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Abstract Security issues are becoming more and more important teitasi of
individuals, organizations and the society in our moderwoeked computerized
world. In this chapter we survey a few optimization framekgofor problems re-
lated to security of various networked system such as tleeriat or the power grid
system.

1 Introduction

Security issues are essential to activities of individualganizations and the soci-
ety as a whole in our modern networked computerized worldemlthcare, power
management, online purchase, banking, intra-businessaiciions and many other
similar activities in distributed-computing settings. ypical activity in such a net-
worked system involves a set of (digital) transactions leefwwarious components
(“agents”) of the system to perform a specific task such amemurchase of an
item or submitting an online application for a job, and regsiinteraction with var-
ious computer serveidatabases and encryption services. Any compromise of these
activities due to other malicious agents within the systemudside may lead to
severe consequences such as disruption of critical infietstre or national econ-
omy, and thus making sure that these activities are secwi@asigsuch attacks is
of paramount importance. The significance of maintainingusgy of networked
systems has in fact led to organization of many security aditipns, such as the
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international Capture The Flaf4] for researchers to discuss, discover and validate
new solutions for security issues.

In this chapter, we survey several optimization problentstee to the security
issues in distributed networked systems. We start by simgesome of the grand
mathematical challenges in developing and analyzing #goofr real-world net-
worked systems in Section 2. Then, in the remaining sectioensurvey several
optimization problems related to maintaining and evahgasiecurities of such sys-
tems.

2 Mathematical and Statistical Challenges In Networked
Security

Some of the major mathematical and statistical challengesdcurity issues in

networked systems are discussed in the two white paper§]7Based on these

and other white papers, at least the following four possiblallenge areas can be
identified:

Data acquisition: The challenge here is to generate accurate trace and log data
while maintaining their integrity throughout the lifetinod their intended use
for scientific analysis and verification since lack of puldlata sets is a signif-
icant barrier in current research [19]. This challenge $® aklated to the so-
called “utility versus privacy tradeff§’ issue [21] since making data publicly
available may pose confidentiality and privacy issues.

Modelling networks: This challenge refers to thefficulties in developing math-
ematical network models that accurately model real-wodtivorks and sta-
tistical methods for comparing networks.g, see [9]). For example, a typical
guestion could be whether the distribution of degrees okesanler the entire
network is governed by power-laws or its variants?

Detection and response to security threatsThis challenge refers to theftli
culty in formulating and solving problems such as malicioade or behavior
detection that provide long-term proactive approach tevagk security. Re-
search methods for overcoming this challenge may involehrtigues from
diverse areas of mathematics or computer science such asnitydata mod-
elling methods, optimization methods, machine learninthoes and methods
for uncertainty modelling via probabilistic models.

Modelling network dynamics: This challenge refers to developing appropriate
mathematical models to understand the mechanism of spféafgctions {.e.,
time evolution of malicious attacks) in networks. Ideasfrgame theory or
dynamical systems may be particularly useful in this contex
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3 Application Of Convex Optimization In Network Security

In this section, we review an application of convex or comaaptimization methods
by Vamvoudakiset al. [23] to model the complex behavior of a malicious attacker
in a networked system. The model was incorporated in a cydmrrgy advisory
system to demonstrate it$fectiveness. The optimization problem is formulated
from the point of view of a malicious attackewe., the goal is to find an optimal
allocation of available resources for an attacker to mazéntiie potential damage.

We start by specifying modelof the damage caused by a (malicious) attacker of
the given network. In the moddle {1,2,...,T} indicates the discrete time variable.
Assume that there are a set®fservices, indexed by, 2,...,S, in our networked
system that may be attacked for disruption. The followingap#eters are used in
the model:

u/iRt >0: A scalar quantifying themount of attack resourceg®.g, amount of
money devoted to attack a particular resource) used by thekat to attack
services at timet.

x,iD[ > 0: A scalar denoting thamount of potential damageaused by attacks. In
generabs,, = f§(usg ) for some appropriate functioff: R* - R*.
g5 g5 (u3g,) denotes the probability that the daméigéus, ) is realized as a result
of the attacl«tiD(.
y?Dt: y?Dt = gts(uf\Rt) fts(u/iRt) is theexpected damagmused byu/iRt.
TS
Yo: Yo = >, O, y?Dt is the total expected damage.
t=1s=1
Utr: This is the total budget of attack resources availableeattacker.

