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Abstract

We characterize bipartite Steinhaus graphs in three ways by partitioning them into
four classes and we describe the color sets for each of these classes. An interesting
recursion had previously been given for the number of bipartite Steinhaus graphs
and we give two fascinating closed forms for this recursion. Also, we exhibit a lower
bound, which is achieved infinitely often, for the number of bipartite Steinhaus
graphs.
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1 Introduction

Let T = a0,0a0,1 . . . a0,n−1 be an n-long string of 0s and 1s beginning with 0.
The Steinhaus graph generated by T has as its adjacency matrix the Steinhaus
matrix A = [ai,j], where

ai,j =




0, if 0 ≤ i = j ≤ n − 1;

(ai−1,j−1 + ai−1,j) mod 2, if 0 < i < j ≤ n − 1;

aj,i, if 0 ≤ j < i ≤ n − 1.

(1)

As illustrated in Figure 1, a vertex of a Steinhaus graph is usually labeled by
its corresponding row number. A Steinhaus triangle is the upper-triangular
part of a Steinhaus matrix (excluding the diagonal); hence it is generated by
a string of length n − 1. Throughout this paper, n will always be the size of
the vertex sets of the graphs under discussion and thus there are exactly 2n−1

Steinhaus graphs of size n.


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0 0 1 1 0 0 0

1 1 0 0 1 0 0

2 1 0 0 1 1 0

3 0 1 1 0 0 1

4 0 0 1 0 0 1

5 0 0 0 1 1 0
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Fig. 1. Example of a Steinhaus matrix and graph

We say that a0,0a0,1 . . . a0,n−1 is a (row) generator of the corresponding Stein-
haus graph. This definition violates a fundamental principle in doing mathe-
matics. If a problem has any kind of symmetry, the mathematical structures
defined to handle that problem should reflect that symmetry. In our case,
there is just one symmetry. The vertices are ordered 0, . . . , n − 1, but the
reverse order n − 1, . . . , 0 is equally good. There is no reason to distinguish
the first vertex from the last vertex of the graph by starting with the first
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row rather than the last column of the adjacency matrix. Selecting the string
a0,1a1,2 . . . an−2,n−1 as the “name” of a Steinhaus graph and defining the ma-
trix in (2) gives a symmetric way of creating a Steinhaus graph. We say that
the string a0,1a1,2 . . . an−2,n−1 diagonally generates its graph and so the graph
in Figure 1 is diagonally generated by 10101. A diagonal generator reflects the
structural properties of its graph. In particular, bipartite Steinhaus graphs are
characterized by some simple patterns in their diagonal generators.

ai,j =




0, if 0 ≤ i = j ≤ n − 1;

(ai,j−1 + ai+1,j) mod 2, if 0 ≤ i < j − 1 < n − 1;

aj,i, if 0 ≤ j < i ≤ n − 1.

(2)

Another way to describe a Steinhaus graph is to let minAdj(0) be the vertex
with the smallest label that is adjacent to vertex 0 and Adj+(v) be the set of
all vertices with labels larger than the vertex labeled v that are adjacent to v.
In Figure 1, minAdj(0) = 1 and Adj+(1) = {3}. It is easy to show

Proposition 1 A Steinhaus graph is determined uniquely if v = minAdj(0)
and the set Adj+(v) are given.

Steinhaus graphs and triangles are named after Hugo Steinhaus who asked
in [18] if there are Steinhaus triangles containing the same number of 0s and
1s. Harborth [13] answered this in the affirmative by showing that for each
n congruent to 0 or 1 mod 4, there are at least four strings of length n − 1
that generate such triangles. Wang [19] named these triangles after Steinhaus
(see also [14]) and Chang [6] investigated the possible number of 1s in these
triangles. Molluzzo [17] was the first to form graphs from Steinhaus triangles,
but he examined the complements of what we call Steinhaus graphs. For a
survey of Steinhaus graphs see [9] which also announces some of the results in
this paper.

Steinhaus graphs form a “large” enough class of graphs to be interesting.
Brigham and Dutton [5] conjectured that almost all Steinhaus graphs have
diameter two. Brand [1] verified this for both Steinhaus graphs and their
complements and his results were generalized in [2]. Brigham et al. [4] have
shown the following result.

Fact 1 Every graph is an induced subgraph of a Steinhaus graph.

Steinhaus graphs are also “large” in the sense that they mimic the behavior
of all graphs (at least in terms of first order properties).

