
Improvements in Throughput Maximization for Real-Time
Scheduling

Piotr Berman
∗

Department of Computer Science & Engineering
Pennsylvania State University

University Park, PA 16802

berman@cse.psu.edu

Bhaskar DasGupta
†

Department of Computer Science
Rutgers University
Camden, NJ 08102

bhaskar@crab.rutgers.edu

ABSTRACT
We consider the problem of off-line throughput maximiza-
tion for job scheduling on one or more machines, where each
job has a release time, a deadline and a profit. Most of the
versions of the problem discussed here were already treated
by Bar-Noy et al. [3]. Our main contribution is to provide
algorithms that do not use linear programming, are simple
and much faster than the corresponding ones proposed in [3],
while either having the same quality of approximation or im-
proving it. More precisely, compared to the results of in Bar-
Noy et al. [3], our pseudo-polynomial algorithm for multiple
unrelated machines and all of our strongly-polynomial algo-
rithms have better performance ratios, all of our algorithms
run much faster, are combinatorial in nature and avoid lin-
ear programming. Finally, we show that algorithms with
better performance ratios than 2 are possible if the stretch
factors of the jobs are bounded; a straightforward conse-
quence of this result is an improvement of the ratio of an
optimal solution to the integer programming formulation of
the JISP2 problem (see [13]) to that of its linear program-
ming relaxation.

1. INTRODUCTION
We consider the problem of scheduling jobs with profits and
time constraints which we define as (for example) in Bar-
Noy et al. [3]. We have jobs J1, J2, . . . , Jn that can be per-
formed on machines M1, M2, . . . , Mk. The job Ji has profit
wi ≥ 0, a release time ri, a deadline di and a length (execu-
tion time) li,j for each machine Mj . A schedule is a set of
triples (j, m, s) where such a triple schedules job Jj to be ex-
ecuted on machine Mm starting at time s, and thus ending
at time s + lj,m. A schedule is valid if each job is sched-

∗Supported in part by NSF grant CCR-9700053 and Na-
tional Library of Medicine grant LM05110.
†Supported in part by NSF grant CCR-9800086.

uled at most once, time intervals [s, s + lj,m) defined by the
triples with the same m are pairwise disjoint (each machine
Mj can execute only one job at the time) and for each such
interval [s, s + lj,m) ⊆ [rj, dj) (a job can be executed only
between its release time and its deadline). The throughput
of a schedule is the sum of profits of the scheduled jobs, and
the goal is to maximize the throughput. For the case of one
machine, a schedule can be viewed as a set of pairs (j, s)
and we refer to the respective problem with the acronym
TMP, for the throughput maximization problem. The ma-
chines are called identical if li,j is simply equal to lj , i.e. a
job has the same execution time on every machine; we use
TMPk-id to denote the throughput maximization problem
for k identical machines. In the remaining case, we say that
the machines are unrelated and use the acronym TMPk-un.
Notice that preemption of jobs is not allowed. Following
the nomenclature of Bar-Noy et al. [3], we distinguish be-
tween the case when the job parameters are positive integers
(the corresponding algorithms are pseudo-polynomial time)
as opposed to when these parameters are arbitrary real num-
bers (the corresponding algorithms are strongly-polynomial
time).

A characterization of the job scheduling problem, relevant
to adaptive rate-controlled scheduling for multimedia and
other applications [11; 9; 14], is one in which each job Ji =
(wi, ri, di, li,j ) is instead characterized as Ji = (wi, ri, αi,j, li,j ),
where αi,j = (di − ri)/li,j is the rate or stretch factor for Ji

on machine Mj . An efficient approximation algorithm for
this case should take into consideration the values of vari-
ous αi,j ’s in that the performance ratio of such algorithms
should depend on the αi,j’s.

Here is a brief history of the throughput maximization prob-
lem; the reader is referred to the paper [3] for more de-
tailed discussions. TMP, the problem for a single machine,
is NP-hard even when all the jobs are released at the same
time [12]; however this special case has a fully polynomial-
time approximation scheme. The preemptive version of TMP
was studied by Lawler [7], who has found a pseudo-polynomial
time algorithm, as well as polynomial time algorithms for
two important special cases. Kise, Ibaraki and Mine [5] pre-
sented solutions for the special case when the release times
and deadlines are similarly ordered. On-line versions of the
problem for preemptive and nonpreemptive cases were con-
sidered, among others, in [1; 6; 8].



