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Abstract Suitable notions of shapes play a critical role in investigating objects in
mathematics, physics and other research areas. Various kinds of curvatures are very
natural measures of shapes of higher dimensional objects in mainstream physics and
mathematics. However, any attempt to extend notions of these kinds of measures to
networks needs to overcome several key challenges. In this article we review sev-
eral curvature measures for networks such as (i) Gromov-hyperbolic curvature, (ii)
extension of discretization of Ricci curvature for polyhedral complexes, and (iii)
extension of discretization of Ricci curvature via mass transportation distances, and
the corresponding flow technique. We finally review the bioinformatics applications
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of these measures for several biological networks such as E. coli transcriptional net-
work, metabolic network of M. tuberculosis, protein-protein interaction networks in
humans and network of functional correlations between brain regions for attention
deficit hyperactivity disorder.

1 Introduction

Useful insights for many complex systems are often obtained by representing
them as networks and analyzing them using network-theoretic and combinatorial
tools [34, 73, 2]. For analyzing networks, researchers have proposed and evaluated
a number of established network measures such as degree-based measures (e.g.,
degree distributions), connectivity-based measures (e.g., clustering coefficients),
geodesic-based measures (e.g., betweenness centralities) and other more novel net-
work measures such as in [27, 60, 3, 12].

The network measures of interest for this article are appropriate notions of “net-
work curvature”. Curvatures are very natural measures of properties of higher di-
mensional objects in mainstream physics and mathematics [18, 14]. However, any
attempt to extend these kinds of measures to networks need to overcome many key
challenges. For example, networks are discrete objects that do not necessarily have
an associated natural geometric embedding. There are several ways previous re-
searchers have attempted to formulate notions of curvatures of networks and other
combinatorial objects. In this article we review the following three basic types of
network curvatures and their applications to biological networks:

Gromov-hyperbolic curvature: This measure was first suggested by Gromov in
a group theoretic context [51]. The measure was first defined for continuous
metric space [18], but was later also adopted for networks. There is a large
body of research works dealing with theoretical and empirical aspects of this
measure, e.g., see [18, 32, 33, 20, 13, 42, 23] for theoretical aspects, and see [4,
58, 83] for applications to real-world networks.

Forman-Ricci curvature: Another notion of curvature of a network can be ob-
tained by extending Forman’s discretization of Ricci curvature for (polyhe-
dral or CW) complexes [41] to networks. Informally, the Forman-Ricci cur-
vature is applied to networks by topologically associating components (sub-
networks) of a given network with higher-dimensional objects. The topological
association itself can be carried out several ways. Although formulated rela-
tively recently, there are already a number of papers investigating these mea-
sures [97, 96, 106, 32, 88, 21].

Ollivier-Ricci curvature: The curvature measure is obtained by using Ollivier’s
discretization of Ricci curvature [80, 78, 79, 77]. For an informal understand-
ing, consider transporting a infinitesimally small ball centered at a point of a
manifold along a specific direction to measure the “distortion” of that ball due to
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the shape of the surface. Ollivier’s discretization provides appropriate network-
theoretic analogs of such concepts.

Note that Gromov-hyperbolic curvature is a global measure in the sense that it as-
signs one scalar value to the entire network. Au contraire, both Ollivier-Ricci curva-
ture and Forman-Ricci curvature assign a number to each edge of the given network,
but the numbers are calculated in very different ways since they capture different
metric properties of a Riemannian manifold; some comparative analysis of these
two measures can be found in [21, 88]. Beyond these network curvatures measures,
other notions of curvature have also been explored (e.g., see [26]), but they will
not be discussed in this article. For a recent survey of network geometry and its
applications, the reader is referred to [16].

2 Basic Notations and Terminologies

We assume that the reader is familiar with standard concepts and terminolo-
gies of graph theory and algorithmic analysis. In this article the terms “graph”
and “network” will be used interchangeably. Unless mentioned otherwise, all net-
works in this article are undirected, unweighted and connected. The notations u,v
and distH(u,v) will denote a shortest path and the distance between the nodes
u and v in a network H, respectively. For a node u of network H = (V,E),
NbrH(u) = {u}

⋃
{v |{u,v} ∈ E} and degH(u) = |NbrH(u)\{u}| denote the closed

neighborhood and the degree of u in H, respectively. For any edge-weighted graph
H = (V,E,w) with w : E 7→ R+∪{0}, wt-degH(u) = ∑v:{u,v}∈E w(u,v) denotes the
weighted degree of node u in H. A hypergraph consists of a set V of nodes and a
collection of non-empty subsets (called hyper-edges) of V . In a directed hypergraph
each directed hyperedge is of the form A → B where A and B are non-empty subsets
of V ; A and B are called the tail and the head of the hyperedge, respectively. For a
node u for a directed graph G = (V,E), the in-neighbors and out-neighbors of u are
the sets of nodes {v |v → u ∈ E} and {v |u → v ∈ E}, respectively.

3 Curvature Definitions and Related Facts

3.1 Gromov-hyperbolic Curvature (Gromov-hyperbolicity)

This curvature measure is defined only for unweighted undirected graphs. There
are three alternate but equivalent ways of defining Gromov-hyperbolic curvature for
a network G = (V,E), namely via geodesic triangles, via 4-node condition or via
Gromov-product of nodes.