Fact 2 For a given first order property, almost all Steinhaus graphs have the
property if and only if almost all graphs have the property.
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Using this fact, the authors of [3] show that almost all Steinhaus graphs have
the following properties: They are k-connected for any fixed k, they contain
any fixed graph as a subgraph, and they are not planar.

2 Notation and bipartite Steinhaus graphs

In this paper we use the following notation and definitions.

(1) For b < a, let
(

b
a

)
= 0.

(2) Let Pi,j be
{(

i
k

)
mod 2

}j−1

k=0
which is a j-long string of 0s and 1s. Note

that Pi,i+1 is the ith row (0-origin) of Pascal’s triangle modulo 2. We use
the name Pascal’s rectangle (see Figure 2) for a zero-padded version of
Pascal’s triangle modulo 2.

(3) If T is a string of 0s and 1s, then T s is the string repeated s times. For
example, 0(P1,3)

3 = 0110110110. Also, T∞ is an infinite repetition of T .
(4) Denote the set of integers by Z and if A ⊆ Z, then Ai = {x ∈ A : x ≥ i}.

For example, N = Z0 is the set of non-negative integers, Z
+ = Z1 is the

set of positive integers, and if O is the set of odd positive integers, then
O3 is the set of odd positive integers larger than 1.

(5) As is usual, �x� is the floor of x and �x� is the ceiling of x.
(6) We denote log2(x) by lg(x).
(7) If a variable is a positive integer, we will use the capital of that variable

to be the next larger power of two. If k ∈ Z
+, then K = 2�lg(k)�. For

example, if k = 5, then K = 8 and if v = 4, then V = 4.
(8) Let n1 = n − 1 and n2 = n − 2.
(9) If u is odd and v ∈ N, then

f(u2v) =


2v, if u ∈ O3;

2v + 1
2
, if u = 1.

(3)

1 0 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 0 . . .
1 0 1 0 0 0 0 0 0 . . .
1 1 1 1 0 0 0 0 0 . . .
1 0 0 0 1 0 0 0 0 . . .
1 1 0 0 1 1 0 0 0 . . .
1 0 1 0 1 0 1 0 0 . . .
1 1 1 1 1 1 1 1 0 . . .
1 0 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
...

. . .

Fig. 2. Pascal’s rectangle
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There are two facts concerning Pascal’s rectangle that we need and which are
corollaries of Lucas’s theorem. See [10] for a proof of these facts and [11] for
a short proof of Lucas’s theorem.

Fact 3 (Lucas’s Theorem) Let p be prime and m = m0 + m1p + m2p
2 +

· · ·+mrp
r and k = k0 +k1p+k2p

2 + · · ·+krp
r with 0 ≤ mi < p and 0 ≤ ki < p

for 0 ≤ i ≤ r. Then

(
m

k

)
≡

(
m0

k0

)(
m1

k1

)
· · ·

(
mr

kr

)
(mod p).

Fact 4 For m ∈ N and k ≤ 2m, P2m−1,k = 1k and P2m,2m+1 = 1(02m−1)1.

Fact 5 If 2m−1 < k ≤ 2m, then P2m+j,k = Pj,k and so, for k fixed, Pj,k is
periodic of period 2m.

In [8], it was shown that a bipartite Steinhaus graph has a perfect matching
if and only if the sizes of the two color sets are equal and that a Steinhaus
graph is bipartite if and only if the graph contains no triangles. This is another
example of how Steinhaus graphs mimic the behavior of all graphs since Györi
et al. [12] showed that graphs without short odd cycles are nearly bipartite.
[They proved that for every constant ε > 0 and every graph G with n vertices
that contains no odd cycles of length smaller than εn, G can be made bipartite
by removing (15/ε) log(10/ε) vertices (this is the natural log).]

In a follow-up to [8], Dymàček and Whaley [10] characterized the generating
strings of bipartite graphs (called bipartite strings) by showing that all Stein-
haus graphs are generated by the strings described in Facts 6 and 7 below. If
T is a bipartite string but T0 and T1 are both non-bipartite strings, then T is
called a maximal bipartite string. They also gave the following recurrence for
the number b(n) of n-long bipartite strings: b(2) = 2, b(3) = 4, and for k ≥ 2,

b(2k + 1) = 2b(k + 1) + 1 and b(2k) = b(k) + b(k + 1). (4)

Furthermore, they proved that b(n) ≤ (5n−7)/2 with equality occurring when
n is one more than a power of 2.

Fact 6 (Periodic characterization) For s ∈ Z
+ and for t, v ∈ N, any

string of the form 0s(PS−s,S)2v
0t is a bipartite string.