Pseudo-polynomial algorithm

Bar-Noy et al. [3] This paper

ratio time—Ω ratio time—O

TMP 2 LP(tn, t + n) + t2n2 2 tn log log t

TMPk-un 3 LP(tnk, tk + n) + t2n2k 2 tnk log log(tk)

TMPk-id (k+1)k

(k+1)k−kk LP(tnk, tk + n) + t2n2k (k+1)k

(k+1)k−kk tnk log log t

Strongly polynomial algorithm

Bar-Noy et al. [3] This paper

ratio time—Ω ratio time—O

TMP 3 LP(n4, n3)+n8 2
1−ε

n2

ε

TMPk-un 4 LP(n4k, n3k) + n8k 2
1−ε

n2

ε

TMPk-id (2k+1)k

(2k+1)k−(2k)k LP(n4k, n3k) + n8k (k+1)k

(k+1)k−(k+ε)k
kn2

ε

Table 1: Comparison of our algorithms with those of Bar-Noy et al. [3]. LP (a, b) denotes the time required to solve a linear-
programming problem with a variables and b inequalities, t denotes the latest deadline of any job in the pseudo-polynomial
case, n denotes the number of jobs, k > 1 denotes the number of machines and 0 < ε < 1 is an arbitrary value.

The following notations and nomenclatures are used for the
rest of this paper. An interval is of the form [a, b) for two
non-negative numbers a, b ∈ R, denoting the set of real num-
bers {x ∈ R : a ≤ x < b}; a and b are called the begin-
ning and the ending of the interval, respectively. Note that
[a, b) is empty if b ≤ a. When our discussion concerns a set
of positive integers, then for two positive integers k and l,
the notation [k, l] (resp., [k, l)) denotes the integer interval
{m ∈ N : k ≤ m ≤ l} (resp., {m ∈ N : k ≤ m < l}). Let t
denote the latest deadline of all jobs.

To solve our scheduling problems, we will first discuss a more
abstract problem, termed as the interval selection problem
or ISP, which can be formulated as follows. For each integer
i ∈ [1, n] we are given a family of integer intervals Si and a
number wi > 0, so that selecting any integer interval [d, e)
from Si yields a profit wi. Our task is to select at most
one interval from each set, so that the selected intervals are
disjoint and the sum of profits is maximum. This problem
was studied in the context of scheduling by Bar-Noy et al.
[3] who described an algorithm with ratio 2. However, their
algorithm utilizes linear programming, and therefore is much
less efficient than the two-phase algorithm (2PA) proposed
by Berman, Miller and Zhang in [4] (in that paper, a more
general version of ISP is discussed).

In this paper we show that 2PA can be used to provide
pseudo-polynomial time algorithms for all versions of schedul-
ing problems discussed in Bar-Noy et al. [3] with better run-
ning times and better or same approximation ratios, and
that it can be modified to provide strongly polynomial al-
gorithms for these problems with both better running times
and better approximation ratios. We also present a 2/(1 +

1/(2�α�+1 − 2− �α�))-approximation algorithm for the spe-
cial case of the TMP problem when the stretch factor αi

of each job Ji is at most α, which is better than the 2-
approximation algorithm previously known. Table 1 above
summarizes our main results and compares them with the
corresponding ones in [3]. We also note that another paper
in this conference [2] has results, some of which are compara-
ble to our results, using a more general local-ratio technique.

2. TWO-PHASE ALGORITHM FOR ISP

Figure 2 shows 2PA for ISP, where we assume that the in-
put consists of families of interval sets, S1, . . . , Sn that are
contained in [1, t) and the notation (i, [d, e)) denotes the in-
terval [d, e) ∈ Si. Before characterizing the approximation
properties of this algorithm, we will analyze its correctness
and the running time. Let N denote the total number of
intervals in the input.

Lemma 1. 2PA returns a correct solution to ISP problem
in O(N(1 + min{log N, log log t})) time.

Proof. To show that the algorithm is correct we need to
prove that it selects at most one interval from each family
and that the selected intervals are disjoint. Both properties
are ensured by the selection phase. Once a interval from
family Si is selected, done[i] is reset from false to true,
thus preventing the future selections from Si. Moreover, in
each iteration of the selection phase [occupied,t) contains
all the selected intervals, and the algorithm never selects a
set that overlaps [occupied,t), thus the selected intervals are
disjoint.
It is easy to see that for each of N intervals in the in-
put the algorithm performs only constant number of oper-
ations, which are elementary except for the computation of
total(i, d) and TOTAL(d) in the evaluation phase. We need
to show how these functions can be computed in
O(min{log N, log log t}) time.
First, we show how to compute total(i, d) efficiently. Look-
ing at 2PA it follows that we need to maintain, for each
i ∈ [1, n], a data structure Di for the endings of all the in-
tervals belonging to Si in the stack such that the following
two operations can be performed:

Insert(i, v, d, e): Insert the ending e of the interval [d, e)
belonging to Si with value v in Di.

Query(i, v, d, e): Given the interval [d, e) belonging to Si,
find the sum of the values of all endings b in Di with
b ≤ d.



