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Abstract

The paper studies the computational complexity and approximation algorithms for a new
evolutionary distance between multi�chromosomal genomes introduced recently by Ferretti�

Nadeau and Sanko�� Here� a chromosome is represented as a set of genes and a genome is
a collections of chromosomes� The syntenic distance between two genomes is de�ned as the
minimum number of translocations� fusions and �ssions required to transform one genome into

the other� We prove that computing the syntenic distance is NP�hard and give a simple ap�
proximation algorithm with performance ratio �� For the case when an upper bound d on the
syntenic distance is known� we show that an an optimal syntenic sequence can be found in

O�nk� �O�d��� time� where n and k are the number of chromosomes in the two given genomes�
Next� we show that if the set of operations for transforming a genome is signi�cantly restricted�
we can nevertheless �nd a solution that performs at most O�logd� additional moves� where d
is the number of moves performed by the unrestricted optimum� This result should help in the

design of approximation algorithms� Finally� we investigate the median problem	 Given three
genomes� construct a genome minimizing the total syntenic distance to the three given genomes
and compute the corresponding median distance� The problem has application in the inference

of phylogenies based on the syntenic distance� We prove that the problem is NP�hard and design
a polynomial time approximation algorithm with a performance ratio of 
 � � for any constant
� � ��

� Introduction

The de�nition and study of appropriate measures of distance between pairs of species is of great

importance in computational biology� Such measures of distance can be used� for example� in
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phylogeny construction and in taxonomic analysis�

As more and more molecular data becomes available methods for de�ning distances between

species have focused on such data� One of the most popular distance measures is the edit distance

between homologous DNA or aminoacid sequences obtained from di�erent species� Such measures

focus on point mutations and de�ne the distance between two sequences as the minimum number

of these moves required to transform one sequence into another� It has been recognized that the

edit�distance may underestimate the distance between two sequences because of the possibility that

multiple point mutations occurring at the same locus will be accounted for simply as one mutation�

The problem is that the probability of a point mutation is not low enough to rule out this possibility�

Recently� there has been a spate of new de�nitions of distance that try to treat rarer� macrolevel

mutations as the basic moves� For example� if we know the order of genes on a chromosome for

two di�erent species� we can de�ne the reversal distance between the two species to be the number

of reversals of portions of the chromosome to transform the gene order in one species to the gene

order in the other species� The question of �nding the reversal distance was �rst explored in the

computer science context by Kececioglu and Sanko� and by Bafna and Pevzner and there has

been signi�cant progress made on this question by Bafna� Hannenhalli� Kececioglu� Pevzner� Ravi�

Sanko� and others ��� �� 	� ��� ��� ��
� Other moves besides reversals have been considered as well�

Breaking o� a portion of the chromosome and inserting it elsewhere in the chromosome is referred

to as a transposition and one can similarly de�ne the transposition distance��
� Similarly allowing

two chromosomes �viewed as strings of genes
 to exchange su�xes �or sometimes a su�x with a

pre�x
 is known as a translocation and this move can also be used to de�ne an appropriate measure

of distance between two species for which much of the genome has been mapped ���
�

Ferretti et� al���
 proposed a distance measure that is at an even higher level of abstraction�

Here even the order of genes on a particular chromosome of a species is ignored� presumed to be

unknown� It is assumed that the genome of a species is given as a collection of sets� Each set in

the collection corresponds to a set of genes that are on one chromosome and di�erent sets in the

collection correspond to di�erent chromosomes� In this scenario one can de�ne a move to be either

an exchange of genes between two chromosomes� the �ssion of one chromosome into two� or the

fusion of two chromosomes into one� The syntenic distance between two species has been de�ned

by Ferretti et� al���
 to be the minimum number of such moves required to transform the genome

of one species into the genome of the other�

Notice that any recombination of two chromosomes is permissible in this model� By contrast�

the set of legal translocations �in the translocation distance model
 is severely limited by the

order of genes on the chromosomes being translocated� Furthermore� the transformation of the

�rst genome into the second genome does not have to produce a speci�ed order of genes in the

second genome� The underlying justi�cation of this model is as follows� For many organisms� the

information �physical map
 which speci�es the order of genes within chromosomes is not known�

but the distribution of genes among chromosomes is known� Given this incomplete information

that is available� it is still important to compute evolutionary trees based on genomic events� which

leads to the study of the syntenic distance�

Ferretti et� al���
 provide a heuristic that attempts to compute the syntenic distance and provide

empirical evidence of the value of this distance measure� In this paper we attempt to put the notion

of syntenic distance on more formal foundations� To wit� we show the following results�

� The syntenic distance is� in fact� a distance�

�



� An optimal sequence of moves can be assumed to occur in a canonical order with fusions

preceding translocations� preceding �ssions�

� The problem of computing the syntenic distance is NP�hard�

� There is an approximation algorithm that achieves a factor of � approximation to syntenic

distance�

� Computing this distance is �xed parameter tractable�

� When the set of moves is signi�cantly restricted� there is nevertheless an optimal sequence of

restricted moves whose length is not much more than the length of the unrestricted optimal

sequence�

� The problem of computing the median genome� for a given set of � genomes� is NP�hard and

admits an approximation with ratio � � � for any constant � � ��

These results will be described in the sections that follow� Let A���m�n
 denote the inverse

of Ackerman�s function over the two integer variables m�n � � �e�g�� see ��� page ���

� A���m�n


grows very slowly with m and n�

� Notation and Preliminaries

For the purpose of this paper� a genome is a collection of k subsets �called synteny sets or chromo�

somes
 of a set of n objects �called genes
� A genome mutates by one of three simple moves� these

are the translocation� fusion� and �ssion�

De�nition ��� Let S�� S�� T�� T� be sets such that at most one is empty and such that T� � T� �

S� � S��

�a� If S�� S�� T�� T� are non�empty then �S�� S�
 �� �T�� T�
 is called a translocation of S� and S��

�b� If S� is empty then S� �� �T�� T�
 is called a �ssion of S��

�c� If T� is empty then �S�� S�
 �� T� is called a fusion of S� and S��

Given two genomes G� and G� over some gene set
� �� the syntenic distance from G� to G��

denoted D�G��G�
� is the minimum number of moves needed to transform G� into G��

Proposition ��� D�G��G�
 � D�G��G�
�

Proof� Given an optimal sequence of moves from G� to G�� it is easy to reverse every move �the

reverse of a fusion is a �ssion and vice versa
 to get an optimal sequence of moves transforming G�
to G��

It follows fromProposition ��� thatD de�nes a metric over the set of genomes over � �re�exivity

and triangle inequality of D are obvious
�

�As explained in ���� if G� and G� are over two di�erent gene alphabets �� and ��� we remove all the genes in

����� from both G� and G� while computing the syntenic distance� where � is the set symmetric di�erence operator�
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Lemma ��� Let G��G� be an instance of syteny� Then there is a sequence of moves � � ���� � � � � �m


such that m � D�G��G�
 and every �ssion occurs after every translocation and fusion�

Proof� Let � � ���� ��� � � ��m
 be an optimal move sequence� If every �ssion occurs after

every translocation or fusion we are done� so assume not� Let i � m be the largest index

such that �i is a �ssion preceding a translocation or fusion� We give a new optimal sequence