Fact 7 (Maximal length characterization) For s ∈ Z
+, u ∈ O3, and v ∈

N, a string of the form 0s(PS−s,S)u2v
0S2v

is a maximal bipartite string.
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3 Diagonal generators, adjacency list, and color sets

In this section we give a simple characterization of the diagonal generators and
adjacency lists, an alternative description of the row generators, and lists of the
possible color sets of bipartite Steinhaus graphs. To do this, we separate the
bipartite Steinhaus graphs into four classes which are listed in Definition 2.
Classes 1 and 2 are associated with the infinite bipartite graphs that are
diagonally generated by sequences of the form (P0,2r)∞ where r ∈ N. Class 3
is derived from the diagonal strings which cannot be infinitely extended. Since
all Steinhaus graphs are connected except for the null graph, see [7], the color
sets for a given bipartite graph are unique. In the following definition, we use
our convention that S = 2�lg(s)� and the row generators are from Facts 6 and 7.
Note that basically all bipartite strings have the form 0s(PS−s,s)

u2v
0t.

Definition 2 (The four classes) Let s, t ∈ Z
+, v ∈ N, and u ∈ O3.

Class 0 (The null graph) The row generator is 0n.
Class 1 (t = 0) A row generator for a graph in Class 1 is an n-long prefix

of 0s(PS−s,S)2v
.

Class 2 (t > 0) A row generator for a graph in Class 2 is an n-long prefix
of 0s(PS−s,S)2v

0t, where we require that s + S2v < n.
Class 3 (The maximal bipartite strings) A row generator for a graph

in Class 3 is an n-long prefix of 0s(PS−s,S)u2v
0S2v

, where we require that
s + uS2v < n.

In Theorems 3 to 6, we give for each class other than Class 0 another descrip-
tion of the row generator, a characterization of the diagonal generators and
adjacency lists, and the color sets for the graphs.

Theorem 3 (Class 0) The graph in Class 0 is also described by the follow-
ing:

• Row generator: 0n.
• Diagonal generator: 0n−1.
• Adjacency list: minAdj(0) is undefined and Adj+(0) = ∅.
• Color sets: Any will do.

For Theorems 4 and 5, please refer to Figure 3 where the matrix before the
double vertical line represents a typical matrix in Class 1 and the entire matrix
represents a typical matrix in Class 2. Note that the diagonal elements are
underlined. Whenever we describe a row of a Steinhaus matrix, we list only
the diagonal element and the elements to the right of the diagonal.

Theorem 4 (Class 1) Let s ∈ Z
+ and v ∈ N. The graphs in Class 1 are also

described by the following:
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0 s n1 n1
0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0

0 1 0 0 0 0
0 1 1 0 0 0

0 0 1 0 1 0 0
0 1 1 1 1 0

0 1 0 0 0 1
0 1 1 0 0 1

0 1 0 1 0 1
0 1 1 1 1 1

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

Fig. 3. s = 3: Class 1, n1 = 10; Class 2, n1 = 15

• Alternative description of row generator: 0sPN−s,n−s.
• Diagonal generator: 0s−110n−s−1.
• Adjacency lists: minAdj(0) = s, Adj+(s) = ∅.

• Color sets:
{
{0, 1, . . . , s − 1}, {s, s + 1, . . . , n − 1}

}
.

PROOF. If 0s(PS−s,S)2v
is a row generator, then by Fact 4, row s − 1 is

0(PS−1,S)2v
= 01S2v

. If 0sPN−s,n−s is an alternative row generator, then again
by Fact 4, row s − 1 is 0PN−1,n−s = 01n−s. For each of these generators,
row s − 1 is all 1s (from the diagonal right) and so row s is all 0s. Hence
minAdj(s) = 0 and Adj+(s) = ∅ for both generators. Thus these generators
produce the same matrix and are therefore the same string. Also, note that if
minAdj(s) = 0 and Adj+(s) = ∅, then the matrix is generated by 0sPN−s,n−s.

Now these generators give exactly one 1 on the diagonal generator because
ai,s = 1 for 0 ≤ i < s and as−1,j = 1 for s ≤ j < n. Conversely, it is easy to
see that if there is just one 1 in the diagonal generator at position as−1,s, then
row s − 1 is 01n−s and hence row 0 is 0sPN−s,n−s.

Since Adj+(s) = ∅ and vertex s is adjacent to each of the vertices in the
set {0, 1, . . . , s − 1}, the color classes are as given in the statement of the
theorem. �

Theorem 5 is illustrated in Figure 3 with n = 16, v = 1, and r = s = 3. Note
that if the matrix were larger, the period of the diagonal generator would be 8.

