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Abstract Security issues are becoming more and more important to activities of
individuals, organizations and the society in our modern networked computerized
world. In this chapter we survey a few optimization frameworks for problems re-
lated to security of various networked system such as the internet or the power grid
system.

1 Introduction

Security issues are essential to activities of individuals, organizations and the soci-
ety as a whole in our modern networked computerized world in healthcare, power
management, online purchase, banking, intra-business transactions and many other
similar activities in distributed-computing settings. A typical activity in such a net-
worked system involves a set of (digital) transactions between various components
(“agents”) of the system to perform a specific task such as online purchase of an
item or submitting an online application for a job, and requires interaction with var-
ious computer servers/databases and encryption services. Any compromise of these
activities due to other malicious agents within the system or outside may lead to
severe consequences such as disruption of critical infrastructure or national econ-
omy, and thus making sure that these activities are secure against such attacks is
of paramount importance. The significance of maintaining security of networked
systems has in fact led to organization of many security competitions, such as the
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international Capture The Flag[24] for researchers to discuss, discover and validate
new solutions for security issues.

In this chapter, we survey several optimization problems related to the security
issues in distributed networked systems. We start by surveying some of the grand
mathematical challenges in developing and analyzing security of real-world net-
worked systems in Section 2. Then, in the remaining sectionswe survey several
optimization problems related to maintaining and evaluating securities of such sys-
tems.

2 Mathematical and Statistical Challenges In Networked
Security

Some of the major mathematical and statistical challenges for security issues in
networked systems are discussed in the two white papers [7, 18]. Based on these
and other white papers, at least the following four possiblechallenge areas can be
identified:

Data acquisition: The challenge here is to generate accurate trace and log data
while maintaining their integrity throughout the lifetimeof their intended use
for scientific analysis and verification since lack of publicdata sets is a signif-
icant barrier in current research [19]. This challenge is also related to the so-
called “utility versus privacy trade-off” issue [21] since making data publicly
available may pose confidentiality and privacy issues.

Modelling networks: This challenge refers to the difficulties in developing math-
ematical network models that accurately model real-world networks and sta-
tistical methods for comparing networks (e.g., see [9]). For example, a typical
question could be whether the distribution of degrees of nodes over the entire
network is governed by power-laws or its variants?

Detection and response to security threats:This challenge refers to the diffi-
culty in formulating and solving problems such as maliciouscode or behavior
detection that provide long-term proactive approach to network security. Re-
search methods for overcoming this challenge may involve techniques from
diverse areas of mathematics or computer science such as dynamic data mod-
elling methods, optimization methods, machine learning methods and methods
for uncertainty modelling via probabilistic models.

Modelling network dynamics: This challenge refers to developing appropriate
mathematical models to understand the mechanism of spread of infections (i.e.,
time evolution of malicious attacks) in networks. Ideas from game theory or
dynamical systems may be particularly useful in this context.
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3 Application Of Convex Optimization In Network Security

In this section, we review an application of convex or concave optimization methods
by Vamvoudakiset al. [23] to model the complex behavior of a malicious attacker
in a networked system. The model was incorporated in a cyber security advisory
system to demonstrate its effectiveness. The optimization problem is formulated
from the point of view of a malicious attacker, i.e., the goal is to find an optimal
allocation of available resources for an attacker to maximize the potential damage.

We start by specifying amodelof the damage caused by a (malicious) attacker of
the given network. In the model,t ∈ {1,2, . . . ,T} indicates the discrete time variable.
Assume that there are a set ofS services, indexed by 1,2, . . . ,S, in our networked
system that may be attacked for disruption. The following parameters are used in
the model:

us
ARt
≥ 0: A scalar quantifying theamount of attack resources(e.g., amount of

money devoted to attack a particular resource) used by the attacker to attack
servicesat timet.

xs
PDt
≥ 0: A scalar denoting theamount of potential damagecaused by attacks. In

generalxs
PDt
= f s

t

(
us

ARt

)
for some appropriate functionf s

t : R+ 7→ R+.

gs
t : gs

t

(
us

ARt

)
denotes the probability that the damagef s

t

(
us

ARt

)
is realized as a result

of the attackxs
PDt

.

ys
TDt

: ys
TDt
= gs

t

(
us

ARt

)
f s
t

(
us

ARt

)
is theexpected damagecaused byus

ARt
.

yTD: yTD =
T∑

t=1

S∑
s=1

ys
TDt

is the total expected damage.