In order to ensure that the resulting optimization problamesconvex or concave,
Vamvoudakiset al.[23] makes the following assumptions that are justified &alr
applications of the model:

o fSis alinear function,i.e,,
fts(uf\Rt) =a+ btsqut 1)

for some constants?,bf € R*. The constang® models the extent of damage
without any attack whereas the constafitmodels the extent of damage per
unit of attack resources employed. The equation has thastieamplication
that an increase in attack resources leads to an incredse potential damage
caused.

e g7 is alinearly increasingfunction projected to the interval [0], i.e.,

0, if dPuzg >
o (U3, ) = &~ Uz, if CF-1<dPuiy < ()
1 if dfugg <cf-1
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for some given constants’,d? > 0. The constant? models the probability
of damage realization without any attack whereas the cohdfamodels the
decrease of the probability of damage realization per unittiack resources
employed. Note that this choice gf models the realistic assumption that an
increase in attack resources decreases the realizatibalulity of the poten-
tial damage since a large-scale attack is much more likelyigger defense
mechanisms.

Now we can consider two flerent optimization problems for optimal allocation of
available resources by an attacker to maximize the potetd#graage depending on
the availability of relevant data.

Optimization problem when all relevant damage data is knownWhen all the
relevant damage dateg., all the numbers irﬁaf, bg,ct.df|1<s<S,1<t<T} are
knowna-priori, it is easy to see that the optimal attack resource allacatidues
(i.e, theug 's) that maximizes the total expected damage can be obtained by
solving the following constrained optimization problem:

maximize ¥yp
T S
subject to 2 2 u/iRt <Utr 3

uf\Rt>o, 1<s<S5,1<t<T
Although in general (3) may befiiicult to solve, Vamvoudakist al.[23] show that
the special choices dff in (1) andg? in (2) ensure that the above optimization prob-
lem is equivalentto solving the followingconcave maximizatiofor, equivalently
convex minimization problem with linear constraints involving an addition sét o
Z variables:

maximize Z Z (at +b5qut)(c[ A URR, — zt)

tls_
subject to Z Z u S UTr (4)
tls:
c— dSuARt—zfsl, 1<s<S,1<t<T
Uag, >0, 1<s<S,1<t<T

and, moreover, if & ¢f < 1 for all sandt then one can sef = 0 for all sandt in
the above concave optimization problem.

1 A function h of k variables is convex (resp. concave) if and only if, for all
X1, X2, -+ Xk, Y1, Y2, - - -5 Yk and for all 0< 1 < 1, h((l_d) (XLXZ,---,Xk)+/l(yl7y2a---s)’k)) 2
(1-2Dh(x, %2, ... %) + Ah(y1, Y2, ¥i) (resp.h((1-2) (X1, %2, -, %) + 2 (Y1, Y2, ¥) < (1=

D h(x1, %2, ..., %)+ Ah(y1,¥2,...,¥k) ). When the objective function and all the constraints are co
vex (resp. concave), we have a convex (resp. concave) @atiiom problem. The convexity or
concavity property often makes an optimization probleniezds solve as opposed to the general
case; see [3] for further details.
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Optimization problem when not all relevant damage data is kown Often the
parameter values ibaf, bf,ct,df|1< s<S,1<t< T} arenot known a-priori. In
that case, one needs to estimate these parameter valuas basied on past obser-
vations using somenachine learningechniques such as the maximume-likelihood
approach. Vamvoudakét al.[23] propose the following approach for the parameter
estimation problem:

¢ Assume that these parameters are generatedibgax dynamical system over
timet,i.e,

aF = C3x3(t) where x3(t) is generated by(t) = ASXS(t— 1)+ BwS(t—1) (5)
bf = Coxo(t) where x5(t) is generated byxs(t) = Agxg(t— 1)+ BpwS(t—1) (6)
¢t = Cx3(t) where x3(t) is generated byx3(t) = ADS(t— 1)+ BWwS(t—1) (7)
df = C3xg(t) where x3(t) is generated byc(t) = Agxg(t—1)+BwS(t—-1) (8)

where{Ajs, B.S,st, DJ.Sl 1<s<S, je{ab, c,d}} are scalar parameters of the dy-
namics, an(f/vtS are sequences generated by a random process with zero mean
and variance;’. Use historical data to estimate these dynamics using btack
identification techniques.