The most efficient algorithmic implementation for computing Gromov-hyperbolicity
is obtained by using the original definition of Gromov using Gromov-product of
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nodes [51]. Define the Gromov-product of two nodes u and v anchored at node x,
denoted by (u|v)x, as

(u|v)x =
1
2
×
(

distG(u,x)+distG(v,x)−distG(u,v)
)

Based on the above definition, the value of Gromov-hyperbolicity δ (G) of a graph
G = (V,E) is defined as

δ (G) = max
x,u,v,w∈V

{
min

{
(u|w)x, (v|w)x

}
− (u|v)x

}
(1)

A second way of defining Gromov-hyperbolicity via the 4-node conditions is used
in many papers and books such as [3, 18]. This definition goes as follows. For a set
of four nodes {u1,u2,u3,u4}, let uσ1 ,uσ2 ,uσ3 ,uσ4 be a permutation of the indices of
the nodes such that

distG
(
uσ1 ,uσ2

)
+distG

(
uσ3 ,uσ4

)
≤

=Mu1 ,u2 ,u3 ,u4︷ ︸︸ ︷
distG

(
uσ1 ,uσ3

)
+distG

(
uσ2 ,uσ4

)
≤ distG

(
uσ1 ,uσ4

)
+distG

(
uσ2 ,uσ3

)︸ ︷︷ ︸
=Lu1 ,u2 ,u3 ,u4

Based on the above definition, the value of Gromov-hyperbolicity δ̂ (G) of a graph
G = (V,E) is defined as

δ̂ (G) =
1
2
× max

u1,u2,u3,u4∈V

{
Lu1,u2,u3,u4 −Mu1,u2,u3,u4

}
(2)

A third way of of defining Gromov-hyperbolicity is via geodesic triangles [18]. A
graph G = (V,E) has a Gromov-hyperbolicity of δ̃ (G) if and only if δ̃ (G) is the
minimum value such that for every ordered triple of shortest paths (u,v,u,w,v,w),
u,v lies in a δ̃ -neighborhood of u,w ∪ v,w, i.e.,

δ̃ (G) = min
α∈R

(u,v,w)∈V×V×V

{α |∀x ∈ u,v ∃y ∈ u,w∪ v,w : distG(x,y)≤ α} (3)

It is known that δ (G) = δ̃ (G) and δ̂/c ≤ δ (G) ≤ c δ̂ for some universal constant
c > 0.

3.1.1 Forman-Ricci Curvature

Mathematically precise definitions of Forman-Ricci curvatures appear in refer-
ences such as [32, 21, 22]. We here provide a succinct summary of these formal-
izations. We assume that the reader is familiar with basic topological concepts such
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as faces, facets and simplexes; discussed in introductory topology textbooks such
as [53, 44]. To use the formula suggested by Forman in [41] We define a partial
order relation ≺f between faces of various dimensions of a simplex as follows: a
ℓ-face fℓ is a parent of a ℓ′-face f̂ℓ

′
(denoted by f̂ℓ

′≺f f
ℓ) if f̂ℓ

′
is contained in fℓ.

Similarly, two ℓ-faces fℓ and f̂ℓ are parallel (denoted by fℓ ∥f f̂ℓ) if they have ei-
ther at least one common immediate predecessor or at least one common immediate
successor (in the partial order ≺f) but not both.

To compute this kind of curvature, we use a topological association to glue
nodes, edges, cliques and other subnetworks to form simplicial complexes, define a
“weighting scheme” for these simplicial complexes, and then use the formula sug-
gested by Forman in [41] for discrete Ricci curvature for (polyhedral or CW) sim-
plicial complexes. There are many alternate ways such topological associations and
weighting schemes can be performed. For concreteness, we describe the topological
association rules as used in [32, 21, 22]; for other possible alternative associations
the reader is referred to papers such as [15, 40, 104, 105].

To start the association, we topologically associate a q-simplex with a (q+ 1)-
clique Kq+1 (e.g., 2-simplexes are associated with 3-cycles (triangles)). After this,
an order d association f p

d for every p-face f p of a q-simplex is done with a subnet-
work of at most d nodes that is obtained by starting with Kp+1 and then optionally
replacing each edge by a path between the two nodes (e.g., f 2

d for d > 3 is obtained
from 3 nodes by connecting every pair of nodes by a path such that the total number
of nodes in the subnetwork is at most d). Naturally, the higher the values of p, q
and d are, the more computationally intensive are the calculations of topological
associations.

A generic weighting scheme for these topological associations can be described
in the following manner. Every node (0-simplex) and every edge (1-simplex) is as-
signed a weight of 1, every triangle (3-cycle or 2-complex) is assigned a weight
based on the area of the triangle, and a polygon of p sides with p > 3 can be as-
signed a weight by first triangulating the polygon and then adding the weights of
these triangles (e.g., the weight of a non-degenerate 4-face is obtained by adding
the weights of the 3-subfaces of this face). We use the function ρ(·) to denote the
weights of various sub-components in the following discussion. Let d denote the or-
der of the topological association used, and ei, j denote the edge {vi,v j} ∈ E. Using
the CW-complex based Forman-Ricci curvature formula of [40], a 1-complex-based
Forman’s combinatorial Ricci curvature for an edge ep,q ∈ E in the given graph
G = (V,E) is given by [104]:

C1,d
G (ep,q) = ω(ep,q)

(
ρ(vp)

ρ(ep,q)
+

ρ(vq)

ρ(ep,q)

— ∑
ep, j ,ei,q∈E

(
ρ(vp)√(

ρ(ep,q)ρ(ep, j)
) + ρ(vq)√(

ρ(ep,q)ρ(ei,q)
)
))

(4)
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However, since 1-complex based formula is a bit too simple and may not capture
higher-order topological characteristics appropriate, papers such as [21, 105] use
the following 2-complex based formula for the Forman-Ricci curvature of an edge
e ∈ E in the given graph G = (V,E):

C2,d
G (e) = ρ(e)

 ∑
e∼ f 2

d

ρ(e)
ρ( f 2

d )
+ ∑

v∼e

ρ(v)
ρ(e)


— ∑

e′||e

∣∣∣∣∣∣ ∑
e′,e∼ f 2

d

√
ρ(e)ρ(e′)
ρ( f 2

d )
— ∑

v∼e
v∼e′

ρ(v)√
ρ(e)ρ(e′)

∣∣∣∣∣∣
 (5)

In the above formula, for a node v, an edge e and a cycle C , the notations v ∼ e
and e ∼ C indicate that v is an end-point of e and e is an edge of C , respectively.
A more general k-complex version of the curvature formula, leading to a definition
of Ck,d

G (e) for k > 2, can be derived by using the CW-complex based Forman-Ricci
curvature formula of [40], but is of limited practical use.

