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ABSTRACT
In this paper we present a model of spatially located mobile
agents and static resources, in which the agents are look-
ing to obtain one of the resources while minimizing their
costs to obtain the resource. The proliferation of mobile
devices, location-based services and embedded wireless sen-
sors has given rise to applications that could help the mobile
agents have updated information of the location of the re-
sources they are looking for. Nevertheless, while engaged
in driving, travelers are better suited being guided to an
ideal resource, rather than looking at a map and deciding
which available resource to visit. Then the question of how
an application should choose this ideal resource, to guide
the agent towards it, becomes relevant. In this work we de-
velop algorithms that are designed to guide users to these
resources. They use a gravitational approach to guide a mo-
bile agent through a road network in order to find this ideal
resource. The performance of the algorithms is evaluated
through simulations.

Categories and Subject Descriptors
J.m [Computer Applications]: Miscellaneous

1. INTRODUCTION
In this paper we consider a matching problem between

mobile agents and static resources that are located on a grid.
The movement of the agents is also constrained to the grid.
Each agent is looking to obtain one of the resources and they
make routing choices in order to obtain it.

This type of model applies to situations that occur in the
urban transportation system. For example, consider the sit-
uation where there are a set of taxicabs (mobile agents) look-
ing for clients (static resources) to pick up. Also, in parking,
vehicles (mobile agents) are looking to obtain an available
parking slot (static resources). The resources are all of the
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same nature, e.g. all are clients (in the taxi application) or
all are parking slots (in the parking application).

These types of applications rely on having available the
location information of the static resources. The prolifera-
tion of mobile devices, location-based services, and embed-
ded wireless sensors make it possible for mobile agents to
have information of the locations of the potential resources
that they want to gain [4, 8]. For example, taxicabs could
have a system where potential clients request a cab and the
locations of said clients are displayed on a map for the cab
driver to see. For the parking problem, new applications
are arising that help travelers find parking in urban set-
tings. Wireless sensors that are embedded on parking slots
are used to detect the availability of slots across some area.
Then the locations of currently available parking slots are
disseminated to the mobile devices of users that are looking
for parking in the area. A prime example of this application
is SFPark [3]. It uses sensors embedded in the streets of San
Francisco. When a user is looking for parking in some area
of the city, the application shows a map with the marked
locations of the open parking slots in the area.

While these types of systems, described in the above para-
graph, could prove useful to the mobile agents in their quest
to obtain their desired resource, they do raise safety con-
cerns for the drivers. Drivers have to shift their focus from
the road to the map being displayed by the mobile device
they are using. Then they have to study the map and choose
what is their most preferred resource to visit and try to ob-
tain it. It would be safer if the application simply guided
each agent to the location of an ideal resource for him/her.
Then the question arises, which algorithm should a mobile
application use to choose such an ideal resource?

Regardless of the safety concerns stated in the previous
paragraph, the question still remains relevant. What is the
optimal way of moving towards spatially located resources,
to obtain one of the resources, when there is competition for
the resources (from other agents that also want it)? What
is the best way that a mobile agent can be guided towards
an ideal spatial resource?

We answer this question in an incomplete information con-
text, a competitive model in which the agents are not aware
of the locations of the other agents. For this model, the
gravity-based algorithms presented in [1] and [2] are suit-
able. Nevertheless, [1, 2] used a 2-dimensional free (i.e. Eu-
clidean) space model. Here we extend those algorithms to a
more realistic scenario, i.e. road networks. In other words,
we consider a gravity-based approach in a road-network,
where the movement of agents is constrained to road seg-



ments. We propose three possible approaches to adapt the
gravity-algorithm to road-networks: the Deterministic An-
gular Gravity-based spatial Resource selection Algorithm
(DA-GRA), the Randomized Magnitude GRA (RM-GRA)
and the Deterministic Magnitude GRA (DM-GRA). The
DM-GRA shows improvements of up to 47% compared to a
tested greedy algorithm.

2. GENERAL SETUP AND NOTATION
The general setup of our spatio-temporal matching prob-

lem in a road network is as follows:

• There are two types of objects as follows.

– A set of n mobile agents A = {a1, a2, . . . , an}.
– A set of m available static resources
R = {r1, r2, . . . , rm}.

• A road network is modeled as a directed graph G =
(V,E) with the nodes of the graph being the intersec-
tions in the road network and the edges being the road
segments between the intersections.

• The road network is embedded on Euclidean space and
the locations of the agents and the resources are re-
stricted to being on points in the road segments.

