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Abstract

The strong metric dimension of a graph was first introduce8&lyd and Tannier (Mathematics
of Operations Research, 29(2), 383-393, 2004) as an ditezria the (weak) metric dimension
of graphs previously introduced independently by Slateo¢P 6" Southeastern Conference
on Combinatorics, Graph Theory, and Computing, 549-55951@nd by Harary and Melter
(Ars Combinatoria, 2, 191-195, 1976), and has since beessiigated in several research pa-
pers. However, the exact worst-case computational coritypleikcomputing the strong metric
dimension has remained open beyond being NP-complete. idrcéimmunication, we show
that the problem of computing the strong metric dimensiora @fraph ofn nodes admits a
polynomial-time 2-approximation, admitsGi(2%28"")-time exact computation algorithm, ad-
mits aO(1.2738& + nk)-time exact computation algorithm if the strong metric dirsien is at
mostk, does not admit a polynomial time 2¢)-approximation algorithm assuming the unique
games conjecture is true, does not admit a polynomial tifBe/BL- 21— £)-approximation algo-
rithm assuming P NP, does not admit &*(2°M)-time exact computation algorithm assuming
the exponential time hypothesis is true, and does not ad@ii(@®)-time exact computation
algorithm if the strong metric dimension is at mé&stssuming the exponential time hypothesis
is true.
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conjecture, exponential time hypothesis, parameterinatptexity
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1. Introduction

The concept of the metric dimension of graphs was originatiypduced independently by
Slater [21] and by Harary and Melter [10] in the 1970’'s. Thafinition involved determining
a minimum number of nodes such that distance vectors from ehthese nodes to all other
nodes (the “resolving vectors”) can be used to "distingusrery pair of nodes in the graph.
Computing the metric dimension is known to be NP-complete @ptimal approximability
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results for the metric dimension was provided by Hauptmetnal. in [11] by showing both a
(Inn+ Inlog, n + 1)-approximation based on an approximation algorithmést set problems
in [2] and also a (+ &)-inapproximability for any constant8 ¢ < 1.

Unfortunately, the metric dimension of a grapHfeus from two dificulties, namely that the
problem does not provably admit a better-than-logarithapjgroximation and the resolving vec-
tors cannot be used to uniquely identify the graph. $tneng metric dimension of a graph was
therefore introduced by Sebd and Tannier [20] as an aligento the above-mentioned metric
dimension of graphs. The resulting “strongly” resolvingtggs can indeed be used to uniquely
identify the given graph. Subsequently, the strong metniedision has been investigated in sev-
eral research papers such as [18, 19, 25].G.et(V, E) be a given undirected graph ohodes.
To define the strong metric dimension, we will use the follogvhotations and terminologies:

e N(u) = {v| {u,v} € E} denotes the set of neighbors of a nade

e U« v denotes a shortest path from between nadasdv of length (number of edges)
dy-

e diam(@G) = max,ev { dyv} denotes the diameter of a grah

e A shortest pattu «%vis calledmaximat if and only if it is notproperlyincluded inside
another shortest pathe., if and only if the predicate

(¥ xeN(): d(xv) < d(u,v) ) A (VyeNW): diy.u) < du.v))
is true.

e A nodex strongly resolvesa pair of nodesl andv, denoted byx » {u, v}, if and only if
eitherv is on a shortest path betwer@andu, or u is on a shortest path betwegandv.

e A setof noded/’ C V is astrongly resolving sefor G, denoted by’ » G, if and only if
every distinct pair of nodes @ is strongly resolved by some node\if.

Then, the problem of computing the strong metric dimensf@ngvaph can be defined as follows:

Problem name  Strong Metric Dimension (&-Mer-Dim)
Instance  an undirected grapB = (V, E).
Valid Solution: a set of node¥’ C V such thav’ » G.

h

Objective:  minimize|V’|.

Related notation sdim@G) = min { N4
V'SV AV R G

1.1. Standard Concepts From the Algorithms Research Coiitynun

For the benefit of readers not familiar with analysis of agpration algorithms, we state
below some standard definitions; see standard textbooksasuf8, 9, 23] for further details.