���� � � � � �i��� �
�
i� �

�
i��� �i��� � � � � �m
 where �

�
i is a translocation or fusion and �

�
i�� is a �ssion� Re�

peating the argument eventually yields the desired sequence�

Assume that �i is the �ssion S��S� �� �S�� S�
 and �i�� is either the fusion �T�� T�
 �� T��T�
or the translocation �T�� T�
 �� �T �

�� T
�
�
� If neither T� nor T� is created by �i we can simply

swap �i and �i�� to yield the desired sequence� Thus we need only consider the case where�

without loss of generality� S� � T�� Then we claim that �i�� is a translocation� otherwise we could

replace �i and �i�� by �S� � S�� T�
 �� �S�� S� � T�
� reducing the number of move by �� which

contradicts the optimality of �� Finally� since �i�� is a translocation� we can replace �i and �i��
by ��i � �S� � S�� T�
 �� �T �

� � S�� T
�
�
 and �

�
i�� � T

�
� � S� �� �T �

�� S�
 to yield the desired sequence�

Note that the number of translocations� fusions and �ssions is preserved in construction of the

previous proof� Thus we get the following corollary�

Corollary ��� Let G��G� be an instance of synteny� If there is an optimal move sequence with

m� translocations� m� fusions� and m� �ssions� then there is an optimal move sequence with m�

translocations� m� fusions� and m� �ssions in which all �ssions come after all translocations and

fusions�

Lemma ��� Let G��G� be an instance of synteny� Then there is a sequence of moves � � ���� � � � � �m


such that m � D�G��G�
 and such that all fusions come before all translocations which come before

all �ssions�

Proof� Let � � ���� ��� � � � � �m
 be an optimal move sequence� If there are no translocations or

fusions we are done� If not� by the Lemma ��� we may assume that all translocations and fusions

occur before all �ssions� Let i be the index of the last non��ssion in the sequence and let G � be the

collection of sets after the i�th move� Since � is optimal D�G��G�
 � i� Using Proposition ��� and

Corollary ��� �on the problem of transforming G� to G�
 there is a move sequence that transforms G�
into G� consisting solely of fusions and translocations in which the fusions occur �rst� Concatenating

this sequence with �i��� ���� �m yields the desired move sequence�

Remark ��� The observation in Lemma ���� namely that there is always an optimal sequence of

moves that consists of fusions followed by translocations followed by �ssions� was also made �in the

context of genomes where gene order is known� by Kececioglu and Ravi �	
��

��� The Compact Representation of Synteny

For our subsequent proofs it is easier to deal with the compact representation of the synteny problem

as described in ��
� Assume that the genomes G� and G� contain n and k sets� respectively� Then�

the compact representation of G� with respect to G� is de�ned as follows� replace the ith set G��i of

G� by the set G�
��i � fig for � � i � n� and for every set G��j occuring in G� for � � j � k� replace

G��j by the set G
�
��j � �x�G��j

f� j x � G���g� Let G
�
� and G

�
� be the two modi�ed genomes�
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Lemma ��� D�G��G�
 � D�G���G
�
�


Proof� Let � be an element of G�
��j which is a set in G

�
�� We can think of this element � as the

element ��� j
 to remember its origins� We associate the set G��� � G��j with the element ��� j
�

Now we can simulate a move sequence transforming G�� to G
�
� by a move sequence from G� to G�

as follows� Maintain a ��� correspondence between the sets in G�� and the sets in G� at all times�

Whenever there is a move involving an element ��� j
 simulate this move in the unprimed domain

by making the set G��� � G��j go wherever ��� j
 goes� Note that if the operation in the primed

domain is a translocation or a �ssion� there might be some ambiguity if � is present in both output

sets� In this case� we will let G��� �G��j go to both output sets as well� Since ultimately the move

sequence in the primed domain must end with all the ��s being uni�ed and isolated from the other

elements� the simulation will produce the set G��� in the unprimed domain�

Conversely� we can simulate a move sequence in the unprimed domain as follows� Again we

maintain a ��� correspondence between the sets in G� and the sets in G
�
�� Whenever an element

x � G��j is acted on by some move� we let the element � � G�
��j be acted on in the same manner�

where � is such that x � G��j � G���� The only issue is if there is a �ssion or a translocation and

there are elements x and y in G��j associated with the same � which get separated by the move�

In this case� we let � be present in both output sets� Since x and y must ultimately be united� the

two copies of � will ultimately be merged�

This shows that D�G��G�
 � D�G���G
�
�
�

We state an obvious fact about the optimal move sequence� Without loss of generality we can

assume that no element is present in both output sets of a translocation or �ssion in an optimal

move sequence�

We can alternatively de�ne the synteny problem using the compact representations of genomes

as follows�

De�nition ��� Given a collection S�n� k
 of k �not necessarily distinct� sets S�� � � � � Sk� Si �

f�� �� � � � � ng� the synteny problem is to compute the minimum number of mutations� denoted by

D�S�n� k

� to transform S to the collection ff�g� f�g� � � � � fn� �g� fngg�

The dual of S�n� k
 � �fa�� a�� � � � � ang�S�� � � � � Sk
 is S ��k� n
 � S��� � � � � S
�
n� where Si is a subset

of f�� � � � � kg and j � S�i 	 i � Sj � The goal in the dual problem is to produce the collection

f�g� � � � � fkg�

Proposition ��� follows from Proposition ����

Proposition ��� Let S��k� n
 be the dual of the synteny problem S�n� k
� Then D�S�n� k

 �

D�S��k� n

�

The following proposition gives a time bound for transforming a given instance of the synteny

problem to its compact representation�

Proposition ��� Assume that the genomes G� �resp� G�� contain n �resp� k� sets� Also� let

t be the total number of elements in either G� or G� �i�e�� G� �or G�� contain �disjoint� subsets

of f�� �� � � � � tg�� Then� the compact representation of G� with respect to G� can be computed in

O��t� kn
A���t� n

 time�

�



Proof� First� scan each set G��i of G�� storing for each element x � G��i the index i of the set in

G� in which it appears� This takes O�t
 time� Then� do the following�

For every set G��j of G� do

Perform n MAKESET operations to create n singleton sets f�g� f�g� � � � � fng corresponding

to the n indices of the n sets in G��

Union together the indices of the sets in G� in which the elements of G��j appear by doing

jG��jj SET�UNION operations �one needs to check �rst� before every SET�UNION� if

the two sets on which SET�UNION has to be performed has already been subject to a

previous SET�UNION� by doing two FIND�SET operations
�

For every element in G��j� do a FIND�SET operation� to �nd and collect all the indices of

sets of G� which occur in the same set of G�� thereby constructing the set G
�
��j �

For each set G��j � G�� we do at most �jG��jj � n set operations on sets containing a total of

n elements� Using both union by rank and path compression heuristics� the time taken for each

set G��j is O���jG��jj� n
A����jG��jj � n� n

 � O��jG��jj � n
A����t� n� n

 �see ��� page ���

�

Hence� the time taken for all the sets in G� is at most O���
Pk

j�� jG��jj
 � kn
A����t � n� n

 �

O��t� kn
A����t� n� n

 � O��t� kn
A���t� n

�

Henceforth� unless otherwise mentioned� by synteny problem we refer to the compact represen�

tation of the synteny problem� By Proposition ���� it is su�cient to consider an instance S�n� k


of the synteny problem with n � k� since otherwise we can solve the dual problem�

De�nition ��� Given an instance S�n� k
 of the synteny problem� the synteny graph G�S�n� k



includes a vertex for each set of S�n� k
� Two vertices are connected by an edge if and only if

their corresponding sets in S�n� k
 have a non�empty intersection� If G�S�n� k

 has p connected

components �where � � p � n�� we will simply say that S�n� k
 has p components� If G�S�n� k

 is

connected we will say that S�n� k
 is connected�

Proposition ��� Let S�n� k
 be a synteny instance with p components� Then� D�S�n� k

 � n� p�

Proof� Let � � ���� � � � � �m
 be an optimal move sequence for S�n� k
� Let S� � S and let Si be

the synteny instance obtained after the �rst i moves� Obviously� S� has p components and Sm has

n components� Now� we show that Si�� has at most one more component than Si� This will follow

provided we can show that any move can produce at most one more connected component and can

be seen as follows�

Let the move be �S�� S�
 �� �T�� T�
 �where at most one of the sets is empty
� This move

removes S� and S� from the vertex set of the associated graph and introduces the vertices T� and

T�� �Of course� if any of these sets is empty� there is no corresponding vertex for that set�
 If in the

new graph we join vertex T� and T� by an edge� it is clear that the new graph has at most as many

components as the old one� �Any path in the old graph passing through S� or S� can be mapped

to a path in the new graph passing through T� and�or T��
 Finally� removing the edge from T� to

T� increases the number of components by at most ��

Thus� D�S�n� k

 � m � n� p�

�



� NP�hardness of the Synteny Problem

In this section we prove the following theorem�

Theorem ��� Computing the syntenic distance exactly is NP�hard�

Our reduction will use two problems� the largest balanced quasi�independent set �LBQIS
 prob�

lem and the largest balanced independent set �LBIS
 problem for bipartite graphs� which are de�ned

as follows�

PROBLEM� Largest balanced independent set �LBIS
 problem�

INPUT� A connected bipartite graph G � �U� V� E
 with jU j � jV j � n and positive integer k�

� � k � n�

QUESTION� Does there exists U � � U � V � � V � jU �j � jV �j � k� such that �u�� v�
 
� E for any

u� � U � and v� � V � �

PROBLEM� Largest balanced quasi�independent set �LBQIS
 problem�

INPUT� A connected bipartite graph G � �U� V� E
 with jU j � jV j � n and positive integer k�

� � k � n�

QUESTION� Does there exists U � � U � V � � V � jU �j � jV �j � k� such that for some permutation

u��� u
�
�� � � � � u

�
k of the vertices in U

� and some permutation v��� v
�
�� � � � � v

�
k of the vertices in V

�� �u�i� v
�
j
 
�

E for any � � i � k and i � j �

The LBIS problem is known to be NP�complete��� page ���
�� Note that an LBIS of size k is

also an LBQIS of size k for a graph G� but the converse is not necessarily true�

First� we prove the following theorem�

Theorem ��� Computing the syntenic distance is NP�hard if the LBQIS problem is NP�hard�

The proof of the above theorem is as follows� Given an instance �G� k
 of the LBQIS problem as

mentioned above� we create an instance S��n�k��� �n�k��
 of the synteny problem containing

the following sets �assume that U � fu�� u�� � � � � ung and V � fv�� v�� � � � � vng
�

�a� S � fu�� u�� � � � � un� a�� a�� � � � � an�k� bg�

�b� Xi � fuj j �uj � vi
 � Eg � fbg for � � i � n�

�c� Yi � fbg for � � i � n� k�

We refer to the elements u�� u�� � � � � un �resp� a�� a�� � � � � an�k
 as the u�elements �resp� a�

elements
 and the sets X�� X�� � � � � Xn �resp� Y�� Y�� � � � � Yn�k
 as the X�sets �resp� Y �sets
� For

two given sets fu��� u
�
�� � � � � u

�
kg � U and fv��� v

�
�� � � � � v

�
kg � V � we de�ne the following notations for

convenience�

� P� � S and Pi � Pi�� � faig
 for � � i � n� k�

�In ��� page ���� the largest balanced complete bipartite subgraph problem is shown to be NP�complete� which is

same as the largest balanced bipartite independent set on the complement of the graph

�



� Qk � Pn�k and Qi�� � Qi � fu�ig for � � i � k�

� R� � Q� and Ri � Ri�� � fu�k�ig for � � i � n� k�

Notice that Rn�k � fbg� The following lemma will complete the proof of Theorem ����

Lemma ��� G has a LBQIS of size k if and only if D�S��n� k � �� �n� k � �

 � �n� k�

The proof of the �only if� part of Lemma ��� is straightforward� Assume G has a LBQIS

�U �� V �
 of size k� Let U � U � � fu�k��� u
�
k��� � � � � u

�
ng and V � V � � fv�k��� v

�
k��� � � � � v

�
ng� An

optimal syntenic sequence of �n� k moves consists of the following moves�

� First� for i � k��� k��� � � � � n� perform the translocation �Pi�k��� Xv�
k��

 �� �fai�kg� Pi�k
�

Notice that after the last move we have created the set Q� � Pn�k �

� Next� for i � k� k � �� � � � � �� perform the translocation �Qi� Xv�i

 �� �fu�ig� Qi��
� Notice

that after the last move we have the sets Q� � U � U �� Y�� Y�� � � � � Yn�k still remaining to be

processed�

� For i � �� �� � � � � n� k� perform the translocation �Ri��� Yi
 �� �fu�k�ig� Ri
�

Before proceeding with the proof of the �if� part of Lemma ���� we need a few de�nitions and

results�

De�nition ��� A connected instance S�n� k
 of the synteny problem is exact if n � k andD�S�n� k

 �

n� ��

De�nition ��� Let S�n� k
 be an instance of synteny� A move on S is called a splitting move if

it increases the number of components of S by one and it is called a non�splitting move otherwise�

De�nition ��� Let S�n� n
 be a connected instance of synteny� A splitting move on S�n� n
 is

called a balanced move if it creates two subproblems S��n�� n�
 and S��n�� n�
 for some n� and n��

A splitting move must be a translocation or �ssion since fusions cannot increase the number

of components� In the case of a translocation� it must operate on sets in the same connected

component� A balanced move must be a translocation since �ssions increase the total number of

sets�

Lemma ��� Every move in any optimal move sequence for an exact instance of synteny is a

balanced move on a connected component�

Proof� Let S�n� n
 be an exact instance of synteny and let � � ���� � � � � �n��
 be an optimal

move sequence� Since S�n� n
 is connected� each move of � must be a splitting move� Assume ��
splits S�n� n
 into two subproblems S��n�� k�
 and S��n�� k�
� where n� � n� � k� � k� � n� �Note

these problems have disjoint alphabets�
 Since each subsequent move must act on a connected

component of the current problem� we can partition ���� � � � � �n�
 into two subsequences that solve�

respectively� S� and S�� By optimality of �� these subsequences must be optimal move sequences

so

D�S��n�� k�

 �D�S��n�� k�

 � D�S�n� n

� � � n� ��

	



By Proposition ��� and the fact that Si�ni� ki
 is connected� D�Si�ni� ki

 � max�ni� ki
� �� Thus

ni � ki�

Notice that the instance of the synteny problem created in Theorem ��� is exact� Proof of