• Each agent is assumed to be moving independently
of all other agents at a fixed velocity. Without loss
of generality, we assume that the moving speeds of all
agents are the same1.

• time : A×R→ R is a distance function given in terms
of time. It denotes the current travel time between an
agent and a resource. It is the travel time along the
shortest path between the agent and the resource.

• cost : A×R→ R is a cost function. It denotes the cost
of a resource rj ∈ R to an agent ai ∈ A. This cost is a
general cost. It will be dependent on the application
being considered. For example, in the parking appli-
cation, the agents will care about the time it takes to
reach their destinations. So then in that case the cost
will be a function of the travel time (time) to the park-
ing slot and possibly the walking time to their destina-
tion from the given parking slot (resource). Additional
cost components could be the dollar price of the slot,
the safety of the area, etc.

• Each agent can only make a routing decision upon ar-
rival to an intersection, i.e. a user cannot change the
course of its current direction until it reaches an in-
tersection. This is due to the constraints imposed by
movement on the grid. Once a driver has entered a
road segment, he can only get out of the segment by
reaching the end of it (the intersection). Our algo-
rithms for the road network will only make routing
decisions at intersections.

• An agent looks to make an individual decision on which
resource to move towards, that will help them mini-
mize their cost when traveling to an obtained resource.

• Agents are assumed to have updated information of
resource availability at all times. This means that if
while heading to its resource of choice, the resource
is taken by another agent, then the agent will be in-
formed that the resource is no longer available. Then

1Otherwise, we simply need to rescale the distances for each
agent in our algorithmic strategies.

upon reaching its upcoming intersection, the vehicle
can make a new resource choice according to the cur-
rently available resources. Another situation where a
vehicle may want to update its resource choice is if new
resources become available that are preferrable.

We categorize this setup as a Spatio-temporal matching
problem on a road network. The spatial component of the
matching comes from the locations that the agents and re-
sources have on the map and from the distances between
them. The temporal component of the matching comes from
the time it takes for an agent to reach the resource it has
been matched with (or obtains). The dynamic nature of the
problem considered here adds another temporal aspect since
the objects (agents and resources) have start times.

3. GRAVITY-BASED SPATIAL RESOURCE
SELECTION ON A ROAD NETWORK

The Gravity Parking Algorithm (GPA) was introduced
in [1] to guide agents towards ideal areas of the map when
they do not have information about the other agents that are
competing with them for the resources. The GPA was de-
signed for parking applications but it can be applied to the
general framework we are presenting in this work. In the
GPA for 2D free-space, resources are said to have a gravita-
tional pull on the agents. At any point in time, each resource
has a gravitational force on the agent that will depend on
the distance from the agent (magnitude) and location of the
resource (direction). The intuition is that the agent will
be pulled towards areas with a higher density of resources,
thus increasing the probability of finding an available re-
source close to the area that the agent is driving through.
So then for each resource, a force vector is generated pulling
the agent. Then, all of these vectors are added and the agent
moves in the direction of the resultant vector (total gravita-
tional force) for a specified time step. Then the process is
repeated at the beginning of each time interval.

A simplified formula for gravitational force was used to
generate these gravity vectors, which did not include the
masses of the objects or a gravitational constant like in the
classical gravitational force equation. This formula was:

F (a, r) = 1/cost(a, r)2 (1)

With formula 1, one will compute gravitational pull by
considering the general cost as the distance between the
agent and the resource.

This method was shown to work well in 2D free-space.
On the embedded road network, we will still use a gravita-
tional approach. It will also be based on the gravity formula
defined by equation (1).

An agent can only make a routing choice upon arrival
to an intersection, whereas before (in free-space) an agent
could change direction at any point in time. Therefore, the
Gravity-based spatial Resource selection Algorithm (GRA)
will only be used at each intersection by each agent.

Instead of adding up all the gravity vectors for all re-
sources (as in Euclidean space), the agent will aggregate the
gravity information for all resources into special direction
vectors (one for each possible direction out of the intersec-
tion). Suppose that the intersection where agent a is located
has k outgoing edges e1, e2, ..., ek ∈ E. Then there will be
k direction vectors g1, g2, ..., gk where each vector will have



a direction according to its respective embedded edge. The
magnitudes of these vectors will start at 0.

Then for each available resource r ∈ R, the shortest path
is computed from a to r and the gravity force g is computed
using equation (1). Let ei be the first edge to be taken ac-
cording to the computed shortest path. Then gi is updated
to be gi = gi + g.

After repeating this procedure for each resource, the agent
will use the computed direction vectors g1, g2, ..., gk to make
its route choice.

