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Abstract

The rectilinear polygon cover problem is one in which a certain class of features of a rectilinear
polygon of n vertices has to be covered with the minimum number of rectangles included in the
polygon. In particular, we consider covering the entire interior, the boundary and the set of
corners of the polygon. These problems have important applications in storing images and in the
manufacture of integrated circuits. Unfortunately, most of these problems are known to be NP-
complete. Hence it is necessary to develop efficient heuristics for these problems or to show that
the design of efficient heuristics is impossible. In this paper we show:

(a) The corner cover problem is NP-complete.

(b) The boundary and the corner cover problem can be approximated within a ratio of 4 of the
optimum in O(nlogn) and O(n'-®) time, respectively.

(¢) No polynomial-time approximation scheme exists for the interior and the boundary cover prob-
lems, unless P = NV P.
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1 Introduction.

In this paper we consider the rectilinear polygon cover problems, i.e., the problem of covering a cer-
tain class of features of a rectilinear polygons with the minimum number of rectangles. Depending
upon whether one wants to cover the interior, boundary or corners of the given polygon, the prob-
lem is termed as the interior, boundary or corner cover problem, respectively. Little progress has
been made in finding efficient algorithms for covering arbitrary polygons with primitive shapes, and
many such problems are known to be NP-hard [18]. Thus, the rectilinear polygon cover problems
have received particular attention. These problems are also interesting because of their application
in storing images [14], and in the manufacture of integrated circuits [15]. Also, an investigation of
these problems has given rise to special kinds of perfect graphs of interest [16].

Masek [14] was the first to show that the interior cover problem is NP-complete for rectilinear
polygons with holes. Conn and O’Rourke [4] later showed that the boundary cover problem is NP-
complete for polygons with holes, even if the polygon is in general position. They also showed that
the corner cover problem is NP-complete if we require each concave corner to be covered by two
rectangles along both the perimeter segments defining the corner. For a long time the complexity
of this problem was unknown for polygons without holes, until Culberson and Reckhow [6] showed
the interior and boundary cover problems are NP-complete even if the polygon has no holes, and
even if the polygon is required to be in general position.

Since the rectilinear cover problems are mostly NP-hard in general, there has been a lot of
interest in finding exact solutions for special cases of these problems in polynomial time. Franzblau
and Kleitman [9] gave a polynomial time algorithm for covering the interior of a vertically convex
rectilinear polygon with the minimum number of rectangles, which improved a previous result of
Chaiken et. al. [3]. Lubiw [12, 13] gave polynomial time algorithm for the interior cover problem
for a somewhat larger class of polygons, called the plaid polygons. Conn and O’Rourke[4] gave
polynomial time algorithm for covering the convex corners of a rectilinear polygon or horizontal
perimeter segments of a rectilinear polygon in general position.

Regarding approximate solutions, Franzblau [8] analyzed a polynomial-time heuristic for the
interior cover problem which approximates the optimum with a performance ratio of O(log#), where
f is the optimal cover size.

In contrast to the covering problem, the rectilinear polygon decomposition problem (when no
overlapping of rectangles is allowed) has a polynomial time solution for polygons without degenerate
holes [17, 19].

In this paper, we address the interior, boundary as well as the corner cover problems. These
problems have important applications as mentioned before, hence we need to know about the
complexities. Moreover, the motivation behind the study of the boundary or corner cover problems
has been to better understand the covering problems by further exploring the boundary between
those problems which can be exactly solved or efficiently approximated and those for which such
exact or approximate solutions are unknown. [4, 6]. For example, although there is currently no
heuristic known to us that solves the interior cover problem with constant performance ratio, we
show that there exists polynomial-time algorithms with constant performance ratio for both the
boundary and corner cover problems. This may suggest that even though all these problems are
NP-complete, there may be differences in the complexities of efficient approximation algorithms of
these problems.

The rest of the paper is organized as follows:



o In section 2 we state some basic definitions needed to study these cover problems. We also
state the definitions of L-reductions, polynomial-time approximation schemes and the rela-
tionship between them.

e In section 3 we prove that the corner cover problem for rectilinear polygons is NP-complete.

e In section 4 we propose and analyze efficient heuristics for the boundary and corner cover
problems for rectilinear polygons.

e In section 5 we prove that no polynomial-time approximation scheme is possible for the
interior and boundary cover problems unless P=NP.

¢ We conclude in section 6 with some open problems which may be worth investigating further.

2 Preliminaries.

A rectilinear polygon is a polygon with its sides parallel to the coordinate axes. Such a polygon
may or may not have holes, but if the holes are present they are also rectilinear.

We assume that the polygon is given as a sequence of its vertices such that the vertices of the
polygon appear in a clockwise order and those of the holes appear in an anti-clockwise order. This
ensures that the interior of the polygon is always on the right side of the boundary as we traverse
the vertices in the given order. In all subsequent discussions we assume that the given polygon is
simple, i. e., no two non-consecutive edges of the polygon cross each other.

The corners of the given polygon can be classified into convez, degenerate conver and concave
types (fig. 1). A convex corner is a corner produced by the intersection of two consecutive sides of
the polygon which form a 90° angle inside the interior of the polygon. A degenerate convex corner
is produced by the intersection of two pairs of edges forming two 90° angles. The remaining corners
are the concave corners, produced by the intersection of two consecutive edges of the polygon which
form a 270° angle inside the interior of the polygon.

