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Abstract

The strong metric dimension of a graph was first introduced bySebö and Tannier (Mathematics
of Operations Research, 29(2), 383-393, 2004) as an alternative to the (weak) metric dimension
of graphs previously introduced independently by Slater (Proc. 6th Southeastern Conference
on Combinatorics, Graph Theory, and Computing, 549-559, 1975) and by Harary and Melter
(Ars Combinatoria, 2, 191-195, 1976), and has since been investigated in several research pa-
pers. However, the exact worst-case computational complexity of computing the strong metric
dimension has remained open beyond being NP-complete. In this communication, we show
that the problem of computing the strong metric dimension ofa graph ofn nodes admits a
polynomial-time 2-approximation, admits aO∗

(
20.287n)-time exact computation algorithm, ad-

mits aO
(
1.2738k

+ n k
)
-time exact computation algorithm if the strong metric dimension is at

mostk, does not admit a polynomial time (2− ε)-approximation algorithm assuming the unique
games conjecture is true, does not admit a polynomial time (10

√
5−21−ε)-approximation algo-

rithm assuming P, NP, does not admit aO∗
(
2o(n))-time exact computation algorithm assuming

the exponential time hypothesis is true, and does not admit aO∗
(
no(k))-time exact computation

algorithm if the strong metric dimension is at mostk assuming the exponential time hypothesis
is true.
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1. Introduction

The concept of the metric dimension of graphs was originallyintroduced independently by
Slater [21] and by Harary and Melter [10] in the 1970’s. Theirdefinition involved determining
a minimum number of nodes such that distance vectors from each of these nodes to all other
nodes (the “resolving vectors”) can be used to ”distinguish” every pair of nodes in the graph.
Computing the metric dimension is known to be NP-complete [9]. Optimal approximability
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results for the metric dimension was provided by Hauptmannet al. in [11] by showing both a
(ln n + ln log2 n + 1)-approximation based on an approximation algorithm for test set problems
in [2] and also a (1− ε)-inapproximability for any constant 0< ε < 1.

Unfortunately, the metric dimension of a graph suffers from two difficulties, namely that the
problem does not provably admit a better-than-logarithmicapproximation and the resolving vec-
tors cannot be used to uniquely identify the graph. Thestrong metric dimension of a graph was
therefore introduced by Sebö and Tannier [20] as an alternative to the above-mentioned metric
dimension of graphs. The resulting “strongly” resolving vectors can indeed be used to uniquely
identify the given graph. Subsequently, the strong metric dimension has been investigated in sev-
eral research papers such as [18, 19, 25]. LetG = (V,E) be a given undirected graph ofn nodes.
To define the strong metric dimension, we will use the following notations and terminologies:

• N(u) =
{
v
∣∣∣ {u, v} ∈ E

}
denotes the set of neighbors of a nodeu.

• u
s

! v denotes a shortest path from between nodesu andv of length (number of edges)
du,v.

• diam(G) = maxu,v∈V
{
du,v
}

denotes the diameter of a graphG.

• A shortest pathu
s

! v is calledmaximal1 if and only if it is notproperly included inside
another shortest path,i.e., if and only if the predicate

(
∀ x ∈ N(u) : d(x, v) ≤ d(u, v)

) ∧ (
∀ y ∈ N(v) : d(y, u) ≤ d(u, v)

)

is true.

• A nodex strongly resolvesa pair of nodesu andv, denoted byx ◮ {u, v}, if and only if
eitherv is on a shortest path betweenx andu, or u is on a shortest path betweenx andv.

• A set of nodesV′ ⊆ V is astrongly resolving setfor G, denoted byV′ ◮ G, if and only if
every distinct pair of nodes ofG is strongly resolved by some node inV′.

Then, the problem of computing the strong metric dimension of a graph can be defined as follows:

Problem name: Strong Metric Dimension (Str-Met-Dim)

Instance: an undirected graphG = (V,E).

Valid Solution: a set of nodesV′ ⊆ V such thatV′ ◮ G.

Objective: minimize|V′|.

Related notation: sdim(G) = min
V′⊆V ∧ V′◮G

{ ∣∣∣V′
∣∣∣
}
.

1.1. Standard Concepts From the Algorithms Research Community

For the benefit of readers not familiar with analysis of approximation algorithms, we state
below some standard definitions; see standard textbooks such as [8, 9, 23] for further details.