From this point, we will introduce three variants of the
GRA that will be evaluated as candidate algorithms. The
three variants will only differ in how the eventual edge to be
taken is computed based on the direction vectors.

3.1 Deterministic Angular GRA (DA-GRA)
In the Deterministic Angular GRA (DA-GRA) the direc-

tion vectors g1, g2, ...gk will be added to produce a resultant
vector v. This resultant vector will be located between two
of the directions to choose from, say ei ∈ E and ej ∈ E.
Let θi be the angle distance between v and ei and θj be the
angle distance between v and ej . Then, if θi < θj , a will
choose ei as the next edge to travel, otherwise it will choose
ej as the next edge to travel through.

3.2 Randomized Magnitude GRA (RM-GRA)
In the Randomized Magnitude GRA (RM-GRA) the di-

rection vectors g1, g2, ..., gk will be used as part of a prob-
abilistic scheme. Let T = |g1| + |g2| + ... + |gk|, i.e. the
addition of the magnitudes of the k direction vectors. Then
let pi = |gi|/T for 1 ≤ i ≤ k. Then each edge ei ∈ E which
is an outgoing edge of a’s current intersection will be chosen
with probability pi.

3.3 Deterministic Magnitude GRA (DM-GRA)
In the Deterministic Magnitude GRA (DM-GRA) the di-

rection vectors g1, g2, ..., gk will be used to choose the next
direction to move towards. The direction with the vector
with the largest magnitude will be chosen.

The efficiency of these three GRA variants will be eval-
uated through simulation. The simulation setup and the
results are presented in the next section.

4. SIMULATION AND RESULTS
In this section we will evaluate DA-GRA, RM-GRA, and

DM-GRA against a greedy resource selection algorithm. The
greedy algorithm simply moves each agent towards its cur-
rent closest available resource.

4.1 Simulation Environment
The simulation evaluates the GRA variants with varying

numbers of vehicles and resources. The simulation is run
on a 1 mile by 1 mile map where roads are generated that
either run from east to west or north to south. This is a road
network with 10 roads that have North/South directions and
10 roads with East/West directions. They form a perfect
grid with the intersections of these roads as nodes.

In reality, the resources are not uniformly distributed.
Thus, we generate skewness as follows. The map is par-
titioned into 16 equal-sized square regions. A random per-
mutation of the regions is generated (uniform distribution)
and is used as the ranking of the popularity of each region
for available resources. To choose the location of each of the

m available resources, first a random number is generated
to determine in which region to place the resource. The Zipf
distribution with its skew parameter and the regional popu-
larity previously generated are used to generate this random
number. Then a random position in the grid (uniform) is
chosen from the region denoted by the Zipf number. The
n agents’ initial positions are generated using the uniform
distribution on the grid.

After generating the agents and resources, the algorithms
are tested. The GRA algorithms were tested against the
greedy resource selection algorithm, which simply moves
each agent towards its current closest resource. For the GRA
algorithms, the agents will move as described in the proce-
dures described in section 3.

When an agent reaches an available resource, the time
it took for it to find that resource is saved. Then a new
resource is generated on a randomly chosen region (Zipf).
Also a new agent is generated at a random location on the
grid (uniform). This way the number of agents and resources
(thus the level of competition for resources) is kept constant.
The simulation run stops when a given time horizon of 3,600
seconds is surpassed.

The parameters of the simulation and the values that
were tested for each parameter are detailed in table 1. For
each configuration of the parameters, 100 different simula-
tion runs were generated and tested.

Parameter Symbol Range

Agents n {40,80}
Resources m {20,30,40} when n = 40

{40,60,80} when n = 80
Regional Skew - {0, 1, 2, 3}

Velocity v {10,15,20,25,30} in mph

Table 1: Parameters tested on Simulation

4.2 Simulation Results
We first evaluate the GRA algorithms against the greedy

approach by using the cost as time traveled towards the slot
(cost = time). With this type of analysis we can assess the
potential reductions in driving time (assuming the agents
are traveling in vehicles) by using the GRA algorithms. Re-
ductions in driving time lead to benefits for the environment
in reductions of gasoline waste and CO2 emissions.

Figure 1 shows the results of how much percent improve-
ment was obtained by the GRA algorithms over the greedy
resource selection algorithm for 80 agents and resources. We
see that the GRA algorithms perform the worst when the
regional skew is 0. In this case the resources are distributed
uniformly across the grid. The DA-GRA and RM-GRA vari-
ants have a negative improvement in this case of regional
skew being 0. However, the DM-GRA gets a positive im-
provement over the greedy algorithm even in this case.