The interior (resp. boundary, corner) cover problem for a rectilinear polygon is to find a set
of rectangles (possibly overlapping) of minimum cardinality so that the union of these rectangles
covers the interior (resp. boundary, corners) of the given polygon. For the corner cover, it is
sufficient that each corner is on the boundary (possibly a corner) of one of the rectangles in the
given set. Note that this differs from a similar problem as defined in Conn and O’Rourke[4] in
which each concave corner of the given polygon has to be covered optimally by rectangles such
that for some ¢ > 0 every point on each of the two perimeter segment defining the concave corner,
within distance € of the concave corner, is covered by a rectangle. The corner cover problem is less
demanding in the sense that it is sufficient for the above condition to hold for at least one of the
perimeter segment defining the concave corner.

Although it is true that any cover of the interior also covers the boundary and any cover of
the interior or boundary also covers the corners, these three cover sizes need not be the same. For
example, in fig. 5 of [3] the optimal corner cover size is 7 but the optimal boundary or interior
cover size is 8, and in fig. 6 of [3] the optimal boundary cover size is 7 but the optimal interior
cover size is 8. However, to our knowledge, there is no result in the existing literature which proves
a tight bound between the relative sizes of these three types of covers in general.



An anti-rectangle set is a set of points inside the given rectilinear polygon such that no two of
them can be covered together by a rectangle which does not contain a part of the exterior of the
polygon (see fig. 1 for an example). Depending upon whether it is an interior, boundary or corner
cover problem, these points can be placed only in the interior, boundary or corners of the given
polygon, respectively. If @ is the size of a cover for one of these cover problems, and « is the size of
an anti-rectangle set for this cover, then it is obvious that # > «. When the cover size is minimum
and the size of the anti-rectangle set is maximum, the equality # = a holds for some special cases
of the cover problems. However, the equality is not true in general for either the interior, boundary
or corner cover problems [3]. Erdés asked if the ratio 8/« is bounded for interior cover problem for
arbitrary rectilinear polygons (mentioned by Chaiken et. al. [3]) and the answer is not known yet
(the best known bound is £ = O(log a) [8]).

Sometimes during the discussion of proofs in sections 3 and 5, we encounter rectilinear polygons
which may have discontinuities in its outer boundary. We will sometime refer to these types of
polygons as open polygons. Also, sometimes we will refer to these discontinuities as the mouth
of the corresponding open polygon. Open polygons are very useful in the sense that they can be
joined to each other through the discontinuities in their boundaries to form a single polygon whose
boundary has no discontinuities.

In all of our discussions later, we assume that the given polygon has no degenerate convex
vertex. This is not a problem for the interior and boundary cover problems, since otherwise the
given problem can always be subdivided into two or more independent subproblems. The heuristic
which we propose for the corner cover problem works with the same performance ratio even if
degenerate convex vertices are allowed.

2.1 L-reductions and Polynomial-Time Approximation Schemes

For any optimization problem A let ¢,,; be the cost of the optimal solution and ¢qppo, be the cost

of an approximate solution produced by a heuristic. Let ¢, = W be the relative error of
the approximate solution for any input of size n. A polynomial-time approzimation scheme (PTAS)
for A is an algorithm that takes as input an instance of the problem and a constant ¢ > 0, and
produces a solution with error €, < € in time polynomial in n [5]. A more detailed discussion of
the related concepts is available in [5, 10].

To assist in our discussion below, we formally state the definition of the d-bounded-degree vertex

cover problem (abbreviated as the VCy problem) as follows:

INSTANCE: An undirected connected graph &' = (V, F) in which every vertex has degree at
most d for some constant integer d (and, hence, |V| —1 < |E| < £|V]).

QUESTION: Find a subset V,,; of V' of minimum cardinality such that such that for every edge
{u,v} € E either u € V,,t or v € V,,; (note that, ¢1|V| < |Vope| < e2|V| for two positive constants
¢1 and cz).

It is well-known that the V' Cy problem is NP-complete for d > 4 even if the graph is planar [10].
However, this does not exclude the possibility of a PTAS for the V(' problem. For this purpose,
we need two more related results as follows.

The class of MAX-SNP problems was defined by Papadimitriou and Yannakakis [20]. They also
defined the concept of an L-reduction between two optimization problems. The definition stated
below is a slightly modified but equivalent version of [20] (similar to the one used by Berman and



Schnitger [2]), and since in this paper we are concerned with minimization problems, we state the
definition for minimization problems only.

Definition 2.1 [2, 20] Let I and Tl be two minimization problems. Then, 1l L-reduces to 1 if
there are three polynomial-time algorithms T4, Ty, T3 and two constants a, 3 > 0 such that

(x) For each instance I of 11, algorithm Ty produces an instance I' = f(I) of I, such that the
optima of I and I', OPT (1) and O PT(I"), respectively, satisfy OPT(I') < aOPT(1).

(xx) Given any solution of an instance I' of " with cost ¢/, algorithm Ty produces another solution
" < of I', and algorithm Ts produces a solution I of Il with cost ¢ (possibly from the solution
produced by Ty) satisfying (¢ — OPT(I)) < (" — OPT(I")).

A minimization problem is MAX-SNP-complete if it is in MAX-SNP and any other problem in
MAX-SNP can be L-reduced to this problem. The following result is proved in [20].

Theorem 2.1 [20] The VCy problem is MAX-SNP-complete for all constants d > 4.

The importance of the class of MAX-SNP-complete problems comes from the following result
proved in [1].

Theorem 2.2 [1] No MAX-SNP-complete problem has a PTAS unless P=NP.

Hence, from the above theorem it follows that to prove that the interior or the boundary cover
problems has no PTAS unless P=NP, it is sufficient to show how to L-reduce the V' problem to
the interior or the boundary cover problem. Note that the impossibility of a PTAS also imply that
there exists a positive constant ¢ such that no polynomial-time algorithm for these problems can
have performance ratio better than ¢ (unless, of course, P=NP).