1The end-points of such a path is called a mutually maximally distant pairs of nodes in [20].
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An algorithm for a minimization problem is said to have anapproximation ratioof ρ (or simply
called aρ-approximation) provided the algorithm runs in polynomialtime in the size of the input
and produces a solution with an objective valueno larger thanρ times the value of the optimum.
A computational problemP is said to beρ-inapproximable under a complexity-theoretic assump-
tion ofA provided, assumingA to be true, there exists noρ-approximation forP. The (standard)
Boolean satisfiability problem when every clause has exactly k literals will be denoted byk-Sat.
Finally, for two functionsf (n) andg(n) of n, we say f (n) = O∗(g(n)) if f (n) = O(g(n) nc) for
some positive constantc.

1.2. Brief Overview of Three Well-known Complexity Theoretic Assumptions

For the benefit of those readers not well familiar with well-known complexity-theoretic as-
sumptions, we provide a very brief overview of the three complexity-theoretic assumptions used
in this communication.

The P,NP assumptionStarting with the famous Cook’s theorem [4] in 1971 and Karp’s subse-
quent paper in 1972 [14], the P,NP assumption is the central assumption in structural complexity
theory and algorithmic complexity analysis.

The Unique Games Conjecture (Ugc) The Unique Games Conjecture, formulated by Khot
in [15], is one of the most important open question in computational complexity theory. In-
formally speaking, the conjecture states that, assuming P, NP, a type of constraint satisfac-
tion problems does not admit a polynomial time algorithm to distinguish between instances that
are almost satisfiable from instances that are almost completely unsatisfiable. There is a large
body of research works showing that the conjecture has many interesting implications and many
researchers routinely assume Ugc to prove non-trivial inapproximability results. An excellent
survey on Ugc can be found in many places, for example in [22].

The Exponential Time Hypothesis (Eth) In an attempt to provide a rigorous evidence that the
complexity ofk-Sat increases with increasingk, Impagliazzo and Paturi in [12] formulated the
so-called Exponential Time Hypothesis (Eth) in the following manner. Lettingsk = inf

{
δ :

there existsO∗
(
2δn
)

algorithm for solvingk-Sat
}
, Eth states thatsk > 0 for all k ≥ 3, i.e., k-Sat

does not admit a sub-exponential time (i.e., of time O∗
(
2o(n))) algorithm2. Eth has significant

implications for worst-case time-complexity of exact solutions of search problems,e.g., see [13,
24].

1.3. Our Results

Let G = (V,E) be the given graph. It is easy to see following the approach in Khuller et
al. [17] that the problem of computing the strong metric dimension sdim(G) can be reduced to
an instance of the (unweighted) set-cover problem giving aO(log |V|)-approximation. In this
communication, we show further improved results as summarized by the following theorem.

Theorem 1.1.
(a) Str-Met-Dim admits the following type of algorithms:

• polynomial-time2-approximation,

2For two functionsf (x) andg(x) of x, f = o(g) provided limx→∞ f (x)/g(x) = 0.
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• O∗
(
20.287n)-time exact computation algorithm, and

• O
(
1.2738k

+ n k
)
-time exact computation algorithm where sdim(G) ≤ k.

(b) Assuming that the unique games conjecture( Ugc ) is true,Str-Met-Dim does not admit a
polynomial-time(2 − ε)-approximation for any constant0 < ε ≤ 1 even if the given graph is
restricted in the sense that

(i) diam(G) ≤ 2, or

(ii) G is bipartite and diam(G) ≤ 4.

(c)AssumingP,NP, Str-Met-Dim does not admit a polynomial-time(10
√

5−21−ε)-approximation3

for any constant0 < ε ≤ 10
√

5− 22even if the given graph is restricted in the sense that

(i) diam(G) ≤ 2, or

(ii) G is bipartite and diam(G) ≤ 4.

(d) Assuming the exponential time hypothesis (Eth) is true, the following results hold for a graph
G of n nodes:

(i) there is no O∗
(
2o(n))-time algorithm for exactly computing sdim(G), and

(ii ) if sdim(G) ≤ k then there is no O∗
(
no(k))-time algorithm for exactly computing sdim(G).

1.4. Brief Remark on the Proof of Theorem 1.1
Our proof uses Theorem 2.1 whose proof is implicit in [18]. However, it is not the case that

Theorem 2.1 can be simply “plugged in” to get a proof of our inapproximability results. Just be-
cause a problem can be written as a node cover problem (as in Fact 2.1) does not necessarily mean
that it has the same inapproximability property for node cover since, for example, non-trivial spe-
cial cases of node cover do admit efficient polynomial time solution. To show inapproximability
we need to reduce appropriate “hard” instances of the node cover problem to that of comput-
ing sdim(G) (i.e., a reduction in the opposite direction) and moreover such a polynomial-time
reduction must be gap-preserving in an appropriate way (see[1, Section 10.1.3] for descrip-
tions of gap-preserving reductions). For readers unfamiliar with gap-preserving reduction proof
techniques, see the excellent survey by Arora and Lund in [1].