UTR: This is the total budget of attack resources available to the attacker.

In order to ensure that the resulting optimization problemsare convex or concave,
Vamvoudakiset al. [23] makes the following assumptions that are justified for real
applications of the model:

• f s
t is a linear function,i.e.,

f s
t

(
us

ARt

)
= as

t +bs
t us

ARt
(1)

for some constantsas
t ,b

s
t ∈ R

+. The constantas
t models the extent of damage

without any attack whereas the constantbs
t models the extent of damage per

unit of attack resources employed. The equation has the realistic implication
that an increase in attack resources leads to an increase in the potential damage
caused.

• gs
t is a linearly increasingfunction projected to the interval [0,1], i.e.,

gs
t

(
us

ARt

)
=



0, if ds
t us

ARt
> cs

t

cs
t −ds

t us
ARt
, if cs

t −1≤ ds
t us

ARt
≤ cs

t

1, if ds
t us

ARt
< cs

t −1
(2)



4 Bhaskar DasGupta and Venkatkumar Srinivasan

for some given constantscs
t ,d

s
t ≥ 0. The constantcs

t models the probability
of damage realization without any attack whereas the constant ds

t models the
decrease of the probability of damage realization per unit of attack resources
employed. Note that this choice ofgs

t models the realistic assumption that an
increase in attack resources decreases the realization probability of the poten-
tial damage since a large-scale attack is much more likely totrigger defense
mechanisms.

Now we can consider two different optimization problems for optimal allocation of
available resources by an attacker to maximize the potential damage depending on
the availability of relevant data.

Optimization problem when all relevant damage data is knownWhen all the
relevant damage data,i.e., all the numbers in

{
as

t ,b
s
t ,c

s
t ,d

s
t |1≤ s≤ S,1≤ t ≤ T

}
, are

knowna-priori, it is easy to see that the optimal attack resource allocation values
(i.e., theus

ARt
’s) that maximizes the total expected damageyTD can be obtained by

solving the following constrained optimization problem:

maximize yTD

subject to
T∑

t=1

S∑
s=1

us
ARt
≤ UTR

us
ARt
≥ 0, 1≤ s≤ S, 1≤ t ≤ T

(3)

Although in general (3) may be difficult to solve, Vamvoudakiset al. [23] show that
the special choices off s

t in (1) andgs
t in (2) ensure that the above optimization prob-

lem is equivalentto solving the followingconcave maximization(or, equivalently
convex minimization)1 problem with linear constraints involving an addition set of
zs
t variables:

maximize
T∑

t=1

S∑
s=1

(
as

t +bs
t us

ARt

) (
cs

t −ds
t us

ARt
−zs

t

)

subject to
T∑

t=1

S∑
s=1

us
ARt
≤ UTR

cs
t −ds

t us
ARt
−zs

t ≤ 1, 1≤ s≤ S, 1≤ t ≤ T

us
ARt
≥ 0, 1≤ s≤ S, 1≤ t ≤ T

(4)

and, moreover, if 0≤ cs
t ≤ 1 for all s andt then one can setzs

t = 0 for all s andt in
the above concave optimization problem.