1The end-points of such a path is called a mutually maxima#iadt pairs of nodes in [20].
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An algorithm for a minimization problem is said to haveapproximation ratioof p (or simply
called go-approximation) provided the algorithm runs in polynontiiade in the size of the input
and produces a solution with an objective vatwdarger thanp times the value of the optimum.
A computational probler® is said to bg-inapproximable under a complexity-theoretic assump-
tion of A provided, assuming to be true, there exists peapproximation folP. The (standard)
Boolean satisfiability problem when every clause has ex#diterals will be denoted bk-Sar.
Finally, for two functionsf(n) andg(n) of n, we sayf(n) = O*(g(n)) if f(n) = O(g(n) n°) for
some positive constant

1.2. Brief Overview of Three Well-known Complexity Théomssumptions

For the benefit of those readers not well familiar with weibkwvn complexity-theoretic as-
sumptions, we provide a very brief overview of the three claxipy-theoretic assumptions used
in this communication.

The PANP assumptionStarting with the famous Cook’s theorem [4] in 1971 and Ksuquibse-
guent paper in 1972 [14], the2NP assumption is the central assumption in structural cexityl
theory and algorithmic complexity analysis.

The Unique Games Conjecture (sc) The Uniqgue Games Conjecture, formulated by Khot
in [15], is one of the most important open question in compioial complexity theory. In-
formally speaking, the conjecture states that, assumindg\P, a type of constraint satisfac-
tion problems does not admit a polynomial time algorithmistidguish between instances that
are almost satisfiable from instances that are almost cdetplensatisfiable. There is a large
body of research works showing that the conjecture has nmeseisting implications and many
researchers routinely assumeddo prove non-trivial inapproximability results. An exacstit
survey on Wic can be found in many places, for example in [22].

The Exponential Time Hypothesis Erx) In an attempt to provide a rigorous evidence that the
complexity ofk-Sar increases with increasinlg Impagliazzo and Paturi in [12] formulated the
so-called Exponential Time Hypothesisr{f} in the following manner. Lettingyx = inf{¢§ :
there existgD*(2°") algorithm for solvingk-Sar }, Etu states tha, > 0 for allk > 3, i.e., k-Sar
does not admit a sub-exponential timg( of time O*(2°M)) algorithn?. Eru has significant
implications for worst-case time-complexity of exact smns of search problems,g, see [13,
24].

1.3. Our Results

Let G = (V, E) be the given graph. It is easy to see following the approadihuller et
al. [17] that the problem of computing the strong metric dimensdimG) can be reduced to
an instance of the (unweighted) set-cover problem givir@(lag|V|)-approximation. In this
communication, we show further improved results as sunzedipy the following theorem.

Theorem 1.1.
(a) Srr-Mer-Dim admits the following type of algorithms:

e polynomial-time2-approximation,

2For two functionsf (x) andg(x) of x, f = o(g) provided lim,_. f(x)/g(x) = 0.
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e 0*(2%287M)-time exact computation algorithm, and
e O(1.2738& + nk)-time exact computation algorithm where s@@h < k.

(b) Assuming that the uniqgue games conjeciutisc ) is true, Strr-Mer-Dim does not admit a
polynomial-time(2 — &)-approximation for any constaift < ¢ < 1 even if the given graph is
restricted in the sense that

(i) diam(G) < 2, or
(i) G is bipartite and dian(G) < 4.

(c) Assumind=NP, Srr-Mer-Div does not admit a polynomial-tini&0 v5—21-<)-approximatior
for any constan® < & < 10V5 — 22 even if the given graph is restricted in the sense that

(i) diam(G) < 2, or
(i) G is bipartite and dian(G) < 4.

(d) Assuming the exponential time hypotheRisij is true, the following results hold for a graph
G of n nodes:

(i) there is no O(2°M)-time algorithm for exactly computing sdi@), and
(i) if sdim(G) < k then there is no @n°®)-time algorithm for exactly computing sdi@).