2. Proof of Theorem 1.1

The minimum node cover (Mnc) problem for a graph is defined as follows:

Instance: an undirected graphG = (V,E).

Valid Solution: a set of nodesV′ ⊆ V such thatV′ ∩ {u, v} , ∅ for every edge
{u, v} ∈ E.

Objective: minimize|V′|.

Related notation: Mnc(G) = min
∀ {u,v} ∈E : V′∩{u,v},∅

{ ∣∣∣V′
∣∣∣
}
.

Let G = (V,E) denote the input graph ofn nodes. Let̂G andG̃ be two graphs obtained fromG
in the following manner:

3Note that 10
√

5− 21≈ 1.36068< 2.

4



• Ĝ = (V, Ê) where{u, v} ∈ Ê if and only if u , v and u
s

!v is a maximal shortest path in
G.

• G̃ = (Ṽ, Ẽ) whereṼ andẼ are obtained as follows:

– Let u1, u2, . . . , uκ be the nodes inG such that, for everyui (1 ≤ i ≤ κ), there is a node
vi , ui in G with the property thatN (ui) = N (vi).

– Let G = (V,E) be the (edge) complement ofG, i.e., {u, v} ∈ E ≡ {u, v} < E.

– Then,̃V = V∪{x1, x2, . . . , xκ, y}wherex1, x2, . . . , xκ, y < V, andẼ = E ∪
(⋃ κ

j=1

{
{x j , u j}

} )
∪(⋃

y′ ∈ Ṽ \ {y}

{ {
y′, y
} } )

.

We recall the following result implicit in [18].

Theorem 2.1. [18]
(a) sdim(G) = Mnc(Ĝ), and V′ ⊆ V is a valid solution ofStr-Met-Dim on G if and only if V′ is

a valid solution ofMnc onĜ.

(b) diam(G̃) = 2 andsdim(G̃) = κ +Mnc(G).

A proof of Theorem 2.1 is implicit in [18]. For reader’s benefit, we provide a self-contained
proof of Theorem 2.1 in Appendix A using elementary graph theory.

Proof of Theorem 1.1(a)

Since sdim(G) = Mnc(Ĝ), and bothG andĜ have the same number of nodes, the claim follows
by applying known algorithms for node cover on̂G. More precisely,

• the 2-approximation follows from a well-known 2-approximation algorithm for Mnc [23,
Theorem 1.3],

• theO∗
(
20.287n)-time exact solution algorithm follows from theO∗

(
20.287n)-time exact al-

gorithm for maximum independent set4 problem in [7], and

• theO
(
1.2738k

+n k
)
-time exact computation algorithm follows from theO

(
1.2738k

+n k
)
-

time exact algorithm for minimum node cover of̂G provided Mnc(Ĝ) ≤ k [3].

Proof of Theorem 1.1(b)

Consider the standard Boolean satisfiability problem (Sat) [9] and letΦ be an input instance of
Sat. Our starting point is the following inapproximability result proved by Khot and Regev [16]:

AssumingUgc is true, there exists a polynomial time algorithm that transforms a
given instanceΦ of Sat to an input instance graph G= (V,E) of Mnc with n nodes
such that, for any constant0 < ε < 1

4, the following holds:

(⋆)
(YES case) if Φ is satisfiable thenMnc(G) ≤

(
1
2 + ε

)
n, and

(NO case) if Φ is not satisfiable thenMnc(G) ≥ (1− ε) n.

4Nodesnot in an independent set form avalid solution of the node cover problem [9].
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Consider such an instanceG of Mnc as generated by the above transformation. Letk = 1 +⌊
log2 n

⌋
and letb( j) = bk−1( j) bk−2( j) . . . b1( j) b0( j) be the binary representation of an integer

j ∈ {1, 2 . . . , n} usingexactly kbits (e.g., if n = 5 thenb(3) =
b2(3)
0

b1(3)
1

b0(3)
1 ). Let u1, u2, . . . , un be

an arbitrary ordering of the nodes inV. We first construct the following graphG+ = (V+,E+)
from G:

• V+ = V ∪ V+1 whereV+1 = {v1, v2, . . . , vk−1, y} is a set ofk new nodes, and

• E+ = E ∪


n⋃

j=1

{
{u j , vℓ} | bℓ( j) = 1

}
 ∪


k−1⋃

j=1

{
{y, v j}

}
.