1 A function h of k variables is convex (resp. concave) if and only if, for all
x1, x2, . . . , xk,y1,y2, . . . ,yk and for all 0< λ < 1, h((1−λ) (x1, x2, . . . , xk)+λ (y1,y2, . . . ,yk)) ≥
(1− λ)h(x1, x2, . . . , xk)+ λh(y1,y2, . . . ,yk) (resp.h((1−λ) (x1, x2, . . . , xk)+λ (y1,y2, . . . ,yk)) ≤ (1−
λ)h(x1, x2, . . . , xk)+λh(y1,y2, . . . ,yk) ). When the objective function and all the constraints are con-
vex (resp. concave), we have a convex (resp. concave) optimization problem. The convexity or
concavity property often makes an optimization problem easier to solve as opposed to the general
case; see [3] for further details.
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Optimization problem when not all relevant damage data is known Often the
parameter values in

{
as

t ,b
s
t ,c

s
t ,d

s
t |1≤ s≤ S,1≤ t ≤ T

}
are not known a-priori. In

that case, one needs to estimate these parameter values online based on past obser-
vations using somemachine learningtechniques such as the maximum-likelihood
approach. Vamvoudakiset al.[23] propose the following approach for the parameter
estimation problem:

• Assume that these parameters are generated by alinear dynamical system over
time t, i.e.,

as
t =Cs

axs
a(t) where xs

a(t) is generated byxs
a(t) = As

axs
a(t−1)+Bs

aw
s(t−1) (5)

bs
t =Cs

bxs
b(t) where xs

b(t) is generated byxs
b(t) = As

bxs
b(t−1)+Bs

bw
s(t−1) (6)

cs
t =Cs

cxs
c(t) where xs

c(t) is generated byxs
c(t) = As

cxs
c(t−1)+Bs

cw
s(t−1) (7)

ds
t =Cs

dxs
d(t) where xs

d(t) is generated byxs
d(t) = As

dxs
d(t−1)+Bs

dw
s(t−1) (8)

where
{
As

j ,B
s
j ,C

s
j ,D

s
j |1≤ s≤ S, j ∈ {a,b,c,d}

}
are scalar parameters of the dy-

namics, andws
t are sequences generated by a random process with zero mean

and variancezs
t . Use historical data to estimate these dynamics using blackbox

identification techniques.

• Now use online data to estimate the values of
{
as

t ,b
s
t ,c

s
t ,d

s
t |1≤ s≤ S,1≤ t ≤ T

}

based on past observations using ak-step ahead predictor in the following man-
ner. Let

{
as

t ,b
s
t ,c

s
t ,d

s
t |1≤ s≤ S,1≤ t ≤ k< T

}
be the set of values observed (by

the attacker) for these parameters up to some timek< T and the attacker needs
to compute the “future” values ofus

ARt
’s for k < t ≤ T. Then, one can do the

following.

– Estimate the values of
{
as

t ,b
s
t ,c

s
t ,d

s
t |1≤ s≤ S,k< t ≤ T

}
using (5)–(8). Let

the estimated values foras
t ,b

s
t ,c

s
t ,d

s
t be denoted bŷas

t , b̂
s
t , ĉ

s
t , d̂

s
t . Let f̂ s

t and
ĝs

t be the function values off s
t andgs

t , respectively, fork< t ≤ T when the
estimated valueŝas

t , b̂
s
t , ĉ

s
t , d̂

s
t are used,i.e.,

f̂ s
t

(
us

ARt

)
= âs

t + b̂s
t us

ARt
andĝs

t

(
us

ARt

)
=



0, if d̂s
t us

ARt
> ĉs

t

ĉs
t − d̂s

t us
ARt
, if ĉs

t −1≤ d̂s
t us

ARt
≤ ĉs

t

1, if d̂s
t us

ARt
< ĉs

t −1

.

– Computeus
ARt

for k< t ≤ T by solving the following optimization problem:

maximize
k∑

t=1

S∑
s=1

gs
t

(
us

ARt

)
f s
t

(
us

ARt

)
+

T∑
t=k+1

S∑
s=1

ĝs
t

(
us

ARt

)
f̂ s
t

(
us

ARt

)

subject to
T∑

t=1

S∑
s=1

us
ARt
≤ UTR

us
ARt
≥ 0, 1≤ s≤ S, k≤ t ≤ T

which is again a convex minimization problem similar to (4).
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Thek-step lookahead predictor can be used in an online fashion bythe attacker
for every successive value ofk.