3 NP-completeness of the Corner Cover Problem.

Conn and O’Rourke [4] proved a version of the corner cover problem to be NP-complete. We call
this as the “notch cover” problem. In this problem, they require each concave corner to be covered
by two rectangles along the two perimeter segments of the polygon defining the concave corner.

The idea of their proof is as follows. They transform the satisfiability problem to the “notch
cover” problem. An arbitrary Boolean expression is simulated by a rectilinear polygon. The polygon
is constructed from component polygons (which are open polygons with specific properties) that
can be covered efficiently if and only if they perform like their Boolean expression components.
A “true” value is represented by a 2 x 1 rectangle and a “false” value is represented by a 1 x 2
rectangle (see fig. 2(a)). If a rectangle is shared by two component polygons, it is counted as
rectangle for each of the two component polygons (see fig. 2(b)).

In their proof, each component polygon may have discontinuities in its boundaries through
which truth values are propagated (by joining different component polygons). Two types of dis-
continuities are distinguished: input discontinuities, which correspond to truth values of variables
propagated into the polygon, and output discontinuities, which correspond to truth values propa-
gated outside of the polygon. If a rectangle extends outside the interior of the polygon through a

[



discontinuity of its boundary, the corresponding truth value of that discontinuity is TRUE; other-
wise the corresponding truth value of that discontinuity is FALSE (see fig. 2(b)). For brevity, we
refer to these discontinuities simply as input and output.

In particular, from their construction it follows that to prove the corner cover problem to be NP-
complete, it is sufficient to show how to construct the following types of component open polygons
in polynomial time:

(a) A length k “wire” open polygon which has one input, one output and which can be corner
covered with k rectangles if and only if its input and output have the same truth values.

b) A “not” open polygon which has one input and one output and which can be corner covered
g
with 5% rectangles (resp. 6 rectangles) if and only if the truth values at its input and output
are complimentary (resp. same).

(e¢) A “crossover” open polygon which has two inputs Iy and I3, two outputs Oy and Oy and which
can be corner covered with 9 rectangles if and only if the truth values of I; and O, and
the truth values of Iy and Oy are identical; otherwise it requires more than 9 rectangles for
covering.

(d) A “switchback” open polygon with one input and one output which can be corner covered
with 7 rectangles if and only if the truth values of the input and the output are identical;
otherwise it requires more than 9 rectangles for covering.

(e) A “true” (“false”) open polygon with one input which can be corner covered with 4 (resp. 3%)
rectangles if and only if the input has a truth value of TRUE (resp. FALSE); otherwise it
requires more than 4 (resp. 33) rectangles for covering.

(f) A “generator” open polygon with one input and three inputs which can be corner covered with
c1 rectangles if and only if all its inputs and outputs have the same truth value; otherwise it
requires more than ¢y rectangles for covering (here, ¢1 is a positive constant).

(g) An “and/or” open polygon with two inputs and two outputs such that the polygon can be
corner covered with ¢, rectangles provided the truth value of one output is the logical AND
of the truth values of the two inputs and the truth value of the other output is the logical
OR of the truth values of the two inputs; otherwise it requires more than ¢y rectangles for
covering (here, ¢4 is a positive constant).

Conn and O’Rourke shows how to construct component polygons of types (a)-(f) (with ¢4 = 11)
for the “notch cover” problem. An examination of their component figures (fig. 4 and 8 of
Conn and O’Rourke[4]) shows that the wire, not, true, false, crossover, and switchback component
polygons for their case work for us also, since optimal notch covers of these component polygons for
various truth values depend on appropriate matching of the convex corners and hence correspond
to optimal corner covers as well. However, their generator and and/or components fail to satisfy
the requirements for corner cover. For example, in their generator component if rectangle A is used
to cover the convex corner a then rectangle B is unnecessary, since the concave corner b is already
covered from one side (fig. 2(c)).

The idea for modification of the generator component is to add a new pair of concave corners
adjacent to each previous concave corner such that



(i) These new pairs of concave corners are not covered by any “essential” rectangles which must
occur in any optimal corner cover.

(ii) Any rectangle that covers one of these new concave corners (and possibly some other corners)
can always be extended or modified to cover both of these concave corners (along with the
other covered corners) as well as the two original concave corners adjacent to them. For
example, in fig. 2(d) any rectangle that covers corner # can always be extended to cover
corners ¥, z and w.

The modified generator component is shown in fig. 2(d). Because of the properties (i) and (ii)
above, any corner cover can easily be extended without increasing the number of rectangles into a
corresponding “notch cover” and vice versa. Hence, the following lemma can be proved using an
argument similar to the that used in Lemma 5.4 of Conn and O’Rourke [4].

Lemma 3.1 The modified generator open polygon can be covered with 28 rectangles if and only if
all of the wires connected to it have the same truth value (extra 17 rectangles come due to additional
17 “essential” rectangles).

The modified And/Or open polygon is shown in fig. 3. In fig. 3(ii) the “essential” rectangles
which must appear in any optimal corner cover are shown shaded. In this polygon if the convex
corner a is covered together with the convex corner b, and the convex corner ¢ is covered together
with the convex corner d (corresponding to when X=Y=FALSE), then the concave corners of all
the holes can be covered by 3 additional rectangles (fig. 3(b)(v)), and any other way of covering
these concave corners will use more rectangles in the total cover. However, if the corner a(resp.
¢) is not covered with b(resp. d) (corresponding to the remaining 3 combinations of input truth
values), then it is profitable to cover the concave corners €, ¢ and ¢ (resp. a, 3 and ) of the holes
with the same rectangle which covers a(resp. ¢) (fig. 3(b)(iii)(iv)(vi)), since this allows us to save
% rectangles at one or both of the outputs. By an exhaustive case analysis for various input truth
values and the corresponding size of optimal covers needed for them the following lemma can be

verified (optimal covers for various input truth values are shown in fig. 3(iii)-(vi)).