Thus|V+| = n+ k and|E+| < |E| + n k
2 + k. Now, note that:

• if V′ ⊆ V is a solution of Mnc on G, thenV′ ∪ V+1 is a solution of Mnc on G+, implying
Mnc(G+) ≤ Mnc(G) + k, and conversely,

• if V′ ⊆ V+ is a solution of Mnc onG+, thenV′ \ V+1 is a solution of Mnc onG, implying
Mnc(G) ≤ Mnc(G+).

Combining the above inequalities with that in (⋆), we have

(⋆⋆)
(YES case) if Φ is satisfiable then Mnc(G+) <

(
1
2 + ε

)
n+ log2 n+ 1, and

(NO case) if Φ is not satisfiable then Mnc(G+) ≥ (1− ε) n.

We now build the graph̃G+ = (Ṽ+, Ẽ+) from G using the construction in Theorem 2.1(b).

Claim 2.1.1. No two nodes iñG+ have the same neighborhood.

Proof. The following careful case analysis proves the claim:

• For anyi , j, sinceb(i) , b( j), there exists an indext such thatbt(i) , bt( j), saybt(i) = 0
andbt( j) = 1. Thus, N(ui) , N(u j) sincevt ∈ N(u j) butvt < N (ui).

• Sinceb(i) , 0 for anyi andb(1), b(2), . . . , b(n) are distinct binary numbers each of exactly
k bits, for anyt , t′ there is an indexi such thatbt(i) , bt′(i), saybt(i) = 0 andbt′(i) = 1.
Thus, N(vt) , N (vt′ ) sinceui ∈ N (vt′ ) butui < N (vt).

• For anyi and j, N (ui) , N(v j) sincey ∈ N(v j) buty < N (ui).

• For any i, b(i) , 0 and thus there exists an indexj such thatb j(i) = 1. This implies
u j ∈ N (vi) butu j < N(y) and therefore N(vi) , N(y).

• SinceG is a connected graph, for every nodeui there exists a nodeu j such that
{
ui , u j

}
∈

E+. Thus,u j ∈ N (ui) butu j < N(y), implying N(ui) , N(y).

By the above claim,κ = 0 and sdim(̃G+) = Mnc(G+) by Theorem 2.1(b). Thus, setting
ε′ = ε +

log2 n+1
n and noting thatε′ can be any arbitrarily small constant sinceε is an arbitrarily

small constant, it follows from (⋆⋆) that
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(⋆⋆⋆)
(YES case)if Φ is satisfiable then sdim(̃G+) = Mnc(G+) <

(
1
2 + ε

′
)
n, and

(NO case)if Φ is not satisfiable then sdim(̃G+) = Mnc(G+) ≥ (1− ε′) n.

This proves Theorem 1.1(b)(i) since diam(̃G+) = 2 by Theorem 2.1(b).

To prove Theorem 1.1(b)(ii) , we modify the graph̃G+ to a new graphG′ = (V′,E′) by
splitting every edge into a sequence of two edges,i.e., for every edge{u, v} in G̃+ we add a new
nodexu,v in G′ and replace the edge{u, v} by the two edges{u, xu,v} and{v, xu,v}. ClearlyG′ is
bipartite since all its cycles are of even length and diam(G′) ≤ 2 diam(̃G+) = 4.

Claim 2.1.2. sdim(G̃+) = Mnc(̂̃G+) = Mnc(Ĝ′) = sdim(G′).

Proof. No maximal shortest path inG′ ends at a nodexu,v for any distinct pair of nodesu andv.
Indeed, if a maximal shortest pathP from some nodez ends at somexu,v, it must use one of the
two edges{u, xu,v} and{v, xu,v}, say{u, xu,v}. Then adding the edge{v, xu,v} to the pathP provide
a shortest path betweenv andz, and thusP was not maximal. Using this and the construction in

Theorem 2.1(a), we havễG+ = Ĝ′ and therefore sdim(̃G+) = Mnc(̂̃G+) = Mnc(Ĝ′) = sdim(G′).

As a result, the inapproximability result for sdim(̃G+) directly translates to that for sdim(G′),
and concludes the proof.