4 Application Of Multi Objective Distributed Constraint
Optimization In Network Security

In the previous section we saw how to formulate and solve someproblems related
to the security of networked systems as a convex constraint optimization problem
with a singleobjective function. In this section, we review the results of Okimoto
et al. [17] that applymulti-objective distributedconstraint optimization methods
to formulate and solve problems related to security issues of networked systems.
Okimotoet al. [17] do this by first formulating the security problem for networked
system as a multi-objective distributed constraint optimization problem (Mo-Dcop)
using the formalization in [8], and then discussing some algorithmic approaches
to solve such an optimization problem. Generally, multi-objective distributed con-
straint optimization methods are very suitable for formalizing applications related
to multi-agent cooperation. An advantage of casting network security problems as
a Mo-Dcop is that multiple criteria (e.g., level of risk, loss of privacy, cost of oper-
ation) can be optimizedsimultaneouslyinstead of separately; however, a disadvan-
tage of this is that the resulting optimization problem may be computationally quite
hard. The multi-objective distributed constraint optimization framework of [8] is an
extension ofmono-objectivedistributed constraint optimization framework in [15]
for modelling applications related to multi-agent cooperation games.

The Mo-Dcop proposed by Okimotoet al. [17] is described by the following
parameters:

• A 5-tuple〈S,X,D,C,O〉 where

– S =
{
agent1,agent2, . . . ,agentn

}
is a set ofn agents. An agent may be a

human, a program, an organization, a countryetc.

– X = {x1, x2, . . . , xn} is a set ofn variables, wherexi is owned byagenti .

– D = {D1,D2 . . . ,Dn} is a set ofn discrete domains, whereDi is the domain
of values of variablexi . The notation(xi ,di) will be used to denote an as-
signment of valuedi ∈ Di to variablexi .

– O =
{
O1,O2, . . . ,Om

}
is a set ofm criteria that is to be optimized.

– C =
{
C1,C2, . . . ,Cm

}
is a set ofm sets of constraints, whereCℓ is the

set of constraints corresponding to theℓth criterionOℓ. A constraint re-

lation
(
⊲⊳i,k, ⊲⊳ j,k

)ℓ
∈ Cℓ (for k = 1,2, . . .) denotes a constraint of the type{

(xi ,di) ,
(
x j ,d j

)}
involving the variablesxi andx j , and is used to describe

the condition of cooperation ofagenti andagent j on the objectiveCℓ.
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•

{
f ℓi, j,k : Di ×D j 7→ R

∣∣∣ 1≤ ℓ ≤m,1≤ i, j ≤ n,k ∈ N+
}

is a given set of cost func-

tions such thatf ℓi, j,k
(
di ,d j

)
gives, for each objectiveCℓ and pairsxi , x j such

that
(
⊲⊳i,k, ⊲⊳ j,k

)ℓ
=

{
(xi ,di) ,

(
x j ,d j

)}
∈ Cℓ, thecost for an assignment (decision){

(xi ,di) ,
(
x j ,d j

) }
.

For a setA of variable-value assignments and an objectiveOℓ, the cost incurred in
optimizing this objective is then given by:

Rℓ(A) =
∑

k

∑

(⊲⊳i,k,⊲⊳ j,k)ℓ={(xi ,di ),(xj ,d j)}∈Cℓ

{(xi ,di ),(xj ,d j)}⊆A

f ℓi, j,k
(
di ,d j

)

and the solution corresponding to this variable-value assignmentA over all objec-
tives is then characterized by the cost vector

R(A) =
(
R1(A),R2(A), . . . ,Rm(A)

)

A toy example of the above framework is depicted in Fig. 1 for the case of three
agentsnot all pairs of which cooperate with each other all the time.