(* definitions *)
interval is a quadruple of the following kind:

(family, value, beginning, ending);
L is sequence that contains an interval (i, wi, d, e)

for every integer i ∈ [1, n] and every [d, e) ∈ Si,
L is sorted so the value of ending is non-decreasing;

S is an initially empty stack that stores intervals;
TOTAL(c) returns the sum of values of those intervals on S

that have ending > c;
total(i, c) returns the sum of values of those intervals on S

that have ending ≤ c and family = i;
for ( each integer i ∈ [1, n] ) done[i] ← false;
occupied ← t;

(* evaluation phase *)
for ( each (i, w, d, e) from L )
{ v ← w − total(i, d) − TOTAL(d);

if ( v > 0 )
push((i,v, d, e),S);

}
(* selection phase *)

while ( S is not empty )
{ (i, v, d, e) ← pop(S);

if ( not done[i] and e ≤ occupied )
insert (i, [d, e)) to the solution,
done[i] ← true, occupied ← d;

}

Figure 1: TPA, the two-phase algorithm for ISP

We will maintain, for each ending e already inserted in Di,
the quantity esum which is sum of values of all the endings
not to its right in Di. Notice that when we insert an ending
e in Di, no endings in Di is to the right of e (since we scan
the endings in 2PA in left to right order).
If log N ≤ log log t, then both these operations can be easily
implemented in O(log N) time. Di consists of a sorted list of
all the endings of intervals belonging to Si already inserted.
The Insert operation simply appends the new ending e with
value v to the end of Di (unless it is already there) and up-
dates the value of esum to be v + e′sum where e′ was the
most recent ending inserted in Di (if e was already there,
we simply update esum to be its old value plus v). For the
Query operation, we need to do a binary search on Di in
O(log N) time and retrieve the value of e′sum for the appro-
priate ending e′ found by the search.

If log N > log log t, these operations can be implemented by
using the vanEmdeBoas tree as described in [10]. Remember
that our universe consists of integers in [1, t]. While inserting
e with value v, we first check if e is already in Di. If so, we
update esum to be the sum of its old value plus v. Otherwise,
we find the leftmost neighbour of e, say e′, and update esum

to be the sum of e′sum and v. While doing a Query, we find
the leftmost neighbour w of d in Di (which could be d or
less), and simply retrieve the value of wsum. As a result, we
achieve a time of O(log log t) per Insert and Query operation.
The implementation of TOTAL(d) is very similar. Now, we
need to maintain a single data structure D for all the endings
currently in the stack such that the following operations can
be implemented efficiently.

Insert(v, d, e): Insert the ending e of the interval [d, e) with

value v in D.

Query(d, e): Given the interval [d, e), find the sum of the
values of all endings b in D with b > d.

If we now additionally store the sum of all values currently
in D in a variable β, then the answer to Query(d, e) is β
minus sum of the values of all endings b in D with b ≤ d.
Hence, the same techniques described previously can be used
to implement theses operations in O(min{log N, log log t})
time. ❑

Now, we prove the performance ratio of 2PA. The next
lemma will characterize the status of S at the end of the
evaluation phase.

Lemma 2. Consider a feasible solution A to the input ISP
instance and the set of intervals S in the stack at the end of
the evaluation phase. Let

• Si be the set of entries of S with family = i;

• SA be the union of Si’s for i’s that are present in A;

• Sd,e be the set of entries of S with d < ending ≤ e;

• V (X) be the sum of values of intervals in the set X;

• P (A) =
P

(i,[d,e))∈A wi.

Then V (S) + V (SA) ≥ P (A).

Proof. Because the intervals in A are disjoint,
X

(i,[d,e))∈A

V (Sd,e) ≤ V (S).



Therefore if suffices to show that for every (i, [d, e)) ∈ A we
have

V (Sd,e) + V (Si) ≥ wi.

Let S′ be the content of the stack at the time when the
evaluation phase starts the processing of (i, wi, d, e). At that
time we compute v = wi − total(i, d) − TOTAL(d). Note
that total(i, d) ≤ V (Si), and since all entries of S′ have
ending ≤ e, we also have TOTAL(d) = S′

d,e. Consequently,
if v ≤ 0, then

wi ≤ total(i, d) + TOTAL(d) ≤ V (Si) + V (S′
d,e)

≤ V (Si) + V (Sd,e)

On the other hand, if v > 0, then we push (i, v, d, e) onto S
and

V (Sd,e) ≥ V (S′
d,e) + v

≥ V (S′
d,e) + wi − V (S′

d,e) − V (Si)
= wi − V (Si)

❑

The next lemma shows how the profit of the solution that
is found in the selection phase can be determined from the
status of the stack at the end of the evaluation phase.

Lemma 3. The sum of profits of the intervals selected
during the selection phase is at least V (S).