Forman-Ricci curvature for an entire network

In some applications involving comparison of two networks in their entirety it
may be preferable to have a single scalar value CG of Forman-Ricci curvature for
the entire network G. This can be done based on the values of Ck,d

G (e) values using
curvature functions defined by Bloch [15], by using Euler characteristics or similar
other methods. A simple Euler characteristics based scalar curvature, parameterized
by p and d, defined in [32] for unweighted graphs is as follows.

Cp,d
G =

p

∑
k=0

(−1)k ∣∣F k
d

∣∣ (6)

where F k
d is the set of all f k

d ’s that are topologically associated as described before
in this section. It is not difficult to see that C2,d

G = |V | − |E|+ |Cd+1| where Cd+1
is the set of all cycles of at most d + 1 nodes in G. Definitions of Forman-Ricci
curvatures can be extended to (undirected, unweighted) hypergraphs, e.g., see [61];
this has appeared to be very useful in applications to biological networks.

3.1.2 Ollivier-Ricci Curvature

This type of curvature was originally defined in publications such as [80, 78,
79, 77]. We here provide the definitions following the expositions in [8, 31]. Con-
sider an edge e = {u,v} ∈ E of our input (undirected unweighted) graph G = (V,E).
Let PNbrG(u) and PNbrG(v) denote the two uniform distributions over the nodes in
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minimize ∑x∈NbrG(u) ∑y∈NbrG(v) distG(x,y)zx,y

subject to ∑y∈NbrG(v) zx,y = PNbrG(u)(x), for all x ∈NbrG(u)

∑x∈NbrG(u) zx,y = PNbrG(v)(y), for all y ∈NbrG(v)

zx,y ≥ 0, for all x ∈NbrG(u) and y ∈NbrG(v)

Fig. 1 The linear program, with the zx,y’s as variables, whose optimal objective value is the quantity
EMDe(PNbrG(u),PNbrG(v)).

NbrG(u) and NbrG(v), respectively. The earth mover’s distance EMDe(PNbrG(u),PNbrG(v))
is the value of the objective function of an optimal solution of the linear program in
Figure 1. The Ollivier-Ricci curvature CG(e) of the edge e = {u,v} is then defined
as

CG(e) = 1−EMDe(PNbrG(u),PNbrG(v)) (7)

If G is a graph with positive edge weights, the Ollivier-Ricci curvature is given by

CG(e) = 1−
EMDe(PNbrG(u),PNbrG(v))

distG(u,v)
(8)

where the distG(·, ·) values take the edge weights into consideration in calculating
the shortest path. There are several modified definitions of the basic Ollivier-Ricci
curvature as described above by (i) changing the distributions in P(·) from uniform
to other non-uniform distributions [66, 10], (ii) by extending the “scopes” of the
distributions P(·) from NbrG(u) and NbrG(v) to more subsets of nodes [75, 50], (iii)
by changing EMDe(PNbrG(u),PNbrG(v)) to other measures such as based on displace-
ment entropy properties along geodesics [81] or based on volume growths [81], or
(iv) a combination of the strategies in (i)–(iii) [50].

Some bioinformatics applications require the Ollivier-Ricci curvature from undi-
rected graphs to directed graphs or hypergraphs. Several extensions have been
proposed to extend Ollivier-Ricci curvature from graphs to (unweighted) directed
graphs [108], to (unweighted) undirected hypergraphs [28, 7, 38, 1] and to (un-
weighted) directed hypergraphs [39]. For example, one relatively straightforward
extension of Ollivier-Ricci curvature to a directed edge u → v in a directed graph
would involve letting PNbrG(u) and PNbrG(v) be the two uniform distributions over
the nodes in in-neighbors of u and out-neighbors of v, respectively, and letting
distG(x,y) in Figure 1 denote the length of the shortest path from node x to node
y.
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4 Algorithmic and Computational Complexity Results

4.1 Computation of Gromov-hyperbolicity and Algorithmic
Implications

Using (3) an exact calculation of δ̂ (G) can be done by a straightforward approach
in O(n4) time when n is the number of nodes. However, such a time is obviously
prohibitive for very large n.

Faster exact and approximate computations of δ (G) can be done using the algo-
rithm in [42], which we explain below. Let V = {u1, . . . ,un} be the set of nodes of
G. Since G = (V,E) is an unweighted undirected graph, using breadth-first-search
we can compute in O(n3) time a n×n matrix D such that D [i, j] = distG(ui,u j). For
any fixed node uℓ ∈V , let the quantity δℓ(G) be defined as

δℓ(G) = max
ui,u j ,uk∈V

{
min

{
(ui|uk)uℓ , (u j|uk)uℓ

}
− (ui|u j)uℓ

}
(9)

Thus, δ (G) = maxuℓ∈V {δℓ(G)}. Let ω be the smallest number such that two t × t
matrices can be multiplied in O(t ω) time for all t > 1 (as of writing this article,
the value for ω is about 2.37286 [5]). For two t × t real matrices X and Y , the
(max,min)-matrix multiplication X ⊕Y of X and Y is defined as:

X ⊕Y [i, j] = max
k∈{1,...,t}

min
{

X [i,k], Y [k, j]
}

Duan and Pettie in [35] showed that X ⊕Y can be computed in O(t(3+ω)/2) ≈
O(t2.688) time. To use the result in [35], Fournier, Ismail and Vigneron [42] observe
that

δℓ(G) = Aℓ⊕Aℓ−Aℓ (10)

where Aℓ is the n× n matrix in which Aℓ[i, j] = (ui|u j)uℓ . Note that Aℓ can be ob-
tained from D in O(n2) time. Two time complexities for exact and approximate
computations of δ (G) can now be obtained as follows:

• It is known [17] that δℓ(G) ≤ δ (G) ≤ 2δℓ(G) for any node uℓ ∈ V . Thus, us-
ing (10) we immediately obtain an approximation of δ (G) within a factor of 2
in O(n(3+ω)/2)≈ O(n2.688) time excluding the time taken to compute the matrix
D .