Proof of Theorem 1.1(c)

The same proof as in(b) works provided, instead of the result in [16], our starting point is the
following result shown by Dinur and Safra [6]5:

Assuming P,NP, there exists a polynomial time algorithm that transforms a given
instanceΦ of Sat to an input instance graph G= (V,E) of Mnc with n nodes such
that, for any constant0 < ε < 16− 8

√
5 and for some0 < α < 2n, the following

holds:

(⋆)
(YES case) if Φ is satisfiable thenMnc(G) ≤

( √
5−1
2 + ε

)
α, and

(NO case) if Φ is not satisfiable thenMnc(G) ≥
(

71−31
√

5
2 − ε

)
α.

Proof of Theorem 1.1(d)We first show how to prove Theorem 1.1(d)(i). Suppose, for the sake of
contradiction, that there does exist aO∗

(
2o(n))-time algorithm that exactly computes sdim(G). We

start with an instanceΦ of 3-Sat havingn variables andm clauses. The “sparsification lemma”
in [13] proves the following result:

for every constantε > 0, there is a constant c> 0 such that there exists a O
(
2εn
)
-

time algorithm that produces fromΦ a set of t instancesΦ1, . . . ,Φt of 3-Sat on these
n variables with the following properties:

• t ≤ 2εn,

5Note that
(

71−31
√

5
2

)
/

( √
5−1
2

)
= 10

√
5− 21.
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• eachΦ j is an instance of3-Satwith nj ≤ n variables and mj ≤ cn clauses, and

• Φ is satisfiable if and only if at least one ofΦ1, . . . ,Φt is satisfiable.

For each such above-produced 3-Sat instanceΦ j , we now use the “classical textbook” reduction
from 3-Sat to the node cover problem (e.g., see [9, page 54]) producing an instanceG = (V,E)
of Mnc of |V| = 3n j + 2mj ≤ (3 + 2c) n nodes and|E| = n j + mj ≤ (1 + c) n edges such
thatΦ j is satisfiable if and only if Mnc(G) = n j + 2mj . Moreover, it is also easy to check
that this classical reduction doesnot produce two nodes inV that have thesameneighborhood.
Thus, settingκ = 0 in Theorem 2.1(b) we get sdim(̃G) = Mnc(G) whereG̃ is a graph with
ñ = |Ṽ| = |V| + 1 ≤ (3+ 2c) n+ 1 nodes. By assumption, we can compute sdim(G̃) in O∗

(
2o( ñ))

time, and and consequently Mnc(G) in O∗
(
2o(n)) time, which leads us to decide inO∗

(
2o(n)) time

if Φ j is satisfiable. Sincet ≤ 2εn for any constantε > 0, this provides aO∗
(
2o(n))-time algorithm

for 3-Sat, contradicting Eth.
To prove Theorem 1.1(d)(ii) suppose again, for the sake of contradiction, that there exists a

O∗
(
no(k))-time algorithm for exactly computing sdim(G) if sdim(G) ≤ k. Our proof is very similar

to the previous one, but this time we start with the followinglower bound result on parameterized
complexity (e.g., see [5, Theorem 14.21]):

assumingEth to be true, ifMnc(G) ≤ k then there isnoO∗
(
no(k))-time algorithm for

exactly computingMnc(G).

Using the encoding as described in part(b) of this proof with the corresponding Claim 2.1.1,
we can setκ = 0 in Theorem 2.1(b) to obtain the graph̃G+ = (Ṽ+, Ẽ+) such thatñ+ = |Ṽ+| =
|V| + (1 + ⌊log2 n

⌋ )
+ 1 = n +

⌊
log2 n

⌋
+ 2 and sdim(̃G+) = Mnc(G). By our assumption, we

can compute sdim(̃G+) in O∗
(
(ñ+)

o(k))
-time algorithm if sdim(G) ≤ k. This then provides an

algorithm running inO∗
(
(ñ+)

o(k))
= O∗

(
no(k)) time if Mnc(G) = sdim(G) ≤ k, contradicting Eth.

3. Conclusion

In this communication we have shown that the worst-case computational complexity for com-
puting the strong metric dimension for many graphs behaves in a manner similar to the minimum
node cover problem. However, several interesting computational complexity questions still re-
main open, such as the following.

• Does the (2− ε)-inapproximability result for computing sdim(G) hold even whenG is
bipartite and diam(G) ≤ 3 ?

• Are there interesting non-trivial classes of graphs for which sdim(G) can be computed in
polynomial time ?