Theorem 5 (Class 2) Let s, t ∈ Z
+ and r, v ∈ N. If 1 ≤ s ≤ 2r and s+2r <
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n, then the graphs in Class 2 are also described by the following:

• Alternative description of row generator: 0sP2r−s,n−s.
• Diagonal generator: A sequence with two or more 1s separated by exactly

(2r −1) 0s; i.e., an (n−1)-long prefix of 0s−1(P0,2r)∞ containing more than
one 1.

• Adjacency lists: minAdj(0) = s, Adj+(s) = {s + 2r}.
• Color sets: Let v be a vertex, so 0 ≤ v < n. Compute qv by v−s = qv2

r +w
with 0 ≤ w < 2r. Then the color sets are {v : qv is even} and {v : qv is odd}.

PROOF. Consider row s − 1 of the matrices generated by both the known
and the alternative generators. For the known generator, row s−1 is 01S2v

0t =
01S2v

0n−s−S2v
and for the alternative generator row s − 1 is 012r

0n−s−2r
.

Let s, t, and v be as given in the definition of Class 2 and let r = �lg(s)�+v. So
s ≤ S ≤ S2v = 2r. Since 01S2v

0n−s−S2v
= 012r

0n−s−2r
, Adj+(s) = {s +S2v} =

{s + 2r} for both generators and hence the matrices are the same.

Given r and s with 1 ≤ s ≤ 2r and s + 2r < n, consider the alternative
generator 0sP2r−s,n−s. Note that the condition s + 2r < n guarantees that
Adj+(s) is not empty, which distinguishes Class 2 generators from Class 1
generators. Let v = r − �lg(s)�. So 2r = S2v. For the matrix generated by
the alternative generator, row s − 1 is 012r

0n−s−2r
which is the same as row

s − 1 in the matrix generated by 0s(PS−s,S)2v
0n−1−S2v

. Hence, this generator
generates the same matrix as the alternative generator.

By the previous paragraph, deleting the first s rows of the matrix generated
by 0sP2r−s,n−s gives a matrix with first row 02r

10n−s−2r
. Hence, the part of the

matrix bounded by columns s + 2r to s + 2r+1 − 1 and rows s to s + 2r − 1
is the first 2r rows and columns of Pascal’s rectangle. As is easily seen, this
propagates endlessly giving a diagonal generator that is the first n− 1 entries
of 0s−1(P0,2r)∞.

Conversely, using the first n−s terms of (P0,2r)∞ as a diagonal generator gives
the matrix whose first row is 012r

0n−s−2r
. Adding s rows above this row with

minAdj(0) = s gives the generator 0sP2r−s,n−s and therefore, using the first
n − 1 terms of 0s−1(P0,2r)∞ as a diagonal generator gives the row generator
0sP2r−s,n−s.

The color sets are determined easiest by considering the periodic nature of
the diagonal generators. Clearly, {0, . . . , s − 1} must be in one set since each
is adjacent to the vertex labeled s. The periodic nature of the generator gives
alternating sets of 2r vertices in each color set. �
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The remaining class of bipartite Steinhaus graphs is generated by prefixes of
maximal length bipartite strings. These are maximal because if n = s+uS2v +
S2v, then T = 0s(PS−s,S)u2v

0S2v
is a bipartite string but neither T0 nor T1 are

bipartite. In Figure 4, s = 2, u = 3, and v = 1 and note that if n = 19, then
vertices 6, 14, and 18 form a triangle. In general, the vertices labeled s + S2v,
s + uS2v, and n form a triangle in T0 and the vertices labeled 0, s, and n
form a triangle in T1. The strings in Class 3 are not difficult to describe, but
are difficult to count. The number of such strings satisfies a recursion that
has two closed forms which are somewhat bizarre. Theorem 6 is illustrated in
Figure 4 where w = 2 and x = s + u2w = 14.