1.4. Brief Remark on the Proof of Theorem 1.1

Our proof uses Theorem 2.1 whose proof is implicit in [18].wéwer, it is not the case that
Theorem 2.1 can be simply “plugged in” to get a proof of oupiprximability results. Just be-
cause a problem can be written as a node cover problem (asti. Bxdoes not necessarily mean
that it has the same inapproximability property for nodesz®ince, for example, non-trivial spe-
cial cases of node cover do admfiieient polynomial time solution. To show inapproximability
we need to reduce appropriate “hard” instances of the noder gooblem to that of comput-
ing sdim@G) (i.e., a reduction in the opposite direction) and moreover suchlgnpmial-time
reduction must be gap-preserving in an appropriate way [(seSection 10.1.3] for descrip-
tions of gap-preserving reductions). For readers unfamiith gap-preserving reduction proof
techniques, see the excellent survey by Arora and Lund in [1]

2. Proof of Theorem 1.1

The minimum node cover (M) problem for a graph is defined as follows:

Instance  an undirected grapB = (V, E).
Valid Solution: a set of node¥”’ C V such thatv’ n {u,v} # 0 for every edge

{u,v} € E.
Objective:  minimize|V’|.
Related notation ~ Mnc(G) = min { |V }
Y{uv}eE: V'Nn{u,v}#0

LetG = (V, E) denote the input graph ofnodes. LeG andG be two graphs obtained fro@®
in the following manner:

3Note that 10V5 — 21 ~ 1.36068< 2.



e G=(V,E)where{u,v} € Eifand only ifu # v and u«*vis a maximal shortest path in
G.

e G = (V, E) whereV andE are obtained as follows:

— Letuy, Uy, ..., u, be the nodes i such that, for every; (1 <i < «), there is a node
Vi # U in G with the property thal (u;) = N (v).

— LetG = (V, E) be the (edge) complement®@f i.e., {u,v} € E = {u,v} ¢ E.

— ThenV = VU{xq, Xa, . . ., X, Y} wherexy, o, . .., %, Y ¢ V,andE = E U (Uf:l{{xj', u,—}} ) U
(Uyew L 1Y-Y1]):

We recall the following result implicit in [18].

Theorem 2.1.[18]

(a) sdim@G) = Mnc(G), and V C V is a valid solution ofsrr-Mer-Dim on G if and only if V is
a valid solution oM~c onG.

(b) diam@G) = 2 andsdim@G) = « + Mnc(G).

A proof of Theorem 2.1 is implicit in [18]. For reader’s bengfive provide a self-contained
proof of Theorem 2.1 in Appendix A using elementary graplotiie

Proof of Theorem 1.1(a)
Since sdimB) = Mnc(G), and bothG andG have the same number of nodes, the claim follows
by applying known algorithms for node cover @n More precisely,

o the 2-approximation follows from a well-known 2-approxitiea algorithm for Mvc [23,
Theorem 1.3],

o the O*(2°28"M)-time exact solution algorithm follows from th@*(2°%28"")-time exact al-
gorithm for maximum independent &gtroblem in [7], and

e theO(1.2738 + nk)-time exact computation algorithm follows from t¢1.2738 + n k)-
time exact algorithm for minimum node cover®fprovided Mic(G) < K [3].

Proof of Theorem 1.1(b)
Consider the standard Boolean satisfiability problear) ] and let® be an input instance of
Sar. Our starting point is the following inapproximability rdsproved by Khot and Regev [16]:

AssumingUac is true, there exists a polynomial time algorithm that trfmss a
given instanced of Sar to an input instance graph & (V, E) of Mnc with n nodes
such that, for any constaft< & < 1, the following holds:

(YEScase) if @ is satisfiable thetMnc(G) < (% + s) n, and

*
(*) (NOcase) if ®@is not satisfiable theMnc(G) > (1 - &) n.