Lemma 3.2 The modified And/Or polygon can be covered with 14 rectangles if and only if the
AND (resp. OR) output has the same truth value as the logical AND (resp. OR) of its input wires.

Since now we have all the different types of component polygons available to us, the following
theorem follows.

Theorem 3.1 The problem “are there k rectangles that cover all the corners of an arbitrary rec-
tilinear polygon?” is NP-complete.

4 Heuristics for the Boundary and Corner Cover Problems.

The boundary cover problem was already proved to be NP-hard, even if the given polygon has no
holes [6]. Also, we proved in the previous section that the corner cover problem is NP-complete.
However, we show that it is possible to approximate both these problems with constant performance
ratio.

In the following discussion, we assume, without loss of generality, that the vertices of the given
polygon have integer coordinates (i.e.,placed on a grid).



4.1 Heuristic for the Boundary Cover Problem.
The following heuristic guarantees a performance ratio of 4.

Input: A rectilinear polygon P, possibly with holes.
Output: A set of rectangles which cover the boundary of P.
Algorithm:

For each edge e = (a,b) of P create an adjacent rectangle of width 1. The side containing
e is termed as the principal side of the rectangle. First, extend this rectangle in the
direction of the edge (i. e., if this edge is horizontal (resp. vertical) extend in the
horizontal (resp. vertical) direction) maximally until it hits the boundary. Then, extend
the rectangle in the other direction maximally (see fig. 4(a)). Delete any repeated
rectangles. The set 5 of the remaining rectangles constitutes an approximate cover.

Lemma 4.1 The performance ratio of the above heuristic is 4. It runs in O(nlogn) time.

Proof. Rectangles in any optimal cover can be associated with the principal sides of the rectangles
of the cover generated by the heuristic such that no principal side is associated to more than one
rectangle of the optimal cover, each principal side is associated to some rectangle in the optimal
cover, and each rectangle in the optimal cover is associated to at most 4 principal sides. Hence,
we have a performance ratio of 4. The example in fig. 4(b) shows that this performance ratio is
tight asymptotically. The rectangles needed by the heuristic can be constructed using a sweep-line
algorithm in O(nlogn) time.O

4.2 Corner cover for polygons with holes.
The following heuristic guarantees a performance ratio of 4.

Input: A rectilinear polygon P, possibly with holes.
Output: A set of rectangles which cover the corners of P.
Algorithm:

Form the two sets 5 and T; S contains, for each horizontal segment e of P, an adjacent
rectangle of width 1 of maximal horizontal extent (this is the principal side for this
rectangle), and 1" contains, for each vertical segment e of P, an adjacent rectangle of
width 1 of maximal vertical extent (the principal side is defined similarly). Now, form
a bipartite graph G = (SUT, F), where E' = {(y,z) € 5 X T | principal sides of y and =
share a corner } (see fig. 5 for an example). Construct a minimum vertex cover R of ¢¢
using maximum matching. The set of rectangles R constitutes our approximate cover.

Lemma 4.2 The above heuristic has a performance ratio of 4. It runs in O(n'-%) time.

Proof. FEach edge of GG is associated with a corner of P. Therefore, being a vertex cover of (7 is the
same as being a corner cover of P. On the other hand, given a corner cover (', we may replace each
rectangle z of C' with at most four elements of SUT, so that each corner covered by z is covered by
the principal sides of the replacement rectangles. This means that a vertex cover of G is no more
than 4 times the size of the optimal cover. The running time is dominated by the time taken to



find the vertex cover for a bipartite graph. The graph has at most O(n) vertices and also at most
O(n) edges, since each edge of the graph corresponds to a corner of the given polygon P. Hence, it
takes only O(n!-%) time for the minimum vertex cover using the efficient matching algorithm for a
bipartite graph [11]. The tightness of the performance ratio follows from the same example shown
in fig. 4(c) for boundary cover. O

Remark: When the given polygon has no holes, it is possible to design a heuristic which runs
in O(nlogn) time and has a performance ratio of 2. However, the analysis of the heuristic is quite
lengthy and interested readers are referred to [7] for further details.

5 Impossibility of Approximation Schemes.

Culberson and Reckhow [6] showed the NP-hardness of the interior and boundary cover problems for
polygons without holes by reducing the 3-SAT problem to these problems. However, their reduction
introduces quadratically many rectangles in the optimal solution and hence violates condition (%)
of an L-reduction as discussed in section 2.1. Similarly, it can be easily seen that condition (%)
of an L-reduction is also not maintained by their reduction. In this section we show that the V' Cy
problem can be L-reduced to the interior or boundary cover problems. Hence, from the discussions
in section 2.1, it follows that a PTAS for these covering problems is impossible, unless P = N P.

We first consider the interior cover problem. The overall scheme of our approach is shown in
fig. 6. We use a gadget for every vertex and for every edge. Beams (rectangles) coming out of a
gadget indicate that this vertex participates in vertex cover. Using polygonal boundary segments,
the beams are first translated, then permuted appropriately, again translated and finally enter the
edge-gadgets so that the whole structure becomes a closed rectilinear polygon. Each edge gadget
is coupled with two beams and represents an edge between the two vertices which correspond to
the two beams. We need to show how to ensure that a vertex cover of the graph correspond to the
interior cover of the constructed polygon and vice versa.

Next, we describe our construction in more details.