o Now use online data to estimate the vaIue%a?tbf, c.d7|1<s<S1<t<T
based on past observations usifgstep ahead predictor in the following man-
ner. Let{ ag,by,ct,df|1<s< S, 1<t<k<T|be the set of values observed (by
the attacker) for these parameters up to some ki@ and the attacker needs
to compute the “future” values QIZRt’s fork<t<T. Then, one can do the
following.

— Estimate the values ¢&¢,bf, ¢f,d§|1< s< S,k<t < T} using (5)~(8). Let
the estimated values fa, bg, c?,ds be denoted bg?, b3, ¢S, d?. Let 8 and
o be the function values ofs andg?, respectively, fok < t < T when the
estimated valuegf, 6\5, EI\S a;s are usedi.e.,

0, if dfusp >
fS(USg,) = & +DPUSg, aNdgl(ufg ) =1 - dfuS, . if E-1<dfusy <cf.

1 if dPufg <cf-1
- Computt:'u/iRt fork <t <T by solving the following optimization problem:

maimize 3, 3. 63(u%e) 12(18e) + 2 5 B(ue) B (i)
t_:l_lsgl t Y t=k+1s=1 t t
subjectto ¥ ¥ uzz <UTr
t=1s=1

u/itho, 1<s<S kst<T

which is again a convex minimization problem similar to (4).
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Thek-step lookahead predictor can be used in an online fashidhebgttacker
for every successive value kf

4 Application Of Multi Objective Distributed Constraint
Optimization In Network Security

In the previous section we saw how to formulate and solve somolelems related
to the security of networked systems as a convex constratithization problem
with a singleobjective function. In this section, we review the result&imoto
et al. [17] that applymulti-objective distributecdtonstraint optimization methods
to formulate and solve problems related to security issliesetworked systems.
Okimotoet al.[17] do this by first formulating the security problem for wetked
system as a multi-objective distributed constraint optation problem (M-Dcor)
using the formalization in [8], and then discussing someidtlgmic approaches
to solve such an optimization problem. Generally, multiechive distributed con-
straint optimization methods are very suitable for formalj applications related
to multi-agent cooperation. An advantage of casting netvsecurity problems as
a Mo-Dcor is that multiple criteria€.g, level of risk, loss of privacy, cost of oper-
ation) can be optimizedimultaneouslynstead of separately; however, a disadvan-
tage of this is that the resulting optimization problem maybmputationally quite
hard. The multi-objective distributed constraint optiatinn framework of [8] is an
extension ofmono-objectivalistributed constraint optimization framework in [15]
for modelling applications related to multi-agent coopieragames.

The Mo-Dcop proposed by Okimot@t al. [17] is described by the following
parameters:

e A 5-tuple(S,X,D,C,0) where
— S = {agent;,agent,,...,agent,} is a set ofn agents. An agent may be a
human, a program, an organization, a couetcy
— X ={X1,Xo,..., X} IS & set o variables, where; is owned byagent;.

— D ={D1,Ds...,Dy} is a set ofn discrete domains, whei®; is the domain
of values of variable. The notation(x;,d;) will be used to denote an as-
signment of valuel; € D; to variablex;.

- 0={0% 02 ...,0 is a set oim criteria that is to be optimized.

- Cc={cLc?....C" is a set ofm sets of constraints, wher@’ is the
set of constraints corresponding to tHE criterion O°. A constraint re-
lation (Mi,k,Mj’k)[ e C! (for k =1,2,...) denotes a constraint of the type
{(Xj,di),(Xj,dj)} involving the variablesq andx;, and is used to describe
the condition of cooperation afgent; andagent; on the objectivec’.
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. {fifj’k: Di xD; »—>R| 1<f<mlc<i,j< n,keN*} is a given set of cost func-
tions such thatfifj’k (di,dj) gives, for each objectiv€’ and pairsx;, Xj such
that (wi,k,wj,k)g = {(Xi,di),(Xj,dj)} e C!, thecostfor an assignment (decision)
{060, (3 y)