“Nodesnotin an independent set formvalid solution of the node cover problem [9].
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Consider such an instan€z of Mnc as generated by the above transformation. ket 1 +

llog, n| and letb(j) = bx_1(j) bk-2(j) - .. b1(j) bo(j) be the binary representation of an integer
ba(3) by(3) bo(3
j €{1,2...,n}usingexactly kbits (e.g, if n = 5 thenb(3) = 20 i) Oi) ). Letuy, Uy, ..., u, be

an arbitrary ordering of the nodes¥h We first construct the following grap@* = (V*,E*)
fromG:

e V¥ =V UV whereV] = {vq,Vo,...,V 1,Y} is a set ok new nodes, and

{tuj.vel | be(j)=1}] U {k[j{{y,v;}}].

=1

e Ef=E U

n
j=

1
Thus|V*| = n+ kand|E*| < [E| + % + k. Now, note that:

e if V' C Vis a solution of Mic on G, thenV’ U V/ is a solution of Mic on G*, implying
Mnc(G*) < Mnc(G) + k, and conversely,

e if V' C V* is a solution of Mic onG™, thenV’ \ V} is a solution of Mic on G, implying
Mnc(G) < Mnc(GY).

Combining the above inequalities with that i)( we have

() (YES case) if D is satisfia_blt.e then Mc(G™) < (% + s) n+log,n+ 1, and
(NO case) if @ is not satisfiable then M(G*) > (1 - &) n.
We now build the graplfﬂ}‘;1 = (\71, 5) from G using the construction in Theorem o).
Claim 2.1.1. No two nodes iiG* have the same neighborhood.
Proof. The following careful case analysis proves the claim:

e For anyi # j, sinceb(i) # b(j), there exists an indexsuch thatx(i) # bx(j), sayb(i) =0
andb(j) = 1. Thus, N(u;) # N(u;) sincev; € N(u;j) butv; ¢ N (u;).

e Sinceb(i) # 0 for anyi andb(1), b(2),.. ., b(n) are distinct binary numbers each of exactly
k bits, for anyt # t’ there is an indexsuch thatx(i) # by (i), sayb(i) = 0 andby (i) = 1.
Thus, N(v;) # N (w) sinceu; € N (vv) butu; ¢ N (v).

e For anyi andj, N(u) # N(v;) sincey € N(v;) buty ¢ N (u;).

e For anyi, b(i) # 0 and thus there exists an indg»such thatb;(i) = 1. This implies
uj € N (v) butu; ¢ N(y) and therefore Nv;) # N(y).

¢ SinceG is a connected graph, for every nagéehere exists a node; such that{ui, u,—} €
E*. Thus,uj € N (u;) butuj ¢ N(y), implying N (u;) # N(y).
O

By the above claimg = 0 and sdimG+) = Mnc(G*) by Theorem 2.(b). Thus, setting

[ 1 : Lo A Lo
g =¢c+ % and noting that’ can be any arbitrarily small constant sincés an arbitrarily

small constant, it follows fromxx) that



(YES case)if @ is satisfiable then sdif@f) = Mxc(G*) < (3 +&')n, and

* * % —
( (NO case)if @ is not satisfiable then sdi8¢) = Mnc(G*) > (1 - &) n.

This proves Theorem 1(h)(i) since diam@1) = 2 by Theorem 2.(b).

To prove Theorem 1(b)(ii), we modify the graptG* to a new graptG’ = (V',E’) by
splitting every edge into a sequence of two edges,for every edgdu, v} in G+ we add a new
nodex,y in G’ and replace the edde, v} by the two edges$u, x,} and{v, x,,}. ClearlyG’ is
bipartite since all its cycles are of even length and dafhk 2 diamG*) = 4.

Claim 2.1.2. sdin(G*) = Mxc(G*) = Mxe(&) = sdin(G).

Proof. No maximal shortest path i@’ ends at a nodg,, for any distinct pair of nodesg andv.
Indeed, if a maximal shortest pahfrom some node ends at some,, it must use one of the
two edgedu, x,v} and{v, Xuv}, say{u, x,v}. Then adding the edds, x,,} to the path®” provide
a shortest path betwesrandz, and thusP was not maximal. Using this and the construction in
Theorem 2.(a), we haveG* = G’ and therefore sdin@) = MNC(G:) = MNC(@) = sdim@’).