The GRA algorithms perform better when the skew is
higher than 0. This is to be expected because when resources
are co-located regionally (because of higher regional skew),
the GRA algorithms will seek to push agents towards areas
where the density of available resources is higher. Although
the performance of the GRA algorithms started decreasing
when the regional skew increased past 1, they did have im-
proved performance over the case where the resources are
uniformly distributed. We also tested the GRA algorithms
with varying number of available resources (m). The results



‐20 

‐10 

0 

10 

20 

30 

40 

50 

60 

0  1  2  3 

%
Im

pr
ov
em

en
t o

f G
RA

 v
ar
ia
nt
 o
ve
r 
gr
ee
dy
 a
lg
or
it
hm

 

Regional Skew 

DM‐GRA 

DA‐GRA 

RM‐GRA 

Figure 1: % Improvement of GRA algorithms over
Greedy (80 agents, 80 resources)

were very similar to those reported in figure 1.
Also, the results with a higher number of agents, n = 80,

were better than with n = 40. The highest improvements
for the GRA algorithms were obtained in these test cases
(n = 80). The highest improvement was over 47% compared
with the greedy resource selection algorithm in figure 1 (n =
80,m = 80, skew = 1).

From the obtained results we can also attest that DM-
GRA is the GRA algorithm of choice. It obtained a positive
improvement in all test cases. Also, in all cases it obtained
the optimal improvement, amongst the GRA variants, or
very close to the optimal (it never deviated more than 1%
from the optimal). Like the DM-GRA, the DA-GRA variant
performed well. However, in cases where the regional skew
was 0, the DA-GRA did not obtain a positive improvement.

The RM-GRA, a randomized algorithm, did not perform
as well in the simulations as its deterministic counterparts.
In cases where the resources were uniformly distributed (skew
= 0) it was outperformed significantly, even by the greedy
parking algorithm. The unexpected results for the RM-GRA
are perhaps due to the inherent cycling that can occur with
random walks of directed graphs.

The best percent improvement that was obtained by the
DM-GRA over the greedy algorithm was of around 47%
(n = 80, m = 80, skew=1). Consider the parking prob-
lem in which the agents are vehicles looking for open park-
ing slots (resources). In [5], studies conducted in 11 major
cities revealed that the average time to search for curbside
parking was 8.1 minutes and cruising for these parking slots
accounted for 30% of the traffic congestion in those cities.
This means that each parking slot would generate 4,927 ve-
hicle miles traveled (VMT) per year [6]. That number would
of course be multiplied by the number of parking slots in the
city. For example, in a big urban city like Chicago with over
35,000 curbside parking slots [7], the total number of VMT
becomes 172 million VMT per year due to cruising while
searching for parking. Furthermore, this would account for
waste of 8.37 million gallons of gasoline and over 129,000
tons of CO2 emmisions.

Then the 47% improvement shown by the DM-GRA for
the time taken to find a parking slot (proportional to the

tested distance traveled because of constant velocity), would
reduce vehicle miles traveled for a city like Chicago by over
80 million VMT. This gives a reduction of over 3.9 million
gallons of gasoline and of over 60,000 tons of CO2 emissions
per year in a big city like Chicago.

We also ran simulations by considering a generalized cost
for the parking problem (driving+walking time). The results
showed positive improvements in all test cases for the DM-
GRA. The results are omitted for space considerations.

5. CONCLUSION
In this paper we presented a model of spatially located

mobile agents and static resources, in which the agents are
looking to obtain one of the resources while minimizing their
costs to obtain the resource. The main goal of this work
was to present a Gravity-based Resource selection Algo-
rithm (GRA) that could be implemented with movement
constrained to a road network. This algorithm will be used
by a mobile application to guide an agent to an ideal area of
the map where he is most likely to find a spatially located
resource. We presented three potential gravity-based algo-
rithms for evaluation: the Deterministic Angular GRA (DA-
GRA), the Randomized Magnitude GRA (RM-GRA) and
the Deterministic Magnitude GRA (DM-GRA). The merits
of the proposed algorithms were tested through simulations.

The DM-GRA was the best performing algorithm, and
always improved over the greedy resource selection algo-
rithm which simply moves agents to their closest available
resources. It showed improvements of more than 47% for
some test cases. This yields a reduction of over 3.9 million
gallons of gasoline and over 60,000 tons of CO2 emissions
per year in a big city like Chicago when the algorithm is
applied to parking situations.
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