0 s x n1
0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 1 0 0 0 0

0 1 1 0 0 0
0 1 0 1 0 0

0 1 1 1 1 0
0 0 1 0 0 0 1

0 1 1 0 0 1
0 1 0 1 0 1

0 1 1 1 1 1
0 1 0 0 0 0

0 1 1 0 0 0
0 1 0 1 0 0

0 1 1 1 1 0
0 0 0 0 1

0 0 0 1
0 0 1

0 1
0

Fig. 4. Class 3: n1 = 17, s = 2, u = 3, v = 1

Theorem 6 (Class 3) Let s ∈ Z
+, v, w ∈ N, and u ∈ O3. If s, u, and w are

such that 1 ≤ s ≤ 2w, x = s + u2w, and 0 < n − x ≤ 2w, then the graphs in
Class 3 are also described by the following:

• Alternative description of row generator: An n-long prefix of 0s(P2w−s,2w)u0n−x.
• Diagonal generator: An (n−1)-long prefix of 0s−110u2w−1102w−1 containing

two 1s.
• Adjacency lists: minAdj(0) = s, Adj+(s) = {x}.
• Color sets:

{
{0, 1 . . . , s− 1} ∪ {x, x + 1, . . . , n− 1}, {s, s + 1, . . . , x− 1}

}
.

PROOF. If s = 1, then PS−s,S = 1 and so the row generator 01n−20 is in
Class 3, unless n = 2v + 2 for v ∈ Z

+ in which case it is in Class 2.
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As in the proof of Theorem 5, the known and the alternative generators each
give Adj+(s) = {x} since we let 2w = S2v. The restriction on n − x simply
forces the alternative generator to have at least one trailing 0, but not enough
trailing 0s to cease being a bipartite string. Therefore, each of these generators
generates the same matrix. Neither is in Class 1 or Class 2 because u ∈ O3.

For the matrix generated by the diagonal generator, consider the triangle of 0s
formed by the 0s between the two 1s in the diagonal generator. Note that the
top border of this triangle consists of u2v S-size blocks of Pascal’s rectangle
and the right border consists of u 2w-size blocks of Pascal’s rectangle (see
Figure 4). Hence for the diagonal generator, Adj+(s) = {x}.

For either the alternative row generator or the diagonal generator, row s − 1
is 01u2w

10n−x and so there are no edges in the graph induced by the vertices
{s, s + 1, . . . , x − 1}. Columns x to n − 1, starting with row s, is Pascal’s
rectangle. By Fact 5 and the hypothesis n − x ≤ 2w, row x is all 0s to the
right of the diagonal. Because of this and minAdj(0) = s, the graph induced
by the vertices {0, 1, . . . , s − 1, x, x + 1, . . . , n − 1} has no edges. �

Theorems 7, 8, and 10 restate some of the results from Theorems 3 to 6.
Theorem 9 is a corollary of the diagonal characterizations found in the same
theorems. A different proof of Theorem 10 can be found in [15] and [16].

Theorem 7 (Diagonal generators) Let u ∈ O3, s ∈ Z
+, and v ∈ N. A

Steinhaus graph is bipartite if and only if its diagonal generator is either
a substring of (P0,2v)∞ (Class 0, 1, or 2) or an (n − 1)-long substring of
0s−110u2v−1102v−1 containing at least two 1s (Class 3).

Theorem 8 (Number of 1s on diagonal generators) For u ∈ O3, s ∈
Z

+, and v ∈ N, a diagonal generator of a bipartite Steinhaus graph has

• no 1s for Class 0,
• exactly one 1 for Class 1,
• two or more 1s separated by (2v − 1) 0s for Class 2,
• exactly two 1s separated by (u2v − 1) 0s for Class 3.

Theorem 9 (Forbidden substrings in diagonal generators) Let v ∈ N

and u ∈ O1. A Steinhaus graph is bipartite if and only if the diagonal generator
does not contain a substring of the form 02v

10u2v−11 or 10u2v−1102v
.

Theorem 10 (Characterization by adjacency lists) If v ∈ N, u ∈ O3,
and s = minAdj(0), then a Steinhaus graph (except for the null graph) is
bipartite if and only if either

• Adj+(s) = ∅ (Class 1),

10



• Adj+(s) = {s + 2v} where S ≤ 2v (Class 2), or
• Adj+(s) = {s + u2v} where S ≤ 2v and n − s − u2v ≤ 2v (Class 3).

4 The size of each class

In this section the size of Classes 0–2 are found and a recursion is given for
the size of Class 3, along with two of its bizarre closed forms. Let b(n) be the
number of bipartite Steinhaus graphs with n vertices and bk(n) be the number
of such graphs in Class k. The recursion for b(n) is given in (4). We show that
b(n) = 2n − 2 + b3(n) where b3(n) also satisfies (4).

Theorem 11 (The size of Class 1) There are n − 1 graphs in Class 1.