O

As a result, the inapproximability result for sdi@¥() directly translates to that for sdi(),
and concludes the proof.

Proof of Theorem 1.1(c)

The same proof as itb) works provided, instead of the result in [16], our startirain is the
following result shown by Dinur and Safra f6]

Assuming BNP, there exists a polynomial time algorithm that transferangiven
instance® of Sar to an input instance graph G (V, E) of Mnc with n nodes such
that, for any constan® < £ < 16 — 85 and for soméd < « < 2n, the following
holds:

(YEScase) if @ is satisfiable theine(G) < (‘/—57’1 + s)a, and

(NOcase) if @ is not satisfiable theMxc(G) > (%1@ - s)a.

Proof of Theorem 1.1(d)We first show how to prove Theorem {d)(i). Suppose, for the sake of
contradiction, that there does exigDa2°™")-time algorithm that exactly computes sdi&)( We
start with an instanc® of 3-Sar havingn variables andn clauses. The “sparsification lemma”
in [13] proves the following result:

for every constant > 0, there is a constant ¢ 0 such that there exists a(@™")-
time algorithm that produces from a set of t instance®y, . . ., ®; of 3-Sar on these
n variables with the following properties:

ot <2

*Note thaf 315 ) / (452} = 10V5 - 21.



e each®; is an instance 08-Sar with n; < n variables and m< cn clauses, and
e @ s satisfiable if and only if at least one &t . . ., @, is satisfiable.

For each such above-produced & #istanced;, we now use the “classical textbook” reduction
from 3-S to the node cover problene g, see [9, page 54]) producing an instaize- (V, E)

of Mnc of [V| = 3n; + 2m; < (3 + 2c)n nodes andE| = nj + m; < (1 + ¢)n edges such
that @; is satisfiable if and only if Mc(G) = n; + 2m;. Moreover, it is also easy to check
that this classical reduction doset produce two nodes iW that have thesameneighborhood.
Thus, settingc = 0 in Theorem 2.(b) we get sdimG) = Mnc(G) whereG is a graph with
A =|V|=|V|+1< (38+2c)n+1nodes. By assumption, we can compute s@iyi O*(2%™)
time, and and consequently\(G) in O*(2°") time, which leads us to decide @ (2°™) time

if @ is satisfiable. Since< 22" for any constant > 0, this provides &*(2°™)-time algorithm
for 3-Sr, contradicting Ex.

To prove Theorem 1(#)(ii) suppose again, for the sake of contradiction, that therg®ai
O*(n°®)-time algorithm for exactly computing sdif@j if sdim(G) < k. Our proofis very similar
to the previous one, but this time we start with the followlager bound result on parameterized
complexity €.9, see [5, Theorem 14.21]):

assumingerx to be true, iMnc(G) < k then there isi0 O*(n°®)-time algorithm for
exactly computind/Inc(G).

Using the encoding as described in pgn} of this proof with the corresponding Claim 2.1.1,
we can sek = 0 in Theorem 2.(b) to obtain the grapke* = (V*, E*) such thain* = [V*| =
VI+ (1 + [log,n|)+ 1 = n+ |log,n| + 2 and sdimG*) = Mnc(G). By our assumption, we
can compute sdin®*) in O*((rF)o(k))-time algorithm if sdimG) < k. This then provides an

algorithm running irO*((rF)o(k)) = 0*(n°®) time if Mnc(G) = sdim@G) < k, contradicting .

3. Conclusion

In this communication we have shown that the worst-case ctettipnal complexity for com-
puting the strong metric dimension for many graphs behavasianner similar to the minimum
node cover problem. However, several interesting comjmmait complexity questions still re-
main open, such as the following.

e Does the (2- &)-inapproximability result for computing sdii@j hold even wherG is
bipartite and dian®) < 3 ?

e Are there interesting non-trivial classes of graphs foralilédimG) can be computed in
polynomial time ?