Beam machine: Fach beam machine is an open polygon whose interior can be covered optimally
with 6 rectangles with only one rectangle extending through the discontinuity of its boundary
in horizontal or vertical direction (see fig. 7). Depending upon whether the rectangle extends
out horizontally or vertically, we say that the beam machine is using its horizontal or vertical
beam, respectively. In each of the two optimal covers there is an uncovered square adjacent
to its boundary (shown in fig. 7 by thick lines). Any other cover of the beam machine must
necessarily use more than 6 rectangles. This is the same open polygon used by Culberson

and Reckhow [6].

Vertex gadget: The vertex gadget for a vertex v is shown in full details in fig. 8 and fig. 9. It
consists of d beam machines when d is the degree of v (d = 3 in the figure). There is one
additional beam machine at bottom right, and a notch at the extreme left bottom, which
forces this addition beam machine to use its horizontal beam. The background of this gadget
can be covered optimally with 2d + 1 rectangles, thus leaving out d uncovered squares (fig.
9). These squares can be covered by the horizontal beams of the d beam machines producing
an optimal cover of the vertex gadget, or by one more additional rectangle producing a non-
optimal cover of the vertex gadget. One motivation of covering the interior of the vertex

10



gadget with a non-optimal cover is that this allows the beam machines in the vertex gadget
to use their vertical beams, which may be used to cover parts of other polygonal regions which
are connected to the vertex gadget. In particular, this gadget has the following properties:

(a) There is an optimal cover of this gadget with 8 4 7 rectangles when each beam ma-
chine uses its horizontal beam. This corresponds to the case when this vertex does not
participate in a vertex cover.

(b) If any one of the beam machines uses its vertical beam then 8d+ 8 rectangles are necessary
and suflicient to cover this gadget. The same property holds when more than one
beam machine uses their vertical beams. This corresponds to the case when this vertex
participates in a vertex cover.

For each of the covers described above, it is also possible to place an equal number of anti-
rectangle points in the interior of the polygon.

Edge gadget: This gadget is shown in fig. 10. If either of its two input beams are used then it
can be covered optimally with 4 rectangles, otherwise it requires at least 5 rectangles. This
is same as the inverter structure of [6].

Translation stage: It consists of e pairs of beam machines as shown in fig. 11, where e is the
number of edges in the graph. A joint rectangle is the horizontal beam which is shared by an
aligned pair of beam machines. For optimal cover, if the “incoming” vertical beam for the left-
side beam machine of the aligned pair is present (i. e., the corresponding vertex participates
in the vertex cover), then the “outgoing” vertical beam from the right-side beam machine of
the aligned pair should be used for optimal cover; otherwise the common horizontal beam
(i.e., the joint rectangle) between must be used by the aligned pair for an optimal cover of
the interior of this open polygon. We know, from our discussion of beam machines before,
that each beam machine has an uncovered square near its mouth depending upon whether
its horizontal or vertical beam has been used. Hence, the unique optimal cover for the
“background” of this stage (covering the staircases with the uncovered squares at the mouth
of the beam machines) requires 2e rectangles. This is a slightly simplified version of the joint
open polygon used by Culberson and Reckhow [6]. There are two translation stages, one
connecting the vertex gadgets to the rest of the polygon, and the other one connecting the
edge gadgets to the rest of the polygon. They are necessary so that the optimal covering of
the rest of the polygon does not affect the covering of the vertex gadgets and the edge gadgets
in any significant way.

Permutation stages: These open polygons are needed because the order in which the beams
come out of the vertex gadgets is not necessarily the same as they should arrive at the edge
gadgets (i.e., we need to permute the beams). For example, consider a graph G with vertices
vy, v2,v3 and edges {vy,v3}, {v2,v3}. There is one beam « out of vy, one beam 3 out of
vg, and two beams 4 and & out of vs (see fig. 12). The beams start in the order a, 3,7,6
and must be permuted to produce the sequence a,7, 3,48, so that the edges can be realized
(see fig. 12). Unfortunately, the component polygons used by Culberson and Reckhow [6]
cannot be used without violating the constraints of L-reduction. Hence, we use a different
approach. In essence, we mimic the following algorithm to generate the required permutation

Y = (y1,92,- > Un) = Xo = (T5(1), To(2)s - - -» To(n)) Of the input sequence (w1, 29,...,2,):
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forz=1ton do

Yi = To(s)

More precisely, there are at most p < 2e permutation stages when e is the number of edges
in the graph. Fach stage consists of staircases and holes as shown in fig. 13. In the i*"
permutation stage we put the i beam from left “in the required permutation” in its correct
place (i.e., do what the i*" iteration of the above algorithm does). The right-side hole is placed
appropriately to make it impossible for the right-staircases of all the previous permutation
or translation stages to be covered by any rectangle which covers optimally the background
this or later stages. If an input beam is present and covers one notch of the left-side hole, the
vertical beam of the beam machine at the right should be used for the optimal cover (see fig.
14), otherwise, for optimal cover, the horizontal beam of this right-side beam machine covers
the notch of the right-side hole (and, hence, its vertical beam cannot be used in an optimal
cover). In all we need 8 rectangles to cover each stage, because, there are 8 anti-rectangle
points, and none of these anti-rectangle points can be covered by rectangles covering those of
previous or later stages. The details of the properties of this stage are given in Lemma 5.3
below.

First, we state the Lemmas which state the properties of the various stages discussed above.

Lemma 5.1 A vertex gadget can be covered optimally only if all of its vertical beams are not
“used”.

Proof. Follows from the above discussion of the vertex gadget. O

Lemma 5.2 For each translation stage the following are true:

(a) It requires 2e rectangles to cover its staircases along with the uncovered squares of its beam
machines (i. e., its background).

(b) If the incoming vertical beam to a left-side beam machine is present, then for an optimal cover
the outgoing beam vertical of the corresponding aligned right-side beam machine should be
present. However, if the incoming beam is not present, then for optimal cover the common
horizontal beam of these aligned pair of beam machines must be used.