• Iterating the calculation in (10) for every uℓ ∈V gives us an exact calculation of
δ (G) in n×O(n(3+ω)/2)≈ O(n3.688) time.

If one is willing to allow worse approximation factors then further improvements in
running times are possible, such as the following:

(i) Gromov [51] (see also [24, 47]) showed that G can be embedded in a tree
in O(n2) time that such that the hyperbolicity value has an additive error of
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2δ (G) log2 n. That is, given a graph G = (V,E) we can find in O(n2) time a tree
T = (V,ET ) such that distG(ui,u j)−2δ log2 n ≤ distT (ui,u j)≤ distG(ui,u j) for
any pair of nodes ui,u j ∈ V . Fournier, Ismail and Vigneron [42] showed that
if one computes the value of α = maxui,u j∈V{distG(ui,u j)− distT (ui,u j)} in
O(n2) time then α provides an approximation of δ (G) within a factor of 2 log2 n
in O(n2) time excluding the time taken to compute the matrix D .

(ii) The result in (i) can be further improved by a different algorithm. Namely,
Chalopin et al. [20] provides a 8-approximation of δ̂ (G) in O(n2) time exclud-
ing the time taken to compute the matrix D .

Algorithms for some computational problems may become more efficient if the in-
put graph has small hyperbolicity. For example, routing-related problems, the di-
ameter estimation problem or the bottleneck edge minimization problem may admit
more efficient algorithms if the input graph has small hyperbolicity [25, 23, 24, 46,
33].

4.2 Computation of Forman-Ricci Curvature

Consider our input to be a graph G = (V,E) with n nodes and m edges. C1,d
G (ep,q)

can be calculated in O(n+m) time using (4). A calculation of the value of C2,d
G (e)

based on (5) has an worst-case running time of O(nO(d) and therefore may be infea-
sible for practical applications if n is large. The authors in [21] used the following
simplified version of (5) that runs faster for For bioinformatics and other applica-
tions:

C
2,d,simplified
G (e) = ρ(e)

(∑e∼ f 2
d

ρ(e)
ρ( f 2

d )
+ ∑v∼e

ρ(v)
ρ(e)

)
— ∑ e′||e

e′,e∼ f 2
d

√
ρ(e)ρ(e′)
ρ( f 2

d )

 (11)

With this modification, they were able to use the formula for computational purposes
up to d = 5.

Finally, it is possible to compute C2,d
G in O(nO(d)) time using standard algorithmic

techniques and data structures. The authors in [32] provided several algorithmic and
computational complexity results on change-point detection in static and dynamic
networks using C2,d

G .

4.3 Computation of Ollivier-Ricci Curvature

Clearly, the computational complexity of computing CG(e) for a specific edge e
is the same as that of computing EMDe(PNbrG(u),PNbrG(v)), or equivalently that of
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computing an optimal solution of the linear program in Figure 1. Using this obser-
vation the best time-complexity for computing CG(e) can be estimated as follows:

• CG(e) can be computed exactly in O((degG(u)+ degG(v))
5/2) time using the

algorithm for solving linear program in [62].
• If the input graph G is unweighted then, based on the results in [86, 37], for

any ε > 0 we can compute, in Õ
( 1

ε2 degG(u)degG(v)
)

time1, an additive ε-
approximation of CG(e), i.e., a value α satisfying CG(e)≤ α ≤ CG(e)+ ε .

• If the input graph G is unweighted then, based on the result in [8], one can
compute in O(degG(u)+degG(v)) time a value α satisfying 1−3α ≤ CG(e)≤
1−α .

4.3.1 Query-based Local Algorithms for Efficient Computation of CG(e)

The input graph for this section is an unweighted graph. The general idea behind
these approaches is to exploit connections between distributed computing and ran-
dom sampling to approximate only the optimal value of the objective function of an
optimization problem with high probability [84, 9, 82]. Usually the sampling is done
by picking a small number of suitable nodes or edges in the networks and querying
their local neighborhoods. An additive ε-approximation of a quantity α ≥ 0 is ob-
tained by computing a quantity β such that α ≤ β ≤ α + ε . Three standard query
models that appear in the local algorithms literature for unweighted graphs (e.g.,
see [84]) are as follows: the node-pair query model (query a pair of nodes to deter-
mine if an edge between them exists), the neighbor query model (query a node to
obtain a random not-yet-explored adjacent node if it exists), and the degree query
model (query a node to obtain its degree). However, the graph to query for our case
is an edge-weighted complete bipartite graph H = (A,B,w), where nodes in the left
and right side of H are A = NbrG(u) and B = NbrG(v), and the weight of an edge
{x,y} (x ∈ A,y ∈ B) is w(x,y) = distG(x,y) (note that w(x,y) ∈ {1,2,3} if x ̸= x).
This observation leads to the following natural extensions of the standard query
models for our case [31]:

weighted node-pair query model: query a pair of nodes x,y to obtain the weight w(x,y),

weighted degree query model: query a node x to obtain its weighted degree wt-degH(x),

weighted selective degree query model: query (x,a), where x is a node and a ∈ {1,2} is
a number, to obtain the number of edges of weight a that are incident on x, and

weighted neighbor query model: query (x,a), where x is a node and a ∈ {1,2} is a num-
ber, to obtain a random not-yet-explored node v such that w(u,v) = a.

