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Abstract

The Symmetric Rectilinear Steiner Arborescence �SRStA� problem is de�ned as follows� given
a set of terminals in the positive quadrant of the plane� connect them using horizontal and vertical
lines such that each terminal can be reached from the origin via a y�monotone path and the total
length of all the line segments is the minimum possible� Finding an SRStA has applications in VLSI
design� in data structures used in some optimization algorithms and in dynamic server problems� In
this paper� we provide a polynomial time approximation scheme for the SRStA problem� improving
the previous best approximation ratio of � for this problem�

Keywords� PTAS� Rectilinear Steiner Arborescence� Symmetric Rectilinear Steiner Arborescence�
Guillotine� Approximation Algorithm�

� Introduction

In spite of large progress in the recent years� there is a number of gaps in our knowledge about the
exact complexities of some Steiner problems in rectilinear metric� We propose to investigate one of
these problems�

The problem of �nding the Symmetric Rectilinear Steiner Arborescence �SRStA� problem can be
stated as follows� We are given a set of n terminals in the positive quadrant of the plane� A path
connecting two terminals is y�monotone ��� if it traverses a number of line segments� where each line
segment is either vertical or horizontal� and during the traversal the y coordinate of the successive
points are never decreasing� A feasible solution to the problem is a set of horizontal and�or vertical
segments connecting all the n terminals to the origin o in which each terminal can be reached from o

by a y	monotone path� Our goal is to �nd a feasible solution in which the sum of lengths of all the
segments is the minimum possible� If instead we require the path connecting o to any point to be both
x	monotone and y	monotone� then the problem is referred to as the Rectilinear Steiner Arborescence

�RStA� problem �see Figure 
��
The history of the RStA problem is somewhat unusual� because after an exact algorithm was pub	

lished by Trubin �
��� Rao et al� �
�� showed that this solution was in fact incorrect� Their paper
describes a simple algorithm that o
ers approximate solutions within a factor of � of the optimum�
The most recent results on RStA problem are the proof of NP	completeness of Shi and Su �

� and a
polynomial time approximation scheme by Lu and Ruan ���� Charikar et� al� ��� have given a very simple
approximation algorithm for the SRStA problem that �nds an approximate solution within factor � of
the optimum�

�Computer Science Department� University of Minnesota� Minneapolis� MN ������ USA� Email�

cheng�blu�cs�umn�edu�
yRutgers University campus at Camden� Email� bhaskar�camden�rutgers�edu�






rectilinear Steiner arborescence       symmetric rectilinear Steiner arborescence

Figure 
� Rectilinear Steiner Arborescence �RStA� and Symmetric Rectilinear Steiner Arborescence
�SRStA�

In this paper� we provide a polynomial time approximation scheme �PTAS� for the SRStA problem�
A PTAS for a problem of size n is an algorithm that� for every constant � � �� �nds an approximate
solution with an approximation factor of 
� � in time polynomial in n� We apply the method proposed
in ��� �� �� ��� For the sake of completeness� we brie�y review the results of m	guillotine in Section ��

��� Motivations and Applications

The SRStA and the RStA problems have a number of applications� An application that is mentioned
quite often comes from VLSI design� where a RStA or SRStA is needed to minimize the maximum delay
of the signal sent from the origin o to all the given terminals� A motivation for the on	line versions
of these problems come from data structures used in some optimization algorithms where an object
is optimized using successive iterations �
�� The SRStA problem has direct application in the o�ine
dynamic server problem on the line ���� On	line arborescence problems model real	life processes that
have two dimensions� Below we brie�y sketch two applications of these problems�

O�ine dynamic server problem on the line� We need to maintain a dynamic collection of servers on
a line L� The goal is to e�ciently process a sequence of requests� arriving at integer times t � f
� �� �� � � �g�
which are points on L� where a server serves a request by moving to that point incurring a cost equal
to the distance traveled� It is possible to create and�or destroy servers without incurring any cost in
the following manner� clone a copy of a current server at a point and merge two servers present at the
same point on L into one� After all the requests at a particular instant of time t has been served� the
algorithm is also charged an additional rental cost equal to the number of servers currently present�
The �nal goal of this problem is to serve a sequence of requests such that the total cost incurred is the
minimum possible� The motivation for this problem comes from the video	on	demand application of
Papadimitriou et� al� ���� Theorem ��� in ��� essentially show that an approximation algorithm for the
SRStA problem with an approximation ratio of r provides an approximation algorithm for the o�ine
dynamic server problem on the line with an approximation ratio of �r�

Real�life processes in two dimensions� As discussed by Berman and Coulston �
�� as well as by
Charikar et al� ���� on	line arborescence problems model real	life processes that have two dimensions�
dimension x refers to location on a delivery route� DNA sequence etc�� while dimension y refers to
time� We can maintain supplies of a resource �like cache of videos or a saved precomputed instance of
dynamic programming� on various places in x dimension� and then we receive at various times request
for delivering the resource� There are costs associated with the storage of the resource� and with
the distance traversed during a delivery� Dependent whether the movement can occur in one or two
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directions� we obtain an online RStA or SRStA�

� Preliminary

Unless otherwise stated� all terminals lie in the positive quadrant of the plane� Given a set N of
terminals� the Hanan grid H�N� is the grid obtained by constructing horizontal and vertical lines
through each point in N � Furthermore� it is bounded by x	axis� y	axis� the horizontal line through the
highest point and the vertical line through the rightmost point� Let IH�N� denote the set of intersections
in H�N�� These intersections are called Hanan grid points� It is obvious that N � IH�N��
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Figure �� two operations� �a� �ipping and �b� shifting�

Two operations are de�ned for RStA or SRStA �Figure ��� �ipping and shifting� Flipping a corner
p between two points a and b adjacent to p �Figure ��a�� moves pb to ap

�
and moves pa to bp

�
� Shifting

a line segment ab moves ab along either axis direction until it is incident to a certain speci�ed point
�Figure ��b���

Theorem � There exists an optimal SRStA R� such that every Steiner point in R� belongs to IH�N��

Proof� Suppose that R is any optimal SRStA with at least one Steiner point not belonging to IH�N��
Let S denote the set of Steiner points not in IH�N�� We will modify R recursively until all Steiner
points in S are moved to Hanan grid points� Choose p � S such that D�o� p� � D�o� s� for �s � S�
where D�o� t� denote the path length from the origin o to point t in R� For an internal point pi of an
SRStA� the in�edge of pi is de�ned as the edge pppi where pp is pi�s unique parent� The out�edge of pi
is de�ned as the edge pipc where pc is one of pi�s children� Note that the root of SRStA o can only
have out	edges and the leaves of SRStA can only have in	edges� The in�degree of a point is de�ned as
the number of in	edges incident to it� which is always one� the out�degree of a point is de�ned as the
number of out	edges incident to it� Note that each Steiner point of SRStA has either degree three �one
in	edge and two out	edges� or degree four �one in	edge and three out	edges�� We prove the theorem by
showing that R can be converted into another optimal SRStA R

�
such that all points of R

�
are in IH�N��

Figure � �� � explain all possible cases of out	edges at p� Note that in these �gures� we use a directed
edge from a to b to show that a is the parent of b�

Case 
� one out	edge points from left to right and one out	edge points from bottom to top �see
Figure ��� As shown in Figure ��b� it is impossible for p to have corner line pc or pd where ac points
from left to right and bd points from bottom to top� Otherwise� by �ipping the corner a or b� an SRStA
with less total length can be obtained contradicting that R is optimal� However� p may have a corner
line pc as shown in Figure ��c�� By �ipping the corner a� it becomes case � which will be discussed
later� If neither of the out	edges is a corner line �Figure ��a��� then the endpoints a and b must be
either terminals or Steiner points in IH�N� according to our criteria of choosing p� If this is true� then
p must be in IH�N�� a contradiction�

Case �� one out	edge points from right to left and one out	edge points from bottom to top �see
Figure ��� As shown in Figure ��b� it is impossible for p to have corner line pc or pd where ac points
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Figure �� Proof of Theorem 
� Case 
� �a� neither of the out edges is a corner line� �b� either or both
out	edges are corner lines �left to right or bottom to top�� �c� only one out	edge is a corner line �right
to left��
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Figure �� Proof of Theorem 
� Case �� �a� neither of the out edges is a corner line� �b� either or both
out	edges are corner lines �right to left or bottom to up�� �c� only one out	edge is a corner line �left to
right��

from bottom to top and bd points from right to left� Otherwise� by �ipping the corner a or b� an SRStA
with less total length can be obtained contradicting that R is optimal� However� p may have a corner
line pd as shown in Figure ��c�� By �ipping the corner b� it becomes case � which will be discussed
later� If neither of the out	edges is a corner line �Figure ��a��� then the endpoints a and b must be
either terminals or Steiner points in IH�N� according to our criteria of choosing p� If this is true� then
p must be in IH�N�� a contradiction�

Case �� one out	edge points from left to right and one out	edge points from right to left �see Figure ���
As shown in Figure ��b�� it is impossible for p to have two corner lines pc and pd� Otherwise� by �ipping
the corners a and b� an SRStA with less total length can be obtained contradicting that R is optimal�
However� one of the out	edges of p may be a corner line �Figure ��c��� Furthermore� we can assume
that the in	edge of p is not a corner line� Otherwise� we can also get an SRStA with less total length by
�ipping the corner� contradicting to the optimality of R� In Figure ��a�	�d�� both a and b are in IH�N�

according to our criteria of choosing p�
Let l be the vertical line through p� It is obvious that R overlaps with l in a set of closed intervals�

The interval containing p is picked and let S � fs� � p� s�� s�� � � � � stg �t � 
� be the set of points of
R contained in the interval and ys� � ys� � ys� � � � � � yst where ysi is the y	coordinate of si for
i � �� 
� �� � � � � t� Note that st may be a corner� No si is in IH�N� since p is not in IH�N�� Furthermore�

let Ha � fha� � h
a
� � � � � � h

a
mg denote the set of horizontal segments in R incident on the points in S and

are to the left of l� Similarly� let H� � fh�� � h
�
� � � � � � h

�
ng be the set of horizontal segments in R incident

on the points in S and are to the right side of l� It is easy to show that m � n and each horizontal
segment in Ha or H� is on the Hanan grid by the optimality of R�

Let va �v�� be the closest vertical line in H�N� on the left �right� of l �shown as dotted lines in
Figure ��d��� Therefore� all segments inHa �H�� must intersect va �v��� Moreover� shifting the segment
s�st left or right between va and v� will not change the total length of the resulting SRStA since m � n�

�



v

pa b

(a)

d

a

c d

bp

(b)

p ba

pa b

(c) (d)

s4

s3

s2
s1

s5

a
b

-|
v

|-p
l

Terminal or 
Steiner point
Steiner point

Figure �� Proof of Theorem 
� Case �� �a� neither of the out	edges is a corner line� �b� both out	edges
are corner lines� �c� only one out	edge is a corner line� �d� move the line segment crossing p to left or
right to make p lie in a Hanan grid point�

Assume� without loss of generality� that s�st is shifted to va and the overlapped Steiner points are
removed� then each si� i � �� 
� � � � � t� will be either in IH�N� or removed� Thus� a new optimal SRStA
can be constructed using at least one fewer Steiner point not in IH�N��

Now the new SRStA has at least one fewer Steiner point not in IH�N� and its cost is the same as
that of the original SRStA� Continue this procedure until all points not in IH�N� are considered� We
will get an optimal SRStA R� such that all Steiner points in R� are Hanan grid points� �

� m�Guillotine Subdivision

Du et al� ��� introduced the concept of rectangular subdivision and �guillotine� rectangular subdivision
and claimed that any rectangular subdivision with cost L can be converted into a guillotine rectangular
subdivision with cost at most �L by adding a set of new edges whose total length is at most L� Moreover�
the cost of the new edges is charged o
 to the original edge set of the subdivision� Mitchell ��� �� ��
extended these concepts and ideas by de�ningm	guillotine subdivision and proving that an m	guillotine
subdivision with cost at most �
 � �

m
� � L can be obtained from a rectilinear subdivision whose cost

is L� With m	guillotine subdivision� Mitchell ��� �� found PTASs for various geometric optimization
problems� TSP� Steiner Minimum Tree and k	MST� etc�

We will use m	guillotine subdivision to design a PTAS for SRStA problem� For simplicity and
convenience� we will use similar notations as those in ��� ���

Let R be a bounded rectilinear polygon with rectilinear holes� non	overlapping rectilinear polygons�
rectilinear trees and points� A rectilinear polygonal subdivision R of R is de�ned as a �nite set of
non	crossing horizontal and vertical segments that lie inside R� Without loss of generality� we assume
that a rectilinear polygonal subdivision R is restricted to the unit square� B� Let E denote the set of
edge segments of R and V denote the set of vertices of R� A window is de�ned as an axis	aligned and
bounded rectangle W and W � B� A line �horizontal or vertical� l is a cut of E if l � int�W � �� ��
Let � be the number of intersections of a cut line l with E � int�W �� The intersections are denoted by
p�� p�� � � � � p� along l� For a cut l� the m	span �m�l� of l is de�ned as� if � � ��m� 
�� then �m�l� � ��
Otherwise� �m�l� is the line segment pmp��m��� where m is a positive integer� If �m�l� � E� the cut l is
anm	perfect cut with respect toW � A rectilinear polygonal subdivisionR is an m�guillotine subdivision

with respect to W if either E� int�W � � � or R is an m	guillotine subdivision with respect to windows
W � P� and W � P�� where P� and P� are the closed half	planes induced by a perfect cut l� R is an
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m	guillotine if it is an m	guillotine with respect to B� A point p on a cut l is m	dark with respect to
l and W if there are at least m intersections with E on each side of p along l� � int�W �� where l� is
perpendicular to l and passes through p� A cut l is favorable if the total length of the m	dark portion of
l is at least as that of �m�l�� An optimal m	guillotine rectilinear subdivision can be found by dynamic
programming in polynomial time�

In ���� Mitchell provided the following lemma and theorem which assert the existence of favorable
cut lines and �
 � �

m
� factor m	guillotine subdivision respectively� For completeness� we give the proof

here�

Lemma � There exists a favorable cut for any rectilinear polygonal subdivision R and window W �

Proof� As we assumed before� B is a unit square� Let f�x� �g�y�� be the length of the m	span of the
vertical�horizontal� line through x �y� where x� y � ��� 
�� Sets Rx and Ry contain all points of B which

are m	dark with respect to horizontal and vertical cuts� respectively� Ax �
R �
� f�x�dx �Ay �

R �
� g�y�dy�

is the area of Rx �Ry�� Without loss of generality� assume Ax � Ay� Note that the area of the region

Rx can also be calculated as Ax �
R �
� h�y�dy� where h�y� is the length of the intersection of Rx with

a horizontal line through y� Therefore�
R �
� h�y�dy �

R �
� g�y�dy � �� Thus� it is impossible that for all

y � ��� 
�� h�y� � g�y�� So there must exist a y
�
� ��� 
� such that h�y

�
� � g�y��� The horizontal line

through y
�
is a favorable cut� �

Based on this lemma� Mitchell ��� further proved the following theorem�

Theorem � Given any m � �� for a rectilinear subdivision R with edge set E of length L� there exists
an m�guillotine rectilinear subdivision RG with edge set EG of length LG� Furthermore� E � EG and

LG � �
 � �
m
�L�

Proof� R will be recursively converted into an m	guillotine subdivision RG by adding a set of horizon	
tal�vertical edges E�� The total length of E� is at most �

m
L� If there exists a perfect cut l� then we can

choose it and recursively proceed on each side of l� Otherwise� we choose a favorable cut line l� We
assume� without loss of generality� that l is horizontal� For an open m	dark subsegment ab of l� we can
charge o
 �

�m of the length of ab to each of the �rst m subsegments lying above ab and to each of the
�rst m subsegments lying below ab� The m	span of l is added to the new edge set and l becomes the
boundary of new child windows� Thus� no partion of E will be charged more than once from each side�
Since the total length of all m	spans of all favorable cuts is at most �

m
L� the total length of the new

edge set is at most �
m
L� �

� Main Result

Theorem � There is an approximation algorithm for the SRStA problem that runs in O�n��m��� time

and produces a solution with an approximation ratio of at most 
 � �
m

for any �xed positive integer m�

Proof� We assume� without loss of generality� that no two points of the input set N of n points lie on
a common horizontal line or a vertical line� Otherwise� the points in N can be slightly perturbed� Let
R� be an optimal SRStA with edge set ER� of total length LR� � The proof of the theorem consists of
two steps�

Step 
� R� is transformed into an m	guillotine rectilinear subdivision R which is also a feasible SRStA�
In other words� R is a rectilinear Steiner arborescence which is y	monotone� We call R an m�

guillotine SRStA� The cost of R is at most
�

 � �

m

�
� LR� � Denote the edge set of R by ER whose

cost is LR�
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Step �� Due to the recursive structure of m	guillotine rectilinear subdivision� we can apply dynamic
programming to �nd the optimal m	guillotine SRStA�

Step 
 proves the existence of the m	guillotine SRStA while step � �nds the optimal m	guillotine
SRStA� The following two subsections demonstrate these two steps in detail� The running time of dy	
namic programming is O�n��m��� and LR � �
 � �

m
�LR� � �

��� The existence of the m�guillotine SRStA with cost at most
�
� � �

m

�
� LR�

It is obvious that R� is a bounded rectilinear polygon with rectilinear holes� From the proof of Theorem
�� m	spans of cut lines can be added to the edge set E� to make R� m	guillotine� However� when we
add these line segments to E�� we must modify the current rectilinear polygonal subdivision to make it
feasible� That is� when we add a line segment �an m	span of some cut line�� we must force the result
graph to be a y	monotone rectilinear Steiner arborescence� An m	guillotine subdivision which is also
an SRStA is referred to as an m	guillotine SRStA�

Lemma � Let R be an SRStA with cost LR and S be an m�span �vertical or horizontal� with length s

of a cut line l of R� Then� R can be modi�ed to another feasible SRStA R� such that R� contains S and

the cost of R� is at most LR � s�

Proof� We will consider the following two cases�

Case 
� S is horizontal �Figure ��a��� Assume S crosses R at p�� p�� � � � � pt� with increasing x	coordinates�
and p�� pt are the two end points of S� If t � 
� we are done� Now assume t � 
� For each pi�
i � 
� �� � � � � t� if pi is not a terminal� add pi to R as a Steiner point whose degree is at least �� Pick pc�
the �rst point whose in	edge is not inside �m�l�� as the crucial point� If �m�l� �� �� then such a point
must exist� Otherwise� R is not connected or there exists at least one path which is not y	monotone in
R from the origin o to some point among p�� p�� � � � � pt� For each i� i �� c� delete the in	edge of pi if the
in	edge is not inside �m�l�� Now each nonterminal pi has degree at most �� For all i � c� the in	edge of
pi is pi��pi� For all i � c� the in	edge of pi is pi��pi�

Case �� S is vertical �Figure ��b��� The argument is similar to that of case 
 except that we pick p� as
the crucial point� For each i � 
� we delete the in	edge of pi if the in	edge is not inside �m�l� and pick
pi��pi as its in	edge�

In both modi�cations� only line segment S is added to R� Note that the modi�cation can introduce
nonterminal point whose degree is 
 or �� Thus we need to prune the graph by deleting this kind of
edges and remove nonterminal point with degree � to make all Steiner points in the result SRStA have
degree at least �� The resulting feasible SRStA has cost at most LR � s� �

This lemma forces the feasibility of a symmetric rectilinear Steiner arborescence when line segments
are added to a feasible SRStA� The following lemma describes how to make an optimal SRStA m	
guillotine with little cost increase�

Lemma � There exists a
�

 � �

m

�
�approximate feasible SRStA which is an m�guillotine subdivision�

Proof� We start from an optimal SRStA R� and modify it until it is m	guillotine� The proof is similar
to that of Theorem �� except that when we add the m	span of each cut line� we need to apply Lemma
� to force the feasibility of the result subdivision� Note that the cost increase due to the addition of
m	spans is charged o
 to the original edge set ER� � and the m	perfect or m	span cut lines are chosen
according to the original SRStA R�� The resulting division is an SRStA whose cost is increased by a
factor of at most �

m
� �
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Figure �� A line segment with length s is added to an SRStA� The result graph is a feasible SRStA with

cost increase at most s� In �a�� p� is the crucial point� in �b�� p� is the crucial point� Note that in

�a�� p� is a terminal� Before the addition of S� its in�edge is p�p�� After the addition of S� its in�edge

becomes p�p��

��� Dynamic Programming

During the transformation of R�� if there exists a perfect cut line� it can be used directly� Otherwise�
there always exists a favorable cut line l by Lemma 
 and it�s m	span �m�l� can be chosen as new
segment to be added into E�� Furthermore� the favorable cut line can be selected to pass through
either a terminal in N or the midpoint of some horizontal or vertical interval de�ned by consecutive
coordinates of points in N �according to Theorem 
�� The discretization of cuts and the connectedness
property allow us to divide the problem into smaller subproblems and apply dynamic programming to
�nd an optimal m	guillotine rectilinear subdivision�

Let x� � x� � � � � � x�n�� �y� � y� � � � � � y�n��� denote the sorted x �y� coordinates of points in
N and the n� 
 midpoints of the intervals de�ned by points in N � An instance of this subproblem is
speci�ed by the following inputs�

�a�� a rectangle R�l� r� b� t� �denoted by R� determined by xl� xr� yb� yt� where xl � xr and yb � yt�

�b�� Boundary information� At most k � �m distinct points in each edge of R� together with at most
one segment which connects the middle two points if k � �m� These points are determined by
coordinates xj � yk where 
 � j� k � �n� 
�

�c�� connectivity constraints� De�ned as a partition� P� of the set of points on all four sides of R� In
each subset of the partition� the point with smallest x and y coordinates is called a subroot� The
SRStA containing all points in this subset must root at this point�

The goal of the subproblem is to �nd a minimum length m	guillotine SRStA with multiple compo	
nents such that �i� each connected component is an SRStA which connects to all points in some subset
in P and some terminals inside R and which is rooted at the subroot of the subset� �ii� all components
contain only horizontal and vertical lines lying inside R and connect all terminals inside R� all bound	
ary points and the possible boundary segment� if it exists� according to the partition P� �iii� collectly
all connected components form multiple m	guillotine SRStAs� The total number of subproblems is
bounded by O�n� � �n�n��� since the number of partitions is O�
� for �xed m�

The initial problem is speci�ed by the bounding box with no nonterminal points in the boundary and
the connectivity constraint is empty� Note that there are at least one terminal residing in the bounding
box B and the origin o in N must be located in the lower edge of B� The output is one connected
component which is an m	guillotine SRStA connecting all terminals inside R� The base subproblem
is speci�ed by �a�� a rectangle R containing no terminal inside� �b�� constant number of points �at
most �m� and constant number of segments �at most �� in the boundary of R� �c�� constant number
of boundary connectivity constraints� Thus it can be solved in a brute	force maner� For all other
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subproblems� we can �nd the m	guillotine SRStA inductively� optimizing over the set of subproblems
which are de�ned by �a�� a cut line which divides R into two rectangles� �b�� at most �m points� and
at most one segment which connects to the two middle points if the number of points is exactly �m� in
the cut line� �c�� O�
� choices of boundary connectivity constraints for the two new rectangles� Note
that the partition must respect to the original partition in �c��

Each subproblem takes time O�n�m��� since there are O�n� choices of a cut line in �a�� and O�n�m�
choices of points in the cut line� As mentioned previously� the number of subproblems is bounded by
O�n	m���� Thus the total running time for dynamic programming is O�n��m����

� Conclusion and Open Problems

The NP	completeness proof for RStA is rather delicate and it is quite open whether SRStA is NP	
complete or not� Of larger practical importance is the question of what approximation ratios can be
obtained for the SRStA problem in better than O�n�� time�
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