Lemma ��� is complete if we can prove the following lemma�

Lemma ��� If D�S��n� k � �� �n� k � �

 � �n� k� then G has a LBQIS of size k�

Proof� Let � � ���� ��� � � � � ��n�k
 be any optimal move sequence� By Lemma ���� every move is

a balanced translocation�

First� we claim that� after a possible reordering of the indices of the a�elements� the move �j � for

� � j � n� k� must be a translocation �Pj��� X�
 �� �fajg� Pj
 for some � � fv�� v�� � � � � vng� For

contradiction� assume this is not the case and rearrange the indices of the a�elements� if necessary�

so that j � n�k is the least index such that �j violates the condition� Since �j must be a splitting

translocation� it cannot translocate two X�sets� an X�set with a Y �set� or an Y �set with Pj���

Hence� �j must translocate an X�set with Pj��� Let �j � �Pj��� X�
 � �P �� P ��
� Assume that

b � P �� �and� hence b 
� P �
� Since �j must be a balanced move� P
� must contain at most � a�element

and at most � u�element� If P � does not contain any a�element� �j does not violate the condition�

Otherwise� P � contains exactly one u�element ut and no a�element� Then� modify �j such that the

two elements ut and aj exchange their places in P � and P �� and then �j satis�es our condition�

Hence� after the move �n�k � we have the setQk � Pn�k � fu�� u�� � � � � un� bg� the sets Y�� Y�� � � � � Yk
and some k X�sets� say Xv� � xv� � � � � � Xvk � Then� by essentially the same reasoning as before� after a

possible rearrangement of the indices� the move �j � for n�k�� � j � n� must be the translocation

�Qn�j��� Xvn�j��

 �� �fun�j��g� Qn�j
� This implies that �ui� vj
 
� E for � � i � k and i � j�

This completes the proof of Theorem ���� To complete our proof of Theorem ���� it is su�cient

to prove the following theorem�

Theorem ��� The LBQIS problem for bipartite graphs is NP�complete�

We will reduce LBIS to the LBQIS problem� Assume that we are given an instance �G� k
 of the

LBIS problem� where G � �U� V� E
� U � V � f�� �� � � � � ng� We create an instance �G�� k�
 of the

LBQIS problem� where k� � k�� k� G� � �U �� V �� E�
� U � � V � � f�i� j
 j � � i � k� �� � � j � ng�

and E� � E� � E� consists of the following edges�

E� � f��i� k
� �j� l

 j i � jg

E� � f��i� k
� �j� l

 j i � j� �k� l
 � Eg

Intuitively� we use the ampli�cation technique �see� for example� ���� page ��	����

 and �blow up�

the graph G by using k � � copies of it with some additional edges� We will prove the following

lemma showing the correctness of our reduction�

Lemma ��� G has an LBIS of size k if and only if G� has an LBQIS of size k��

The proof of the �only if� part of Lemma ��� is easy� Let U� � U and V� � V be an LBIS of G

of size k� Assume� wlog� that U� � V� � f�� �� � � � � kg� Let U �
� � V �

� be the following permutation

of a subset of k� � k vertices of G��

��� �
� ��� �
� � � � � ��� k
� ��� �
� ��� �
� � � � � ��� k
� � � � � �k� �� �
� �k� �� �
� � � � � �k� �� k


�



Then� U �
� and V

�
� induces an LBQIS of size k

� in G��

The proof of the �if� part of Lemma ��� is more involved� Let �� and �� be a permutation of

the vertices in U � and V �� respectively� which realizes an LBQIS of size k� � k� � k� One crucial

step in the proof is the following lemma which says that �� and �� can be decomposed in k � �

modules�

Lemma ��	 �Rearrangement lemma� There exist integers p�� p�� � � � � pk�� � �� p�� p�� � � ��

pk�� � k� � k� such that �� and �� may be assumed to be of the following forms�

�� � ���� x
�
�
� � � � � ��� x

p�
� 
� ��� x

�
�
� � � � � ��� x

p�
� 
� � � � � �k� �� x

�
k��
� � � � � �k� �� x

pk��
k�� 



�� � ���� y
�
�
� � � � � ��� y

p�
� 
� ��� y

�
�
� � � � � ��� y

p�
� 
� � � � � �k� �� y

�
k��
� � � � � �k� �� y

pk��
k�� 



where xji � y
j
i � f�� �� � � � � ng and pi � � means that that sequence �pi� y

�
pi
� �pi� y

�
pi
� � � � � �pi� y

pi
pi 
 is

absent�

Proof� We may �rst assume without loss of generality that the permutations are

�� � ���� x
�
�
� � � � � ��� x

p�
� 
� ��� x

�
�
� � � � � ��� x

p�
� 
� � � � � �k� �� x

�
k��
� � � � � �k� �� x

pk��
k�� 



�� � ���� y
�
�
� � � � � ��� y

q�
� 
� ��� y

�
�
� � � � � ��� y

q�
� 
� � � � � �k� �� y

�
k��
� � � � � �k� �� y

qk��
k�� 



Then clearly q� � p�� q�� q� � p�� p�� � � �� q�� � � �� qk � p�� � � �� pk because of the edges in E��

Since
Pk��

i�� qi �
Pk��

i�� pi � k� � k� qk�� � pk��� De�ne A � fi j �j� i
 � ��g�

If jAj � qk��� then we can modify the su�x �i� x
j
i 
� �i� x

j��
i 
� � � � � �k � �� x

pk��
k�� 
 of �� with length

qk�� so that x
j
i � ����� x

pk��
k�� are all distinct elements of A� Hence we can replace it with the sequence

�k � �� xji 
� �k� �� x
j��
i 
� � � � � �k� �� x

pk��
k�� 
� The proof is then completed by induction�

Otherwise� suppose jAj � qk��� Then qk�� � p�� � � � � pk��� In particular� qk�� � p�� Now we

can modify the pre�x ��� y��
� ��� y
�
�
� � � � � �i� y

j
i 
 of �� with length p� so that y

�
� � � � � � y

j
i are all distinct

elements of fy�k��� � � � � y
qk��
k�� g� Hence we can replace it with the sequence ��� y

�
�
� ��� y

�
�
� � � � � ��� y

j
i 
�

The proof is again completed by induction�

Now� to complete the proof of Lemma ���� note that we have the following two cases�

Case �� There exists i � j such that pi � k and pj � k� Then� there is no edge between the vertices

�pi� x
�
pi
� �pi� x

�
pi
� � � � � �pi� x

pi
pi
 and �pj� y

�
pj 
� �pj� y

�
pj 
� � � � � �pj� y

pj
pj 
� Since i � j� by our construction of

G�� G must have an LBIS of size at least k consisting of the vertices U� � fx�pi � x
�
pi� � � � � x

pi
pig � U

and V� � fy�pj � y
�
pj
� � � � � y

pj
pjg � V �

Case �� There are no such pair of indices as in Case �� Let t � � be the largest integer such that

pt � k� Now� we have two cases�

�a� There is no such t� In this case� p� � k� � k � �
Pk��

i�� pi
 � �k�

�b� Otherwise� pi � k for i 
� t and hence again pt � �k�

Hence� in either case� there exists an index j such that pj � �k� Then� the vertices U� �

fx
pj
j � x

pj��
j � � � � � x

pj�k��
j g � U and V� � fy�j � y

�
j � � � � � y

k
j g � V form an LBIS of size k for G� This

completes the proof of Lemma ����

��



� A Simple Approximation Algorithm for the Synteny Problem

In this section� we describe a polynomial time approximation algorithm for the synteny problem

with performance ratio ��

Theorem ��� Let S�n� k
 be an instance of the synteny problem� Then� it is possible to approxi�

mate D�S�n� k

 with a performance ratio of � in O�nkA���nk� k

 time �if the input is not in com�

pact representation� then the time taken is O�nkA���nk� k
 � �
� where � is the time to transform

a given instance of the synteny problem to its compact representation as stated in Proposition ��
��

Proof� Assume� without loss of generality� that n � k� Assume S�n� k
 has p components and let

ni �resp� ki
 be the corresponding number of elements �resp� number of sets
 in the i
th connected

component of G�S
� Our simple fusion��ssion algorithm is as follows� First� �nd the connected

components of G�S
� Then� for each connected component� repeatedly use fusion until only one set

is remaining and then repeatedly use �ssion to separate the remaining elements from the set� In all�

we perform
Pp

i���ni�ki��
 � n�k��p � �n��p moves� By Proposition ���� D�S�n� k

 � n�p�

and hence a performance ratio of � is achieved� Note that the approximation algorithm uses no

translocations�

Now� we analyze the time complexity of our approximation algorithm� Converting the given

instance of the synteny problem to its compact representation� if necessary� takes O��
 time�

At the end of this preprocessing� the compact representation consists of k sets S�� S�� � � � � Sk �

f�� �� � � � � ng� each set being represented by a list of its elements� The remaining time bounds are

as follows�

��� Since each set is represented by a list of its elements� scan the sets S�� S�� � � � � Sk� collecting

for each element i � f�� �� � � � � ng the indices of sets� denoted by Ii� in which it appears� This

takes O�kn
 time� Notice that jIij � k for all i�

��� Use k MAKESET operations to create k disjoint sets� say f�g� f�g� � � � � fkg�

��� For every element i � f�� �� � � � � ng� do a SET�UNION on the sets that contain the indices in

Ii using both the union by rank and path compression heuristics �before doing SET�UNION�

one must check by doing two FIND�SET operations if the two sets are not already together
�

��� Finally� do a FIND�SET for every index �� �� � � � � k to �nd and collect the indices of the sets

in the same connected components� using both the union by rank and path compression

heuristics�

We do a total of at most �k � nk set operations on a set of k elements� Hence� the total time to

�nd the connected components is O���k � nk
A����k � nk� k

 � O�nkA���nk� k

 �see ��� page

���

� It can be easily seen that the remaining time of our heuristic �for �ssions and fusions
 is at

most O�nk
�

Remark ��� The performance ratio � of the above heuristic is tight� Let the instance S�n� n


consist of the n sets f�g� f�� �g� f�� �� �g� � � � � f�� �� � � � � ng� Then� D�S�n� n

 � n � �� whereas our

heuristic takes �n � � moves�

��



It is possible to use a few less moves �i�e�� use n � k � �p moves instead of n � k � �p moves�

assuming every component has at least � elements and at least � sets� if we replace the last fusion in

our heuristic by a translocation which separates one of the elements from the rest� but this will not

improve the performance ratio asymptotically� However� this shows that at most �D�S�n� k

� �

moves su�ce for this slightly modi�ed version of our approximation algorithm�

� Linear Synteny

The move sequences used in the NP�completeness proof and �without loss of generality
 produced

by the approximation algorithm have a particular form� There is a merging set  that is initially

one of the input sets� The �rst k � � moves are either fusions or very restricted translocations

between  and an input set� The restriction on translocations is that only translocations that

produce a singleton set fjg such that j does not occur in any other set are allowed� The remaining

moves are �ssions on  that create singleton sets� In this section we study this restricted problem�

Let S�n� k
 � fS�� � � � � Skg be a connected instance of synteny and let � be a permutation of

��� � � � � k
� The linear move sequence �� for S�n� k
 is de�ned as follows�

�� Let  � � S�� �

�� For i � �� �� � � � � k� �

�a
 If there is j �  i � S�i�� that is not in �
k
��i��S�� then choose the smallest such j and

set �i � � i� S�i��
 �� � i��� fjg
 where  i�� � � i � S�i��
� fjg�

�b
 Otherwise �i � � i� S�i��
 ��  i���

�� For i � k� � � � � k�j kj��� let j be the smallest element in  i and set �i �  i �� � i��� fjg
�

If S�n� k
 is not connected� a linear move sequence is a partition of the connected components of

S�n� k
 and a linear move sequence for each�� We let !D�S�n� k

 denote the length of the shortest

linear move sequence for S�n� k
�

Since the NP�Completeness proof uses linear move sequences� !D�S�n� k

 is hard to compute�

Since the approximation algorithm can be easily transformed into a linear move sequence that is

no longer �by splitting o� singleton sets whenever permitted by the de�nition of such sequences


and D�S�n� k

 � !D�S�n� k

� this algorithm gives a ��approximation of !D�S�n� k

� Note as well

that the optimal move sequence for the example given in Remark ��� is a linear move sequence so�

as in the general case� the ��approximation bound is tight for this algorithm�

It remains open whether one can approximate linear synteny by a factor better than �� but this

problem seems easier to analyze than the general synteny problem� The following theorem says�

in fact� it su�ces to improve the approximation bound for linear synteny since any such algorithm

yields a better approximation for the general problem�

Theorem 	�� If linear synteny can be approximated within a factor of c in polynomial time then

for any � � �� general synteny can be approximated within a factor of c� � in polynomial time�

�If for example an input is f�g� f�g� � � � � fng then no moves are required in either the original or linear versions of

synteny�

��



In the next section we show that instances of the synteny problem where the distance is a �xed

constant can be solved exactly in polynomial time� Thus� in order to prove this theorem we can

limit our consideration to instances of synteny where the distance is su�ciently large� Therefore�

the theorem follows directly from Lemma ��� which is the main content of this section�

Lemma 	�� Let S�n� k
 be an instance of synteny� Then

!D�S�n� k

 � D�S�n� k

 � log���D�S�n� k


�

To prove this lemma we need the following de�nitions�

De�nition 	�� Let S�n� k
 be an instance of synteny and let � be an arbitrary move sequence for

S�n� k
� The move digraph GM�S� �
 contains a vertex for each move in �� If �i creates a set S

that is input to �j then GM has an edge from �i to �j � �Note that we think of each occurrence of

a set as being �tagged� by the move that created the set and the move that consumes the set� Thus

each occurrence of an intermediate set is associated with exactly one directed edge in GM ��

We point out that GM implies a partial order on the moves in � and any consistent total order

yields a move sequence for S�n� k
� If � is optimal� each total order yields an optimal move sequence

for S�n� k
� Note that GM is directed� acyclic and each node has in�degree and out�degree at most

�� A directed graph is weakly connected if it is connected when its edges are considered in an

undirected sense�

De�nition 	�� Let G be a weakly connected� directed acyclic graph on n nodes� An f�n
 directed

biseparator of G is a non�empty subset of edges A whose removal partitions G into two weakly

connected components G� and G� such that each has between f�n
 and n � f�n
 nodes� Further�

for every � u� v �� A� u � G� and v � G��

The proof of Lemma ��� uses the following graph�theoretic lemma whose proof can be found in