These local queries are implemented by a “distance oracle” that returns on de-
mand the value of w(x,y) = distG(x,y) for two query nodes x ∈ A and y ∈ B. The
selection of a node or an edge as needed for a query is done by sampling via a
suitable uniform distribution.

1 The standard Õ notation in algorithmic analysis hides poly-logarithmic terms, e.g., terms like
log3 degG(v).
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DasGupta, Grigorescu and Mukherjee [31] provided several algorithmic and
computational complexity results related to the above-mentioned query models for
local algorithms in computing CG(e). In particular, they proved the following algo-
rithmic result.

Theorem 1 ([31], paraphrased and rewritten in the context and notations of the
current article). For j ∈ {1,2} let degH, j(x) denote the number of edges of weight
j incident on node x in the graph H. Let δ > 0 be any given constant. Then, we can
design local algorithms with the following performance bounds:

• additive (1+ ε +δ )-approximation of CG(e) using O(1) weighted neighbor
queries2 if maxx{degH,1(x)} = O(1) and degG(v) ≥ degG(u) ≥ (1− (δ/3))×
degG(v),

• additive
( 1

2 + ε +δ
)
-approximation of CG(e) using O(1) weighted neighbor

queries3 if maxx{degH,1(x)}= O(1), maxx{degH,2(x)}= O(1), and degG(v)≥
degG(u)≥ (1− (δ/3))×degG(v).

4.3.2 Normalized Ricci Flows and Modular Decomposition of Networks

For this section, the input graph G = (V,E,w) is an edge-weighted graph where
w(e)≥ 0 is the weight of an edge e ∈ E. Informally, in network research community
a module (also sometimes called a community or cluster) of a network G = (V,E)
is a subset V ′ ⊂ V of nodes that are connected more to nodes inside the module as
opposed to nodes outside the module, and a modular decomposition [74, 63, 72, 30,
29] of the node set V is a partition of V into κ sets (modules) V1, . . . ,Vκ such that
a node within a module is connected more to nodes inside its module as opposed
to nodes outside the module. Such modular decompositions have a wide variety of
applications [74, 72].

The concept of Ricci flow was originally introduced in the context of a Rieman-
nian manifold by Hamilton [52] to provide a continuous change of the metric of
the manifold One of the most ground-breaking application of this technique was
done by Perelman [85] to solve the geometrization conjecture of Thurston on 3-
manifolds. In the context of our edge-weighted network, this technique can be used
to continuously change the weights of the edges of G. The original (not normalized)
equation for these changes is the following:

w(t+1)(e) = w(t)(e)−w(t)(e)C(t)
G (e) (12)

where t = 0,1,2, · · · is the discrete iteration index, w(0)(e) =w(e) for every edge e∈
E, and C

(t)
G (e) is the curvature value based on the edge-weights W (t)=

{
w(t)(e) |e ∈ E

}
.

Note that w(t)(e)≥ 0 for all t since C(t)
G (e)≤ 1 for all t. To apply this iterated method

for modular decomposition of a network, the following two observations are crucial:

2 The constant in O(1) depends on the value of 1
1−(δ/3) .

3 The constant in O(1) depends on the value of 1
1−(δ/3) .
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• Researcher works such as [75, 91] observe that removal of edges with highly
negative curvature values is helpful for finding modules, e.g., in the precise
words of the authors in [91], “positively curved edges are well connected in
the sense that none of them are essential for the proper transport operation and
therefore positively curved edges naturally form a module”.

• Generally speaking, the iterative process outlined in (12) should negatively rein-
force weights of edges with negative curvatures and positively reinforce weights
of edges with positive curvatures.

Based on these observations, a simple modular decomposition algorithm designed
and evaluated by [75] based on Ricci flows is shown in Figure 2.

Input a positively edge-weighted graph G = (V,E,w) and parameters ε,δ

Output a modular decomposition V1, . . . ,Vκ

Algorithm • execute the iterative process in (12)

until |C(t+1)
G (e)−C

(t)
G (e) | ≤ ε for all e

• remove all edges e such that w(t)(e)≥ δ

• return each connected component as a module of G

Fig. 2 A modular decomposition algorithm designed by [75] based on un-normalized Ricci flows.

As observed in papers such as [59], there are problematic aspects to the Ricci
flow equation in (12). Firstly, the sum of edge weights is not preserved in successive
iterations. But, more importantly, there are networks for which the iterative process
in (12) may result in all edges going to zero as t tends to infinity. To remedy these
aspects, Lai, Bai and Lin [59] propose changing (12) as shown below such that the
Ricci flow is “normalized” in the sense that the sum of edge weights remain the
same and therefore all edge weights cannot become arbitrarily small:

w(t+1)(e) = w(t)(e)−w(t)(e)C(t)
G (e)+

sw(t)(e)

∑h∈E

(
w(0)(h)C(0)

G (h)
) ∑

h∈E

(
w(t)(h)C(t)

G (h)
)

(13)

In the above equation, s > 0 is some constant (called “step size” in [59]). Unfortu-
nately, the following theorem shows that there are infinitely many graphs for which
w(1)(e) will become negative thus rendering the iterative process in (13) impossible
to execute beyond the first step.