¢ In the context of kernelization for parameterized algarighe.g, see [5]), is there a linear
kernel for SrR-Mer-Dim?
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Appendix A. Proof of Theorem 2.1

A proof of Theorem 2.1 is implicit in [18]. For the benefit ofetheader, we provide a self-

contained proof of Theorem 2.1 here using elementary gtagiry.

(a) Letu «% v be a maximal shortest path @&. Suppose that we select neithenor v in a
solution of solution of &-Mer-Dmm onG. Then there exists no nodein our solution of Sr-
Mer-Dim on G such thatx » {u, v}, implying our solution of $k-Mer-Dmm on G is not a valid
solution and thereby showing sdi@) > Mnc(G). To prove sdimG) < Mnc(G), suppose that
we select at least one end-point of every maximal shortéktip&. Consider any pair of nodes
u andv. If at least one ol or v, sayu, is selected in a solution oft&Mer-Dim on G, then

9



u » {u,v}. Otherwisep « v is nota maximal shortest path, and befef»y be a maximal shortest
path containingt andv. Then, we have selected at least onaifr y, sayX, in a solution of
Srr-Mer-Dim on G, andx » {u, V}.

(b) It follows from the construction of that diam@) = 2 since any pair of nodes has a shortest
path of length at most 2 between themyidote that, for any pair of nodesandv, N (u) = N (v)

in G if and only if N(u) = N (v) in G. To show sdimG) < « + Mnc(G), letS c V be the set

of nodes in a minimum node cover @fof cardinality Mnc(G). Consider the set of + Mnc(G)
nodesinS’ = S U {xy, X, ..., X} as a possible solution oft&MEer-DmM on G. To show that this

is indeed a valid solution, consider any pair of nodemndv in G. Then the following simple
case analysis $lices:

e Suppose that at least onewéndyv is x; for somei. Then,S’ 3 x » {u, v}.

¢ Otherwise, suppose that onewandy, sayu, isy (and thuss € V). Select a nodeg; € S’
such thatx, v} ¢ E. Then the shortest path of length 2 frognto v formed by the edges
{xi, y} and{y, v} shows that’ > x; » {u, V}.

e Otherwise, if{u, v} € E then at least one afandyv, sayu, is in S’ andu » {u, v}.

e Otherwise{u, v} ¢ E. Thus,{u, v} € E. If at least one ofi andv, sayu, isinSthenue S’
andu » {u,v}. Otherwise, both ofi andv are not inS, and there are the following two
sub-cases to consider.

— Atleast one ofi andv, sayu, is u; for somei. Then the shortest path of length 2 from
X tov formed by the edgeisq, ui} and{u;, v} shows that’ > x » {u, V).

— Otherwise, Nu) # N (V) in G, which implies that there exists a nodles V such that
U is adjacent to exactly one afandv, sayu. Thus,{u,u’} ¢ E but{v,u’} € E. Note
thatu ¢ S and{u, U’} € E impliesu’ is in S. Then the shortest path of length 2 from
U’ to u formed by the edgegr, v} and{v, u} shows that’ > u’ » {u, v}.

To show sdimG) > « + Mxc(G), letS’ c V be the set of sdin®) nodes in an optimal solution of
Srr-Mer-Div onG. Consider the set of nodes$h= S’ \ {X1, X, . . ., X, y} as a possible solution
of the node cover problem @&. We first show thag is in fact a valid node cover @b. Since
diam@G) = 2, any shortest path i6 is of length at most 2. Consider an edgev} € E and
suppose that both andv are not inS (and thus also not i§’). Since{u,v} ¢ E, the length of
any shortest path betwearandv is exactly 2, and thus no nodkes V\ {u, v} can strongly resolve
the pair of nodes andyv, resulting in a contradiction th& is a solution of $r-Mer-Div on G.
Thus,S is a node cover o& and Mnc(G) < |S|. To show thatS| = |S’| — «, note that:

e Everyx; must belong t&’ since otherwise no node B can strongly resolve the pair of
nodesx; andx; foranyj #i.

e Since every; belongs tdS’, the nodey does not need to belong 8.
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