PROOF. Fixing s determines an alternative generator for Class 1 and since
there are n−1 choices for s, there are n−1 graphs described by the alternative
generators. Note also that for Class 1, there are n−1 positions on the diagonal
generator to place the 1 and so there are n−1 graphs described by the diagonal
generators. Likewise, there are n− 1 vertices to choose that could be adjacent
to vertex 0 and so the adjacency lists also describe n − 1 graphs. �

Theorem 12 (The size of Class 2) There are n − 2 graphs in Class 2.

PROOF. Let µ be the integer such that 2µ < n ≤ 2µ+1. By Theorem 5,
the alternative generators of the Class 2 graphs can be described by choosing
r such that 1 ≤ r ≤ µ and further choosing 1 ≤ s ≤ 2r. If r = µ and
s is too large, then this describes a graph from Class 1. To avoid this, we
need n = s + S2v + t where t > 0 and S2v = 2r (from the known generator
description). So if r = µ, then s ≤ n − 2r + 1. Hence there are

n − 2µ − 1 +
µ−1∑
k=0

2k = n − 2µ − 1 + 2µ − 1 = n − 2 (5)

generators of Class 2 graphs.

To count the diagonal generators directly, note that a diagonal generator has
the form 0s−1(P0,2r)∞ where 1 ≤ s ≤ 2r. Given 2r, there are 2r diagonal
generators with period 2r unless r = µ and then there are n−2r−1 generators.
Hence the total is the left-hand-side of (5).

The number of Class 2 graphs also can be counted by considering the number of
adjacency lists. This is the number of ordered pairs (s, x) such that s+x ≤ n−1
and x = 2v, where v is a non-negative integer such that 1 ≤ s ≤ 2v. Note that

11



for any integer i with 2 ≤ i ≤ n − 1, there is exactly one pair (s, x) with
s + x = i satisfying the above property; i.e., x = 2�lg(i−1)� and s = i − x.
Therefore, there are n − 2 graphs in Class 2. �

Theorem 13 (Recursion for the size of Class 3) A recursion for b3(n)
is b3(2) = 0, b3(3) = 0, and for k ≥ 2,

b3(2k + 1) = 2b3(k + 1) + 1 and b3(2k) = b3(k) + b3(k + 1). (6)

PROOF. Since b(n) satisfies (4) and b3(n) = b(n)−2n+2, b3(n) also satisfies
(4). �

Summary 1 Class 0 contains 1 graph, Class 1 contains n − 1 graphs, and
Class 2 contains n − 2 graphs. Thus Class 3 contains b(n) − 2n + 2 graphs.

We now give two quite different expressions for b3(n). First, we introduce the
functions from R into R

+ defined by

toothv(x) =


2v, if x ≡ 0 (mod 2v+1);

0, if x ≡ 2v (mod 2v+1);

and by linear interpolation between these values. We can also write these
functions as

toothv(x) =
∣∣∣(x mod 2v+1) − 2v

∣∣∣ .
Theorem 14 (Expression for b(n): tooth version) For n > 2,

b(n) = 2n − 2 +

�lg(n−1
3 )�∑

v=0

toothv(n − 1).

PROOF. From Summary 1, we only need to compute b3(n). For those bipar-
tite Steinhaus graphs which are not subgraphs of infinite bipartite Steinhaus
graphs, each is diagonally generated by a sequence of the form 0s10w10t for
some non-negative integers s, t, u, v, and w with w = u2v − 1, u ∈ O3, v ≥ 1
and s, t < 2v. (Those graphs with u = 1 are already counted since they are sub-
graphs of infinite Steinhaus graphs.) We count the number of such sequences
for given values of u and v. As before, let n1 = n − 1 be the length of such a
sequence. Then n1 = u2v + 1 + s + t and s + t = (n1 − 1 − 2v) mod 2v+1. For
a given sum x = s + t, we distinguish two cases.

First, if 0 ≤ x < 2v, then we have x + 1 sequences with 0 ≤ s ≤ x and
0 ≤ t = x − s ≤ x. Second, if 2v ≤ x < 2v+1, then we have 2v+1 − 1 − x
sequences with x − 2v + 1 ≤ s ≤ 2v − 1 and x − 2v + 1 ≤ t = x − s ≤ 2v − 1.