Proof. With each interval inserted to the solution during
the selection phase we can associate a set of stack entries.
It suffices to show that (a) the sum of values of entries asso-
ciated with (i, [d, e)) is at least wi, and (b) each stack entry
is associated with at least one element of the solution.
To describe the association rule, observe that if (i, [d, e))
is selected, then for some v > 0 the quadruple (i, v, d, e)
was pushed onto S during the evaluation phase; in turn, v
was computed by subtracting from wi the sum of values of
all the stack entries that have family = i and ending ≤ d
(represented as total(i, d)) or have d < ending ≤ e (repre-
sented as TOTAL(d)). We associate with (i, [d, e)) all the
stack entries that were involved in the computation of v and
(i, v, d, e) itself; by the very definition, wi is the sum of their
values.
Observe that we associate a stack entry (i′, v′, d′, e′) not in
the solution with an element of the solution, say (i, [d, e)),
if and only if one of the following holds true: (i) i′ = i, so
we set done(i′) = true, or (ii) e′ > d, so occupied becomes
d < e′. Thus if in the selection phase we have top of the stack
(i′, v′, d′, e′) that has not been associated with a solution
element, we include (i′, [d′, e′)) in the solution and associate
(i′, v′, d′, e′) with (i′, [d′, e′)). Therefore each entry of S has
to associated with an element of the solution. ❑

Now we can prove our first theorem.

Theorem 4. 2PA solves ISP problem in time
O(N min{log N, log log t}) with approximation ratio at most
2, where there are N intervals in the input contained in [1, t).

Proof. By Lemma 1, 2PA a valid solution in time O(N(1+
min{log N, log log t})). Let V be the total profit of this solu-
tion and A be an optimal solution. By Lemma 3, V ≥ V (S),
and by Lemma 2, 2V ≥ V (S) + V (SA) ≥ P (A). ❑

3. ISP AND THROUGHPUT MAXIMIZA-
TION

In this section, we show how to use the ISP to provide effi-
cient solutions for the Throughput Maximization problems
for both the pseudo-polynomial and the strongly-polynomial
case.

3.1 Pseudo-polynomial Algorithms
We use the same notations as defined in Section 1.

Theorem 5. There is an pseudo-polynomial algorithm for
TMP with an approximation ratio of 2 that runs in
O(tn log log t) time.

Proof. Given a TMP instance I, we can define an ISP
instance T1(I)by having the same profit coefficients wi, and
the families of integer intervals indicating the time intervals
during which a job may be executed:

Si = {[si, si + li) : ri ≤ si and si + li ≤ di}

Notice that there are at most N = tn intervals in our collec-
tion and that log log t ≤ log log N . In turn, a solution A of
T1(I) yields the schedule {(i, s) : (i, [s, s + li)) ∈ A}. This
translation, in conjunction with 2PA from Figure 2, proves
the theorem. ❑

Notice that the algorithm in Theorem 5 is pseudo-polynomial
since N , the total number of intervals in T(I), is not a poly-
nomial function of n, but rather of the largest coefficient t of
the input. Still, this algorithm achieves the same approxi-
mation ratio as the pseudo-polynomial algorithm of Bar-Noy
et al. [3], which starts from solving a linear program with
at least N variables followed up by a costly post-processing,
and thus takes at least Ω(N2) time.
In the special case when the profits of all the jobs
J1, J2, . . . , Jn are identical, 2PA as applied above in Theo-
rem 5 reduces to the algorithm 1-GREEDY of [3], and hence
the tightness of the performance ratio of in Theorem 5 fol-
lows from that of 1-GREEDY as described in [3]. One may
be tempted to try to improve the performance ratio by run-
ning it twice, once in left-to-right order of endings and an-
other time in right-to-left order of endings, and take the bet-
ter of the two solutions. The following example illustrates
that the performance ratio will still be 2 in the worst case.
There are 2n − 1 jobs J1, J2, . . . , Jn and J ′

1, J
′
2, . . . , J ′

n−1,
all with profit 1. Let the notation (p, q, r) denote a job with
release time p, deadline q and length r and let 0 < ε < 1
be any arbitrary constant. Then, Ji = (2i − 1, 2i, 1) and
J ′

i = (2i− 1 − ε, 2i + 2 + ε, 1). The optimal schedule sched-
ules all the 2n − 1 jobs whereas both runs of 2PA will only
schedule n − 1 jobs J ′

1, J
′
2, . . . , J ′

n−1 plus either the job Jn

(for left-to-right order) or the job J1 (for right-to-left order).
Note that maximum stretch factor in the above example,
3 + 2ε, is only slightly more than 3.

Theorem 6. There is a pseudo-polynomial algorithm for
TMPk-un with an approximation ratio of 2 which runs in
O(tnk log log(tk)) time.

Proof. Consider an instance I of TMPk-un problem. We
can define the corresponding instance T2(I) of ISP by setting

Si = {[si, si + li,m) + (m − 1)t : m ∈ [1, k], ri ≤ si

and ri + li,m ≤ di}



where [d, e) + c denotes [d + c, e + c). Notice that we have
at most N = tnk intervals in our collection, each contained
in [1, tk). Now, a solution A of T2(I) yields the schedule
{(i, m, s) : s ≤ t and (i, [s, s + li,m) + (m − 1)t) ∈ A}. ❑

Notice that the algorithm in Theorem 6 has a better perfor-
mance ratio then the ratio 3 algorithm of Bar-Noy et al. [3].
Next, we consider the case when all the k > 1 machines are
identical.

