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Abstract

Di�erent phylogenetic trees for the same group of

species are often produced either by procedures that
use diverse optimality criteria ���� or from di�erent
genes ���� in the study of molecular evolution� Com�

paring these trees to �nd their similarities 	e�g� agree�
ment or consensus
 and dissimilarities� i�e� distance�
is thus an important issue in computational molecu�

lar biology� The nearest neighbor interchange 	nni
 dis�
tance ���� �
� ��� 
� �� �� ��� ��� ��� ��� ��� ��� ��� and
the subtree�transfer distance ���� ��� ��� are two major
distance metrics that have been proposed and exten�

sively studied for di�erent reasons� Despite their many
appealing aspects such as simplicity and sensitivity to
tree topologies� computing these distances has remained

very challenging� This article studies the complexity
and e�cient approximation algorithms for computing
the nni distance and a natural extension of the subtree�

transfer distance� called the linear�cost subtree�transfer
distance� The linear�cost subtree�transfer model is more
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logical than the 	unit�cost
 subtree�transfer model and
in fact coincides with the nni model under certain con�
ditions� The following results have been obtained as

part of our project of building a comprehensive software
package for computing distances between phylogenies�

�� Computing the nni distance is NP�complete� This
solves a �� year old open question appearing again
and again in� for example� ���� ��� 
� �� �� ��� ���

��� ��� ��� ��� under the complexity�theoretic as�
sumption of P �� NP � We also answer an open
question �
� regarding the nni distance between un�

labeled trees for which an erroneous proof appeared
in ����� We give an algorithm to compute the op�
timal nni sequence in time O	n� logn � n � �O�d�
�
where the nni distance is at most d� The algorithm

allows us to implement practical programs when d

is small� All above results also hold for linear�cost
subtree�transfer�

�� Biological applications require us to extend the nni
and linear�cost subtree�transfer models to weighted
phylogenies� where edge weights indicate the length

of evolution along each edge� We present a loga�
rithmic ratio approximation algorithm for nni and
a ratio � approximation algorithm for linear�cost

subtree�transfer� on weighted trees�

� Introduction

The evolution history of organisms is often conveniently
represented as trees� called phylogenetic trees or simply

phylogenies� Such a tree has uniquely labeled leaves and
unlabeled interior nodes� can be unrooted or rooted if the
evolutionary origin is known� and usually has internal

nodes of degree �� Over the past few decades� many dif�
ferent objective criteria and algorithms for reconstruct�
ing phylogenies have been developed� including 	not ex�
haustively
 parsimony ��� �� ���� compatibility ����� dis�

tance ���� ���� and maximum likelihood ��� �� ��� The
outcomes of these methods usually depend on the data
and the amount of computational resources applied� As

a result� in practice they often lead to di�erent trees

�



�

on the same set of species ����� It is thus of interest to
compare phylogenies produced by di�erent methods� or
by the same method on di�erent data� for similarity and
discrepancy� Several metrics for measuring the distance

between phylogenies have been proposed in the litera�
ture� Among these metrics� the best known is perhaps
the nearest neighbor interchange 	nni
 distance intro�

duced independently in ���� and ��
��
An nni operation swaps two subtrees that are sep�

arated by an internal edge 	u� v
� as shown in Figure ��

The nni operation is said to operate or perform on this
internal edge� The nni distance� Dnni	T�� T�
� between
two trees T� and T� is de�ned as the minimum number
of nni operations required to transform one tree into the

other� as illustrated in Figure ��
The complexity of computing the nni distance has

been open for �� years 	since ����
� The problem

is surprisingly subtle given the history of many erro�
neous results� disproved conjectures� and a faulty NP�
completeness proof ���� �� ��� ��� ��� ��� ���� The ques�

tion is open even for the simpler case where the trees
are unlabeled� An erroneous NP�completeness proof for
this case was published in �����

The problem of computing distance between phy�
logenetic trees also arises in a di�erent context� When
the data is in the form of some molecular sequences of
the organisms and the sequences have been subject to

events such as recombination or gene conversion during
the course of evolution� the evolutionary history of the
sequences cannot be adequately described by a single

tree� In an attempt to solve this problem� more gen�
eral evolutionary models have been proposed includ�
ing the network model ���� and a model using a list

of phylogenetic trees ���� ���� In the latter� every tree
corresponds to a speci�c region of the sequences� and
each tree can be obtained from the preceding tree on
the list by transferring some subtrees from one place

to another� Figure � shows a subtree�transfer operation
and its corresponding recombination event� The parsi�
mony model in ���� ��� requires the computation of the

subtree�transfer distance between two trees� i�e� the
minimumnumber of subtrees we need to move to trans�
form one tree into the other� ���� shows that computing

the subtree�transfer distance is NP�complete and gives
a simple approximation algorithm with ratio ��

It is relevant in practice to discriminate among

subtree�transfer operations as they occur with di�erent
frequencies� For example� it is reasonable to assume
that sequences that have only diverged recently give rise
to more recombinations than sequences that diverged

many generations ago ���� �
�� In this case� we can
charge each subtree�transfer operation a cost equal to
the distance 	number of nodes passed
 that the subtree
has moved in the current tree� The linear�cost subtree�

transfer distance� Dst	T�� T�
� between two trees T� and
T� is then the minimum total cost required to transform
T� into T� by subtree�transfers�

Surprisingly� although they are studied in parallel
for very di�erent reasons� we demonstrate here that the
linear�cost subtree�transfer and nni are closely related�

Observe that an nni move is just a restricted subtree�
transfer where a subtree is only moved across a single
edge� 	In Figure �� the �rst exchange can alternatively
be seen as moving node v together with subtree C past

node u towards subtree A� or vice�versa�
 On the other
hand� a subtree�transfer over a distance d can always be
simulated by a series of d nni moves� Hence the linear�

cost subtree transfer�distance is in fact identical to the
nni distance�

A phylogeny may also have weights on its edges�

where an edge weight 	more popularly known as branch
length in genetics
 could represent the evolutionary dis�
tance along the edge� Many phylogeny reconstruction

methods� including the distance and maximum likeli�
hood methods� actually produce weighted phylogenies�
Comparison of weighted phylogenies has recently been
studied in ����� The distance measure adopted is based

on the di�erence in the partitions of the leaves induced
by the edges in both trees� and has the drawback of
being somewhat insensitive to the tree topologies ����

Both the linear�cost subtree�transfer and nni models
can be naturally extended to weighted phylogenies� An
nni is simply charged a cost equal to the weight of the

edge it operates on� while a moving subtree is charged
for the weighted distance it travels� Intuitively these
measures� especially the nni distance� are more sensi�
tive to the tree topologies than the one in ����� Note

that for weighted phylogenies� the linear�cost subtree�
transfer model is more general than the nni model in
the sense that we can slide a subtree along an edge with

subtree�transfers� Such an operation is not realizable
with nni moves�

In this paper� we study the computational complex�

ity and e�cient approximation algorithms concerning
the nni distance and linear�cost subtree�transfer dis�
tance on both unweighted and weighted phylogenies�

We �nally settle almost all questions regarding the nni
distance� We show that computing the nni distance is
NP�complete� The proof is quite nontrivial and it uses
the lower and upper bounds �
� ��� ��� for sorting on a
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tree by nni operations in an essential way� The problem
is also shown to be NP�complete for unlabeled trees� an�
swering another open question in �
�� We will give an
e�cient O	logn
 approximation algorithm for comput�

ing the nni distance on weighted phylogenies� where n
is the number of leaves� A special case of the result for
unweighted phylogenies was recently reported in �����

We then give an exact algorithm that runs e�ciently
when the nni distance is su�ciently small� Such an al�
gorithm is useful in practice as most trees compared

are quite similar� The complexity of computing linear�
cost subtree�transfer distance on weighted phylogenies is
presently open� but here we present an e�cient approxi�
mation algorithm with ratio � and show that computing

linear�cost subtree�transfer distance is NP�complete for
labeled trees provided the labels are not required to be
unique�

Unless otherwise mentioned� all the trees in this
paper are degree�� trees with unique labels on leaves�
An edge of a tree is external if it is incident on a leaf�

otherwise it is internal� Finally� two weighted trees
are equal i� there is an isomorphism between them
preserving topology� edge weights 	and leaf labels for

labeled trees
� Due to space limitations� many proofs
are omitted from this extended abstract�

� Computing the Nni Distance Is NP�complete

Theorem ���� Computing the nni distance �be�
tween two labeled trees� is NP�complete�

The proof is by a reduction from Exact Cover by
��Sets 	X�C
� which is known to be NP�complete �����
to our problem� Recall that� given an instance S �

fs�� � � � � smg� where m � �q� and C�� � � � � Cn� where
Ci � fsi� � si� � si�g� the X�C problem is to �nd disjoint
sets Ci� � � � � � Ciq such that �qj��Cij � S� We will
construct two trees T� and T� with unique leaf labels�

such that transforming from T� into T� requires at most
N 	to be speci�ed later
 nni moves i� an exact cover of
S exists�

Here is an outline of our reduction� We can
perform sorting with nni moves and thus view nni as
a special sorting problem� A sequence x� � � � xk can

be represented as a linear tree as in Figure 
� For
convenience� such a linear tree will be simply called a
sequence of length k� Sorting such a sequence means
to transform it by nni operations to a linear tree whose

leaves are in ascending order�
To construct the �rst tree T�� for each si � S�

we create a sequence Si of leaves that takes a �large�

number of nni moves to sort� We will make sure that Si

and Sj are �very di�erent� permutations for each pair
i �� j� in the sense that we cannot hope to have the
sequence Si sorted for free while sorting the sequence
Sj by nni moves and vice versa� Then for each set

Ci � fsi� � si� � si�g� we create three sequences with
the same permutations as the sequences Si� � Si� � Si� �
respectively� but with distinct labels� Such n groups

of sequences for C�� � � � � Cn� each consisting of three
sequences� will be placed �far away� from each other
and from the m sequences S�� � � � � Sm in tree T�� Tree

T� has the same structure as T� except that all sequences
are sorted�

Here is the connection between exactly covering S

and transforming T� into T� by nni moves� To transform

T� into T�� all we need is to sort the sequences de�ned
above� If there is an exact cover Ci�� � � � � Ciq of S� we
can partition the m sequences S�� � � � � Sm into m

� � q

groups� according to the cover� For each Cj 	j �
i�� � � � � iq
 in the cover� we send the corresponding group
of sequences Sj� � Sj� � Sj� to their counterparts� merge

the three pairs of sequences with identical permutations�
sort the three permutations� and then split the pairs
and transport the three sorted versions of Sj� � Sj� � Sj�
back to their original locations in the tree� Thus�
instead of sorting six sequences separately� we do three
merges� three sortings� three splits� and a round trip
transportation of three sequences� Our construction

will guarantee that the latter is signi�cantly cheaper� If
there is no exact cover of S� then either some sequence
Si will be sorted separately or we will have to send

at least q � � groups of sequences back and forth�
The construction guarantees that both cases will cost
signi�cantly more than the previous case�

We now give more details� Apparently many di��
cult questions have to be answered� How can we �nd
these m sequences S�� � � � � Sm that are hard to sort by
nni moves� How do we make sure that sorting one such

sequence will never help to sort others� How can we
ensure that it is most bene�cial to bring the sequences
Sj� � Sj� � Sj� to their counterparts de�ned for Cj to get

sorted� and not the other way�
We begin with the construction of the sequences

S�� � � � � Sm� Recall that each such sequence is actually

a linear tree� as in Figure 
� Intuitively� it would be a
good idea to take a long and di�cult�to�sort sequence
and break it into m pieces of equal length� But this

simple idea does not work for two reasons� First� such a
sequence probably cannot be found in polynomial time�
Second� even we �nd such a sequence� because the upper
bound in �
� ��� and the lower bound in ���� 	see ����







do not match� these pieces may still help each other in
sorting possibly by merging� sorting together� and then
splitting� The following lemma states that there exists
two sequences of constant size that are hard to sort and

do not help each other in sorting� We will build our m
sequences using these two sequences�

Lemma ���� For any positive constant � � �� there
exists in�nitely many k for which there is a constant c
and two sequences x and y of length k such that �i� each

of them takes at least 	c � �
k logk nni moves to sort�
�ii� each of them takes at most ck logk nni moves to
sort� and �iii� it takes at least 	� � �
c	�k
 log	�k
 nni
moves to sort both of them together� i�e� the sequence

xy�

Proof� Note that for any c� k� x� y� statements 	ii

and 	iii
 imply statement 	i
� So it su�ces to prove the
existence of a constant c and an in�nite number of k�s

that satisfy conditions 	ii
 and 	iii
�
From the results in �
� ��� ���� we know that for each

k� there exists a sequence of k leaves such that sorting

the sequence takes at most k log k � O	k
 nni moves
and at least �

�k logk � O	k
 nni moves� Let us de�ne
ck� for any k� as the maximum number of nni steps to

sort any sequence of length k� divided by k log k� Since
�
��o	�
 � ck � ��o	�
 there must be in�nitely many k
satisfy c�k � ck�

�
� � Taking x and y to be the two halves

of a hardest sequence of length �k� for large enough such

k� and taking c � ck� one can see that conditions 	ii

and 	iii
 are satis�ed�

Let � � ���� k a su�ciently large integer satisfying
Lemma ��� and c� x� y the corresponding constant and
sequences� Next we use x and y� each of length k�

to construct m long sequences S�� � � � � Sm� Choose m

distinct binary sequences in f�� �gdlogme� Replace each
letter � with the sequence xm

�

and each letter � with the
sequence ym

�

� Give each occurrence of x and y unique

labels� Insert in front of every x and y block a delimiter
sequence of length k� with unique labels� This results in
sequences S�� � � � � Sm� all with distinct labels� We can

show that these sequences have the desired properties
concerning sorting� The m sequences will have speci�c
orientations in the tree� let�s refer to one end as head

and the other end as tail�
We are now ready to do the reduction� From sets

S � fs�� � � � � smg� and C�� C�� � � � � Cn� we construct the
two trees T� and T� as follows� For each element si� T�
has a sequence Si as de�ned above� For each set Ci �
fsi� � si� � si�g� we create three sequences Si�i� � Si�i� � Si�i��
with the same permutations as Si� � Si� � Si� � respectively�

but with di�erent and unique labels 	we are not allowed

to repeat labels
�
Figure � outlines the structure of tree T�� Here a

thick solid line represents a sequence Si or Si�j with
the circled end as head� a dotted line represents a toll

sequence of m� uniquely labeled leaves� a small black
rectangle represents a one�way circuit as illustrated
in Figure �	i
� The heads of m sequences at the left

of Figure � are connected by two full binary trees
connected root�to�root of depth logm � logn to the n
toll sequences� each leading to the entrance of a one�

way circuit� The exit of each such one�way circuit is
connected to the entrances of three one�way circuits
leading �nally to the three sequences corresponding to
some set Ci�

A one�way circuit is designed for the purpose of
giving free rides to subtrees moving �rst from �a� to �b�
and then later from �b� to �a�� while imposing a large

extra cost for subtrees �rst moving from �b� to �a� and
then from �a� to �b�� We will choose r so large 	i�e�
r � m�
 that it is not worthwhile to move any sequence

Si�j � corresponding to some Ci� to the left through the
one�way circuits to sort and then move it back to its
original location in T�� This can be seen as follows� The

counterpart of the one�way circuit in T� is as shown in
Figure �	ii
�

In any optimal transformation of circuit 	i
 to 	ii
�
the u�s are paired up with the z�s �rst and then the v�s

are paired with the u�z pairs� This requires ur and v�
to move up and out of the way� The pairing of the u�s
essentially provides a shortcut for ur to reach zr in half

as many steps� and similarly for v��
In the following sorting a sequence Si or Si�j means

to have each of its x�y blocks sorted and then the whole

sequence �ipped� The tree T� has the same structure as
T� except that

� all sequences Si and Si�j are sorted�
� each circuit in Figure �	i
 is changed to 	ii
�

Let M be the cost for sorting a sequence Si�j
optimally 	M can be computed easily
� The following
lemma completes the reduction and thus the proof of

Theorem ����

Lemma ���� 	Proof omitted
 The set S has no
exact cover i� Dnni	T�� T�
 � N � m���� where N �

q	logm� logn
 � qm� � ��nm�� ��n�O	q
 � �nM �
	k� � �k
m� logm �O	�
�

Next� we consider the hardness of computing the
nni distance when both the trees have unlabeled leaves�
solving an open problem mentioned in �
�� A �awed
proof of Theorem ��� was published in ������ Theo�

�In ����� the author reduced the Partition problem to nni by



�

rem ��� can be proved either using Theorem ��� or in�
dependently using a direct and much simpler reduction
from the X�C problem�

Theorem ���� 	Proof omitted
 Computing the nni

between two unlabeled trees is NP�complete�

� An E�cient Exact Algorithm for Small Nni

Distance

In practice� the trees to be compared usually have small
nni distances between them and it is of interest to

devise e�cient algorithms for computing the optimal
nni sequence when the nni distance is small� say d�
An nO�d� algorithm for this problem is trivial� With
careful inspection� one can derive an algorithm that runs

in O	nO��� � dO�d��
 time� which can asymptotically be
improved to O	n� logn� n �d�d�o�d�
� It turns out that
by using the results in ���� ���� we could further improve

the time to O	n� logn� n � ���d
�
Theorem ���� 	Proof omitted
 Suppose that

Dnni	T�� T�
 � d� The optimal sequence of nni op�

erations transforming T� into T� can be computed in
O	n� logn � n � ���d
 time�

� Approximation of Nni on Weighted

Phylogenies

In this section we generalize the nni distance
Dnni	T�� T�
 to the case when both T� and T� are

weighted� the cost of an nni operation being the weight
of the edge across which two subtrees are swapped�
As mentioned in the introduction� many phylogeny re�

construction methods produce weighted phylogenies�
Hence the weighted nni distance problem is also very
important in computational molecular biology� NP�
completeness of the 	unweighted
 nni distance prob�

lem 	in Section �
 implies the NP�completeness of the
weighted nni distance problem also�

We present a polynomial time algorithm with ap�

proximation ratio O	logn
 for nni on weighted phyloge�
nies� generalizing the logarithmic ratio approximation
algorithm in ����� The approximation for the weighted

case is considerably more complicated� Note that nni
operations can be performed only across internal edges�
For feasibility of weighted nni transformation between

two given weighted trees T� and T�� we require in this
section that the following conditions are satis�ed� 	�

for each leaf label a� the weight of the edge in T� inci�
dent on a is the same as the weight of the edge in T�
incident on a� 	�
 the multisets of weights of internal

constructing a tree of i nodes for a number i�

edges of T� and T� are the same�

Theorem ���� 	Proof omitted
 Let T� and T� be
two weighted phylogenies� each with n leaves� Then�
Dnni	T�� T�
 can be approximated to within a factor of

� � � logn in O	n� logn
 time�

Note that the approximation ratio does not depend
on the weights� Intuitively� the idea of the algorithm

is as follows� We �rst identify �bad� components in
the tree that need a lot of nni moves in transformation
process� Then� for each bad component� we put things

in correct order by �rst converting them into balanced
shapes� But notice that we cannot a�ord to perform nni
operations many times on heavy edges� Furthermore�

not only the leaf nodes need to be moved to the right
places� so do the weighted edges� The main di�culty
of our algorithm is the careful coordination of the
transformations so that at most O	logn
 nni operations

are performed on each heavy edge�

� Linear�cost Subtree�Transfer Distance

In this section we investigate the linear�cost subtree�
transfer model on weighted phylogenies� Recall that
the linear�cost subtree�transfer distance is identical to

the nni distance on unweighted phylogenies� Below we
formalize the linear�cost subtree�transfer model�

Consider binary unrooted trees in which each edge
e has a weight w	e
 � �� To ensure feasibility of

transforming a tree into another� we require the total
weight of all edges to equal one� A subtree�transfer is
de�ned as follows� Select a subtree S of T at a given

node u and select an edge e �� S� Split the edge e

into two edges e� and e� with weights w	e�
 and w	e�

	w	e�
� w	e�
 � �� w	e�
 � w	e�
 � w	e

� and move S

to the common end�point of e� and e�� Finally� merge
the two remaining edges e� and e�� adjacent to u into
one edge with weight w	e�
 � w	e��
� The cost of this

subtree�transfer is the total weight of all the edges over
which S is moved� Figure � gives an example� The
subtree S is transferred to split the edge e� to e� and e	
such that w	e�
� w	e	
 � � and w	e�
 � w	e	
 � w	e�
�

�nally� the two edges e� and e� are merged to e
 such
that w	e

 � w	e�
 � w	e�
� The cost of transferring S
is w	e�
 � w	e�
 � w	e�
�

Theorem ���� 	Proof omitted
 Let T� and T� be
two weighted trees with �not necessarily uniquely� labeled
leaves� Then� computing Dst	T�� T�
 is NP�complete�

Theorem ���� For any two weighted phylogenies
T� and T�� Dst	T�� T�
 can be approximated to within
a factor of � in O	n� logn
 time�

In the rest of this section� we prove Theorem ����



�

We �rst de�ne the notion of good edge pairs� Next� we
devise an approximation algorithm for the case when T�
and T� share no good edge pairs� Finally� we show how
to apply the algorithm to the general case�

First� we introduce some notation� For any tree T �
let E	T 
 	resp� V 	T 

 denote the edge set 	resp� node
set
 of T and L	T 
 denote the set of leaf nodes of T � An

external edge of T incident on a leaf node a is denoted
by eT 	a
� Let Eint	T 
 and Eext	T 
 denote the set of
internal and external edges of T � respectively� For a

subset E� � E	T 
� de�ne w	E�
 �
P

e�E� w	e
� De�ne
Wint	T 
 � w	Eint	T 

 and Wext	T 
 � w	Eext	T 

�
Next� we de�ne the notion of good edge pairs�

Definition �� Let e� � Eint	T�
 and e� �

Eint	T�
� Let T �
� and T ��

� be the two subtrees of T�
partitioned by e�� Let T �

� and T ��
� be the two subtrees

of T� partitioned by e�� e� and e� are called a good pair

of T� and T� i� the following two conditions hold�
�� L	T �

�
 � L	T �
�
 and L	T

��
� 
 � L	T ��

� 
�

�� Either w	E	T �
�

 � w	E	T �

�

 � w	E	T �
�

�w	e�
�

or w	E	T �
�

 � w	E	T �

�

 � w	E	T �
�

 � w	e�
�

We say that nodes connected by ��weight edges
are equivalent and call the resulting equivalence classes
super�nodes� Let e�� � � � � ek be all positive weight edges
incident to a super�node o� With � cost� we can re�

connect the edges e�� � � � � ek by any subtree� consisting
of only � weight edges� In particular� the following
observation will be useful in the description of our

algorithm�

Observation� Let o be a super�node of T � Let
e�� � � � � ek be all positive weight edges incident on o� Pick

any ei and ej � We can assemble fe�� � � � � ekg � fei� ejg
into a single subtree S with � cost� and then transfer
S along ei by a distance d � w	ei
� The e�ect of this
operation is that the edges e�� � � � � ek are still incident

on a super�node� and a portion of ei of length d is moved
into ej � The total cost of this operation is d� We denote
this operation by move	ei � d� ej
� This operation can

be implemented in O	k
 time using the adjacency�list
representation of the tree 	where the weight of the edge
is also stored in the adjacency list
�

Figure � shows an example of this operation� In the
�gure� the thin lines denote � weight edges and heavy
lines denote positive weight edges�

A tree T is called a super�star if all of its internal

edges have � weight� In other words� all external edges
of a super�star T are incident to a single super�node�

We are now ready to describe our algorithm� First�

we consider the special case when T� and T� do not

have any good edge pairs� Algorithm DST� as described
below� approximates Dst	T�� T�
 to within a factor of ��
The algorithm transforms T� into a super�star T �

� 	by
moving the weight of internal edges into external edges
�

Similarly� the algorithm transforms T� into a super�star
T �
�� The transformations are chosen to make T �

� coincide
with T �

�� To transform T� to T�� we �rst transform T�
to T �

�	� T �
�
 and then transform this to T�� Let T �

�

	resp� T �
�
 denote the tree during the transformation of

T� 	resp� T�
�

Algorithm DST�

Step �� Initialize T �
� � T� and T �

� � T��

Step �� While T �
� is not a super�star yet and

there is an external edge eT �

�

	a
 � 	a� u
 in T �
�

such that w	eT �

�

	a

 � w	eT �

�

	a

� do�

� Let e� be any positive weight internal edge

of T �
� incident on the super�node contain�

ing u� Let d � minfw	e�
� �w	eT �

�

	a

 �
w	eT �

�

	a

�g�

� Perform the operation move	e� � d� eT �

�

	a


in T �

�� 	Note� after this move operation�

either the entire length of e� is moved into
eT �

�

	a
 or w	eT �

�

	a

 � w	eT �

�

	a


�

	Note� after the loop terminates� either T �
� is a

super�star or w	eT �

�

	a

 � w	eT �

�

	a

 for all leaf

nodes a� Also we perform subtree�transfer only
on internal edges of T�
�

Step �� Similar to Step �� with the roles of T �
�

and T �
� swapped�

Step �� We transform T �
� and T

�
� into two super�

stars such that w	eT �

�

	a

 � w	eT �

�

	a

 for all
leaf nodes a� There are two possible cases as
follows�

Case ���� w	eT �

�

	a

 � w	eT �

�

	a

 for all leaf
nodes a� Perform the following loop to trans�
form both T �

� and T �
� into super�stars� During

the execution of the loop� we maintain the con�
dition w	eT �

�

	a

 � w	eT �

�

	a

 for all leaf nodes
a 	this condition implies that T �

� is a super�star

i� T �
� is a super�star
�

Repeat

Pick any edge eT �

�

	a
 � 	a� u�
 in T �
��

Suppose that the corresponding edge
eT �

�

	a
 in T �
� is 	a� u�
� Let e� be any pos�

itive weight internal edge of T �
� incident

on the super�node containing u�� Let e�



�

be any positive weight internal edge of
T �
� incident on the super�node contain�

ing u�� Let d � minfw	e�
� w	e�
g� In
T �
�� perform the opera�

tion move	e� � d� eT �

�

	a

� In T �
�� perform

the operation move	e� � d� eT �

�

	a

� 	After
this� we have moved the entire length of

either e� or e� into external edges�


Until both T �
� and T �

� are super�stars�

	Note� during this step� we perform subtree�

transfer only on internal edges of T� and T�
�

Case ���� There exists a leaf node a such that

w	eT �

�

	a

 �� w	eT �

�

	a

� This can happen only
if both T �

� and T �
� are super�stars already� We

need to make w	eT �

�

	a

 � w	eT �

�

	a

 for all leaf

nodes a� This is done as follows� Partition
L	T �

�
 into three subsets A� B� and C as follows�
A 	resp� B�C
 is the set of leaf nodes a 	resp�

b� c
 such that w	eT �

�

	a

 � w	eT �

�

	a

 	resp�
w	eT �

�

	b

 � w	eT �

�

	b

� w	eT �

�

	c

 � w	eT �

�

	c


�

Repeat

Pick any edge eT �

�

	b
 with b � B and

eT �

�

	c

with c � C� Let d � minf�w	eT �

�

	c

 �
w	eT �

�

	c

�� �w	eT �

�

	b

�w	eT �

�

	b

�� In T �
��

perform move	eT �

�

	c
� d� eT �

�

	b

� Then�
� If d � w	eT �

�

	b

�w	eT �

�

	b

� remove
b from B and put b into A�

� If d � w	eT �

�

	c

�w	eT �

�

	c

� remove
c from C and put c into A�

� If d � w	eT �

�

	c

 � w	eT �

�

	c

 �

w	eT �

�

	b

�w	eT �

�

	b

� remove b from
B� remove c from C� put both b and
c into A�

Until B � C � 	�

Step 
� Now both T �
� and T

�
� are super�stars and

w	eT �

�

	a

 � w	eT �

�

	a

 for all leaf nodes a� We

adjust the topology of the super�nodes of T �
�

and T �
� so that T �

� and T �
� are identical�

The following lemma shows an upper bound on the
performance ratio of algorithm DST�

Lemma ���� 	Proof omitted
 Assume that T� and
T� do not share any good edge pairs� Then� algorithm
DST approximates Dst	T�� T�
 to within a factor of � in

O	n�
 time�

Next� we consider the general case� It is easy to
�nd the set of all good edge pairs in O	n� logn
 time
using an algorithm similar to described in the proof
of Lemma ���� Let K be the number of good edge

pairs in T� and T�� Our algorithm is by induction on
K� If K � �� algorithm DST works by Lemma ����
Suppose K � �� Let e� � 	u�� v�
 � E	T�
 and

e� � 	u�� v�
 � E	T�
 be a good pair� Let T �
� and T ��

�

be the two subtrees of T� partitioned by e�� Let T
�
� and

T ��
� be the two subtrees of T� partitioned by e�� where

L	T �
�
 � L	T �

�
 and L	T ��
� 
 � L	T ��

� 
 �
Assume w	E	T �

�

 � w	E	T �
�

 � w	E	T �

�

�w	e�
�
	The other case can be handled in a similar way
�
Add a new edge 	u�� x
 to T �

� and assign w		u�� x

 �

w	E	T �
�

 � w	E	T �

�

� Add a new edge 	x� v�
 to T ��
�

and assign w		x� v�

 � w	e�
 � w		u�� x

� Add a new
edge 	u�� x
 to T �

� and assign w		u�� x

 � �� Add a new

edge 	x� v�
 to T ��
� and assign w		x� v�

 � w	e�
� 	See

Figure �
� Note that the weights of all new edges are
non�negative�

Clearly� L	T �
�
 � L	T �

�
 and w	T �
�
 � w	T �

�
� We
can normalize the weights of T �

� and T �
� such that their

sum is �� By induction hypothesis� we can transform

T �
� to T �

� with cost at most �Dst	T
�
�� T

�
�
� Similarly� we

can transform T ��
� to T ��

� with cost at most �Dst	T ��
� � T

��
� 
�

Combining the two transfer sequences� we can transform
T� to T� with cost at most �Dst	T�� T�
� The complete

algorithm takes O	n� logn
 time� This completes the
proof of Theorem ����

	 Conclusion

These results have been obtained as a part of our larger
project of building a comprehensive software package for

comparing phylogenetic trees� It will include programs
for computing nni� subtree�transfer� linear�cost subtree�
transfer� edit� rotation� and contraction�decontraction
distances� Part of these have already been implemented�

Several open questions remain�
�� Can we approximate nni with a better ratio 	on

weighted or unweighted phylogenies
� It seems

that to obtain a ratio better than logn� we have
to be able to prove superlinear lower bounds for
sorting sequences on trees with nni moves�

�� Nni is similar to and slightly more powerful than
rotation distance �
� ���� Is rotation distance
NP�complete� Can we approximate the rotation

distance better than 	the trivial ratio
 �� This
question turns out to be subtler than it appears
to be�



�
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lines�� that is in one sequence after recombination� was in two sequences just before the recombination� The two sets of

numbers �on the thick lines� correspond to the two evolutionary histories �as shown in �b�� of two parts of the sequences�

For example� in the evolutionary tree for the second parts of the sequences �rightmost tree in �b��� a common ancestor of

s	� s
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