(¢) The beam machines can always be covered optimally, if the rule stated in part (b) above is

followed.

(d) The optimal cover of the background of this stage cannot be affected by any rectangle that
participates in an optimal cover of vertex or edge gadgets or other stages.

Proof.
(a), (b), (c¢) Follows from the discussion in the description of the translation stage.

(d) No rectangle that covers part of vertex gadget can cover the right-upper staircases of the
first translation stage. Same result is true about rectangles of other stages and those in the
translation stages also. Similarly, no rectangle of edge gadget or other stages can cover the
left-lower staircases of the last translation stage.O
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Lemma 5.3 Consider the i'" permutation stage (stage i). Then the following are true (fig. 15):

(a) Stage i has 8 anti-rectangle points (for its background cover) which cannot be covered together
with those of any other stage. Also, 8 rectangles are sufficient to cover the background of
stage 1.

(b) Let the two notches of the left hole be ny and ny and that of right hole be ns (fig. 15). Then,

(1) if ny is covered by the incoming beam, then for optimal cover ny, ng and the three corners
of the left staircases must be covered by rectangles which cover the 5 corners of the right
staircases and hence the right-side beam machine can use its vertical beam.

(i1) if ny is not covered by the incoming beam, then for optimal cover notches ny,ny and
the three corners of the left staircases must be covered by the rectangles which cover the
five corners of the right staircases and ns is covered by the horizontal beam of the beam
machine (and hence the outgoing vertical beam is absent).

(e) Anti-rectangle points for covering the background of stage i cannot be covered together with
those of any other stage.

(d) The stage i places the it" beam from the left in the required permutation into its correct position.
Proof.

(a) 5 anti-rectangle points placed in 5 corners of the right staircases are not visible to any other
stage (since the right-side hole of stage i+ 1 prevents their visibilities to remaining stages). The
leftmost anti-rectangle point is placed between the left hole and the boundary directly above
the left staircase of the next stage and hence cannot be covered with similar other points
of other stages. Similar argument holds for the placement of the rightmost anti-rectangle
point also. The middle anti-rectangle point is always placed between the two holes of this
stage below the right-side hole of the previous stage, except for stage 1, which guarantees its
isolation from other permutation stages. The middle anti-rectangle point for stage 1 is placed
between the two holes anywhere.

(b) (i) We show by case analysis that it is true.
Case 1. One or more of the 3 left staircases are not covered by right staircases. Then,
we need at least 6 rectangles.
Case 2. One or both of ny or n3 not covered. Then, we need at least 6 rectangles.
(ii) We show by case analysis that it is true.
Case 1. 5right staircases cover 3 left staircases, ny and ng; ng is covered by the rightside
beam machine. Then we need 5 rectangles (optimal case).

Case 2. One or more of 3 left staircases are not covered by right staircases. Then, we
need 6 rectangles.

Case 3. Either of ny or ng is not covered by right staircases. Then, we need at least 6
rectangles.

13



(¢) Follows from the fact that none of the anti-rectangle points in the optimal cover can be seen
by any other stage.

(d) Follows from the discussion in the description of permutation stages.O

Lemma 5.4 Consider the edge gadgets and their connection to the last translation stage (fig. 16).
The background of the edge gadget needs 2e — 1 rectangle to cover optimally independent of any other
stage (where e is the number of edge gadgets). This optimal cover of the background of the edge
gadgets is not influenced by the rectangles in the optimal cover of the backgrounds of the previous
stages. If an edge gadget gets one or two incoming beams, it needs only 4 more rectangles to cover
it.

Proof. Rectangles covering vertex gadgets or stages 1 to p cannot extend to the edge gadgets. The
beam rectangles in the last translation stage can extend to cover the edge gadgets (see fig. 16),
but these rectangles are not part of the optimal cover of the background of this last translation
stage. 2e — 1 rectangles are necessary and sufficient to cover the background of the edge gadget
(the corresponding anti-rectangle points are placed as shown in fig. 16). O

Now that we have discussed each component polygon individually, we need to show how to
connect them appropriately to produce a closed polygon. We have already shown how to connect
successive permutation stages and how to connect the last translation stage to the edge gadgets.
Connecting the first translation stage to the first permutation stage and connecting the last permu-
tation stage to the last translation stage is essentially similar to connecting successive permutation
stages. What remains to be shown is how to connect the vertex gadgets to the first translation
stage. This is discussed in the following Lemma.

Lemma 5.5 The part of the polygon which connects the vertex gadgets to the first translation stage
needs v rectangles to cover it independently of the optimal cover of the background of any other stage
or gadgets, where v is the number of vertices of the graph. These rectangles do not influence the
optimal cover of the remaining part of the complete polygon.

Proof. We can place anti-rectangle points at the joints of the vertex gadgets to the first translation
stage, and none of these anti-rectangle points can be covered together with those in the covers of
the vertex gadgets, the translation stage or any other stages (see fig. 17).0

We show, in fig. 18, the complete polygon for a simple graph with two vertices.

Lemma 5.6 Any covering of such a constructed polygon, corresponding to a given graph, can be
transformed in polynomial time (in the size of the given graph) to another cover with the following
properties without increasing the number of covering rectangles:

(a) Fither all the vertical beams of a vertex gadget are used or none is used.

(b) Fach edge gadget uses atleast one of its two incoming vertical beams from the previous trans-
lation stage (and hence needs 4 additional rectangles for its optimal cover).

(¢) The background of the vertex gadgets, translation stages, permutation stages and edge gadgets
are covered with the optimal number of rectangles.