Theorem 7. There is a pseudo-polynomial algorithm for

TMPk-id with an approximation ratio of (k+1)k

(k+1)k−kk which

runs in O(tnk log log t) time.

Proof. Let T1(I) be as described in Theorem 5. We solve
an instance I of TMPk-id by running k iterations of 2PA:

J ← T1(I)
for ( each integer m ∈ [1, k] )
{ create solution A by running 2PA on J ;

for ( each (i, [d, e)) ∈ A )
insert (i, m, d) to the solution,
remove Si and wi from J ;

}

Correctness of the algorithm is obvious, as in each iteration
2PA assures that the jobs assigned to a particular machine
are executed during disjoint time intervals. By removing
the interval families of the jobs already scheduled, we also
assure that each job is scheduled at most once. The time
taken is also clearly O(tnk log log t), since the selected jobs
and their profits can be removed in O(tn) time after each
iteration of 2PA .
Let us rescale the profits of the jobs so that the profit of
the optimum solution is 1. Let Pm be the profit of the jobs
scheduled in the fist m iterations of 2PA. Our goal is to show
that

1
Pk

≤ (k+1)k

(k+1)k−kk ≡ Pk ≥ 1 −
�

k
k+1

�k

≡ 1− Pk ≤
�

k
k+1

�k

Obviously, P0 = 0, so 1 − P0 = 1. Thus it suffices to show
that for j ∈ [1, k]

1−Pj ≤ k

k + 1
(1−Pj−1) ≡ Pj −Pj−1 ≥ 1

k + 1
(1−Pj−1)

The left-hand side of the last inequality is the sum of prof-
its of the jobs scheduled in the jth iteration. Expression
(1 − Pj−1) on the right-hand side is a lower bound on the
optimum profit that can be interpreted as follows: the opti-
mum profit for the initial input J is 1, if we delete from this
schedule all jobs that were scheduled in the previous j − 1
iterations (and thus were deleted from J), the remaining
profit is at least 1−Pj−1. Therefore it suffices to show that
in an iteration we produce a schedule for one machine that
has profit at most k + 1 times smaller than the optimum
schedule for k machines.
Consider an instance I of TMPk-id and an optimum sched-
ule B with profit V (B). Then we can form k solutions
for T1(I) that correspond to schedules for each machine:
A(m) = {(i, [s, s+ li]) : (i, m, s) ∈ B}. Recall Lemma 2 and
its notation. Because the sets of jobs scheduled on various
machines are disjoint, we have

Pk−1
m=0 V (SA(m)) ≤ V (S).

The claim of Lemma 2 states that V (S) + V (SA(m)) ≥
V (A(m)). By adding all such inequalities we get

(k+1)V (S) ≥ kV (S)+

k−1X
m=0

V (SA(m)) ≥
k−1X
m=0

V (A(m)) = V (B).

By Lemma 3, the profit obtained by this run of 2PA is at
least V (S), which in turn is at least V (B)/(k + 1). ❑

Notice that the algorithm in Theorem 7 has the same per-
formance ratio as in Bar-Noy et al. [3], but the algorithm
in Bar-Noy et al. [3] takes at least Ω(t2n2k) time in the worst
case.

3.2 Strongly polynomial algorithms

The algorithms for TMP, TMPk-id and TMPk-un presented
in the previous section are pseudo-polynomial, because all
of them start from forming an instance of ISP with N inter-
vals, where N is pseudo-polynomial. However, the families
of intervals in an ISP instance that is formed have a very reg-
ular definition, and therefore 2PA can be accelerated with
approximation ratios that are arbitrarily close to the ratios
of the pseudo-polynomial algorithms of the previous section.
In particular, we have the following theorem where 0 < ε < 1
is any value. Notice all the ratios and running times are bet-
ter than the corresponding ones in Bar-Noy et al. [3].

Theorem 8. There is an approximation algorithm for the
TMP (respectively, TMPk-id, TMPk-un) problem with ap-

proximation ratio 2/(1 − ε) (respectively, (k+1)k

(k+1)k−(k+ε)k ,

2/(1 − ε)) which runs in O(n2/ε) (respectively, O(kn2/ε),
O(n2/ε)) time.