��
�

Lemma 	�� Let G be a weakly connected� directed� acyclic graph on n nodes where the in�degree

and out�degree of each node are each at most �� Then G has a n
� directed biseparator�

Proof of Lemma 	��� Because of the form of Lemma ���� all logarithms in this proof are to the

base ���� Let � be an arbitrary move sequence for S�n� k
 � fS�� � � � � Skg of length d� To prove the

bound it su�ces to prove the case where � consists solely of translocations� To see this� notice �rst

that by Corollary ��� we may assume that �ssions occur after all translocations which occur after

all fusions� At the end of the fusion�translocation stages� the current sets T�� � � � � T� are disjoint�

Create a new instance of synteny by renaming each j in the current set Ti as ai in the original

instance� Thus the fusion�translocation stages of � solves the new problem� Suppose �� is a linear

move sequence that solves the new problem and has length � d� � log d�� where d� is the length

of the fusion�translocation stage of �� Then running �� on the original problem requires d � d�

additional �ssions and has length � d � logd� � d � logd� So assume that � consists of fusions

followed by translocations� Consider the synteny instance T�� � � � � T� created by the last fusion�

Suppose �� is a linear move sequence that solves this problem and has length � d��logd�� where d�

is the number of translocations� For each T�i � let �
�
i be an arbitrary ordering of the sets that were

��



fused to create T�i and let �
� � ��� � �

�
� � � ��

�
�� Then ��� has length at most d� logd

� � d � log d�

�In other words� we are performing �just�in�time� fusions to create the sets Ti as demanded by

the linear move sequence ���
 Thus� since pre�xes of fusions and su�xes of �ssions can be made

linear without increasing their length� we will now focus on substrings of moves consisting only of

translocations�

Notice in this case that n � k� If d � � then � is already a linear move sequence so assume

d � �� First consider the case where GM�S�n� k
� �
 is connected� Note that GM has d nodes�

By Lemma ���� there exists a d	� directed biseparator A of GM�S�n� k
� �
� Let G� and G�

be the two weakly connected components created by removing A� Assume Gi has di nodes� note

d� � d� � d� We construct two new synteny instances as follows�

S�� Each edge e of A corresponds to a set Te that is passed to a node of G�� The instance S�
consists of these sets Te� e � A� plus any of the input sets of S�n� k
 that are input to G��

Notice that any move sequence implied by G� �i�e� consistent total order on its nodes
 is a

move sequence that solves S�� Since each move is a translocation� S� has the same number

of sets as elements� let n� be this number�

S�� Initially let S� consist of the input sets of S�n� k
 that are input to nodes of G�� A move

sequence implied by G� does not typically solve S� because the sets Te� e � A� may not be

disjoint singleton sets� To �x this� let us �rst rename an element j that occurs in the set S� of

S� as �j� �
� Carry the renaming through the moves of �� In particular� if the two input sets

to a move contain �j� �
 and �j� �
 respectively� and only one of the output sets of the move

contains the element j then associate both �j� �
 and �j� �
 with this element j� �Recall that

we can assume without loss of generality that each element j is present in at most one of the

output sets of a translocation�
 Then for each Te create a new dummy name ae� For each

�j� �
 � Te� rename �j� �
 as ae in S�� Finally� each �nal set that is not an input to S� must

consist of elements �j� �
 where the �rst component is a �xed j and the second component

ranges over all possibilities� Restore the original name� j� for all such pairs� Note that the

same element j might end up receiving di�erent names if the various occurrences of j end

up in separate sets Te for e � A� With this renaming a move sequence implied by G� solves

S�� As above� S� has the same number of sets as elements� let n� be this number� Let

W� � faeje � Ag�

Inductively assume that there is a linear move sequence �i with associated permutation �i for

Si of length � di�log����di
� Let � be the order on the sets of S induced by �� followed by ��� We

claim that a modi�cation of �� has length at most d�max�log����d�
� log����d�

 � �� The lemma

follows since

log����n
 � � � log����
�n

�

�

For the accounting we�ll modify �� slightly to create its singleton sets in a way we can count�

In the following  ��j�  ��j and  j denote the current merging set of� respectively� ��� � ��� and ��
before their j�th move� During the �rst n��� merges �� matches the moves of ��� � By this we mean

that when ��� creates a singleton fjg� �� creates the same singleton provided j 
� W�� If j � W�

then �� simply performs a fusion at that step� The n��th move of �� is a fusion of  n� with the �rst

set in the ordering for S�� In the remaining moves it matches the �rst n� � � moves of ��� � except

those involving sets Te� e � A� during which �� makes no move� Finally� the sequence includes

whatever �ssions are necessary to end up with singleton sets� Let W� be the set of singletons

��



created by ��� in translocations with the sets Te� e � A� Notice that  n� � � ��n� �
S
e�A Te
�W�

and  n � � ��n� �W�
 � ��n� �W�� Let r� � j ��n� �W�j and r� � j ��n� j�

As described �� is somewhat wasteful� No element of  ��n��W� exists in an S� set� If there are

f fusions in all but the �rst n��� moves of ��� we can replace min�r�� f
 of them by translocations

creating singletons from  ��n� � W�� The sequence ��� together with the n
th
� move contains r�

fusions of which jAj� jW�j involve sets Te� e � A� The remaining have corresponding fusions in ���

Since  ��n� and  ��n� are disjoint� the modi�ed move sequence ends with a set  n where

j nj � r� � r� �min�r�� r�� jAj� jW�j
 � jW�j � max�r�� r�� jAj� jW�j
 � jAj�

An additional j nj � � �ssions are needed� The number of moves we have performed in �� is

n� � and taking into account the additional j nj � � �ssions we have to perform� we must show�

d� log����d
 � n�max�r�� r� � jAj� jW�j
 � jAj � �

� n� � n� �max�r�� r� � jAj� jW�j
� ��

since n � n� � n� � jjAjj�

First consider the case r� � r� � jW�j � jAj� Since by induction

d� � log����d�
 � n� � � � j ��n� j � �

� n� � r� � ��

�as r� � j ��n� �W�j
 and d� � n� � �� we have

n� � n� �maxfr�� r�� jW�j � jAjg � � � n� � n� � r� � �

� d� � log����d�
 � d� � �

� d� log����d�
 � �

� d� log�����d	�
� �

� d� log��� d�

So in this case the length of the modi�ed sequence for the overall problem is at most d�log��� d�

Next� suppose r� � jAj � jW�j � r�� Again by induction d� � log����d�
 � n� � r� � � �

n� � r� � �jAj � jW�j
� � �since �jAj � jW�j
 is non�negative
 and d� � n� � �� So we have

n� � n� �maxfr�� r�� jW�j � jAjg � � � n� � n� � r� � �jAj � jW�j
� �

� d� � log����d�
 � d� � �

� d� log����d�
 � �

� d� log�����d	�
� �

� d� log��� d�

Finally we consider the situation where GM has more than one component� We consider the

components of GM in decreasing order of size �number of moves
 and assume by Lemma ���

that we have found a good linear move sequence for each component� Now when considering the

ith component we perform the fusion and translocation moves in the linear move sequence for

this component� If there are elements left in the set  being carried at this point� we perform a

translocation of  with the �rst set in the linear move sequence for the �i� �
th component and

produce one of the elements of  as a singleton� Whenever we perform a fusion in the future� we

can instead make this move a translocation and produce any remaining element of  � Thus� it can

be seen that the overhead of the entire linear move sequence is at most log����n�
 where n� is the

size of the �rst component�

��



� Optimal Syntenic Sequence When the Distance is Bounded

In practice� it may be the case� that the synteny distance between two genomes is bounded� and

one is interested in �nding the optimal sequence of synteny moves between the two genomes� The

following theorem states our result in this regard�

Theorem 
�� Let S�n� k
 be an instance of the synteny problem with D�S�n� k

 � d� Then� an

optimal sequence of synteny moves for S�n� k
 can be computed in O�nk � �O�d��
 time�

We need to prove a few results before proving Theorem ���� As usual� we may assume n � k

without any loss of generality�

Lemma 
�� If D�S�n� k

 � n
� � �� then S�n� k
 has one connected component containing just the

set faig for some � � i � n�

Proof� Assume G�S
 has p � � connected components C�� � � � � Cp and let ni � � �resp� ki � �
 be

the number of elements �resp� number of sets
 in Ci� Suppose S�n� k
 has no connected components

consisting of a singleton set� i�e�� ni � ki � � for all i� Thus� n� k �
Pp

i���ni � ki
 � �p� implying

p � �n
� � But� by Proposition ���� p � n �D�S�n� k

 � �n

� � �� a contradiction"

Lemma 
�� Assume that a given instance S�n� k
 has a connected component containing only the

set faig� Let T �n� �� k� �
 be the instance obtained by removing the element ai and the set faig

from S�n� k
� Then� D�S�n� k

 � D�T �n� �� k� �

�

Proof� Obviously� D�S�n� k

 � D�T �n��� k��

� Conversely� assume that an optimal sequence

for S�n� k
 translocates the set faig with some other set� We do not perform this translocation�

but proceed with the remaining moves assuming that the element ai is carried to subsequent

sets� Finally� we must have a translocation or �ssion separating ai from other elements� If it is a

translocation� we replace it by a fusion� whereas if it is a �ssion� we do nothing� So� in fact we save

moves by not translocating ai� Hence� D�T �n� �� k� �

 � D�S�n� k

�

We now proceed with the proof of Theorem ���� By repeatedly applying Lemma ���� given

an instance S�n� k
� we can derive an instance T �n�� k�
 such that n� � n� k� � k� n� � k� and

D�S�n� k

 � D�T �n�� k�

 � n�

� � Hence� it is su�cient to prove the theorem when n � k and d � n
� �

By Lemma ���� we know that it is su�cient to do at most 
� fusions �rst� at most 
� translocations

next and at most 
� �ssions at the end� for every choice of 
�� 
�� 
� � � such that 
��
��
� � d�

The total number of choices of 
�� 
�� 
� � � such that 
� � 
� � 
� � d is at most

X
��i�d

�
i� �

i

�
�
X

��i�d

�
i� �

�

�
� O�d�
 � �O�logd�

For every such choice� we count the total number of possible alternative moves we may have to

perform� First� we count the total number f of sequences of fusions we need to look at� Clearly�

f � 
�
Y

��j���

�
k � j � �

�

�
� d

�
k

�

���
� d

�
k�

�

���
� d

�
n�

�

���
� d

�
�d�

�

�d
� �O�d logd�

��



Next� we count the total number t of sequences of translocations we need to look at� Since there

are at most �n � � ways to translocate two sets�

t �

��
k

�

�
��n � �


���
�

�
k��n

�

�d
�

�
n��n

�

�d
�

�
�d���d

�

�d
� �O�d��

Since all the �ssions are done at the end� it su�ces to consider a single canonical sequence of doing

them� Hence� the total number of sequences of moves to consider is at most

�O�logd� � f � t � �O�d��

Finally� our algorithm should do the following for each of the above �O�d�� move sequences�

�i� Simulate the sequence

�ii� Test if it solves the given input instance

�iii� Retain the shortest solution sequence�

Since any move can be performed in O�n
 time and the sequence is of length at most d� the

time taken for �i
 is O�nd
 � �O�logd��

Time taken for �ii
 is O�kn
 � �O�logd�� since one just needs to check if the �nal collection of

sets is f�g� f�g� � � � � fng�

Time taken for �iii
 can be bounded as follows� The fusions in the sequence can be represented

in O�k
 space� the translocations can be represented in O�dn
 � O�d�
 space� and all the �ssions

can be represented in only O��
 space� hence the total space taken is O�d�
� Hence� to retain the

current best sequence takes only O�d�
 � �O�logd� time�

Hence� the total time taken by �i
� �ii
 and �iii
 for a particular sequence is �O�logd�� As a result�

the total time for all the sequences of moves is �O�d�� � �O�logd� � �O�d���

Finally� we need to consider the time to preprocess the input S�n� k
 to obtain an instance

S�n�� k�
 for which k� � n� � �d� This just involved deleting all singleton sets containing an element

that occurs in no other sets� and can be easily done in O�nk
 time�

Combining all the time� the total time taken by our algorithm to compute the optimal synteny

sequence is O�nk � �O�d��
�

� The Median Problem

The median problem arises in connection with the phylogenetic inference problem��
 and de�ned

as follows� Given three genomes G�� G� and G�� construct a genome G such that the median

distance 
G �
P�

i��D�G�Gi
 is minimized and also compute the value of the median distance


G corresponding to the median G �while computing the syntenic distance between two genomes�

we delete any elements that is not common between the two genomes
� Without any additional

constraints� this problem is trivial� since we can take G to be empty �and then 
G � �
� In the

context of syntenic distance� any one of the following three constraints seems relevant ��
�

�c�� If a gene is present in all the three given genomes� then this gene must be present in G�

��



�c�� If a gene is present in at least two of the three given genomes� then this gene must be present

in G�

�c�� If a gene is present in at least one of the three given genomes� then this gene must be present

in G�

Lemma ��� Computing the median distance is NP�hard with any one of the three constraints �c���

�c�� or �c���

Proof� We reduce the synteny problem to this problem� Let G� and G� be the two genomes of

any instance of the synteny problem and let d � D�G��G�
 � �� The NP�hardness reduction of

Section � shows that we may assume that both G� and G� contain the same set of genes� Let G�� G�
and G� be the three genomes for the corresponding median problem� Assume that G is the solution

of the median problem �under any one of the constraints
� If G 
� G�� then 
G � d�D�G�G�
 � d�

but if G � G�� then 
G � d� Hence� 
G is precisely the syntenic distance between G� and G� and

determining 
G determines d also�

The next lemma shows that there is an easy polynomial time approximation algorithm for the

median problem with performance ratio close to �� Let ni �resp� ki
 be the number of elements �resp�

number of sets
 in the three given genomes Gi� Let n � maxfn�� n�� n�g� and k � maxfk�� k�� k�g�

Lemma ��� We can approximate the median distance in O�nkA���nk� k
 � �O������
 time �under

any one of the constraints �c	�� �c�� or �c
�� with ratio � � � for any constant � � ��

Proof� Let G�� G� and G� be the three given genomes and d � � be the optimal median distance�

First� consider the case when d � �
� � Then� we can solve the median problem by an exhaustive

search as follows�

�I� Arbitrarily pick one of the three given genomes� say G�� and enumerate all genomes G� such

that D�G��G�
 �
�
� �

The time taken for this can be bounded as follows� First� we need to preprocess G� �by

repeatedly applying Lemma ��� using Lemma ���
 such that the modi�ed G� has k
� sets over

n� elements with k� � n� � ��� � This preprocessing takes O�nk
 time� Now� we generate G
�

by applying at most �
� moves on this preprocessed G�� #From the analysis given in the proof

of Theorem ��� in Section �� there are at most �O������ such sequences� hence at most these

many G� will be enumerated� The time to generate each such G�� given the sequence of moves�

is O�n� �� 
 � O��	��
�

�II� For each G� generated in �I
� evaluate
P�

i��D�G
��Gi
� and keep that genome G� that gives the

minimum sum�

We know that D�G��Gi
 �
�
� for � � i � �� Hence� to �nd

P�
i��D�G

��Gi
 for each G
�� all that

we need to do is to start with the genome G�� and �nd the shortest sequence of moves that

transform G� to Gi for � � i � �� and �nally retain the genome that gives the minimum sum�

By our analysis in the proof of Theorem ���� this can be done in �O������ time�

�	



Thus� if d � �
� � the total time taken by our algorithm is�

O�nk
 � �O������
�
O��	��
 � �O������

�
� O

�
nk � �O������

�
which is polynomial time since � � � is a constant�

Next� we need to consider the case when d � �
� � It turns out �as shown below in ��
���
 and

��

 that� for this case� selecting any of the � given genomes� possibly with a constant number of

additional sets� gives a performance ratio of ��� with any of the constrains �c�
� �c�
 or �c�
� Since

we do not know the value of d in advance� the complete approximation algorithm works as follows�

� For the given value of �� enumerate all G� to �nd the best G� �if any
 as describe above� If we

�nd such a G� within a median distance of �
� � we select this G

� as the median� Obviously� we

have an optimal solution in this case�

� Otherwise� select any of the three given genomes� possibly with a constant number of addi�

tional sets �as described below
� as the median� The proof below shows that this approximates

the median problem with a performance ratio of � � ��

Now� we turn our attention to prove that� if d � �
� � selecting any of the � given genomes� possibly

with a constant number of additional sets� gives a performance ratio of of � � � with any of the

constrains �c�
� �c�
 or �c�
� Note that Remark ��� in Section � states that if the optimal syntenic

distance between two genomes is d� then �d� � moves su�ce for the approximation algorithm�

��
 First� consider the median problem with constraint �c�
� Discard all genes which are not

present in all the three genomes�� Let d� � D�G��G�
� d� � D�G��G�
 and d� � D�G��G�
�

d � maxfd�� d�� d�g and G be any optimal solution of the median problem� Then� 
G � d� Assume

that we have computed approximations d��� d
�
�� d

�
� of d�� d�� d�� respectively �d

�
i � �di � �
 using the

slightly modi�ed approximation algorithm of Section � as mentioned in Remark ���� This takes

O�nkA���nk� k

 time� We propose any of the given genomes� say G�� as an approximate median

genome and d�� � d�� as the approximate value of the median distance� Our approximate median

distance is d�� � d�� � �d� �� and hence a performance ratio of � is achieved�

��
 Next� consider the median problem with constraint �c�
� Discard all genes which are present

in just one genome� Let d� � D�G��G�
� d� � D�G��G�
 and d� � D�G��G�
� d � maxfd�� d�� d�g

and G be any optimal solution of the median problem� Since removal of genes can never increase

the synteny distance� 
G � d� Assume again that we have computed approximations d��� d
�
�� d

�
�

of d�� d�� d�� respectively �d�i � �di � �
� in O�nkA���nk� k

 time� We select any of three given

genomes� say G�� as an approximate median� The problem is that any solution of the constrained

median problem may have to contain genes which are not present in G�� The following are the

various cases�

� Genes which are present in all the three genomes� These genes will be used in computation

of all the syntenic distances and hence pose no problems�

� Genes which are present in G� and one of G� or G�� Following the heuristic presented in

Section �� it is not di�cult to see these genes also pose no problems �they will be ignored

in the computation of one syntenic distance� but since the heuristic is a simple fusion��ssion

heuristic� they can always be included and placed in appropriate sets without increasing the

syntenic distance
�

�It is easy to see that removal of genes can never increase the synteny distance

��



� Genes which are present in G� and G� but not in G�� Let X be these sets of genes� Since the

heuristic presented in Section � is a simple fusion��ssion heuristic and since in the compact

representation of G�� X is equivalent to a singleton set� simply including an additional set X

in G� will increase each of d
�
� and d

�
� by at most one�

Hence� we can construct an approximate median G�� with an approximate median distance of at

most �d�� � �
 � �d
�
� � �
 � �d� thus achieving a performance ratio of ��

��
 Finally� consider the median problemwith constraint �c�
� We use essentially the same approach

as in ��
 to select any of the three given genomes� say genome G�� as our approximate median� We

have already described in ��
 above how to take care of elements which appear in just two of the

three genomes� Hence� we only need to describe how to include genes which appear in exactly one

of the genomes G� and G�� Let X be the set of genes which appear only in G�� Then� we include

the set X in our solution� It is easy to see that the simple fusion��ssion heuristic of Section � will

need one additional �ssion to transform G� to G�� We do the same thing about genes which appear

only in G�� In all� the total approximate median distance of our solution is at most �d� �� which

gives a performance ratio of � � �
d � � � �� Again� we take O�nkA���nk� k

 time�

Remark ��� �	� After this paper was submitted� Andris Ambainis pointed out to the �rst author the

following improvement in the analysis of Lemma ��� that will give an improved performance ratio

of 	
� � �� Let d � �

� � and for simplicity� consider the median problem with constraint �c	�� We use

the same notations as in the proof� Compute the approximate distances d��� d
�
�� d

�
� �approximating

the true distances d�� d�� d�� respectively� with performance ratio �� and select the genome which has

the smallest sum of the approximate distances to the two other genomes� Let G be the true median

and a�� a�� a� be D�G�G�
� D�G�G�
� D�G�G�
� respectively� Assume� without loss of generality� that

a� � minfa�� a�� a�g� Hence� a� �
a��a��a�

� � Then�

Our approximate median distance

� d�� � d��
� ��d� � d�
� �

� ��a� � a�
 � ��a� � a�
� � �by triangle inequality�

� ��a� � a� � a�
 � �a� � �

� 	
� �a� � a� � a�
� � since a� �

a��a��a�
�

A similar argument �together with our inclusion of a few additional sets� gives the same performance

ratio for the constraints �c�� or �c
� also�

� Conclusion

In this paper� we have proved several results concerning the complexities of e�cient exact and

approximate computations of the syntenic distance between genomes� These results are mainly

theoretical� However� the �relatively easy
 approximation algorithms for the synteny problem and

the median problem are also important as constructive results from the point of view of a practi�

tioner� The following problems still remain open�

� Can we approximate the synteny distance in polynomial time with a ratio better than ��

Does a PTAS for this problem exist� One possible direction of attacking these problems

could be to improve the lower bound of Proposition ���� especially for small values of p�

��



� When the synteny distance is bounded� can we improve the time complexity further to com�

pute an optimal move sequence�
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