Proof.
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(a) If only some vertical beams are used for a vertex gadget we can as well use all the vertical beam
rectangles without increasing the number of covering rectangles for the vertex gadget. Then,
we keep moving successively from one stage to another till we reach the edge gadgets, turning
off the common horizontal rectangles of the corresponding aligned pair of beam machines for
this beam at each stage off and using the incoming and outgoing beam rectangles. This enables
us not to use more rectangles than before. Finally, surely we do not use more rectangles at
the edge gadget (we will use one less if it had no incoming vertical beam rectangles).

(b) Assume this is not the case. We choose arbitrarily one of the two beams of the edge gadget
to use. Hence, we save one rectangle at the edge gadget. Now, we keep moving from the
edge gadget through successive stages towards the vertex gadgets in a manner similar to as
described in part (a) above. We may use one more rectangle when we reach the vertex gadgets
if it was not using its beams, but the gain of one rectangle at the corresponding edge gadget
compensates.

(c¢) Once we have done the transformations needed for parts (a) and (b) above, we can select
the necessary background covers depending on whether the incoming vertical beams of a
particular stage are used or not as outlined in Lemma 5.5, Lemma 5.2(part (a)), Lemma 5.3
and Lemma 5.4, since the optimal covers of these parts of the polygon are independent of
each other and depends only on the presence or absence of incoming vertical beams.

It is obvious that the transformations in parts (a), (b) or (¢) above takes polynomial time.O

Lemma 5.7 Let G = (V, E) be a connected graph in which the degree of any vertex is at most
a constant d > 0 and P be the polygon constructed from it by the above procedure. Let p be the
number of permutation stages used be (0 < p < d- |V |). Then, there exist four positive constants
aq, a0, a3 and a4 such that the following two results hold.

(a) Any vertex cover of G of size m corresponds to a interior cover of P of size ay- |V | +agy 4+ m.

(b) Given an interior cover of P of size 8y, we can transform this cover in polynomial time to
another cover of size 8 < 0y such that this transformed interior cover of P of size 8 corresponds
to a vertex cover of size 8 — (a3 - |V]+ ay).

Proof.

For the purpose of counting we always associate the outgoing beams for a particular stage with
that stage. That is, for example, the outgoing beams for the vertex gadgets are counted in the
total number of rectangles needed for the vertex gadgets.

(a) We need

(1) |V | polygons to cover the joint of vertex gadgets stage 0, by Lemma 5.5,

(ii) 2- | £ | +11- | E'|= 13-| F | polygons to cover background and polygons of translation
stage 0, due to the properties of beam machines and Lemma 5.2,

(iii) 8-p+6-p = 14 - p rectangles to cover backgrounds and polygons of permutation stages
1 to p due to the properties of beam machines and Lemma 5.3,
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(iv) 2- | | +11- | F |= 13- | E | polygons to cover translation stage p + 1, due to the
properties of beam machines and Lemma 5.2,

(v) 6-| E| —1 polygons to cover the edge gadgets and its background, due to the properties
of edge gadgets, Lemma 5.4 and Lemma 5.6(part(b)),

(vi) Each vertex participating in the vertex cover needs at most (7-d + 8) rectangles, others
need at most (7-d+7) rectangles, due to the properties of vertex gadgets. Hence, the total
count for the polygons in the vertex gadgets is at most m-(7-d+8)+(|V | —m)-(7-d+7).

The result now follows by adding up all of the above, and noting that p < d - |V| and
B < 47,

(b) The Proof is similar to (a) above. We need to select a vertex in the vertex cover if and only if
the corresponding vertex gadget in the polygon uses all its vertical beams.O

Theorem 5.1 The VCy problem can be L-reduced to the interior cover problem for rectilinear
polygons.

Proof.  Given a graph GG = (V, F') as an instance [ of the V'C; problem, we need to exhibit three
polynomial-time algorithms 71, T3, T5 and two constants a, § > 0 such that conditions (%) and ()
of an L-reduction is satisfied. Let Ty be the transformation to construct the polygon I’ from G as
outlined in this section.

First, consider condition (%). From the discussion in section 2.1, we know that ¢y - |V| <
OPT(I) < ¢y -|V] for two positive constants ¢; and ¢y. It is trivial to see that OPT(I") > ¢3 - |V|
for some positive constant ¢ (just consider covering the vertex gadgets). Hence, using Lemma 5.7,
it follows that there exists two constants ¢3 and ¢4 such that ¢z - [V| < OPT(I') < ¢y - |V|. Hence,
there exists a constant a > 0 such that OPT(I") < aOPT(I).

Next, we consider condition (xx). Given any solution of the interior cover problem of I” of size
61, let T5 be the transformation needed to satisfy conditions (a), (b) and (c¢) of Lemma 5.6. Let
6 < 6y be the size of this transformed solution. Hence, by part (b) of Lemma 5.7, we have an
algorithm 75 to find a vertex cover of size m = 6 — (a3 - |V| 4+ a4) for two constants as and ay.
Hence,

m—OPT(I) = 0—a3-|V|—ay—O0PT(I)
(0—OPT(I))—a3-|V]|—ay

¢5- (0 —OPT(I') —as-|V|— a4 for some constant cs
36— OPT(I)

AVANI

Hence, we have proved the following result.

Theorem 5.2 No polynomial-time approximation scheme exists for the interior cover problem for
rectilinear polygons, unless P=NP.

A careful examination of our construction shows that all the results hold for boundary cover
also, in particular we can always place all the anti-rectangle points on the boundary of the polygon.
Hence, we also prove the following result.
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Theorem 5.3 No polynomial-time approzimation scheme exists for the boundary cover problem
for rectilinear polygons, unless P=NP.

Unfortunately, the above reduction does not hold for the corner cover problems, some of the
component polygons do not have the necessary covering properties when the corner cover problem
is considered.