Proof. We use the notations in Section 2. As a first step,
we will modify 2PA so that the number of stack operations
will be proportional to n, the number of families of intervals
(and the number of jobs in the original scheduling problems).
In particular, we will change the condition for pushing an
interval from

if ( v > 0 ) push((i, v, d, e),S);
to

if ( v > εwi ) push((i, v, d, e),S);

We will call the modified algorithm ε-2PA.
Observe that the size of stack S at the end of the evalua-
tion phase of ε-2PA is at most �ε−1�n: each entry of S has
value > εwfamily , thus when we evaluate some (i, wi, [d, e])
and S contains j entries with family = i, then the computed
v is smaller than (1− jε)wi, and if j = �ε−1�n then

v < (1 − jε)wi < (1 − (ε−1 − 1)ε)wi = εwi

and thus v is too small to push a new entry onto S. We
can conclude that the running time of the selection phase of
ε-2PA is O(n/ε). Now, we show that if I is an instance of
TMP with n jobs, we can implement the evaluation phase
of ε-2PA to run in time O(n2/ε) on input T1(I).
Notice that we need to design a data structure such that
every time we need to find a new entry to push to the stack S,
we will find it in O(n) time. To design our data structure, we
need to inspect how the value of v is computed for (i, wi, e−
li, e). We can compute v by starting with the expression



wi − V (S), and then adding the value of all intervals on S
that have family 
= i and ending ≤ e − li. When we add a
new entry to S, we need to update V (S).
Let q = �ε−1�n and assume that the entries of S occupy
array positions S[1] to S[q], with top(S)≤ q denoting the
top of S at any moment. Let V denote the sum of all
values in S at any moment. We also maintain, for each
Ji, an array left[i,1 : q] of size q such that left[i, j] stores
the sum of values of all intervals that have family 
= i and
ending ≤ S[j].ending, and a pointer r[i] to the most re-
cent entry visited in left[i,1 : q] (left[i, r[i]]= ∞ will indicate
that no further interval of Ji is available for further consid-
eration). The array element end[i] stores, for each job Ji,
the earliest ending that gives a positive value (end[i]= ∞
indicates that no further instance of Ji can be under con-
sideration). Assume for convenience that left[i,0] is 0 for all
i and S[0].ending is 1. We initialize V ← 0, top(S)← 0 and
r[i]← 0 for all i. Now, we find an entry with a positive value
of v and earliest ending in the following way:

for ( each integer i ∈ [1, n] )
{

end[i]← ∞ ; p← r[i]
while ( p ≤ top(S) and left[i, p]<V-(1-ε)wi )

p← p + 1;
if ( S[p].ending> di or p >top(S) )

left[i, p]← ∞
else

{
val[i]← left[i, p] − (V − wi) ;
end[i]← s[p].ending+li ;
r[i]← p ;

}
}

let end[j] be min1≤i≤n{end[i]}

if ( end[j]= ∞ ) algorithm terminates
else (j, val[j], S[r[j]].ending, S[r[j]].ending + lj)

should be pushed to S

and while pushing (j, val[j], S[r[j]].ending, S[r[j]].ending +
lj) to S we perform the following updates:

push (j, val[j], S[r[j]].ending, S[r[j]].ending + lj) to S
V ← V + val[j]
for ( each integer i ∈ [1, n] )

if ( i 
= j ) left[i,top(S)]← left[i,top(S)−1]+val[j]
else left[i,top(S)]← left[i,top(S)−1]

Each of the O(n/ε) push takes O(n) time. Each of the
O(n/ε) minimum computation also takes O(n) time. More-
over, since the values of r[i] are increasing and at most
O(n/ε), it is easy to see that the total time for all the re-
maining operations is also O(n2/ε).
Now it remains to find the approximation ratios that result
from applying ε-2PA. The analysis that we have performed
for 2PA can be largely repeated. In particular, Lemma 3
still applies, so it remains to characterize V (S) at the end
of the evaluation phase. By inspecting the proof of Lemma
2 one can see that the lower estimate of V (Sd,e) + V (Si)
must be decreased by v in the case when the evaluation
phase computes v to be positive, and yet it does not push

(i, v, d, e) onto S; because in this case we have v ≤ εwi, we
decrease the estimate of Lemma 2 to

V (S) + V (SA) ≥ (1 − ε)V (A)

As a result, if we have an instance I of TMP and apply ε-
2PA to T1(I), then we obtain approximation ratio 2/(1− ε)
and the running time of n2/ε. Similarly, if I was an instance
of TMPk-id, and x is the profit of an optimum schedule on
k machines, then a run of ε-2PA on T1(I) returns a schedule
for one machine with profit at least x(1− ε)/(k+1), and by
iterating ε-2PA for k times we get a ratio of

(k + 1)k

(k + 1)k − (k + ε)k
.

in time O(kn2/ε).
A modification similar to TMP can be applied to the algo-
rithm for TMPk-un to run in O(n2/ε+ kn) = O(n2/ε) time
with a performance ratio of 2/(1 − ε). ❑

4. SCHEDULING WITH BOUNDED
STRETCH FACTOR

In this section, we consider TMP restricted to cases when
di − ri ≤ αli for some fixed upper bound of the stretch fac-
tor α ≥ 1. For α ≤ 2, the problem is solvable in polynomial
time [3]. These cases are interesting because of their ap-
plications to adaptive rate-controlled scheduling [11; 9; 14]
as discussed in the introduction and, in fact, we can obtain
approximation ratios below 2 using a variation of algorithm
2PA. In particular, we can prove the following theorem. Set-
ting a = 2 in the theorem (corresponding to 2 < α < 3), we
improve the the ratio of an optimal solution to the integer
programming formulation of the JISP2 problem (see [13])
to that of its corresponding linear programming relaxation
from 3

5
to 5

8
.