12



Hence there are toothv(n1) sequences of length n1 for a given value of v with
0 ≤ v ≤ lg�n1

3
�. �

Theorem 15 (Expression for b(n): binary expansion of n − 2 version)
Let n2 = (akak−1 . . . a0)2 be the binary expansion of n − 2 with ak = 1. If ci

(respectively, di) is the number of 00 (respectively, 11) in ak−1ak−2 . . . ai+1,
then

b(n) = 2n − 2 + a0 + (ak−1ak−2 . . . a1)2 +
k−1∑
i=0

(ci(1 − ai) + diai)2
i + d−1. (7)

PROOF. Again, we only need to compute b3(n) to prove (7). Denote by Bn

the set of all (s, x′) which satisfies the adjacency list conditions in Theorem 6;
i.e., x = s + u2v, u ∈ O3, 1 ≤ s ≤ 2v, 0 < n− x ≤ 2v, and x′ = u2v. Note that
b3(n) = |Bn|. Let m = 2�lg(n2)� (recall that n2 = n − 2). For any (s, x′) ∈ Bn,
we claim that x′ ≥ 3

4
m. Otherwise, suppose x′ < 3

4
m. If f is defined by (3) in

the notation section, then f(x′) = f(u2v) = 2v and since 2v ≤ 1
8
m,

s ≤ 2�lg(s)� ≤ 2v ≤ 1
8
m.

Hence

1
8
m ≥ 2v ≥ n − s − x′ > n − 1

8
m − 3

4
m > 1

8
m,

a contradiction.

Since 2m > x′ ≥ 3
4
m and x′ �= m, x′ − 1

2
m is not a power of 2 except when

x′ = 3
4
m or x′ = 3

2
m. So if x′ �∈ {3

4
m, 3

2
m}, then 2v = f(x′ − 1

2
m) and

2v ≥ n − x if and only if f(x′ − 1
2
m) ≥ (n − 1

2
m) − s − (x′ − 1

2
m). Hence

(s, x′) ∈ Bn if and only if (s, x′ − 1
2
m) ∈ Bn− 1

2
m, where x′ �∈ {3

4
m, 3

2
m}. When

x′ = 3
4
m, f(x′) = 1

4
m; and so (s, x′) ∈ Bn if and only if 0 < n − s − 3

4
m ≤

1
4
m and 1 ≤ s ≤ 1

4
m; i.e., 1

4
m ≥ s ≥ n − m = n2 − m + 2. There are

1
4
m − (n2 − m) − 1 (respectively, 0) s satisfying the above inequalities when

m ≤ n2 < 5
4
m (respectively, otherwise). When x′ = 3

2
m, f(x′) = 1

2
m; and

so (s, x′) ∈ Bn if and only if 0 < n − s − 3
2
m ≤ 1

2
m and 1 ≤ s ≤ 1

2
m; i.e.,

n2 − 3
2
m + 1 ≥ s ≥ 1. There are n2 − 3

2
m + 1 (respectively, 0) s satisfying the

above inequalities when 3
2
m ≤ n2 < 2m (respectively, otherwise). Thus

b3(n) = b3(n − m
2
) +




m
4
− (n2 − m) − 1, if m ≤ n2 < 5

4
m;

0, if 5
4
m ≤ n2 < 3

2
m;

n2 − 3
2
m + 1, if 3

2
m ≤ n2 < 2m.
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Then

b3(n) =




b3(n − m
2
) +




m
4
− (n2 − m) − 1, if m ≤ n2 < 5

4
m;

0, if 5
4
m ≤ n2 < 3

2
m;

b3(n − m) +




m
4
, if 3

2
m ≤ n2 < 7

4
m;

n2 − 3
2
m + 1, if 7

4
m ≤ n2 < 2m.

(8)

Let (akak−1 . . . a0)2 be the binary representation of n2 with ak = 1 and if ai is
a bit, then ai = 1 − ai. For n ≥ 4, (8) is the same as

b3((1ak−1 . . . a0)2 + 2) = b3((1ak−2 . . . a0)2 + 2)

+




(ak−3ak−4 . . . a0)2, if ak−1ak−2 = 00;

0, if ak−1ak−2 = 01;

2k−2, if ak−1ak−2 = 10;

2k−2 + (ak−3ak−4 . . . a0)2 + 1, if ak−1ak−2 = 11.

(9)

Also, b3((10)2 + 2) = 0 and b3((11)2 + 2) = 1. Repeatedly applying (9) gives

b3(n) = a0 +
∑

ai−1=1
2≤i≤k

2i−2 +
k−1∑
i=0

ci(1 − ai)2
i +

k−1∑
i=0

diai2
i + d−1

which can be rewritten as (7). �

5 Lower bound for b(n)

To find a lower bound for b(n), consider formula (7). Let m be a positive
integer for which the binary expansion of m2 = m− 2 is a substring of (10)k0.
Then in (7), ci = di = 0 for all i. Hence, if m2 = (10)k0, then b3(m) =
(10)k−1

2 = 2
3
(4k − 1), m = 1

3
(4k+1 + 2), and b3(m) = 1

8
(m − 6). We now show

that �(n) = 1
8
(n − 6) is a lower bound for b3(n) for all positive integers n.