6 Conclusion and Open Problems.

We have proposed efficient heuristics for the boundary and corner cover problems for rectilinear
polygons. We have also shown that the corner cover problem for rectilinear polygon is NP-complete,
and it is impossible to obtain a polynomial-time approximation scheme for the interior and boundary
cover problems for rectilinear polygons, unless P=NP. However, the last result does not exclude the
possibility of designing heuristics with constant performance ratio for the interior cover problem.
Franzblau[8] proposes a sweep-line heuristic that guarantees a constant performance ratio if the
polygon has no holes, but the upper bound for the performance ratio proved there is O(log#) (where
6 is the optimal cover size) when the polygon has holes. The following problems still remain open
and may be worth investigating further:

o Let a and 6 be the sizes of the maximum-cardinality anti-rectangle set and minimum cardi-
nality cover size for the interior cover of an arbitrary rectilinear polygon with holes. Is it true
that g < ¢ for some positive constant ¢?

e Can we prove a better upper bound of the performance ratio for the sweep-line heuristic for
the interior cover problem when the given polygon may have holes?
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Figure 1: In this rectilinear polygon A is a convex corner, C' is a concave corner, B is a degenerate
convex corner and (X,Y) is an anti-rectangle set (the points are shown magnified)

©

Figure 2: (a) Rectangles corresponding to TRUE and FALSE values. (b) The rectangle B is counted
as 1 rectangle, but the rectangle A is counted as % rectangle in the cover of this component. (c)

The original generator component of Conn and O’Rourke. (d) The modified generator component.
(e) “Essential” rectangles in this modified component are shown shaded.
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(iv) U ()

Figure 3: (i) The modified And/Or component (ii) The “essential” rectangles (shown shaded) (iii)-
(vi) “Non-essential” rectangles in the optimal covers of the And/Or component for various truth

values of their inputs (T=TRUE, F=FALSE)
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Figure 4: (a) ab is the principal side of the rectangle R (b) A polygon with 4k staircases, in which
k? holes are placed in the k? dotted square regions shown such that no two sides of the polygon
(including both the outer boundary and boundary of the holes) are vertically or horizontally aligned.
(¢) The polygon is shown for k = 3, together with a rectangle (shown dotted) in its optimal boundary
cover. (d) Four polygons in our heuristic which will be generated from the four principal sides of the
optimal rectangle shown in (c). The optimal cover uses (k + 1)2 rectangles, whereas the heuristic
uses 4k* + O(k) rectangles.

Figure 5: X and Y are two vertices of the graph and (X,Y') is an edge
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vertex 2

vertex n

beam
<~ rectangle

Trandlation stage (stage 0)

Permutation stages (stage 1,2,...,p)

Trandation stage (stage p+1)

edge 1

edge 2

@

Figure 7: A beam machine and its two optimal covers.
shown by thick lines. In the optimal cover of (ii) (resp. (iii)) the beam is coming out horizontally

(resp. vertically)

edgee

Figure 6: The overall scheme

(b)
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Figure 8: (a) A vertex gadget for a vertex of degree d (the figure illustrates the case of d = 3).

Uncovered
square

Figure 9: (a) Optimal rectangle cover of the background (i.e., the part of the polygon outside the
beam machines) of the vertex gadgets. The squares shown by thick lines are the “uncovered” squares.



(@ (b)
Figure 10: (a) An edge gadget. (b) Its two optimal covers.

incoming
beam

right staircase

right-side beam
machines

w
X
common
horizontal
beam
Left-side beam
machines

\ outgoing

beam

left staircase

Figure 11: A translation stage for 3 beams. The uncovered squares near the mouth of the beam
machines are shown by thick lines. Two incoming beams are present and hence one pair of aligned
beam machines use their common horizontal beams. For an optimal cover of the background of
this stage, corners a, b and ¢ must be covered with the uncovered squares w, x and y using three

rectangles, and similarly corners a’, V' and ¢’ must be covered with the uncovered squares w', ' and
y' using three rectangles.
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Permutation Stage

a V% B 1
Edge Edge
Gadget Gadget

Figure 12: An example showing why permutation stages are needed.

i-th permutation stage

(i+1)-th
permutation
stage

e e e e e L

i -

Figure 13: Two consecutive permutation stages.
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X5(1)

X5(1+1)

Figure 14: The beams w,(;y and x,(;41) which are permuted are shown. Note that there may be
many vertical beams passing downwards between Toi) and x,(;41) as well as to the right of (1)
they are not shown for clarity and they will not be affected by these two stages.
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left
staircase %o

¢

right staircase

Figure 15: The " permutation stage. The incoming beam is shown to be present. Points
a,b,c,p,q,r, 8,1t are the anti-rectangle points placed. The point b is placed below the right-side
hole of the previous stage.
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Last translation stage
b
a|
Cc
First edge
gadget
Second
edge gadget

Figure 16: Two edge gadgets for a graph having at most two edges. a,b,c are the anti-rectangle
points in the optimal background cover of the edge-gadgets. The background of the edge gadget is
shown shaded.
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Trndation Stage %Lﬁ

Figure 17: Joining vertex gadgets (for a graph having 2 vertices) to the first translation stage
(anti-rectangle points are marked by X).
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First trandlation stage

Permutation stage
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Figure 18: The complete polygon for a graph G = (V, E) with V = {u,v} and F = {{u,v}}.
Although there is no need for a permutation stage, we have used one permutation stage to illustrate
how it can permute the beams. The beams for the vertices u and v are shown by thick and dotted
lines, respectively. Both the vertices participate in the vertex cover since both the beams are used.
Due to finite resolution of the plotting device, some aligned edges may seem a little offset.
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