S =
{
agent1,agent2,agent3

}

X = {x1, x2, x3}

D = {D1,D2,D3}, ∀ i : Di = { scan, ignore}

O = { risk, resource budget}

C =
{
C1,C2

}
:

C1 =
{ {

⊲⊳11,2,1︷                          ︸︸                          ︷
(x1, scan) , (x2, ignore )

}
,
{

⊲⊳12,3,1︷                            ︸︸                            ︷
(x2, ignore) , (x3, ignore)

} }

C2 =
{ {

(x1, scan) , (x2, scan)︸                       ︷︷                       ︸
⊲⊳21,2,1

}
,
{

(x1, scan) , (x2, ignore )︸                          ︷︷                          ︸
⊲⊳21,2,2

} }

x1 x2 x3 ℓ k fℓi, j,k
(
di ,d j

)

d1 = scan d2 = ignore 1 1 6

d2 = ignore d3 = ignore 1 1 3

d1 = scan d2 = scan 2 1 7

d1 = scan d2 = ignore 2 2 4

Fig. 1 A toy example for the Mo-Dcop framework of Okimotoet al.[17]. The shaded row indicates
that whenresource budgetis the optimization criterion the cost ofagent1 opting toscanandagent2
opting toignore is 4.

Although ideally one would like to find a solution that optimizesall the objective
functionssimultaneously, such a solution may not even exist and thus one would
resort to trade-offs among various objectives. One way to handle such a trade-off is
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by adopting the concept ofPareto optimalityfrom game theory [10] to the above
Mo-Dcop formulation in the following manner.

Definition 1. A cost vectorR(A) =
(
R1(A),R2(A), . . . ,Rm(A)

)
is said to (strictly)

dominate another cost vectorR(A′) =
(
R1(A′),R2(A′), . . . ,Rm(A′)

)
, denoted by

R(A) ≺ R(A′), if and only if both the following conditions hold:

• Rℓ(A) ≤ Rℓ(A′) for 1≤ ℓ ≤m, and
• there exists at least oneℓ ∈ {1,2, . . . ,m} such thatRℓ(A) < Rℓ(A′).

A cost vectorR(A) is then called Pareto optimal solution if and only if there does
not exist another another feasible cost vectorA′ such thatR(A′) ≺ R(A).

Note that Pareto optimal solutions neednot be unique. Okimotoet al. term a
Pareto optimal solution as atrade-off solution in [17]. Algorithms for computing
Pareto optimal solutions appear in the traditional computer science literature un-
der names such as themaximal vector computationproblem [11, 12]. Apseudo-
treebased algorithm for solving multi-objective distributed constraint optimization
problems appear in [14]. Okimotoet al.[17] extend the algorithmic approach in [14]
by adding a pre-processing phase to design a newbranch-and-boundsearch algo-
rithm (BnB) for finding all trade-off solutions2 using the branch-and-bound tech-
nique with a depth-first-search strategy. For evolutionary(genetic) algorithms to
solve multi-objective distributed constraint optimization problems, see [4, 6]. One
can also design approximation algorithms (heuristics) forsolving multi-objective
distributed constraint optimization problems,e.g., see thebounded multi-objective
max-sum algorithmin [8].

5 Optimization Problems In Security For Power Networks

Maintaining asecureelectric power distribution and transmission system against
malicious attacks is an extremely important issue since almost any modern society
relies critically on the proper operation of these systems.In this chapter we review
some basic optimization problems related to this issue, andthe application ofℓ1-
relaxation techniques of Souet al. [22] in solving these optimization problems.

To begin with, a power network model is one with the followingcomponents:

• The network topology is specified by a directed graphG = (V,E) with n nodes
(buses) andmarcs (transmission lines). The corresponding (directed) edge-node
incidence matrix of the graph is denoted byA ∈ {−1,0,1}n×m where

A[u,e] =



−1, if e= (u,v) ∈ E
1, if e= (v,u) ∈ E
0, otherwise

.

2 Okimoto et al. [17] claim that an advantage of finding all trade-off solutions is that agents can
dynamicallychange decisions in case of emergencies. Unfortunately, the number of trade-off solu-
tions may be exponential in the worst case.
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• The physical property of the network is described by anonsingular diagonal
matrix D ∈ Rm×m such that the reactance of the transmission line (arc)e is
1/D[e,e].

• The states of the nodes of the network is summarized by astate vectorθ ∈
[0,2π)n−1, assuming constant bus voltages throughout but non-constant bus
phase angles and using one arbitrary bus (node) as a reference.