Theorem 9. Assume that the stretch factor of each job
is at most α and let a = �α�. Then, there is a pseudo-
polynomial time algorithm for the TMP problem which runs
in O(atn log log t) time with performance ratio

2

1 + 1
2a+1−2−a

Proof. We will use a modified version of Lemma 2. In
particular, consider a feasible solution A to an ISP instance,
and the state of stack S at the end of the evaluation phase of
2PA, and the notation of Lemma 2. Then for (i, [d, e)) ∈ A
we redefine Si to be the set of entries of S with family = i
and ending ≤ d (rather than all entries of S with family = i).
After this change, Lemma 2 still holds, and the proof re-
mains virtually unchanged. We will refer to this new state-
ment as Lemma 2’.
We also need the following notation. If (i, s) belongs to an
optimum schedule A, then we say that job Ji is scheduled
optimally with parameter τi = (s−ri)/li. Moreover, we will
view a stack entry (i, [d, e)) as an attempt to schedule job
Ji with parameter β = (d − ri)/li. Clearly, β ≤ α − 1. One
can see that in Lemma 2’ the set Si consist of attempts to
schedule job Ji with parameter β ≤ τi − 1.
Before we proceed further, let us observe that if �α� = 1,
then SA must be empty, and thus algorithm 2PA guarantees



the optimum profit, or the fraction of optimum profit equal
to (1 + (21+1 − 2 − 1)−1)/2.
Our idea is simple. By Lemma 2’, in the worst case we obtain
the total profit that is equal to the optimum profit, minus
the values of the attempts to schedule jobs with parameters
that are smaller by at least 1 than the optimal ones. Suppose
that we obtained exactly half of the optimum profit. This
would mean that all our attempts to schedule a job had
parameters that were by at least 1 too low. We could try
to run our algorithm again, but if in the current run we had
an attempt to schedule job Ji with parameter γ, in the next
run we will prohibit scheduling Ji with parameter lower than
γ + 1.
To make this idea precise, we need to consider the fact that
algorithm 2PA allows to make partial attempts, i.e. at-
tempts with values lower than the profit of the respective
job. Thus a partial attempt must be followed with a par-
tial prohibition. More concretely, when in a run of 2PA we
calculate a value of a possible attempt to schedule Ji with
parameter γ, we subtract the value of attempts (i.e. stack
entries) with overlapping time intervals (TOTAL(d) in Fig-
ure 2), the values of attempts to schedule Ji with parameter
β ≤ γ−1 (total(i, d) in Figure 2), and, to express our partial
prohibition, the values of attempts to schedule Ji that were
made in the previous runs with parameter β > γ − 1.
With the above proviso, we run 2PA a times, and then we
make separate a runs after reversing the direction of the
time. The latter means that instead of considering all possi-
ble scheduling attempts in the order of increasing termina-
tions, we consider them in the order of decreasing starts, and
the notions of TOTAL, total and prohibition are changed
symmetrically. After we are done with all 2a runs, we choose
the best of their solutions.
To make the proof of the improved performance easier, we
rescale all the profits so that V (A) = 1. In our analysis, an
attempt to schedule Ji with parameter β is correct if β = τi,
and wrong, if β ≤ τi − 1.
To analyze this new algorithm, we first show that the sum
of V (SA) (or, equivalently, the sum of values of all wrong
scheduling attempts) over all 2a runs is at most (a − 1).
Consider a job Ji that is scheduled optimally with parameter
τi. It suffices to show that the sum of V (Si)’s over the first
a runs of 2PA is at most �τi�wi, and that the similar sum
over the a runs with reversed time is at most �α−τi −1�wi.
Intuitively, the worst we can do in the first a runs is to make
attempts with parameters 0, 1, . . . , �τi − 1�, each with value
wi; similarly, in the runs in the reverse direction, at worst
we have attempts to schedule Ji with parameters α− 1, α−
2, . . . , α − �α − τi − 1�.
Let us assume that the sum of V (SA) over the first a runs
is at most (a − 1)/2 (if not, then it is true for the second
set of a runs). We define δ = (2a+1 − 2 − a)−1. We will
prove that in one of these a runs the sum of values of the
scheduling attempts (and hence, the obtained profit) is at
least (1 + δ)/2. To do it, we will obtain a contradiction
with the assumption that in each of the a runs this sum is
below (1 + δ)/2. We start by showing that under the latter
assumption the following holds for b = 0, . . . , a:

after b runs we have prohibited correct attempts
with joint value at most (2b − 1)δ and, if b > 0,
in the bth run we have V (SA) > (1−(2b−1)δ)/2.