For a setA of variable-value assignments and an objeafivethe cost incurred in
optimizing this objective is then given by:

RA)=)" >, fix(dnd)

K (o) ={ 0500, (x.0) } €7
{06.6).(xj.dj) A

and the solution corresponding to this variable-valuegassentA over all objec-
tives is then characterized by the cost vector

R(A) = (R{A),R(A). ...,R"(A))

A toy example of the above framework is depicted in Fig. 1 for tase of three
agentsotall pairs of which cooperate with each other all the time.

S = {agent,, agent,, agents}
X = {Xg, X2, X3}
D ={D1,D,,D3}, Vi: Dj ={ scan ignore}
O = {risk, resource budgelt

1
121

Ct = {{ (x1, scan), (x,, ignore) }, { (xz, ignore), (xs, ignore) }

231

c={ch.cy: C? = {{ (xa, scan), (x,, scan) }, { (1, scan), (xp, ignore) |}
”21,2,1 122
X1 X X3 £k fi‘:j,k( i.dj)
d; = scan d =ignore 1 1 6
d = ignore & =ignore 1 1 3
d; = scan @ = scan 2 1 7
di =scan d=ignore 2 2 4

Fig. 1 Atoy example for the M-Dcor framework of Okimoteet al.[17]. The shaded row indicates
that wherresource budges the optimization criterion the cost afient; opting toscanandagent,
opting toignoreis 4.

Although ideally one would like to find a solution that optiragall the objective
functionssimultaneouslysuch a solution may not even exist and thus one would
resort to trade-fis among various objectives. One way to handle such a tridg-o
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by adopting the concept dfareto optimalityfrom game theory [10] to the above
Mo-Dcor formulation in the following manner.

Definition 1. A cost vectorR(A) = (RL(A), R¥(A),...,R™(A)) is said to (strictly)

dominate another cost vect®i(A’) = ﬁRl(?l’),Rz(ﬂ'),...,Rm(:?l')), denoted by
R(A) < R(A"), if and only if both the following conditions hold:

o RI(A) < R{(A") for 1< £ <m, and
e there exists at least orfes {1,2,...,m} such thaR'(A) < R/(A’).

A cost vectoR(A) is then called Pareto optimal solution if and only if theced
not exist another another feasible cost vecidisuch thaR(A") < R(A).

Note that Pareto optimal solutions needt be unique. Okimotat al. term a
Pareto optimal solution asteade-gf solutionin [17]. Algorithms for computing
Pareto optimal solutions appear in the traditional compsitéence literature un-
der names such as tmeaximal vector computatioproblem [11, 12]. Apseudo-
tree based algorithm for solving multi-objective distributeshstraint optimization
problems appear in [14]. Okimoti al.[17] extend the algorithmic approach in [14]
by adding a pre-processing phase to design almanch-and-boundearch algo-
rithm (BnB) for finding all trade-df solutiong using the branch-and-bound tech-
nique with a depth-first-search strategy. For evolution@snetic) algorithms to
solve multi-objective distributed constraint optimizatiproblems, see [4, 6]. One
can also design approximation algorithms (heuristics)sfuving multi-objective
distributed constraint optimization problengsg, see thebounded multi-objective
max-sum algorithnm [8].

5 Optimization Problems In Security For Power Networks

Maintaining asecureelectric power distribution and transmission system agjain
malicious attacks is an extremely important issue sincesirany modern society
relies critically on the proper operation of these systdmshis chapter we review
some basic optimization problems related to this issue,thedpplication of’;-
relaxation techniques of Sat al.[22] in solving these optimization problems.