• Assuming the DC power flow model and under malicious data attacks, themea-
surement vector zof the states of the buses that is obtained by a state estimator

z= H θ + ẑ with H =

(
PDAT

QADAT

)
(9)

where

– ẑ∈ Rn−1 is the vector of malicious data attacks [13].

– A ∈ R(n−1)×m is obtained fromA by removing the row corresponding to the
reference bus (node).

– P is a subset of rows of an identity matrix of appropriate dimension indi-
cating flow measurements of which arcs (transmission lines)are actually
taken.

– Q is a subset of rows of an identity matrix of appropriate dimension indi-
cating power injection measurements of which nodes (buses)are actually
taken.

Typically, θ is estimated using the values inH andz. Assuming that the network
is observable(in control-theoretic terms), it is known that an estimateθ̂ of θ can
be obtained using the following equation whereW is a positive definite diagonal
matrix [1,16]:

θ̂ =
(
HTWH

)−1
WHTz

To detect possible malicious attacks against the measurements viâz, the commonly
performed test [1,16] is used:if the norm‖z−Hθ̂‖ of the following residual quantity

z−Hθ̂ =
(
I −H

(
HTWH

)−1
WHT

)
ẑ

is large then trigger the alarm.
Although the above test works well if there is a single malicious attack on one

data measurement, it may fail undercoordinatedmalicious attacks onmultipledata
measurements. For such scenarios, a notion ofsecurity indexwas introduced in by
Sandberget al. in [20]. Intuitively, a small security index implies that the power net-
work is more vulnerable to malicious attacks. LetHℓ denote theℓth row of H and the
notation‖X‖0 for a vectorX denote the cardinality (number of non-zero elements)
of X. The security index for the power flow measurement of thekth transmission
line (arc) for a givenk is formulated as the optimal objective value of the following
optimization problem:
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minimize ‖H x‖0
subject to Hk x = 1

x ∈ Rn−1
(10)

The more general case when certain measurements areprotectedin the sense that
they are too secure to be attacked can easily be handled by extending (10) in the
following manner [2, 5, 13]. LetI ⊂ {1,2, . . . ,m} denote the indices of those trans-
mission lines whose power flow measurements are protected and let HI be the sub-
matrix of H with rows indexed byI. Then, (10) can be generalized to the following
cardinality minimization problem:

minimize ‖H x‖0
subject to Hk x = 1

HI x = 0
x ∈ Rn−1

(11)

In general, there are no efficient algorithms for solving cardinality minimization
problems and thus heuristics are often employed. Souet al. in [22] provides an
efficient application ofℓ1-relaxation techniques to solve an important special case
of (11) that assumesH =PDAT instead of the more general form shown in (9). They
prove that this special case is in fact contained in the following type of optimization
problem of a more general nature:

minimize ‖C{1,2,...,m}\I x‖0
subject to Ck x = 1

CI x = 0
x ∈ Rn−1

(12)

where

• C ∈ Rm×(n−1) is a giventotally unimodularmatrix, i.e., a matrix whose every
square submatrix has a determinant of 0, 1 or−1,
• for any subsetY ⊂ {1,2, . . . ,m} AY is the submatrix ofA with rows indexed by

Y, and
• Ak is thekth row of A.

Then, aℓ1-relaxation of (12) can be obtained by replacing the objective function
‖C{1,2,...,m}\I x ‖0 by the objective function‖C{1,2,...,m}\I x ‖1 that uses theℓ1 norm.
This ℓ1-relaxation can in turn be written down as a linear program and solved opti-
mally. Souet al. in [22] prove that an optimal solution of this linear programis in
fact also an optimal solution of (12).
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6 Conclusion

In this chapter we have surveyed a few optimization frameworks for problems re-
lated to security of networked system such as the internet orpower grid system.
There are other frameworks of modelling network security issues that we have not
considered in this chapter, such as game-theoretic formulations or in the context
of quantum computing. We believe that as networked systems of various nature be-
come more common in everyday transactions, the corresponding security issues will
give rise to more challenging optimization research questions.
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