Lemma 16 (Lower bound for b3(n)) A lower bound for b3(n) is

b3(n) ≥ 1
8
(n − 6). (10)

PROOF. We induct on n. By inspection, the lemma is true for n < 32.
Express n as 16q + r, 0 ≤ r ≤ 15, and consider four cases: r odd; r ∈
{0, 2, 4, 6, 12, 14}; q even, r ∈ {8, 10}; and q odd, r ∈ {8, 10}. Since b3(8q + k)

14



is an integer, if b3(8q + k) ≥ �(8q + k) = q + 1
8
(k − 6), then

b3(8q + k) ≥

q, if 0 ≤ k ≤ 6;

q + 1, if k = 7.
(11)

Case 1 (n = 16q + r, r odd) Let r = 2k + 1, 0 ≤ k ≤ 7. Using (6) and
(11), we have

b3(16q + 2k + 1) = 2b3(8q + k + 1) + 1 ≥

2q + 1, if 0 ≤ k ≤ 6;

2q + 2, if k = 7.
(12)

Now

�(16q + 2k + 1) = 1
8
(16q + 2k − 5) ≤


2q + 1, if 0 ≤ k ≤ 6;

2q + 2, if k = 7;

and hence b3(16q + 2k + 1) ≥ �(16q + 2k + 1) for 0 ≤ k ≤ 7.

Case 2 (n = 16q + r, r ∈ {0, 2, 4, 6, 12, 14}) Let r = 2k with k ∈
{0, 1, 2, 3, 6, 7}. Using (6) and (11), we have

b3(16q + 2k + 1) = b3(8q + k) + b3(8q + k + 1) + 1

≥




2q, if 0 ≤ k ≤ 5;

2q + 1, if k = 6;

2q + 2, if k = 7.

(13)

Now

�(16q + 2k) = 1
8
(16q + 2k − 6) ≤


2q, if 0 ≤ k ≤ 3;

2q + 1, if 4 ≤ k ≤ 7;

and hence b3(16q + 2k) ≥ �(16q + 2k) for k ∈ {0, 1, 2, 3, 6, 7}.

Before proceeding to Cases 3 and 4, note that

�(32q + 2k) = 1
8
(32q + 2k − 6) ≤


4q + 1, if 4 ≤ k ≤ 5;

4q + 3, if 12 ≤ k ≤ 13.
(14)

Case 3 (n = 16q + r, q even, r ∈ {8, 10}) So n = 32q + 2k, 4 ≤ k ≤ 5.
Using (6), (12), (13), and noting that one of k and k + 1 is odd, gives

b3(32q + 2k) = b3(16q + k) + b3(16q + k + 1) ≥ 2q + (2q + 1) = 4q + 1.

By (14), b3(32q + 2k) ≥ �(32q + 2k) for 4 ≤ k ≤ 5.
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Case 4 (n = 16q+r, q odd, r ∈ {8, 10}) So n = 32q+16+2k, 4 ≤ k ≤ 5.
Using (6), (12), (13), and noting that 8 + k is either 12 or 13, gives

b3(32q + 16 + 2k) = b3(16q + 8 + k) + b3(16q + 8 + k + 1)

≥ (2q + 1) + (2q + 2)

= 4q + 3.

By (14), b3(32q + 16 + 2k) ≥ �(32q + 16 + 2k) for 4 ≤ k ≤ 5. �

Theorem 17 (Tight bounds for b(n)) For n ≥ 4,

1
8
(17n − 22) ≤ b(n) ≤ 1

2
(5n − 7).

The lower bound is achieved for n = 1
3
(4k+1 + 2) and the upper bound is

achieved for n = 2k + 1.

PROOF. The upper bound has already been given and since 1
8
(17n− 22) =

2n − 2 + 1
8
(n − 6) and b(n) = 2n − 2 + b3(n), the inequality follows from

Lemma 16. In the introduction to this section, we showed that the lower
bound is achieved for n = 1

3
(4k+1 + 2). �

Since b(n) is an integer for all n, we can replace the lower and upper bounds
in the previous theorem with the ceiling and floor, respectively.

Theorem 18 (Tighter bounds for b(n)) For n ≥ 4,

⌈
1
8
(17n − 22)

⌉
≤ b(n) ≤

⌊
1
2
(5n − 7)

⌋
.
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