Theorem 2. [89] For all sufficiently large n, there exists a graph Gn on n nodes for
which w(1)( f )< 0 for some edge f of Gn.
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5 Applications of Network Curvatures in Bioinformatics and
Neuroscience

By this time network curvature measures have been used in various applica-
tions in computer science and other inter-disciplinary areas. For example, many
real-world networks (e.g., preferential attachment networks, networks of high power
transceivers in a wireless sensor network, communication networks at the IP layer
and at other levels etc.) have been observed to have a small constant value of
Gromov-hyperbolicity [76, 83, 56, 57, 6]. A small value of Gromov-hyperbolicity is
often crucial for algorithmic designs; for example, several routing-related problems
or the diameter estimation problem become easier for networks with small Gromov-
hyperbolicity values [25, 23, 24, 46]. In this section, we discuss several applications
of the curvature measures in the interdisciplinary area of computational biology.

5.1 Gromov-hyperbolic Curvatures to Study Biological Networks

A systematic study of the Gromov-hyperbolicity values for real biological net-
works and their corresponding implications was initiated in [4]. The authors in [4]
computed Gromov-hyperbolicity values for the following 10 biological networks:

• two transcriptional regulatory networks, namely E. coli transcriptional [90] and
S. cerevisiae transcriptional [71],

• five signalling networks, namely mammalian signaling [68], T-LGL signal-
ing [109], Drosophila segment polarity [102], ABA signaling [64] and T cell
receptor signalling [87],

• C. elegans metabolic network [55],
• immune response network [100], and
• oriented yeast PPI network [48].

They reported that the Gromov-hyperbolicity values of all except one network are
small and statistically significant. They also reported several interesting experimentally-
validated implications of these hyperbolicity values, such as

• Independent pathways that connect a signal to the same output node (e.g., tran-
scription factor) are rare, and if multiple pathways exist then they are intercon-
nected through cross-talks.

• All the biological networks have central influential small-size node neighbor-
hoods that can be selected to find knock-out nodes to cut off specific up- or
down-regulation.

As an illustration of neuroscience applications, analysis of Gromov-hyperbolicity
for brain-to-brain coordination networks are described in [99] and the references
therein. The authors in [99] found that values of Gromov-hyperbolicities of their
brain-to-brain coordination networks are indeed small, and were able to identify the
subgraphs in these networks that contribute to small Gromov-hyperbolicity.
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5.2 Ollivier-Ricci and Forman-Ricci Curvatures to Study Brain
Disease Networks

Network analysis methods have been extensively used for studying properties of
human brain networks [94, 93, 43, 70]. In this section we discuss the applications
of discretized Ricci curvatures to study brain networks corresponding to two brain
disorders.

5.2.1 Attention Deficit Hyperactivity Disorder

Attention deficit hyperactivity disorder (ADHD) is one of the most common
neuro-developmental disorders of childhood impacting parts of the brain of approx-
imately 11% of children and 5% of adults in the United States. The causes and risk
factors for ADHD are still unknown, and as of yet there is no single clinical test that
helps diagnose ADHD before its onset. There are several published neuroimaging
studies that link the behavioral symptoms of ADHD to significant volume alteration
in the brains of the patients with ADHD. For example:

• The statistical results of the neuroimaging studies of ADHD in Wang et al. [103]
involving estimation of regional tissue volume changes showed significant vol-
ume reductions in the prefrontal, parietal and temporal regions, but significant
volume enlargements in the occipital regions and posterial lateral ventricle.

• Sun et al. in [98] conducted a comparative study by building a model using
anatomic and diffusion-tensor MRI of different regions of the brains of children
with ADHD with that of children without the disease via MRI. They found that
there were differences in the cortical shape of the frontal lobe and areas in the
occipital lobe along with central cortex in the brains of ADHD patients with
those in (age and sex-matched) control groups.

A functional correlation brain network of human brain is usually built by con-
sidering the different regions of a partition of the human brain, based on func-
tional or anatomical properties [95], as nodes and defining the edges as func-
tional correlations among these brain regions. Two prior graph theoretical studies
of ADHD [65, 11] reported changes at the global level of the entire brain but did
not study any altered connection patterns between different regions in the brain.
The authors in [21] used the Forman-Ricci curvature to study such networks of
functional correlations to detect statistically significant altered connection patterns
between different regions of the brain caused by ADHD. The data for their analysis
was collected from the UCLA multimodal connectivity database [19]. Their exper-
imental results indicated 9 critical edges whose curvatures differ dramatically in
brains of ADHD patients compared to healthy brains, and the importances of these
edges were supported by existing neuroscience evidence [54, 69, 49, 98, 103]. In
particular, their findings show that most of the extreme curvature changes happen in
the occipital cortex and the frontal cortex regions of the brain.
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5.2.2 Autism Spectrum Disorder

Autism spectrum disorder (ASD) results in altered white matter developmental
patterns. Autologous cord blood infusion, a potential therapy, is believed to reduce
neuro-inflammation and promote white matter development, thus triggering a recon-
figuration of connectivity. Simhal et al. [92] used the Ollivier-Ricci curvature (for an
undirected unweighted network) to identify the changes in the brain network after
administering ASD patients a single infusion of autologous umbilical cord blood.
They calculated the Spearman correlation between changes in clinical behavioral
scores and changes in curvature following treatment, and identified a relationship
between clinical improvement and altered curvature in three white matter pathways
that are implicated in social and communication abilities.

5.2.3 Age-related Cognitive Decline

The study of age-related changes in brain networks is a fundamental pursuit in
neuroscience. The authors in [107] used both Forman-Ricci curvature and Olliver-
Ricci curvatures to quantify age-related alterations in resting state functional con-
nectivity (brain) networks (rs-FCNs). rs-FCNs represent the interactions between
different brain regions while at rest. The experiments were conducted on a partici-
pant pool of 225 individuals from two age groups: 153 young and 72 elderly persons.
The authors used the following major steps:

• To begin, the authors preprocessed the raw resting-state functional magnetic
resonance imaging scans of these subjects to divide the relevant regions of the
brain into 200 brain activity regions using the Schaefer atlas, and, for each sub-
ject, computed correlations between each pair of these 200 regions to generate
a 200×200 functional connectivity (FC) matrix to capture the strength of inter-
actions between each pair.