To begin with, a power network model is one with the followt@mnponents:

e The network topology is specified by a directed gré&ph (V, E) with n nodes
(buses) andharcs (transmission lines). The corresponding (directég@enode
incidence matrix of the graph is denotedAsy {-1,0,1}™™ where

-1l ife=(,Vv)eE
Aluel=4q 1 ife=(v,u) eE.
0, otherwise

2 Okimotoet al.[17] claim that an advantage of finding all tradg-solutions is that agents can
dynamicallychange decisions in case of emergencies. Unfortunatelyjumber of trade{®solu-
tions may be exponential in the worst case.
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e The physical property of the network is described byaamsingular diagonal
matrix D € R™™ such that the reactance of the transmission line (ans)
1/D[e €].

e The states of the nodes of the network is summarized biage vector €
[0,27)"1, assuming constant bus voltages throughout but non-aunistes
phase angles and using one arbitrary bus (node) as a regerenc

e Assuming the DC power flow model and under malicious datzlettdhemea-
surement vector af the states of the buses that is obtained by a state estimato

(9)

T
z=H6O+7Z with Hz( PDA )

QADAT

where

— Ze R"™1 s the vector of malicious data attacks [13].

— A e RM-Dxmig gbtained fromA by removing the row corresponding to the
reference bus (node).

— P is a subset of rows of an identity matrix of appropriate disien indi-
cating flow measurements of which arcs (transmission lines)actually
taken.

— Qs a subset of rows of an identity matrix of appropriate disien indi-
cating power injection measurements of which nodes (bumesactually
taken.

Typically, 6 is estimated using the values fih andz. Assuming that the network
is observablg(in control-theoretic terms), it is known that an estimatef 6 can
be obtained using the following equation whékeis a positive definite diagonal
matrix [1, 16]: .

6=(HTWH) " WH'z

To detect possible malicious attacks against the measutsvi@z, the commonly
performed test [1,16]is useiithe norm||z— H9)|| of the following residual quantity

7-He = (l _H (HTWH)‘1WHT)?

is large then trigger the alarm

Although the above test works well if there is a single malis attack on one
data measurement, it may fail underordinatedmalicious attacks omultiple data
measurements. For such scenarios, a notiageofirity indexvas introduced in by
Sandber@t al.in [20]. Intuitively, a small security index implies thatglpower net-
work is more vulnerable to malicious attacks. Eetdenote theé!" row of H and the
notation||X||o for a vectorX denote the cardinality (number of non-zero elements)
of X. The security index for the power flow measurement of kAeransmission
line (arc) for a giverk is formulated as the optimal objective value of the follogvin
optimization problem:
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minimize ||HX|lo
subjectto Hx=1 (10)
xeR™1

The more general case when certain measurementw@tertedin the sense that
they are too secure to be attacked can easily be handled égdéng (10) in the
following manner [2,5,13]. Lef c {1,2,...,m} denote the indices of those trans-
mission lines whose power flow measurements are protectebaid ;- be the sub-
matrix of H with rows indexed byf'. Then, (10) can be generalized to the following
cardinality minimization problem:

minimize ||HX|lo

subjectto Hx=1
Hrx=0
x e R1

(11)

In general, there are ndfient algorithms for solving cardinality minimization
problems and thus heuristics are often employed. &oal. in [22] provides an
efficient application of’;-relaxation techniques to solve an important special case
of (11) that assumesd = PDA" instead of the more general form shown in (9). They
prove that this special case is in fact contained in the folig type of optimization
problem of a more general nature:

.....

subjectto Ggx=1
Crx=0
x e R-1

(12)

where

e C e R™(M1) js a giventotally unimodularmatrix, i.e., a matrix whose every
square submatrix has a determinant of 0, + by

e for any subseY c {1,2,...,m} Ay is the submatrix oA with rows indexed by
Y, and

o Ais thek! row of A.

Then, a¢s1-relaxation of (12) can be obtained by replacing the objechiinction
IC12....mn 1 Xllo by the objective functiofiC1 2. my 7 X1 that uses thé; norm.
This ¢1-relaxation can in turn be written down as a linear prograchsoived opti-
mally. Souet al.in [22] prove that an optimal solution of this linear progr&mn
fact also an optimal solution of (12).
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6 Conclusion

In this chapter we have surveyed a few optimization framé&s/éor problems re-

lated to security of networked system such as the interngbwaer grid system.

There are other frameworks of modelling network securgyés that we have not
considered in this chapter, such as game-theoretic fotrmoaor in the context

of quantum computing. We believe that as networked systéwarimus nature be-

come more common in everyday transactions, the correspgsdcurity issues will

give rise to more challenging optimization research goesti
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