• In the context of kernelization for parameterized algorithms (e.g., see [5]), is there a linear
kernel for Str-Met-Dim?
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Appendix A. Proof of Theorem 2.1

A proof of Theorem 2.1 is implicit in [18]. For the benefit of the reader, we provide a self-
contained proof of Theorem 2.1 here using elementary graph theory.

(a) Let u
s

! v be a maximal shortest path inG. Suppose that we select neitheru nor v in a
solution of solution of Str-Met-Dim on G. Then there exists no nodex in our solution of Str-
Met-Dim on G such thatx ◮ {u, v}, implying our solution of Str-Met-Dim on G is not a valid
solution and thereby showing sdim(G) ≥ Mnc(Ĝ). To prove sdim(G) ≤ Mnc(Ĝ), suppose that
we select at least one end-point of every maximal shortest path in G. Consider any pair of nodes
u andv. If at least one ofu or v, sayu, is selected in a solution of Str-Met-Dim on G, then
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u ◮ {u, v}. Otherwise,u
s

!v is nota maximal shortest path, and letx
s

!y be a maximal shortest
path containingu andv. Then, we have selected at least one ofx or y, sayx, in a solution of
Str-Met-Dim onG, andx ◮ {u, v}.

(b) It follows from the construction of̃G that diam(̃G) = 2 since any pair of nodes has a shortest
path of length at most 2 between them viay. Note that, for any pair of nodesu andv, N (u) = N (v)
in G if and only if N(u) = N (v) in G. To show sdim(̃G) ≤ κ + Mnc(G), let S ⊂ V be the set
of nodes in a minimum node cover ofG of cardinality Mnc(G). Consider the set ofκ +Mnc(G)
nodes inS′ = S ∪ {x1, x2, . . . , xκ} as a possible solution of Str-Met-Dim onG̃. To show that this
is indeed a valid solution, consider any pair of nodesu andv in G̃. Then the following simple
case analysis suffices:

• Suppose that at least one ofu andv is xi for somei. Then,S′ ∋ xi ◮ {u, v}.

• Otherwise, suppose that one ofu andv, sayu, is y (and thusv ∈ V). Select a nodexi ∈ S′

such that{xi , v} < Ẽ. Then the shortest path of length 2 fromxi to v formed by the edges
{xi , y} and{y, v} shows thatS′ ∋ xi ◮ {u, v}.

• Otherwise, if{u, v} ∈ E then at least one ofu andv, sayu, is in S′ andu ◮ {u, v}.

• Otherwise,{u, v} < E. Thus,{u, v} ∈ Ẽ. If at least one ofu andv, sayu, is in S thenu ∈ S′

andu ◮ {u, v}. Otherwise, both ofu andv are not inS, and there are the following two
sub-cases to consider.

– At least one ofu andv, sayu, is ui for somei. Then the shortest path of length 2 from
xi to v formed by the edges{xi , ui} and{ui, v} shows thatS′ ∋ xi ◮ {u, v}.

– Otherwise, N(u) , N (v) in G, which implies that there exists a nodeu′ ∈ V such that
u′ is adjacent to exactly one ofu andv, sayu. Thus,{u, u′} < Ẽ but {v, u′} ∈ Ẽ. Note
thatu < S and{u, u′} ∈ E impliesu′ is in S. Then the shortest path of length 2 from
u′ to u formed by the edges{u′, v} and{v, u} shows thatS′ ∋ u′ ◮ {u, v}.

To show sdim(̃G) ≥ κ+Mnc(G), let S′ ⊂ Ṽ be the set of sdim(̃G) nodes in an optimal solution of
Str-Met-Dim onG̃. Consider the set of nodes inS = S′ \ {x1, x2, . . . , xκ, y} as a possible solution
of the node cover problem ofG. We first show thatS is in fact a valid node cover ofG. Since
diam(G̃) = 2, any shortest path inG is of length at most 2. Consider an edge{u, v} ∈ E and
suppose that bothu andv are not inS (and thus also not inS′). Since{u, v} < Ẽ, the length of
any shortest path betweenu andv is exactly 2, and thus no nodex ∈ Ṽ\{u, v} can strongly resolve
the pair of nodesu andv, resulting in a contradiction thatS′ is a solution of Str-Met-Dim on G̃.
Thus,S is a node cover ofG and Mnc(G) ≤ |S|. To show that|S| = |S′| − κ, note that:

• Everyxi must belong toS′ since otherwise no node inS′ can strongly resolve the pair of
nodesxi andx j for any j , i.

• Since everyxi belongs toS′, the nodey does not need to belong toS′.
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