• The FC matrices of the subjects were then used to construct their respective
edge-weighted functional connectivity networks (FCNs) by implementing a
two-step filtering approach.

– First, the authors computed a maximum-weight spanning tree to identify
the most significant and core connections that efficiently link different brain
regions.

– Next, they used a sparsity-based thresholding to sparsify the network by
keeping only the strongest connections and discarding the weakest ones,
resulting in an undirected and unweighted FCN of only highly correlated
and connected nodes. This step ensured that the FCNs of each subject had
an equal number of edges, thus allowing for a direct comparison of curva-
ture measures across individuals. 49 different FCNs were constructed per
individual to explore a range of edge densities and thresholds.
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• To compare the FCNs between the young and elderly subjects, the authors cal-
culated the average Forman-Ricci curvature and Oliver-Ricci curvature values
for each edge.

• Finally, the authors used a two-tailed two-sample t-test at each edge density to
evaluate the statistical significance of the difference in average edge curvature
between the young and elderly subjects.

The authors found that the elderly group had higher average Forman-Ricci and
Olliver-Ricci curvature values compared to the younger group. Using Neurosynth
meta-analysis, the authors were also able to uncover cognitive and behavioral as-
pects linked to brain regions exhibiting different curvatures in young and elderly
participants.

5.3 Forman-Ricci Curvatures for Directed Hypergraphs to Study
E. coli Metabolic Networks

Escherichia Coli (E. coli) is a well-studied bacterium of immense importance in
biotechnology and biomedicine. Study of the metabolism process of E. coli is im-
portant in uncovering the intricacies of cellular metabolism and gaining a deeper un-
derstanding of the essential pathways in the metabolic processes of this bacterium.
Leal et al. [61] use a natural hypergraph to model the metabolism of E. coli and then
apply Forman-Ricci curvature for directed hypergraphs to study the corresponding
essential pathways. The metabolism of E. coli is represented as a directed hyper-
graph, where nodes represent metabolites and directed hyperedges A → B represent
a chemical reaction where A and B are the starting materials and the products of the
reaction, respectively4. The authors in [61] calculated the Forman-Ricci curvature
for each hyperedge5. to quantify the bending and deviation from linearity of each
reaction6. It is reported that the curvature values represent how indirect reactions are
influenced by the degree of metabolites, and higher degrees of metabolites lead to
higher curvature values since highly connected metabolites are involved in reactions
with more intermediate steps, or bending7. Parts of the metabolic hypergraph of E.
coli that display higher curvature values represent more abundance with reactions,
suggesting presence of essential pathways in the metabolism process. The authors
suggest that by separating these parts and studying them separately we should be

4 Metabolites are small molecules that play important roles in chemical reactions and overall aid
the function of E. coli.
5 The concept of Forman-Ricci curvature for an edge is extended to a directed hyperedge by taking
into consideration the incoming and outgoing edges at the tail and head of the edge, respectively.
For further technical details, we refer the reader to [61].
6 The actual pathway of a reaction is not necessarily a “straight line” that produces a direct output
but in fact may involve many intermediate steps or “bends” in the journey, such as changes in the
molecular structure of interactions between various molecules.
7 Note that the degree of a metabolite is the number of connections it has in the metabolic hyper-
graph.
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able to get a better understanding of the critical pathways in the metabolism of E.
coli. ‘

5.4 Discrete Ricci Curvatures for Directed Graphs to Study M.
tuberculosis Transcriptional Regulatory Network
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Figure 2: The distribution of (a) Forman-Ricci curvature, (b) degree difference,
and (c) Ollivier-Ricci curvature in the transcriptional regulatory network of
Mycobacterium tuberculosis. There are 6581 unweighted directed edges and
2547 unweighted nodes. The source in each directed edge is a transcription
factor (TF) and the target is a target gene controled by the TF.
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Figure 3: The red hyperedge is negatively curved as in an optimal transference
plan, the size of coincident masses (triangles) and holes (quadrangles), located
on the top middle vertex, is less than the size of the masses which need to be
moved with distance 2. Also the two colored vertices in the left and the right of
the figure are a source and a sink since they have no incoming resp. outgoing
hyperedges.
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Fig. 3 (adopted from [38] with alterations) Distributions of the (a) Forman-Ricci curvatures, and
(b) Ollivier-Ricci curvatures in the TRN of M. tuberculosis.

Eidi et al. [38] used both Forman-Ricci curvatures and Ollivier-Ricci curvatures
for directed graphs to study the transcriptional regulatory network (TRN) of the hu-
man pathogen Mycobacterium Tuberculosis (M. tuberculosis) [36]. The TRN is con-
structed using ChIP-seq as a directed and unweighted network consisting of 2547
nodes, representing transcription factors, and 6581 directed edges representing regu-
latory interactions between transcription factors and target genes (for each directed
edge, the transcription factor is the tail node and the corresponding target gene is
the head node). The authors in [38] provide the following curvature analyses for
this TRN:

• Figure 3(a) shows the distributions of the values of Forman-Ricci curvatures
over all directed edges of the TRN of M. tuberculosis. The distribution shows
a tall unimodal peak at zero, indicating that a significant amount of regulatory
interactions between transcription factors and their target genes have a rela-
tively straight or linear relationship. Most transcription factor nodes present in
this TRN have smaller in-degrees and their target gene nodes also have smaller
out-degrees. As a consequence, these transcription factor nodes and target gene
nodes have limited reach and therefore not very influential in the TRN.

