Vol. 69, edited by J. T. Fineman and
M. Mitzenmacher (Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2018) pp. 6:1—6:9.

[103] P. Dvurechensky, A. Gasnikov, and A. Kroshnin, Com-
putational optimal transport: Complexity by accel-
erated gradient descent is better than by sinkhorn’s
algorithm, in Proceedings of the 35th International
Conference on Machine Learning , Proceedings of Ma-
chine Learning Research, Vol. 80, edited by J. Dy and
A. Kraus (PMLR, 2018) pp. 1367—1376.