It is clear for b = 0. If we assume this claim for b − 1,

then we start the run number b with non-prohibited correct
attempts with joint value at least 1 − (2b−1 − 1)δ. Because
in this run the joint value of all attempts is smaller than
(1 + δ)/2, we have

V (SA) > 1− (2b−1 − 1)δ − 1 + δ

2
=

1 − (2b − 1)δ

2

and thus the value of the correct attempts (that will be
prohibited later) is smaller than

1 + δ

2
− 1 − (2b − 1)δ

2
= 2b−1δ

Because before the bth run we prohibited correct attempts
of value at most (2b−1−1)δ, the new total is below (2b−1)δ.
After proving our inductive claim, we can derive a contra-
diction: the sum of V (SA) over the first a runs is larger
than

Pa
b=1

1−(2b−1)δ
2 = a

2 − δ
2

Pa
b=1(2

b − 1)

= a−δ(2a+1−2−a)
2

= a−1
2

while we assumed that this sum is at most (a − 1)/2. ❑

Using ε-2PA instead of 2PA in a manner similar to that
in the proof of Theorem 8, we can also devise a strongly
polynomial algorithm for this case whose performance ratio
is arbitrarily close to that in Theorem 9.

5. CONCLUSION AND OPEN PROBLEMS
We have shown simple combinatorial algorithms that in some
cases match, and in other cases exceed the performance of
LP based algorithms of Bar-Noy et al. [3]. Our algorithms
can be viewed as a proper extension of the greedy algorithms
that can be used when every job has the same profit.
A major open problem is to bring the approximation ratio
for TMP below 2. One can also point out several problems
of more modest scope. Can we improve the running time of
our algorithms, mainly 2PA and ε-2PA? Is the performance
ratio proven for the algorithms for bounded stretch factor
optimal?

6. ACKNOWLEDGMENTS
The authors would like to thank Sefi Naor and Baruch Schieber
for their useful discussion and explanations, Amos Fiat and
Gerhard Woeginger for organizing Dagstuhl workshop on
online algorithms where some of these discussions took place,
Michael A. Palis for pointing out applications of stretch fac-
tors to adaptive rate-controlled scheduling, as well as NSF
and NLM for providing the financial support for this re-
search.

7. REFERENCES

[1] Barauh S., G. Koren, D. Mao, B. Mishra, A. Raghu-
nathan, L. Rosier, D. Shasha and F. Wang, On the com-
petitiveness of on-line real-time scheduling, Real-Time
Systems 4, 125-144, 1992.

[2] Bar-Noy, A., R. Bar-Yehuda, A. Freund, J. (S.) Naor
and B. Schieber, A Unified Approach to Approximating
Resource Allocation and Scheduling, this proceedings.



[3] Bar-Noy, A., S. Guha, J. (S.) Naor and B. Schieber,
Approximating the throughput of multiple machines in
real-time scheduling, Proc. 31st ACM STOC, 622-631,
1999. Full version available at Prof. Amotz Bar-Noy’s
web-site http://www.eng.tau.ac.il/~amotz/.

[4] Berman, P., Z. Zhang, J. Bouck and W. Miller, Large
aligning two fragmented sequences,manuscript, submit-
ted for journal publication.

[5] Kise H., T. Ibarakiand H. Mine, A solvable case of one
machine scheduling problems with ready and due dates,
Operations Research 26, 121-126, 1978.

[6] Koren G. and D. Shasha, An optimal on-line scheduling
algorithm for overloaded real-time systems, SIAM J. on
Computing 24, 318-339, 1995.

[7] Lawler, E. L., A dynamic programming approach for
preemptive scheduling of a single machine to minimize
the number of late jobs, Annals of Operations Research
26, 125-133, 1990.

[8] Lipton R. J. and A. Tomkins, Online interval schedul-
ing, Proc. 5th Annual ACM-SIAM Symp. on Discrete
Algorithms, 302-311, 1994.

[9] Liu H. and M. E. Zarki, Adaptive source rate control for
real-time wireless video transmission, Mobile Networks
and Applications 3, 49-60, 1998.

[10] Overmars, M. H., Computational geometry on a grid:
an overview, Theoretical Foundations of Computer
Graphics and CAD, NATO ASI Series F40, Edited
by R. A. Earnshaw, Springer-Verlag Berlin Heidelberg,
167-184, 1988.

[11] Rajugopal, G. R. and R. H. M. Hafez, Adaptive rate
controlled, robust video communication over packet
wireless networks, Mobile Networks and Applications
3, 33-47, 1998.

[12] Sahni, S, Algorithms for scheduling independent tasks,
JACM 23, 116-127, 1976.

[13] Spieksma, F. C. R., On the approximability of an inter-
val scheduling problem, Journal of Scheduling 2, 215-
227, 1999 (preliminary version in the Proceedings of
the APPROX’98 Conference, Lecture Notes in Com-
puter Science, 1444, 169-180, 1998).

[14] Yau, D. K. Y. and S. S. Lam, Adaptive rate-
controlled scheduling for multimedia applications, Proc.
IS&T/SPIE Multimedia Computing and Networking
Conf., San Jose, CA, January 1996.