• Figure 3(b) shows the distributions of the values of Ollivier-Ricci curvatures
over all directed edges of the TRN of M. tuberculosis. The distribution exhibits
a multimodal pattern with peaks at curvature values of 0, −1, −0.5, and −0.75.
This indicates that the regulatory interactions between transcription factor nodes
and their corresponding target gene nodes have diverse curvature characteristics
and therefore the TRN of M. tuberculosis is a complex and heterogeneous regu-
latory network.
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Figure 1: The distribution of (a,b) Forman-Ricci curvature, (c,d) degree dif-
ference, and (e,f) Ollivier-Ricci curvature in the giant components of the binary
protein interaction networks in human (left) and fission yeast (right), respec-
tively. In each case, protein-protein interactions are represented via an undi-
rected and unweighted graph. The nodes and edges represent proteins and
binary interactions between them, respectively. The giant component of the hu-
man network has 8152 nodes and 52036 edges, while of the fission yeast network
has 1306 nodes and 2278 edges.
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Fig. 4 (adopted from [38] with alterations) Distributions of the (a),(b) Forman-Ricci curvatures,
and (c),(d) Ollivier-Ricci curvatures of the edges in the giant components in the PPI networks of
human (left panel) and S. pombe (right panel).

5.5 Ollivier-Ricci and Forman-Ricci Curvatures to Study PPI
Network

Eidi et al. [38] used both Forman-Ricci curvatures and Ollivier-Ricci curvatures
to study PPI networks of humans with 8275 nodes and 52569 edges [67], and fis-
sion yeasts (S. pombe) with 1306 nodes and 2278 edges [101]. Both PPI networks
are undirected and unweighted where nodes represent proteins and edges represent
interactions. Eidi et al. [38] focused on the giant components of these networks, i.e.,
the connected components of substantial size. They provided the following analy-
ses for the Forman-Ricci curvature values of the edges in giant components for the
human PPI networks:

• The bimodal distribution of Forman-Ricci curvature values in Figure 4(a) indi-
cates that interactions within the giant component exhibit heterogeneity, with a
major group of interactions clustered around a relatively small curvature value
and a smaller group around a relatively high curvature value.

• The unimodal distribution of Ollivier-Ricci curvature values in Figure 4(c) sug-
gests a relatively consistent pattern of these curvature values across the network.
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For the giant components of the fission yeast PPI network, both the distributions
in Figure 4(b),(d) are multimodal. They provided the following analyses for the
curvature values of the edges in giant components for the fission yeast PPI networks:

• Figure 4(b) for Forman-Ricci curvature values shows a trimodal distribution,
with the largest peak centered around a small-valued curvature. The two other
peaks suggest the existence of multiple subsets or groups of protein interactions
within the network, grouped by diverse levels of curvature. The peaks represent
distinct clusters of interactions with varying degrees of bending or deviation
from linearity.

• Figure 4(d) for Ollivier-Ricci curvature values shows another trimodal distribu-
tion, with a significant proportion of edges in the giant components of the net-
work concentrated on a curvature value of zero. This suggests that a substantial
number of protein interactions in the network display relatively little deviation
from linearity. The other peaks, which occur at negative curvature values, im-
ply the presence of interactions with significant bendings or deviations from
linearity.

Overall, the fission yeast plots display a larger span of curvature values as opposed
to the plot for the human PPI. This leads to a direct conclusion that the fission yeast
PPI network is more disassortative than the human PPI network.

6 Conclusions

In this article we have discussed ideas from the exciting field of network curva-
ture geometry that may lead to significant applications in several fields of computer
science and other interdisciplinary areas. Some important characteristics of the cur-
vature measures discussed in this article are that (i) they depend on non-trivial non-
local network properties, and (ii) they often can be computed in polynomial time
and therefore do not suffer from the curse of NP-completeness [45]. The references
cited at various places in this article show that network curvature measures can en-
code non-trivial topological properties that are not expressed by more established
network-theoretic measures such as degree distributions, clustering coefficients or
betweenness centralities. We hope this article will motivate further collaboration
between the researchers in network curvatures measures and other interdisciplinary
areas.



20 Réka Albert et al.

References

1. T. Akamatsu. A new transport distance and its associated ricci curvature of hypergraphs.
Analysis and Geometry in Metric Spaces, 10(1):90–108, 2022.

2. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern
Physics, 74:47–97, 2002.

3. R. Albert, B. DasGupta, R. Hegde, G. S. Sivanathan, A. Gitter, G. Gürsoy, P. Paul, and E. Son-
tag. Computationally efficient measure of topological redundancy of biological and social
networks. Physical Review E, 84:036117, 2011.

4. R. Albert, B. DasGupta, and N. Mobasheri. Topological implications of negative curvature for
biological and social networks. Physical Review E, 89:032811, 2014.

5. J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication. In Pro-
ceedings of the thirty-second annual ACM-SIAM symposium on Discrete Algorithms, pages
522–539. SIAM, 2021.

6. F. Ariaei, M. Lou, E. Jonckeere, B. Krishnamachari, and M. Zuniga. Curvature of sensor net-
work: clustering coefficient. EURASIP Journal on Wireless Communications and Networking,
2008:213185, 2008.

7. S. Asoodeh, T. Gao, and J. Evans. Curvature of hypergraphs via multi-marginal optimal trans-
port. In 2018 IEEE Conference on Decision and Control, pages 1180–1185, 2018.

8. N. Azarhooshang, P. Sengupta, and B. DasGupta. A review of and some results for ollivier-
ricci network curvature. Mathematics, 8(1416), 2020.

9. K. D. Ba, H. L. Nguyen, H. N. Nguyen, and R. Rubinfeld. Sublinear time algorithms for earth
mover’s distance. Theory of Computing Systems, 48(2):428–442, 2011.

10. S. Bai, A. Huang, L. Lu, and S.-T. Yau. On the sum of ricci-curvatures for weighted graphs.
Pure and Applied Mathematics Quarterly, 17(5):1599–1617, 2021.
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